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*is paper investigates a joint robust scheme in a secrecy relay network where distributed relays perform cooperative beam-
forming and a friendly jammer transmits jamming signal to enhance the information security. Specifically, we consider the outage
constraint secrecy rate maximization design with imperfect channel state information. *rough semidefinite relaxation and one-
dimensional search, we propose a two-layer optimizationmethod to solve the nonconvex problem. In addition, the Bernstein-type
inequality and large deviation inequality are utilized to convert the probabilistic constraint. Simulation results demonstrate the
performance of the proposed design.

1. Introduction

Physical layer security is considered as a promising tech-
nique in wireless networks to prevent illegitimate eaves-
dropping on the confidential message. Recently, cooperative
transmission using relays to improve the physical layer
security in wireless network has attracted increasing at-
tention [1], while the cooperative beamforming (CB) and
cooperative jamming (CJ) are the most useful ways for
improving the security in relay networks [2].

Specifically, in [3], the authors proposed a joint CB and
jamming design to provide Bob with certain quality of
service (QoS). In [4], the authors proposed a joint CB,
jamming and power allocation to secure amplify-and-for-
ward (AF) relay system, and was extend in [5] with con-
sidering hybrid opportunistic relaying and jamming, while
in [6], the authors proposed a jamming scheme in secure AF
relay system considering two-slot eavesdropping. Recently
in [7], the authors proposed a destination-aided CJ scheme
for the AF relay system when the relay is untrusted.

*e above works assumed that the perfect channel state
information (CSI) can be obtained. In practice, it may be
difficult to obtain the perfect CSI due to channel estimation
and quantization errors. To handle this obstacle, two kinds

of robust secrecy design, e.g., the worst case (WC) design
and the outage constraint (OC) design have been widely
investigated.*eWC secrecy design, which assumes that the
CSI errors lie in a deterministic region, is an absolute safe
design and the performance may be conservative. On the
other hand, the OC method is a better choice when the CSI
errors have certain probabilistic properties [8]. Specifically,
the OC secrecy design was investigated for multiple-input
single-output (MISO) system in [9–12] and for multiple-
input multiple-output (MIMO) system in [13–15], respec-
tively. Among these works, the Bernstein-type inequality
(BTI) and large deviation inequality (LDI) are widely used to
convert the probabilistic constraint into convex constraint.

However, all of these works investigated the direct
communication scenario, and the OC secrecy design in relay
network with friendly jammer has not been investigated yet.
Motivated by this observation, in this paper, we concentrate
on the OC robust design in friendly jammer-assisted secrecy
AF relay networks. Specifically, assuming that the CSI error
can be modeled as certain probabilistic distribution, we
investigate the outage constraint secrecy rate maximization
(OCSRM) problem, via jointly optimizing the CB and
jamming covariance. Here, we model the CSI uncertainty
level as a function of the signal-to-noise ratio (SNR), which
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rarely appears in related works. To solve the formulated
nonconvex problem, we derive a safe approximation of the
outage secrecy rate, and then a two-layer optimization al-
gorithm, which consists of one-dimensional search and
semidefinite relaxation (SDR), was proposed. Furthermore,
the probabilistic constraints are transformed by the BTI and
LDI, respectively. Simulation results demonstrate the per-
formance of the proposed method.

1.1. Notations. *roughout this paper, boldface lowercase
and uppercase letters denote vectors and matrices, respec-
tively. *e transpose, conjugate transpose, and trace of
matrix A are denoted as AT, AH, and Tr(A), respectively.
a � vec(A) denotes to stack the columns of matrix A into a
vector a. A≽0 indicates that A is a positive semidefinite
matrix. denotes the Frobenius norm. ⊙ denotes element-
wise product. D(a) represents a diagonal matrix with a on
the main diagonal. I is an identity matrix with proper di-
mension. Re a{ } denotes the real part of a complex variable a.
CN(0, I) denotes a circularly symmetric complex Gaussian
random vector with mean 0 and covariance I. λmax(A,B)

denotes the maximum generalized eigenvalue of matrix pair
(A,B). E denotes the mathematical expectation.

2. System Model and Problem Formulation

2.1. Systemmodel. We consider a cooperative relay network as
shown in Figure 1, in which Alice communicates with Bob with
the help of M relays and a friendly jammer. *e set of Eves is
denoted as K ≜ 1, . . . , K{ }. We assume that no direct link
exists between Alice and Bob or between Alice and Eves. Each
node is equipped with a single antenna except the jammer,
which is equipped with Nj antennas. All the channels are flat-
fading Rayleigh distribution. Specifically, the channel between
Alice to relays, between relays to Bob and Eves, between the
jammer to Bob and Eves are denoted by h ∈ CM, gb ∈ CM,
ge,k ∈ CM, gb,j ∈ CNj , and gk,j ∈ CNj , respectively, and we
assume that these channels undergo flat Rayleigh fading. Since
the relays operate in a half-duplex mode with the AF scheme,
one transmission round is composed of two phases.

In the first phase, Alice broadcasts its information s

which satisfies E[|s|2] � 1 to the relays. *us, the received
signal at the relays is expressed as yr �

��
Ps


hs + nr, where Ps

is the transmit power at Alice and nr is the additive noise at
the relays with distribution CN(0, σ2rI).

In the second phase, the relays employ the CB vector
w ≜ [w1, . . . , wM]T ∈ CM to forward the information to the
Bob, which grants Eves the opportunity to overhearing.
*us, the signal transmitted by the relays is given by
x � D(yr)w.

To confuse Eves, the jammer emits jamming signal
z ∈ CNj with distribution CN(0,Q) isotropically, where Q
is the jamming covariance. *us, the received signals at Bob
and k-th Eve are, respectively, given by

yb �
��
Ps


gH

b D(h)ws + nT
r D

H gb( w + gH
b,jz + nb, (1a)

ye,k �
��
Ps


gH

k D(h)ws + nT
r D

H gk( w + gH
k,jz + nk, (1b)

where nb and nk are additive noises at Bob and k-th Eve, with
variance σ2b and σ2k, respectively.

*e signal-to-interference-plus-noise ratios (SINRs) at
Bob and k-th Eve can be written as

Γb ≜
wHAbw

wHBbw + gH
b,jQgb,j + σ2b

, (2a)

Γe,k ≜
wHAkw

wHBkw + gH
k,jQgk,j + σ2k

, ∀k ∈K, (2b)

where Ab � PsDH(h)gbgH
b D(h), Bb � σ2rD(gb)DH(gb),

Ak � PsDH(h)gkgH
k D(h), and Bk � σ2rD(gk)DH(gk),

∀k ∈K, respectively.
Accordingly, the achievable secrecy rate for the relay

network is given by

R � min
∀k∈K

fk(w,Q), (3)

where fk(w,Q) is the difference between the information
rates for Bob and k-th Eve, which can be expressed as

fk(w,Q) � Cb(w,Q) − Ce,k(w,Q), (4)

where Cb and Ce are given as

Cb(w,Q) �
1
2
log 1 + Γb( , (5a)

Ce,k(w,Q) �
1
2
log 1 + Γe,k , ∀k ∈K. (5b)

2.2. Problem Formulation. Notably, we assume a practical
scenario that the relays and jammer have perfect CSI of Bob
but only imperfect CSI about Eves. Similar to [11], the
channel error vectors are modeled as circularly symmetric
complex Gaussian (CSCG) distribution, i.e.,

Gk � gk|gk � gk + Δgk,Δgk ∼ CN 0,Ck(  , (6a)

Gk,j � gk,j|gk,j � gk,j + Δgk,j,Δgk,j ∼ CN 0,Ck,j  ,

(6b)
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Figure 1: *e secrecy relay system model with CB and jamming.
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where gk and gk,j are the estimated channel vectors, re-
spectively, and Δgk and Δgk,j denote the channel uncertainty
with covariance Ck ∈ HM

+ and Ck,j ∈ H
Nj

+ , respectively. In
addition, gk is independent of gl, for any k≠ l. Similarly, gk,j

is independent of gl,j, for any k≠ l.
In this paper, we assume that Ck � ε2kI and Ck,j � ζ2kI,

with ε2k and ζ2k denoting the channel uncertainty level. Be-
sides, according to [16, 17], we consider two types of channel
estimation error models:

(1) ε2k and ζ2k are fixed and independent of the average
SNR.

(2) ε2k and ζ
2
k are functions of the average SNR. Take ε

2
k as

example.*e variance of the error can be modeled as
ε2k � Ωk/(1 + ϖcΩk), where Ωk � d− α is the variance
of gk, e.g., E[gkgH

k ] � ΩkI, where d denotes the link
distance, and α is the attenuation factor. In
addition,c is the transmit SNR, andϖ> 0 depends on
the cost of acquiring CSI in light of the training pilot
power consumption and reflects the quality of
channel estimation.

In this paper, we aim to maximize the outage secrecy rate
via jointly designing the CB vectorw and jamming covariance
Q. Specifically, the OCSRM problem is formulated as

max
w,Q,Rs

Rs, (7a)

s.t. Pr
gk,gk,j

min
∀k∈K

fk(w,Q)≥Rs ≥ 1 − δ, (7b)

wHFw + Tr(Q)≤PT, (7c)

wHFw ≤PR, (7d)

Tr(Q)≤PJ, (7e)

where δ is the secrecy outage probability, e.g., a parameter
denoting the chance of R falling below the target rate Rs due
to CSI uncertainty. Apparently, Rs is the outage secrecy rate.
In addition, F � PsDH(h)D(h) + σ2rI, and PT denotes the
sum power budget for the relays and jammer, while PR and
PJ stand for the individual power budget for the relays and
the jammer, respectively.

It should be noted that (7a)–(7e) are nonconvex due to
the coupled variables and constraints. Hence, in the fol-
lowing, we will propose an effective way to convert (7a)–(7e)
into a solvable problem.

3. An SDR-Based Approach to the
OCSRM Problem

In this section, we will derive an SDR-based approach to
(7a)–(7e). Firstly, we decouple the probabilistic constraint in
(7b). Since gk, gl, l≠ k and gk,j, gl,j, l≠ k are independent, we
obtain

(7b)⇐ Pr
gk,gk,j

fk(w,Q)≥Rs ≥ 1 − δ, ∀k, (8)

where δ � 1 − (1 − δ)1/K (see more details in [8]).

3.1. Relaxation of the OCSRM Problem. In this part, we will
propose a two-layer optimization way to (7a)–(7e). To start
with, we rewrite (7a)–(7e) as

R
∗
s � max

w,Q≽0,β≥1
Cb(w,Q) − log β, (9a)

s.t. Pr
gk,gk,j

Ce,k(w,Q)≤ log β ≥ 1 − δ, ∀k ∈K, (9b)

(7b) − (7d), (9c)

where β is an introduced slack variable to simplify the
objective function.

By substituting (2a) and (2b) into (9a)–(9c), we reexpress
(9a)–(9c) as

R
∗
s � max

w,Q≽0,β≥1
log 1 +

wHAbw
wHBbw + gH

b,jQgb,j + σ2b
⎛⎝ ⎞⎠ − log β,

(10a)

s.t. Pr
gk,gk,j

1 +
wHAkw

wHBbw + gH
k,jQgk,j + σ2k

≤ β
⎧⎨

⎩

⎫⎬

⎭

≥ 1 − δ, ∀k ∈K,

(10b)

(7b) − (7d). (10c)

Furthermore, utilizing the SDR [18], e.g., defining W �

wwH and neglecting the nonconvex constraint
rank(W) � 1, we attain the following SDR problem:

R
∗
s � max

W≽0,Q≽0,

β≥1

log 1 +
Tr AbW( 

σ2b + Tr BbW(  + gH
b,jQgb,j

⎛⎝ ⎞⎠ − log β,

(11a)

s.t. Pr
gk,gk,j

(β − 1) Tr BkW(  + gH
k,jQgk,j + σ2k 

≥Tr AkW( ≥ 1 − δ, ∀k ∈K,

(11b)

Tr(FW) + Tr(Q)≤PT, (11c)

Tr(FW)≤PR, (11d)

Tr(Q)≤PJ. (11e)

3.2. An SDR-Based Line Search Method for (11a)–(11e).
We now focus on solving the relaxation (11a)–(11e). In fact,
(11a)–(11e) can be reformulated as a single-variable opti-
mization problem, which can be efficiently handled by SDR.
To show this, note that
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1≤ β≤ 1 +
wHAbw

σ2b + wHBbw + gH
b,jQgb,j

≤ 1 +
wHAbw
wHBbw

≤ 1 + λmax Ab,Bb( .

(12)

*en, we rewrite (11a)–(11e) as

e
R∗s � max

α
φ(α), (13a)

s.t. 1 + λmax Ab,Bb( ( 
− 1 ≤ α≤ 1, (13b)

where α � 1/β and

φ(α) � max
W≽0,Q≽0

σ2b + Tr BbW(  + gH
b,jQgb,j + Tr AbW( 

α− 1 Tr BbW(  + gH
b,jQgb,j + σ2b 

,

(14a)

s.t. Pr
gk,gk,j

α− 1
− 1  Tr BkW(  + gH

k,jQgk,j + σ2k 

≥Tr AkW( ≥ 1 − δ, ∀k ∈K,

(14b)

(11c) − (11e). (14c)

φ(α) does not have a closed form but is numerically
tractable. In particular, (14a)–(14c) can be converted into a
convex optimization problem. Specifically, via the Char-
nes–Cooper transformation [19], we introduce a change of
variables W � W/ξ, Q � Q/ξ with ξ > 0. *en, (14a)–(14c)
can be equivalently expressed as

φ(α) � max
W≽0,Q≽0,ξ>0

ξσ2b + Tr Bb
W(  + gH

b,j
Qgb,j + Tr Ab

W( ,

(15a)

s.t.Tr BbW(  + gH
b,j

Qgb,j + ξσ2b � α, (15b)

Pr
gk,gk,j

(1 − α) Tr Bk
W(  + gH

k,j
Qgk,j + ξσ2k 

≥ αTr Ak
W( ≥ 1 − δ, ∀k ∈K,

(15c)

Tr(F W) + Tr( Q)≤ ξPT, (15d)

Tr(F W)≤ ξPR, (15e)

Tr( Q)≤ ξPJ. (15f)

3.3. Transformation of Probabilistic Constraints (15c). *e
remaining challenging is that (15a)–(15f) have probabilistic
constraints (15c), which is intractable. In the following, we
will handle (15c) via the BTI and LDI, respectively.

Firstly, using the following identity aHD(b) � bHD(a),
we obtain Tr(Ak

W) � gH
k H WHHgk and Tr(Bk

W) � gH
k (σ2rI

⊙ W)gk.
*en, we transform (15a)–(15f) into

φ(α) � max
W≽0,Q≽0,ξ>0

ξσ2b + Tr Bb
W(  + gH

b,j
Qgb,j + Tr Ab

W( ,

(16a)

s.t. Pr
gk,gk,j

gH
k Xgk +(1 − α)gH

k,j
Qgk,j +(1 − α)ξσ2k ≥ 0 

≥ 1 − δ, ∀k ∈K,

(16b)

(15b), (15d) − (15f), (16c)

where X � (1 − α)(σ2rI)⊙ W − αPsH WHH.
It should be noted that the outage probability in (16b)

can be characterized by the quadratic inequality with respect
to (w.r.t.) gk and gk,j, e.g., (16b) can be safely approximated
via the following BTI and LDI, respectively.

Lemma 1 (BTI [11]). For any (A, u, c) ∈ HN × CN × R,
v ∼ CN(0, I), and η ∈ (0, 1], the following inequalities hold:

Prv vHAv + 2R vHu  + c≥ 0 ≥ 1 − η,

⇐

Tr(A) −
�������
− 2ln(η)


x + ln(η)y + c≥ 0,

vec(A)
�
2

√
u

 

���������

���������
≤x,

yI + A≽0, y≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

where x and y are slack variables. Moreover, (17) is convex
w.r.t. all the variables (A, u, c, x, y).

To use Lemma 1, we first define gk � gk + C1/2
k ek and

gk,j � gk,j + C1/2
k,j ek,j, where ek ∼ CN(0, I) and

ek,j ∼ CN(0, I), respectively.
*en, the part in the braces of (16b) can be equivalently

rewritten as

eH
k C

1/2
k XC1/2

k ek + 2R eH
k C

1/2
k Xgk  + g

H
k Xgk

+(1 − α)ξσ2k +(1 − α)eH
k,jC

1/2
k,j

QC1/2
k,j ek,j

+ 2(1 − α)R eH
k,jC

1/2
k

Qgk,j  +(1 − α)g
H
k,j

Qgk,j ≥ 0.

(18)

Furthermore, (18) can be rewritten as

vH
k Akvk + 2R vH

k uk  + ck ≥ 0, (19)

where Ak, vk, uk, and ck are given as

Ak �
C1/2

k XC1/2
k 0

0(1 − α)C1/2
k,j

QC1/2
k,j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦, (20a)

vk � eH
k , eH

k,j , (20b)

uk �
C1/2

k X0

0(1 − α)C1/2
k

Q
⎡⎣ ⎤⎦

gk

gk,j

 , (20c)

ck � g
H
k , g

H
k,j 

X0
0(1 − α)Q

 
gk

gk,j

  +(1 − α)ξσ2k. (20d)
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Combining all these equations, (16a)–(16c) can be recast
as the following convex problem:

φ(α) � max
W≽0,Q≽0,ξ>0,yk > 0

ξσ2b + Tr Bb
W( 

+ gH
b,j

Qgb,j + Tr Ab
W( ,

(21a)

s.t.Tr Ak(  −

�������

− 2ln(δ)



xk

+ ln(δ)yk + ck ≥ 0, ∀k ∈K,
(21b)

vec Ak( 
�
2

√
uk

 

��������

��������
≤ xk, ∀k ∈K, (21c)

ykI + Ak≽0, yk ≥ 0,∀k ∈K, (21d)

(15b), (15d) − (15f), (20), (21e)

which can be efficiently solved by available solvers such as
CVX [20].

It should be mentioned that for the obtained W∗, if
rank(W∗) � 1, we can attain the optimal w∗ via matrix
eigenvector decomposition. On the other hand, if
rank(W∗)≥ 1, we employ the Gaussian randomization (GR)
method to generate the suboptimal rank-one solution [18].

In the above part, we have utilized the BTI to transform
the probabilistic constraint. To reduce the computational
complexity, in the following we will utilize the LDI to
convert the probabilistic constraint.

Lemma 2 (LDI [11]). Let x ∼ CN(0, I), and let A ∈ Hn×n,
r ∈ Cn×1 be given variables. ?en, for any v> 1/

�
2

√
and ζ > 0,

we have

Pr xHAx + 2R xHr ≤Tr(A) − ζ 

≤

exp −
ζ2

4T
2 , 0< ζ ≤ 2vvT,

exp −
vvζ
T

+(vv)
2

 , ζ > 2vvT,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where v � 1 − (1/2v2) and T � v‖A‖ + 1/
�
2

√
‖r‖.

By Lemma 2 and following the similar way in [11], (16b)
can be transformed into the following relationships:

Tr Ak(  + ck ≥ 2
������

− ln(δ)



xk + yk( , ∀k ∈K,

uk

����
����≤

�
2

√
xk, ∀k ∈K,

v Ak

����
����≤yk, ∀k ∈K,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

where v> 1/
�
2

√
is the solution to (1 − (1/(2v2)))

v �

������

− ln(δ)



(see more details in reference [11]).
*us, (16a)–(16c) can be recast as the following convex

problem:

φ(α) � max
W≽0,Q≽0,ξ>0,xk,yk

ξσ2b + Tr Bb
W( 

+ gH
b,j

Qgb,j + Tr Ab
W( ,

(24a)

s.t. (15b), (15d) − (15f), (20), (23), (24b)

which can also be solved by CVX. Similar to (21a), GR is
utilized to extract the rank-one solution.

Following the theory in [11], we obtain the complexity
comparison between the BTI and LDI methods, which are
shown in Table 1, where ϑ denotes the accuracy requirement.
From the comparison, we can see that the LDI method
achieves lower complexity than the BTI method.

4. Simulation Results

In this section, simulation results are presented to evaluate
the performance of the proposed design. *e channels h, gb,
gk, gb,j, and gk,j are assumed to be independent and iden-
tically distributed complex Gaussian random variables with
zero mean and unit variance. We set K � 3, M � 5, Nj � 3,
Ps � 10dB, PT � 10dB, σ2r � σ2b � σ2e,k � 1, α � 4, d � 20,
ϖ � 0.2, and δ � 10− 2. In addition, we compare our design
with the following methods: (1) the proposed design in the
case of perfect Eves’ CSI, which can be seen as the upper
bound of the robust design; (2) the no jam case, e.g., setting
Q � 0 while only optimizing w; and (3) the fixed CSI un-
certainty model with BTI method, and ε2k � ζ2k � 10− 4. *ese
methods are denoted as “BTI method,” “LDI method,”
“perfect CSI case,” “no jam method,” and “fixed CSI un-
certainty,” respectively.

Firstly, we compare the outage secrecy rates versus the
total power budget PT, and the result is shown in Figure 2.
From this figure, we can see that the outage secrecy rates
increase with the increase of PT, while the BTI method
outperforms the LDI method and the no jam method. In
addition, the performance gap between perfect and im-
perfect CSI cases is apparent, especially for relative large PT,
which shows the influence of the CSI error on the security.
Besides, the fixed CSI uncertainty model suffers certain
performance loss, especially for relative large PT, since when
PT tends to large, according to the function model, the
corresponding CSI tends to smaller. However, the fixed CSI
uncertainty model cannot reflect this relationship, thus
leading to performance loss.

Next, we investigate the effect of the number of the relays
on the outage secrecy rate. Figure 3 shows the relationship
between the outage secrecy rate and the number of the
relays. From this figure, we can see that for all these methods,
higher outage secrecy rate can be achieved with more relays,
since higher spatial degrees of freedom can be utilized to
improve the secrecy performance.

Lastly, Figure 4 investigates the relationship between
the outage secrecy rate versus the secrecy outage proba-
bility. As can be seen in this figure, with the increase of δ,
the outage secrecy rate tends to increase. *is is mainly due
to the fact that with the increase of δ, the relay network
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permits more chance to outage, and thus the threshold of
outage rate tends to increase, e.g., the outage secrecy rate
tends to increase.

5. Conclusion

In this paper, we have investigated the OCSRM design in
secrecy AF relay networks, via jointly optimizing the CB and
jamming covariance. To solve the formulated nonconvex
problem, we derived a safe approximation of the outage
secrecy rate, and then a two-layer optimization algorithm
was proposed. Simulation results demonstrated the per-
formance of the proposed method.
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