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Digital medicine and the curse of dimensionality
Visar Berisha 1,2,3✉, Chelsea Krantsevich 3,4, P. Richard Hahn4, Shira Hahn2,3, Gautam Dasarathy1, Pavan Turaga1,5 and Julie Liss2,3

Digital health data are multimodal and high-dimensional. A patient’s health state can be characterized by a multitude of signals
including medical imaging, clinical variables, genome sequencing, conversations between clinicians and patients, and continuous
signals from wearables, among others. This high volume, personalized data stream aggregated over patients’ lives has spurred
interest in developing new artificial intelligence (AI) models for higher-precision diagnosis, prognosis, and tracking. While the
promise of these algorithms is undeniable, their dissemination and adoption have been slow, owing partially to unpredictable AI
model performance once deployed in the real world. We posit that one of the rate-limiting factors in developing algorithms that
generalize to real-world scenarios is the very attribute that makes the data exciting—their high-dimensional nature. This paper
considers how the large number of features in vast digital health data can challenge the development of robust AI models—a
phenomenon known as “the curse of dimensionality” in statistical learning theory. We provide an overview of the curse of
dimensionality in the context of digital health, demonstrate how it can negatively impact out-of-sample performance, and highlight
important considerations for researchers and algorithm designers.

npj Digital Medicine           (2021) 4:153 ; https://doi.org/10.1038/s41746-021-00521-5

INTRODUCTION
The dimensionality of digital health data is large and ever-
increasing. A patient’s electronic health records contain imaging
data, speech samples, clinical variables, information about activity
levels and vital signs from wearables, genomic data, and other
data streams. This leads to a high-dimensional and potentially rich
representation of the patient’s health state. For example, pixels in
an MRI image of the brain have sub-mm resolution, leading to
imaging data with a million or more voxels. Continuous data from
wearables is sampled at tens or hundreds of samples per second.
Speech is typically sampled between 16k and 44k samples
per second. Images have megapixel resolution and video streams
stack tens of high-resolution images every second. Personal
genomic information is encoded as genotypes for potentially
millions of single nucleotide polymorphisms (SNPs). These
numbers will only increase in the future as the resolution of data
increases and new modalities are added to the mix, meaning that
each individual has a massive clinical data footprint containing
highly complex information. The high-dimensional nature of
digital health data leaves algorithm designers with a very large
raw input data stream from which to extract features for algorithm
development. Throughout the paper, we use the terminology high
dimensional/small sample data or high dimensional problem to
denote a setting where the number of features is very large and
often greater than the sample size, as is often the case in digital
health applications.
These data provide an opportunity to overcome the limitations

of current clinical practice; however, the bottleneck is that “we
don’t know where the information is” in the raw data to provide
actionable insight to clinicians. Artificial intelligence (AI) has
promise as a potential solution to this problem owing to its ability
to iteratively learn from the various clinical data streams. AI-based
software-as-a-medical device (SaMD) tools are broadly described
by the FDA’s proposed total product lifecycle workflow in Fig. 11.
During model development, algorithm designers collect a large

training dataset that may consist of data from different modalities,
each acquired according to some predefined data acquisition
protocol. These data are used to engineer a feature set and train a
model to automate a clinical decision of interest. The final model
and feature set are selected using a cross-validation procedure on
a held-out test set, and the cross-validation accuracy is used as an
estimate of out-of-sample accuracy (i.e., the accuracy of the model
after deployment). Once finalized and validated, the model is
deployed and makes decisions on new, out-of-sample data.
Post-deployment, real-world model performance can be mon-
itored and the original model can be iteratively updated and
re-deployed.
While there is considerable promise for AI in healthcare, to

date it has been short on delivery2. In many cases, researchers
have relied on relatively small-scale training datasets to train and
evaluate AI algorithms with large numbers of features in service
of these goals. Algorithms prematurely disseminated to clinics
have resulted in catastrophic failures owing to a lack of
generalizability—algorithms that achieve high performance
during their training phases turn out to have much higher error
rates when deployed for use3.
What explains the gap between the promise of AI and the slow

rate of technology translation to the clinic? We argue that it is the
high-dimensional nature of the data and the information hidden
within it that makes building models that generalize challenging.
Health state data are complex owing to the variability of human
signals, contextual factors, and environmental variables. As we
increase the number of clinical variables we measure, there is a
combinatorial explosion in the possible values that the variables
can jointly take. Building robust models for solving complex
problems requires that the increase in variability is offset by a
commensurate increase in sample size. Attempting to solve highly
complex real-world problems using high-dimensional data, with-
out increasing sample size, leaves datasets with a “blind spot” -
contiguous regions of feature space without any observations -
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and poses several challenges to model development. This
phenomenon is known as the curse of dimensionality in statistical
learning theory4.
The curse of dimensionality results in compounding negative

effects on generalizability. When algorithm designers use inade-
quate sample sizes to train and evaluate algorithms for finding
patterns in a complicated construct (e.g., human health), the large
volume of the blind spot regions can lead to highly variable
estimates of true model performance. This variability makes it
difficult to accurately estimate how well the model will perform on
unseen data, giving algorithm designers an inaccurate sense of
how well a model is performing during development. If the
misestimation is an overestimation of true performance, cata-
strophic failures can result after the model is deployed.
Several notable examples of high-dimensional models failing to

generalize demonstrate the medical relevance of this phenom-
enon. Watson for Oncology was trained on high-dimensional
historical patient data to make treatment recommendations for
eight different cancer types3. However, Watson was trained using
only a small sample ranging from 106 cases for ovarian cancer to
635 cases for lung cancer. A small, high-dimensional training
sample is susceptible to dataset blind spots; if data from these
blind spots are encountered after deployment, the model can
produce incorrect treatment recommendations that are not
detected during model development3. This issue isn’t limited to
oncology. There is a growing industry for personalized nutrition,
where companies train AI models to learn a mapping from a
person’s genetic or microbiome gut signatures (a high-
dimensional signal) to a personalized nutrition plan. Reliably
training these models requires labeled data on a massive scale
(e.g., paired nutrition/genetic/health outcomes data); however,
these data are limited and sparse5 and there is increased
skepticism in the scientific community as to whether existing
solutions to personalized nutrition are effective6.
In this article we illustrate the curse of dimensionality using real

and hypothetical examples from digital health, with a focus on
speech-based digital biomarker discovery. Speech production is a
cognitively taxing task that requires activation of a distributed
neuronal network in the brain; therefore, the hypothesis is that
any disturbances to this network due to the presence of a disease
will manifest as a change in the speech signal. One of the
promises of AI in this context is the potential for using the speech

signal to detect an underlying neurological disease by training a
classification model to predict a clinical diagnosis7,8. However, this
is challenging as speech is sampled at tens of thousands of times
per second. To wrangle with this volume of data for clinical AI
applications, scientists transform the raw speech samples into
high-dimensional feature vectors that range from hundreds to
thousands of features; the expectation is that these features
contain the complex information relevant for clinical diagnoses.
However, clinical speech databases are quite small in comparison,
often on the order of tens or hundreds of patients with only a few
minutes of speech per person (see studies in review papers7,8).
This yields a perfect storm of high-dimensional data and a
relatively small sample size used to model a very complicated
phenomenon—the ideal conditions for the curse of dimension-
ality. In the sections that follow, we use this application as an
example to illustrate how these conditions can lead to a lack of
generalizability once a model is deployed, while producing
misestimates of performance during model development.

THE CURSE OF DIMENSIONALITY AND DATASET BLIND SPOTS
To illustrate the curse of dimensionality, we consider a notional
example where a scientist aims to develop a machine learning
algorithm that analyzes a participant’s speech and classifies
them as either having mild cognitive impairment (MCI) or
healthy cognition. Using Fig. 1 as a guide, the scientist first
collects speech according to a pre-specified data acquisition
protocol from participants with MCI and healthy controls; the
scientist then develops an algorithm to extract a normalized
measure of the type-to-token ratio (TTR; a metric that captures
vocabulary) and a normalized measure of lexical density
(LD; a metric that captures the ability to convey information)
from the collected speech. We assume that both features vary
from 0 to 1.
We consider two hypothetical scenarios related to this stylized

problem in Fig. 2. Under the first scenario, the TTR is the only
relevant feature for distinguishing between these two groups, and
under the second scenario, both the TTR and the LD are relevant
features for separating these two groups. We refer to the set of
features related to the classification task as the “relevant feature
space”. This term encapsulates the true complexity of the
underlying patterns that the AI model is being trained to uncover.
Fig. 2 shows the same samples plotted under both scenarios.
Under the first scenario, the relevant feature space is
1-dimensional (1-d) and the available data are a seemingly dense
sampling of the feature space. Under the second scenario, the
relevant feature space is 2-dimensional (2-d) with a quadratic
increase in the number of potential feature configurations. That is,
in the first problem setting with only one relevant feature, there
are participants with high or low TTR. However, in the second
problem setting, the scientist may have to consider participants
with high TTR/low LD, high TTR/high LD, low TTR/low LD, and low
TTR/high LD.
Comparing the distribution of samples between the two

scenarios, we see that the average interpoint distance between
samples is much larger in the 2-d feature space than in the 1-d
feature space. The increased sparsity in the relevant feature space
exponentially increases the volume of blind spots in data. We
define a blind spot in the data as a contiguous region of feature
space for which we don’t have samples. This can occur for a
number of reasons:

1. samples in that region simply do not occur (the true data
generating distribution is not supported in the blind spot);

2. an “unlucky” random sampling has missed samples from
that region;

3. the training dataset is biased in an important way and so
fails to include samples from that region.

Fig. 1 A high-level block diagram for clinical AI model develop-
ment. During model training, algorithm designers collect a large
training dataset consisting of data from different modalities, each
acquired according to some predefined protocol. These data are
used to engineer a feature set and train a model to automate a
clinical decision of interest. The final model and feature set are
selected using a cross-validation procedure on a held-out test set.
After model deployment, real-world model performance can be
monitored and the original model can be iteratively updated and re-
deployed.
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The expanding blind spot with increasing dimension can
make it difficult to evaluate how a model trained on these data
will fare after deployment. Consider learning two models on the
data in the second scenario, as shown in Fig. 3. Both
achieve approximately the same performance on the available
data; however, they would treat most of the samples from the
blind spot differently. One model would classify them as
healthy whereas the other would classify them as MCI. Does
this matter?
Under the best-case scenario, the training data is a random

sample drawn from the true data distribution. In this case, the
expanding blind spot manifests either because those feature
combinations do not co-occur, or it’s the result of an “unlucky”
sampling of the feature space that has missed that region. The
consequences of the blind spot under the best-case scenario vary
from mild (e.g., data from the blind spots will never be observed
after deployment and the underlying classification problem is
easy) to severe (e.g., the underlying problem is complex and
additional samples are required to more densely sample the
feature space). The best-case scenario has been extensively
studied in classical statistical learning theory9. In this case, the
sample size demands for properly training a model and accurately

estimating its performance on new data scale with the complexity
(the degrees of freedom) of the class of models considered during
training and the intrinsic difficulty of the classification problem.
While model complexity can increase by other means (e.g., a high-
degree polynomial classifier fit with a single feature), adding more
features can increase the necessary sample size for proper model
fitting. For example, if the algorithm designer considers only the
class of linear classifiers for separating between these two groups
(assuming the ground truth classifier is also linear), the number of
samples required to train the model, with some probabilistic
assurance that the model is trained correctly, scales linearly with
feature dimension.
In practice, however, the best-case scenario rarely holds. A

recent study found that 71% of all training data for digital health
applications were collected in three states (California, Massachu-
setts, and New York), and 34 of the states were not represented at
all10. Since digital health applications center on complex problems
involving high-dimensional relevant feature spaces, this biased
sampling is likely to leave a massive blind spot where data could
be observed after deployment; the volume of this blind spot
scales exponentially with the number of features. As in the
example of the two classifiers in Fig. 3, the algorithm designer has

Fig. 3 Two classifiers learned from the 2-d samples in Fig. 2. Both classifiers achieve approximately the same performance on the available
data; however they would treat most of the samples from the blind spot differently. Model a would classify them as MCI, whereas model b
would classify them as healthy.

Fig. 2 The two scenarios considered in the example problem in the text. Under the first scenario (a), type-to-token ratio is the only relevant
feature for distinguishing between healthy controls and patients with mild cognitive impairment (MCI). Under the second scenario (b), both
type-to-token ratio and lexical density are relevant features for separating between these two groups.
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no way of comparing the real-world performance of two
candidate models that perform equally well on the available
data. In fact, it’s only after deployment, when the classifier begins
to observe samples from the blind spot regions and produce
decisions, that the algorithm designer can detect an issue. In the
absence of additional information during model development, the
problem is unsolvable as we cannot expect that the model will
correctly extrapolate to samples from the blind spot. Algorithm
designers have proposed solutions that require continuous
monitoring of the data distribution after deployment; these
solutions require data that scale exponentially with the dimen-
sionality of features in the model11.
The curse of dimensionality tells us that the volume of this blind

spot grows at an exponential rate as we tackle problems of higher
and higher complexity while the sample size remains the same. If
there were actually a third relevant speech feature for classifying
between MCI and healthy controls, which the scientist included
without increasing the sample size, the sample sparsity and
volume of the blind spot would continue increasing because of
the combinatorial explosion of possible feature combinations.
Furthermore, this hypothetical example assumes the scientist
knows a priori which features are relevant to the classification task
and only uses data for those features when training the model. If
the scientist is exploring the feature space by including more
features at-will, which is often the case, the problem becomes
even more complicated as the exploratory features can further
increase the volume of the blind spot.
Realistically, the underlying relationship between cognitive

status and speech production is incredibly complex and will
depend on a large number of features12,13. AI models trained to
uncover these patterns using high-dimensional data with
relatively small sample sizes will inevitably incur a large blind
spot. Unfortunately, because the true number of relevant features
is unknown, and because it is often not clear whether the choice
of sample is biased in a way that matters, the scientist doesn’t
know during model development whether the blind spot is
important or not. Under the “easy” best-case scenario, the samples
from the blind spot will never be seen during deployment. More
realistically, most training data are incomplete in some way (either
due to unlucky sampling or a biased data collection strategy),
likely leading to problematic blind spots in high-dimensional
problem settings.

THE IMPACT OF DATASET BLIND SPOTS ON MODEL
PERFORMANCE ESTIMATION
Cross-validation or a held-out test set are commonly used to
estimate AI model performance during development for the
purposes of model selection and design of prospective validation
studies. Under the worst-case scenario above, it’s clear that these
performance estimates can be unreliable as the model was trained
with a sample that isn’t representative of the post-deployment
data. Under the best-case scenario, the result of a large blind
spot is high variance in the estimator of true model performance.
That is, different realizations of the data will have different blind
spots that data splitting and/or resampling methods cannot fill in,
with the result that out-of-sample performance is necessarily
sensitive to the specific data at hand. This phenomenon was
empirically observed in a recent study that used structural MRI
data for diagnosing Major Depressive Disorder (MDD);14 the
authors randomly sampled train and test sets (to mimic in-sample
and out-of-sample data) of increasing size and evaluated models
using 48 different automatic pipeline configurations with default
hyperparameters. They found that the variability in estimates of
model performance increased with decreasing test set size; for
example, test sets of size N= 100 had accuracies ranging from 51
to 79%, whereas test sets of size N= 20 had accuracies ranging
from 35 to 95% (see Fig. 4 in ref. 14); similar results were obtained

using leave-one-out-cross-validation. Simply put, model accuracy
itself is hard to estimate in high-dimensional models, and
estimates based on inadequately large samples can be unreliable
guides to model performance post-deployment.
These findings provide a possible explanation for the negative

relationship between model performance and sample size
observed when high-dimensional modalities are used to train
machine learning models with relatively small sample sizes. For
example, an analysis of neuroimaging-based AI models in over
200 studies showed a negative association between reported
performance and sample size across studies involving several
neurological disorders, including schizophrenia, MCI, Alzheimer’s
disease, major depressive disorder, and attention deficit hyper-
activity disorder15. A follow-on meta-analysis studied the relation-
ship between reported accuracy and sample size for 55 studies
that used high-dimensional AI models (trained on different data
modalities) to predict whether participants were diagnosed with
autism spectrum disorder16, and found a strong significant
negative association between sample size and reported accuracy.
Similarly, in Fig. 4 we characterize the relationship between
accuracy and sample size for speech-based classification models
of cognitive impairment from two meta-analyses7,8. It is common
practice in the speech analytics literature to extract hundreds or
thousands of features from speech samples elicited under
different conditions to learn models for classifying between a
control group and an impaired group. We plot the reported
accuracy vs. total sample size for 51 classifiers from the literature,
considering two types of models: (1) speech-based models for
classifying between a control group (Con) and patients with a
diagnosis of Alzheimer’s disease (AD) and (2) speech-based
models for classifying between a control group and patients with
other forms of cognitive impairment (CI) (see Supplementary
Note 1 for details). Consistent with results from neuroimaging and
other high-dimensional modalities, there is a negative relationship
between accuracy and sample size for each of the two groups of
models and for all studies in aggregate.
The published studies and our analysis of speech-based models

for cognitive impairment reveal a negative association between
sample size and reported accuracy, regardless of the underlying
modality. We conjecture that the variability from dataset blind
spots due to small sample sizes in high-dimensional problems,
combined with publication bias, provides a possible explanation
for the negative trend. Models that underestimate accuracy are
less likely to be published and therefore, the meta-analyses trends
may reflect the upper envelope of the performance estimation
plot in Fig. 4 of ref. 14; this is indeed closely related to the file-
drawer effect that has been observed in several fields17–19. An
additional contributing explanation for the observed trend could
be use of the full dataset during model development. Using
combined train and test data for feature selection and parameter
tuning, followed by k-fold cross validation to estimate model
accuracy results in positively biased estimates of model perfor-
mance, especially for small sample size studies16. Beyond cross-
validation within a single study, repeated use of the same dataset
over time to improve algorithms and train new models can lead to
a similar bias20,21. This overestimation of true performance in the
published literature provides readers with an overoptimistic
expectation of how well these models will work once deployed.
While the example in Figs. 2 and 3 is based on data from a

single modality (speech) and a single application (speech-based
assessment of cognition), several analyses14–16 show that blind
spots can be problematic in other data modalities and application
areas. In general, these phenomena hold across modalities as they
are independent of data type. Regardless of the underlying data
modality, any application with highly complicated multi-
dimensional patterns of information requires massive sample
sizes, which can make high-dimensional AI models costly or
infeasible for clinical applications.
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CONSIDERATIONS FOR MITIGATING THE EFFECTS OF THE
CURSE OF DIMENSIONALITY DURING MODEL DEVELOPMENT
High-dimensional, complex application settings, combined with
small sample sizes, create a perfect storm for blind spots. The gold
standard for evaluating model performance is a prospective
validation study that matches the model’s context of use after
deployment. We posit that most of the published models trained
in the high-dimensional, small data scenario are unlikely to fare
well during validation.
While the problem is challenging, certain strategies can improve

the likelihood of building a robust model. For the various blocks in
the diagram in Fig. 1, we provide considerations for researchers
during model development and deployment for successfully
working with complex, high-dimensional models.

Data acquisition protocol
Collection of data from different modalities varies by context.
Most of the information-rich data modalities in electronic health
records (e.g., clinical tests, imaging data, genetics data) are
collected in-clinic using a pre-specified protocol. However, data
from real-world sensors can be collected under a variety of
contexts. For example, consider passively collected data from a
real-world environment as an indicator of health (e.g., raw data
streams from an actigraph that is constantly sensing or passively
collected speech samples). The benefits of passively collected data
for health applications are clear, but the challenges to robust
model development are significant. Returning to our speech
example, contextual factors such as background noise, other
people speaking, or differences in the way that people speak,
impact the features used to drive AI models in ways that are
difficult to characterize. This means that the raw data collected
under these conditions depend on a variety of potentially

irrelevant (and unknown) factors. This increases the intrinsic
dimensionality of the data generating process and the potential
for blind spots, especially when the sample size is limited.
Algorithm designers should consider active, maximum perfor-

mance tasks as an alternative to passively collected data.
Maximum performance tasks such as diadochokinetic rate
estimation in speech22 or rapid finger tapping for motor control23

limit the dimensionality of features required to characterize the
underlying data generating process; this has the effect of reducing
the impact of blind spots. In addition, maximum performance
tasks reduce the relative impact of unmeasured variation (i.e., the
noise), thereby making estimation of clinical contrasts of interest
more efficient. For example, in early amyotrophic lateral sclerosis,
there may be no perceptible differences in patients’ speech during
everyday conversation; however, there are reductions in both rate
and precision of articulation when measured under a maximum
performance task24. It’s likely that under the passively collected
data paradigm, this region of the speech feature space would
never be observed as most maximum performance tasks fall
outside everyday typical speech patterns.

Training data collection
Scientists should take great care in designing the size and
diversity of their training sample to ensure that it matches the
conditions expected after model deployment. Even with a diverse
sampling strategy (e.g., acquiring digital health data from many
geographic regions), larger sample sizes are still required to
reliably train more complex high-dimensional models25. Prior to
designing a final model, algorithm designers can use existing
approaches for predicting the sample size required for reliably
training classification algorithms25.
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Fig. 4 The reported accuracy vs. total sample size for 51 classifiers from the meta-analyses in refs. 7,8. This analysis considers two types of
models: (1) speech-based models for classifying between a control group and patients with a diagnosis of Alzheimer’s disease (Con vs. AD;
blue plot) and (2) speech-based models for classifying between a control group and patients with other forms of cognitive impairment (Con
vs. CI; red plot). The total sample size is the sum of the number of subjects in the control group and the clinical group. The y-axis is in linear
scale and the x-axis is in log scale as it spans multiple orders of magnitude.
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The more complex situation is when there is covariate shift
owing to a mismatch between training data and post-deployment
data (e.g., the geographic bias in clinical AI models10). This biased
sampling will induce a large difference between training and post-
deployment data distributions, leading to a large and problematic
blind spot in the data26. Designing representative datasets for
training is often easier said than done, as it requires prior
knowledge about which stratification variables covary with the
predictors. In our speech example, there is abundant published
data on the impact of geographic dialects, age, sex, and other
biological/anatomical variables on speech27,28; careful mapping of
these parameters and their ranges allows algorithm designers to
construct representative training data to build robust AI models29.
It is important to note that this does not ensure performance
parity across these strata; however, having representative data
allows the scientist to estimate model performance variability
across relevant strata.

Feature engineering
Among the most consequential design decisions that algorithm
developers make are which features to include in a model.
Researchers don’t know a priori the optimal feature space for
completely characterizing the problem of interest. As a result, they
combine knowledge of the underlying data generating process
with additional exploratory data-driven feature selection in an
attempt to improve a model. Below we discuss some suggestions
for reducing model dimensionality using a combination of
domain-expert and data-driven features that are repeatable. The
approaches we describe herein help to improve model robustness
by removing potentially irrelevant features from the model;
however, they do not remove the problem of the blind spot if
the selected features still result in a high dimensional/small data
regime.
One method for reducing the dimensionality of a model is to

use theory to guide model development30. In a clinical context,
this means selecting a small set of features that are known to
change with disease while remaining fairly stable from day to day.
Returning to our speech example, while it’s tempting to use
hundreds of features for classifying between healthy and MCI
patients, when the sample size is limited, a better strategy is a
priori focusing on a limited set of features expected to be different
between these groups based on existing theory (e.g., increased
number of pauses while speaking, or reduced vocabulary size with
cognitive decline31). Similarly, in applications involving electro-
cardiogram (ECG) data, an alternative to using the raw ECG
recording as AI model input is to use derived features (e.g., heart
rate variability) of clinical import32.
In many applications, sensor data can be collected on a large

scale, but clinical labels are expensive. These data can be used to
learn a relevant lower-dimensional feature space via transfer
learning33–36. For example, self-supervised learning is commonly
used in speech and language processing, where a model is pre-
trained on a large unlabeled dataset for representation learning
and fine-tuned on smaller, task-specific data33. Furthermore, a
long-standing problem in the speech community is separating
speaker-specific effects from task-specific effects. Some speech
analytics pipelines use speaker-adaptive training whereby models
are conditioned on pre-trained speaker embeddings so that they
learn relevant features from the task of interest34. Common across
these examples is that only so-called unlabeled data are required
on a large scale (i.e., clinical outcomes are not required) to learn
useful features. Unlabeled in this context means that clinical labels
(e.g., diagnosis) are not required for feature learning; however,
other less-costly labels may be required. For example, learning
speaker-specific embeddings to condition downstream clinical
models requires that the algorithm designer know which speech
samples belong to which speaker. Outside of the speech and

language domain, transfer learning can also learn reusable
features in clinical imaging applications, especially in lower layers
of neural networks36.
Domain-expert features and those learned via transfer learning

help to reduce the dimension of the raw sensor data by focusing
only on a subset of features that are relevant for the task at hand,
and which are obtained using external information sources (either
domain expertise or large unlabeled datasets). This is in contrast
to other methods for dimensionality reduction, such as principal
component analysis (PCA) or related variants37, where composite
features are derived only from the small labeled dataset, following
the assumption that “interesting directions” (as measured by
degree of variation) in the ambient feature space are more likely
to be predictive of the response variable of interest. While PCA-
based feature reduction can help improve model generalizability
via variance reduction, it’s unlikely to result in domain-relevant
features, as a given clinical response is just as likely to be
predicted strongly by a direction of lower variation as it is by the
direction of maximum variation38.
An important property of representation learning in AI that

receives little attention is feature repeatability. Digital sensors can
capture a high-density footprint of day-to-day activities; however,
human behavior varies for a variety of reasons, most of which
have nothing to do with a clinical condition. Repeatability studies
characterize how much a person’s measurements change from
one sample to the next using statistics (e.g., intraclass correlation,
standard error of measurements, etc.) that can help shape
downstream AI models. We suggest that before building an AI
model, feature variability should be assessed through simple test-
retest studies in healthy controls and clinical populations.
Returning to our speech example, even under consistent
recording conditions via actively-collected speech on the same
device and in the same environment, there is still considerable
variability in commonly-used speech features. A recent study
documented poor levels of repeatability for most of the common
speech features used in published clinical studies39. In other
words, features objectively measured from recorded speech
(collected using the same device and in the same environment)
are highly variable from one day to the next in individuals that
had no change in their clinical condition during that time. This
variability makes it more difficult to see clinically important
differences, and can raise the odds of being fooled by a
statistically lucky result that hides the existence of a blind spot.
Repeatability studies such as these can help reduce the
dimensionality of AI models by pruning away features that are
highly variable.

Model training and tuning
Once a representative training set is collected and feature
engineering is completed, model training and tuning should
follow best practices for working with high-dimensional data.
Some popular models for supervised learning, like logistic
regression, decision trees, and k-nearest neighbor classifiers are
especially sensitive to the curse of dimensionality40,41. There is a
rich body of work that proposes various strategies to regularize
such models toward making them more appropriate and robust in
the high-dimensional setting42. Additionally, one may adopt data-
driven regularization and ensemble averaging techniques to
encourage the model to produce smoother decision boundaries
and be more robust in high-dimensions43–46; indeed, such
techniques have proven extremely effective in making machine
learning models robust to even adversarial corruptions47. Using
these models during development helps increase model
robustness.
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Model validation
AI algorithm developers typically split their datasets in two parts:
the training set and the test set. The training set is used to learn
the model and the test set is used as a final arbiter of model
performance. As data are scarce, it is common practice for
developers to make repeated use of a test set when comparing
among candidate models without accounting for the multiple
comparisons being made48. For very small sample sizes, it’s well
established that repeated evaluation on a test set can lead to
overfitting and provide algorithm designers with an overoptimistic
sense of how well a model performs, with this problem
compounded for high-dimensional models. Recent empirical
results show that test data reuse is less of a problem for models
trained with larger sample sizes, even for more sophisticated
models49. However, when it isn’t possible to collect training and
test data at scale, scientists should follow robust model evaluation
methodologies in order to mitigate these effects. For example,
methods exist for safely reusing a test dataset while evaluating the
performance of adaptively optimized models48. The key idea
behind this approach is to preserve the privacy of individual
samples in the test set and to only use aggregate accuracy metrics
in comparing model performance. Practically, this means that
algorithm designers should not seek to improve model perfor-
mance by identifying edge-cases in the test set where the model
fails and improving the model to account for those. It is important
to note that these best practices only help when we don’t have an
impassable blind spot. In that case, the only solution is to collect
additional, possibly more diverse, data.

Model monitoring
As highlighted in the previous sections, a blind spot is only
consequential if the model encounters data from that region of
feature space post deployment. This means that, while we can aim
to minimize the blind spot volume during training via some of the
suggestions above, we won’t know whether a consequential blind
spot exists until after a model has been deployed. The FDA’s
proposed regulatory framework for AI/ML includes provisions for a
change control plan1, whereby model developers can retrain a
model based on information related to model performance. As
high-dimensional models are more sensitive to covariate shift50,
we propose that one of the criteria for initiating a model change is
if there is a difference in data distribution post deployment
relative to the training set. This requires that during model
monitoring, developers not only analyze the performance of
the model using aggregate measures of accuracy (e.g., average
sensitivity and specificity), but also constantly monitor
the difference between the training data distribution and the
distributions of data encountered post deployment (for example,
using information divergence measures51).

CONCLUSION
It is undeniable that AI is changing the landscape of medicine,
although to date there still exists a considerable gap between its
promise and true impact on patient care, owing at least partially to
a lack of model generalizability. That is, algorithms that achieve
high performance during their training phases turn out to have
much higher error rates during prospective validation. The high-
dimensional, multimodal nature of the data is as much a curse as it
is a blessing. Clinical AI models are often trained on high-
dimensional, small sample size datasets with large blind spots. As
these datasets are used to tackle increasingly complex applica-
tions without a corresponding increase in the sample size, and
models are iteratively refined on these same small datasets, the
negative impact of the blind spot can grow exponentially, leaving
the trained models more susceptible to failure during deployment.
To mitigate some of these negative effects, researchers should first

carefully consider whether the available sample size can support
the complexity of the proposed application. If answered in the
affirmative, they should limit unnecessary model complexity
during development, ensure that the features used to train the
models are robust, take care in collecting an unbiased training
sample that supports the complexity of the model, and monitor
the model post deployment to ensure that there isn’t a mismatch
between training data distribution and the data distribution at
deployment.
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