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ABSTRACT Vulnerability detection in Supervisory Control and Data Acquisition (SCADA) network of
a Smart Factory (SF) is a high-priority research area in the cyber-security domain. Choosing an efficient
Machine Learning (ML) algorithm for intrusion detection is a huge challenge. This study performed an
investigative analysis into the classification ability of various ML models leveraging public cyber-security
datasets to determine the best model. Based on the performance evaluation, all adaptions of Decision Tree
(DT) and KNN in terms of accuracy, training time, MCE, and prediction speed are the most suitable ML for
resolving security issues in the SCADA system.

INDEX TERMS Algorithms, Artificial Intelligence, Machine Learning, SCADA Systems

I. INTRODUCTION
Due to the present day Smart factories’ (SF) constant ad-
vancement in technology and its implementation, the need
for advanced systems for the control of industrial processes
either locally or at remote locations has become pertinent.
The SCADA system monitors, gather and process real-time
data, thereby maintaining efficiency. It is required to ensure
secured communication at every level of the system exactly
connecting with systems like pumps,sensors, motors, valves,
and more through the human-machine interface (HMI) soft-
ware. With the advent of Cloud Computing, smart factories,
the Industrial Internet of Things (IIoT), and the addition of
recent IT models, protocols and usage such as web-based
applications, the SCADA will continue to gain importance.
However, its vulnerability is exploited due to a lack of
efficient security and access authorization method [1]–[3].

In a 5G+ enabled smart factory, the Domain Name Sys-
tem (DNS) is the hub of communication and data trans-
mission, assigning a chart between eligible host-names and
the computer recognizable internet protocol (IP) addresses.
Numerous firewalls do not scrutinize the recurrence and

nature of DNS packets, which is leeway for discreet data
communication. Also, since the traffic packet goes through
modified name-servers via a variety of hops past DNS it-
eration. Transmission is quite tough to detect and mitigate.
This aids intruders take a certain measure of dominance
over network devices and use them to plan attacks. Distinct
perspectives have been used for the identification of irregular
domain names and applying customary processes like IP boy-
cott, domain boycott, and discarding suspicious DNS packets
to attain DNS restriction [4]–[6]. Most security researchers
critique DoH for making DNS channels difficult for detection
and mitigation.

For safeguarding DNS traffic, the ideology of enciphering
DNS over HTTPS, alternatively known as DoH for enhanc-
ing client authentication, access control security introduced
[4]. Consider DoH sheathes the DNS packets in the DNS
traffic, which is undetectable to the network framework be-
tween the DoH server and the malware. It constructively
renders detection techniques based on investigating the DNS
traffic extinct for the firewalls. However, this technique did
not eliminate DNS intrusion, considering the nature of 5G+
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connectivity.
Several alleviation methodologies exist, like firewall,

Network-Based Intrusion Detection System (NB-IDS),
SCADA hardware security and encryption methods [7]. NB-
IDS has become a popular approach in reality and is widely
used for security evaluation in networked systems (such as
SCADA), thus the basis for this study. Studies exist that
implemented various NB-IDS to tackle the vulnerability
challenges in the SCADA. These NB-IDS techniques are
Machine Learning-based (ML) due to their proficiency in
the inherent process of identifying and categorizing attacks.
Nevertheless, the premise for establishing the type of ML and
its attributes creates a research challenge. There is always
uncertainty on the need to select and confirm the best ML
prospect.

Notwithstanding the attempts by researchers, there is no
focus on a decisive choice of the apt ML algorithm for
SCADA vulnerability detection. Hence, developers face un-
certainty and predicament in arriving at the algorithm of
choice. Therefore, some analytical questions will be; what
strategy and measures impressed the ML prospects? What
are the reasons for the poor performances of ML techniques?
Moreover, in the case of similar achievement between two
ML techniques, what arouses the decision for the preferred
ML prospect? This study aims to confront the above.

Prompted by the above problems, the aim of this study is
to accomplish the following:

1) Assessment of discrete ML algorithms expedient for
SCADA network attack detection. An arithmetical in-
tuition into the rationale for the ML algorithm and its
achievement. It is pertinent to researchers as it aids
developers to focus on the choicest and most suitable
ML approach for their studies.

2) The determination and application of the most suitable
ML algorithms effective for SCADA network attack
detection.

3) Option of the excellent performed and light-weighted
ML algorithm based on computational complexity and
accuracy in model training time, system constraints
considering controls in the processing ability of indus-
trial equipment and operations of a Smart factory.

The rest of the study is organized thus: the background
study is followed by Section II, related works which give
insight into current studies on ML IDS classification al-
gorithms. Then Section III describes the concept of algo-
rithm and methodology of the study. In Section IV, perfor-
mance evaluation and conscientious analysis of various ML
prospects simulated were presented. The rest of the study was
concluded in Section V with a presentation of a prospective
NIDS in the SCADA network system.

II. RELATED WORKS
Authors in [8]–[10] presented studies on current attacks on
cyber-security and mitigation approaches using machine and
deep learning (ML/DL). This studies highlighted the benefits
of the use of ML and DL in IDS. Collective researchers

in [11], [12] examined the recent advancements in cyber-
security risk evaluation in application to SCADA systems
utilizing entrenched investigation procedures. The study con-
tains a variety of security and vulnerability linked to research
on SCADA. In [13], authors provided an extensive review on
approaches that can be applied for vulnerability detection in
the system and ascertaining the extent of safeguarding against
possible attacks. Examples of such approaches presented in
this work are simulating SCADA attacks, testbeds simulation
frameworks, etc.

The internet connectivity proffers numerous functional
services such as remote interconnection and flexibility; con-
trarily, it endangers systems such as SCADA by making
them prone to the vulnerability of global attacks on cyber-
security. Therefore, several studies on IDS algorithms for
SCADA vulnerability were accounted for and reported in
the literature. Ensemble learning approaches use a blend of
distinct classifiers to make predictions. This yield enhanced
performance for various attack types and protocols used in
IoT networks [14]–[16] Though this system delivered supe-
rior results, the approach can be complex with a lack of com-
putational speed. [17] presented an autoencoder-based IDS
targeted at the Distributed Network Protocol 3 (DNP3) of a
SCADA system. The proposed model had better performance
when compared with other IDS solutions. However, this
achievement cannot be generalized due to restricted usage in
a small dataset and specific DNP3 operation environments.

In recent times, the convolutional neural network (CNN)
framework in deep learning has made a tremendous impact
on computer vision. It is associated with the two most impor-
tant features; hierarchical feature representations and learn-
ing long-term dependencies in large-scale sequence data. The
study by [18] presented an approach for detecting attacks
using LSTM and CNN, evaluating the popular conventional
NSL-KDD dataset. Though the model had an excellent per-
formance, the classification speed needs improvement. In
the same vein, [19] proposed an approach that attempts
to recognize and classify DNS over Hypertext traffic in
two layers using classifiers. The authors claimed that the
main superiority of the study is the ability to avidly detects
and classifies DoH traffic using a small amount of input
data. Hence, not a robust model therefore not suitable for
Smart factory operations. Another study by [20] presented
a hybridization method with universal optimization approach
for detecting DDoS attacks in IoT. This approach evaluated
the early version of the CICIDS2017 dataset. Though the
model seemed efficient, lacked computational speed and is
not robust enough for a Smart factory, authors hope to try it
on distributed IDS.

Sundry ML algorithms have emanated as series of studies
addressed the development of IDS. It is to determine and
deploy the best viable and efficient algorithms. [21] in a
study presented a flow-based intrusion detection research for
a SCADA system using deep ANN. The proposed model
evaluated attacks online and offline. The approach had an
excellent performance. However, it requires an extension
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to multiple attacks. In [7], the authors used the Decision
Tree, Random Forest, Naive Bayes, Logistic Regression and
K-Nearest Neighbour (KNN) classifiers on a water storage
facility testbed generated dataset. From their evaluation, uti-
lized classifiers had a good performance in accuracy and false
alarm rates for offline and online phases with an unbalanced
dataset. However, the study did not specify the training time
of the model. It is important to note that for critical industrial
systems, accuracy alone is not the ideal measure to assess the
capability of a model; other metrics such as false alarm rate,
training time are needed for comparison.

Besides, [22] in a study, attempted to compare the per-
formance of NB, KNN, ANN techniques. The individual
classifiers performed poorly. Hence, the ensemble technique
was employed to enhance performance. In another study
[23], the authors implemented an ensemble approach to boost
performance. The trial results show that the proposed ensem-
ble framework copes well in precision, accuracy, recall and
detection rate. However, this fusion requires sparse computa-
tional cost as one of the factors for time-critical operations.

III. SYSTEM MODEL
A. UNDERSTANDING ALGORITHMS AND GROWTH
RATE FUNCTIONS
An algorithm is a sequence of computational steps that
transforms input to output, applied in situations that require
human ingenuity. It provides efficient solutions for emerg-
ing trends in IDS. Determine the best solution in addition
to stabilizing memory management and running time in a
computational environment. In choosing an algorithm, effi-
ciency and preciseness are apt. It can also be affected by the
implementation of hardware and software. However, having
a solid base of algorithmic knowledge and its techniques is
vital.

In implementing algorithms, a good understanding of the
relationship among features of variables in a dataset is cru-
cial. This guides in choice of solution based on the algorithm
growth rate. Analysis of an algorithm helps to determine the
behavioural pattern as input size is affected by variation. This
change in the behaviour of an algorithm is known as the
asymptotic growth rate. Stated below are the equations for
algorithm growth functions:

Linear : Q = aM + x, (1)

Logarithm : Q = alogM + x, (2)

Cubic : Q = aM3 + x, (3)

Quadratic : Q = aM2 + x, (4)

Exponential : Q = a2m + x, (5)

TABLE 1. Algorithm Growth Rate Functions F (n)

Name Computation Time Performance
Linear O(m) Good
Logarithm O(logm) Very Good
Cubic O(m3) Poor
Quadratic O(m2) Acceptable
Exponential O(2m) Bad
M-Logarithm O(m.logm) Fair

TABLE 2. Algorithm Function Descriptions

Name Functions
Linear Search, delete and insert operations
Logarithm Utilized for binary operations with logarithmic behaviour
Cubic Traversing 3 dimensional structure
Quadratic Nested loops scenario (m x m matrix)
Exponential Utilized in most applications
M-Logarithm Divide and conquer

M − Logarithm : Q = a (x) log + x, (6)

where a and x are constant, M is input size. This implies
that an increase in the size of M , influences the value of a
and x. Consider the asymptotic growth rate based on the Big
(O) notation, see Table 1 for functions of algorithm growth
rate. Table 2 shows the description of the actions performed
by the various algorithms.

With the rise of intricacy, SCADA has become so relevant
that it requires safeguarding. IDS in SCADA helps recognize
real-time observable frontiers, filter DNS traffic between
established and un-established name servers with advance
or discard guidelines. IDS in SCADA has been handled
by different studies as presented in Section I. This work
analyzed algorithmic functions and growth rate in addition to
a comparison of various ML algorithms. The ML algorithms
were developed to monitor SCADA network traffic and iden-
tifying the abnormal nature in the traffic to address security
issues in the 5G+ enabled smart factory.

The proposed architecture consists of 3 main phases; train-
ing, testing, and model selection phase, see Fig 1. During the
training and testing phase, the various datasets used in this
study is split into training and testing sets and imported into
the ML algorithms after implementing a five (5) fold cross-
validation. The testing set was used to validate the perfor-
mance of the training set. The Performance Metrics (PM)
used in evaluating the models are Accuracy of the model,
Receiver Operating Characteristics (ROC), Confusion Matrix
(CM), training time, and the model’s Mis-Classification Error
(MCE). These PMs guided the selection of the best model.

B. CASE STUDY/DATASET DESCRIPTION
This study applied three (3) dataset types as case studies to
evaluate the different ML algorithms’ efficiency and perfor-
mance. It enables the validation and determination of the
most suitable solution in the prevailing emerging vulner-
ability situations. The data for each case study was split
into 70%:30% for training and test validation. For even data
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FIGURE 1. Model Design displaying the phases of the ML Technique Evaluation for SF SCADA attack Classification

representation, data-balancing was done using the SMOTE
technique. Below is the description of the evaluated datasets.

1) Case Study 1 (CIRA-CIC-DoHBrw-2020 Dataset)
The preprocessed cyber-security intrusion dataset (CIRA-
CIC-DoHBrw-2020) is accessible at [24]. The dataset was
generated by the use of web browsing activities for the
benign-DoH. While DNS channelling mechanisms were
used for generating malicious-DoH traffics, [19]. The cyber-
security data traffic contains a total of 226406 observations,
28 predictors and two (2) responses represented as benign
and malicious scenarios.

2) Case Study 2 and 3 (NSL-KDD Dataset)
NSL-KDD dataset is an offshoot after analyzing the KDD
cup’99 dataset, prior to this, KDD is a conventional dataset.
The challenge of the KDD cup’99 dataset is the presence
of redundant data, which is biased towards repeated data.
These issues were addressed hence, the NSL-KDD dataset
was proposed [18]. Afterwards, it is being used as a stan-
dard dataset. The dataset is divided into KDDTest+ and
KDDTrain+ comprising of a total of 22543 observations and
41 predictors and 2 responses represented as anomalous and
normal scenarios.

In the training phase of the model, the dataset is fed into the
model followed by data pre-processing, which is as follows:

C. DATA PRE-PROCESSING
This stage starts with data cleaning, replacing fields with
infinity (∞) and nulls in the column with the mean value
of that column. It ensures that only meaningful values get
passed into the model. Subsequently, since the dataset con-
tains correlated features as seen in the correlation matrix

represented in Fig. 2, the Pearson’s Correlation Coefficient
(PCC) was performed on the dataset. This technique was
necessary as it ensures the reduction of over-fitting. PCC was
implemented for consecutive variables, with a correlation
score between -1 and 1 as represented in equation 7, with
the selection of variables with a high correlation value at a
threshold of +/-1. This aids in ensuring that only reliably
significant features are selected, thereby enhancing the model
performance. Fig. 3 depicts the selection of the correlated
variables using a threshold of +/-1.

FIGURE 2. Correlation Matrix showing highly Correlated Features

X =

∑
(ai − â)

(
bi − b̂

)
√∑

(ai − â)
2
(
bi − b̂

)2 , (7)
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where X depicts the Pearson Correlation Coefficient, ai,
are content of the variables in the dataset, â, represents the
mean values of the a variables, bi is the variables of the
sample and b̂ shows the mean values in the b variables.

FIGURE 3. Result of PCC Validating the Feature Importance Selection

D. DESCRIPTION OF MACHINE LEARNING PROSPECTS
In this study, MATLAB 2019Rb was used to examine all ML
prospects such as:

1) Trees: In this model, prediction of the value of an
objective attribute is confirmed. A depiction of a tree
is applied to ascertain basic decision precepts deduced
from data characteristics. To achieve this, the internal
node of the Tree is represented by the leaf node compa-
rable to a class label and characteristics. Assess unique
fixed values each for n range A1- An as indicated in
equation 8, then Qi(B) = 1 when B in Ri This enables
the prediction of a class A based on a feature B by a
model.

Â(B) =
n∑
i=0

Ai ∗Qi (B) , (8)

2) Support Vector Machines (SVM): This classifier builds
a class of resolution confines which aids to classify
data values. A division is obtained by the conclusion
confines with a huge interval to the closest training data
position of any class. Hence, the generalization error
of the classifier is determined the extent of the margin
(either higher or lower). Given a training set,

ai ∈ Qp, fori = 1, ....n

in two sets, and a variable y ∈(1, -1)n. The aim is to
ascertain

α ∈ Qpandb ∈ Q

such that the prediction given by αT φ(a) + b) is
accurate for many samples. SVM is represented as
shown in equation 9.

min
θ,b,ϕ

1

2
θT θ +D

z∑
i=0

ϕ, (9)

subject to

yi(θ
Tφ(ai + b) ≥ 1− ϕi, ϕi = 1, ..., n

3) Ensemble Learning (EL) Algorithms: The objective
this algorithm as depicted in equation 10 is the con-
jugation of constant evaluators into a major one with
the goal of enhancing its reliability over an individual
evaluator.

% =
⊔

(ρ, β,∈, σ) , (10)

where ρ is the dataset array, β shows the variable
feedback. ∈ is the method of combination, σ marks
the diverse hyper-parameter tuning and types of learn-
ers while % represents the ensemble learning method.
Then,

⊔
outlines the correlation between the attributes.

4) Discriminant Models (DM): A DM learns to model
euclidean spaces among classes. It compares prototype
attributes to class labels, and detects the coinciding vi-
ability of such prototypes and their associating classes.
This model is obtained from plain anticipated model of
a class state data allotment;Q (H|y = t) for each class
t. Conclusions for individual training specimen, t ∈Sp

can be obtained by using equation 11;

Q (y = t) =
Q (h \ y = t)Q (y = t)∑
Q (h \ y = r) .Q (y = r)

, (11)

5) K-Nearest Neighbour (KNN): In this model, the goal is
to learn a pre-established number of training samples
with close proximity in distance to the new point
using the Euclidean metrics in most cases as shown in
equation 12, and predict the tag from it.

(x, x!) =

√
(x1,−x1!)

2
+ ...+ (xm,−xm!)

2
, (12)

6) Naive Bayes: The model is simply a probability di-
rectory that is refreshed subject to training data. Pre-
diction is made based on the observation of the class
probabilities in the probability directory based on the
values of the attributes. Given a feature vector Y =
(y1, y2, ..., yn) and a class variable Ck, equation 13
states that:

Q (c|Y ) = Q (y1|c) ∗Q (y2|c) ∗ ... ∗Q (ym|c) ∗Q (c) ,
(13)

for k = 1, 2, ...,K.
7) Logistic Regression (LR): In this model, there is a di-

rect association, between the input and their commen-
surate output. The coefficient of LR model is always
evaluated from the training and dissemination of the
data. See equation 14.

c = Θ0 + Θ1a1 + Θ1a1 + ...Θmam, (14)
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IV. PERFORMANCE EVALUATION
Accuracy appears to be the most accessible metric when
choosing an algorithm for an ML task. Nevertheless, accu-
racy alone is not enough to help in selecting the best algo-
rithm. The model needs to meet other conditions, such as data
relationship, training and prediction time, interpret-ability,
data format and other performance metrics. A combination
of a broad scope of these factors aids in making a more
confident decision.

A. EVALUATION OF THE DECISION TREES TECHNIQUE
In the class of Decision Tree (DT), Fine, Coarse, Medium,
and Optimizable were analyzed for all the datasets. The Fine,
Medium, Coarse, and Optimizable Trees had an accuracy
of 98.1%, 97.0%, 95.0%, and 99.1% for the CIRA-CIC-
DoHBrw-2020. NSL-KDDTest had an accuracy of 97.8%,
96.8%, 92.9% and 98% and NSL-KDDTrain with 99.5%,
98.5%, 96.2% and 99.7% respectively. It shows that consider-
ing Trees as a scheme assures a minimum of 95.0% accuracy
irrespective of type. Also, since the difference in accuracy
between Optimizable and Fine Tree is minute, it is obvious
that the choice of Fine Tree is the best preference without the
necessity for optimization.

B. EVALUATION OF ENSEMBLE LEARNING METHOD
(ELM)
A comparison of the performance of the Ensemble learn-
ing (EL) algorithms and comparing it to default schemes
was investigated. This study examined the EL of several
machine learning. The Ensemble Bagged Trees recorded
99.4% accuracy at a training time of 85.488s, confirming
the superior performance of the Trees. Though, EL Subspace
KNN had 99.2% while the least was ensemble subspace
discriminant with a low accuracy of 92.8% in the CIRA-
CIC-DoHBrw-2020 dataset. However, for NSL-KDDTest+,
only the Bagged, Boosted and RSUBoosted Trees performed.
Recording accuracy of 97.9%, 97.1% and 96.8%, respec-
tively. It further confirms the suitability of the Trees algo-
rithm.

C. EVALUATION OF SUPPORT VECTOR MACHINES
(SVMS) TECHNIQUE
This study examined all adaptions of SVM. The evaluation
shows that for all the datasets, Fine Gaussian, Medium and
Coarse Gaussian SVMs recorded the best accuracy in con-
trast to Linear, Quadratic and Cubic SVM, which recorded
the lowest accuracy in all three (3) datasets. This technique is
best for modelling decision boundaries which are non-linear
[25].

D. EVALUATION OF LOGISTIC REGRESSION (LR)
TECHNIQUE
The LR recorded accuracy of 96.3%, 93.6% and 91.5% re-
spectively for NSL-KDDTrain+, CIRA-CIC-DoHBrw-2020
and NSL-KDDTest+ datasets. It is not acceptable considering
the significance and intensity of accuracy in forestalling

SCADA network attacks. Besides, LR is most fitting in
a probabilistic classification rather relationship than linear
[26].

E. EVALUATION OF DISCRIMINANT ANALYSIS
TECHNIQUE
The investigation reveals that the optimizable and quadratic
discriminant had 92.9% accuracy. While linear discriminant
options and 92.8% respectively for CIRA-CIC-DoHBrw-
2020. However, the algorithm failed in NSL-KDDTrain+ and
NSL-Test+. Consequently, the result depicts the unsuitability
of discriminant ML for attack detection and classification.
It is in the ensemble subspace discriminant approach and
the non-applicability of the algorithm in NSL-KDDTest and
NSL-KDDTrain datasets.

F. EVALUATION OF K-NEAREST NEIGHBOURS (KNN)
TECHNIQUE
In the MATLAB toolbox, the KNN technique comprised
Fine, Medium, Cosine, Coarse, Cubic, Weighted and Op-
timizable. All the KNN algorithms had above 99% accu-
racy except the Cosine and Coarse KNN with 98.8% and
98.4% accuracy respectively in the CIRA-CIC-DoHBrw-
2020 dataset. Though with high interpretability through fea-
ture importance, it is most suitable with linearly related
data. However, it was observed that this algorithm is not fit
and inapplicable to NSL-KDDTrain+ and NSL-KDDTest+
datasets. It is, therefore, evident that the KNN algorithm is
sensitive to features of data relationships.

G. EVALUATION OF NAIVE BAYES (NB) TECHNIQUE
The Kernel Naive Bayes (KNB) recorded a not too en-
couraging accuracy in the three (3) datasets except for the
optimizable Naive Bayes (OGNB) with an accuracy of 96%
and 96.5% across the datasets, respectively. However, this
shows that the NB is not fit for countering attacks in the
SCADA network.

H. REVIEW OF THE ANALYSIS OF PERFORMANCE
EVALUATION
In selecting an ML algorithm, knowing how to make the right
choice that is most suitable for the specific problem is im-
perative. A comprehensive understanding of the relationship
amongst the data features is critical in choosing an ML algo-
rithm. Considering data relationship, training and prediction
time, interpret-ability, and data format, etc. A total of twenty-
nine (29) models were simulated, see Table 3 for features of
model parameters. The result of the evaluation for the best
and least performed techniques leveraging on three (3) cyber-
security datasets is as shown in Tables 4 and 5. A comparative
analysis of the three (3) cyber-security datasets was carried
out for further validation of the proposed choice of models
for SCADA IDS, see Fig. 4 for the confusion matrix of the
best-performed algorithm in the respective datasets and Fig. 5
shows the ROC curve of the best-performed algorithm across
the three (3) datasets based on the MCE.
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TABLE 3. Specifications of Models Architecture

Features of Model Parameters
Models Parameters

Observations Case Study 1 = 226406 samples
Case Study 2 = 22543 samples
Case Study 3 = 22543 samples

Predictors Case Study 1 = 28 features, Case Study 2 = 41 features
Case Study 3 = 41 features

Responses Case Study 1 = 2, Case Study 2 = 2
Case Study 3 = 2

Result Confusion Matrix
ROC

Trees Max Splits = 100, Split Criterion = Gini’s Diversity Index
Preset = FT, MT, CT, OPT

KNN Neighbours = 1 & 10, Distance Weight = Squared inverse, Equal
Distance Metric = Euclidean Preset = Weighted KNN, Fine KNN

ELM Max Splits = 20, Method = AdaBoost
Learning Rate = 0.1 Preset = Boosted, Bagged, RSUBoosted

Learning Type = Decision Tree
SVM Kernel Function = Linear, Gaussian, Kernel Scale = 0.00101952,

1, Automatic Box Constraint Level = 1.75813, 1, 26
Multi class Method = One Vs One, One Vs All

Preset = CGSVM, MGSVM, FGSVM
K-Validation 5 Fold

TABLE 4. Comparative Analysis of 3 Dataset Used Highlighting 3 Best Performed ML Techniques Based on Accuracy, Time, MCE and Prediction Speed

Performance Metrics CIRA-CIC-DoHBrw-2020 NSL-KDD (Tes+) NSL-KDD (Train+)
Accuracy (%) Weighted KNN = 99.2 Fine Tree = 97.7 Fine Tree = 99.6

Fine KNN = 99.2 Medium Tree = 96.8 Medium Tree = 98.5
Fine Tree = 98.1 Coarse Tree = 92.9 Coarse Tree = 96.2

Training Time (s) Weighted KNN = 8.8344 Fine Tree = 4.1465 Fine Tree = 8.1022
Fine KNN = 13.583 Medium Tree = 1.7494 Medium Tree =4.2779
Fine Tree = 4.5778 Coarse Tree = 1.2456 Coarse Tree =4.2446

MCE (#) Weighted KNN = 2134 Fine Tree = 525 Fine Tree = 560
Fine KNN = 2192 Medium Tree = 722 Medium Tree = 1896
Fine Tree = 5096 Coarse Tree = 1609 Coarse Tree = 4825

Prediction Speed (obs/sec) Weighted KNN = 250000 Fine Tree = 150000 Fine Tree = 370000
Fine KNN = 440000 Medium Tree = 230000 Medium Tree = 450000
Fine Tree = 1100000 Coarse Tree = 230000 Coarse Tree = 430000

TABLE 5. Comparative Analysis of 3 Dataset Used Highlighting 3 Least Performed ML Techniques Based on Accuracy, Time, MCE and Prediction Speed

Performance Metrics CIRA-CIC-DoHBrw-2020 NSL-KDD (Tes+) NSL-KDD (Train+)
Accuracy (%) Cubic SVM = 44.6 Gaussian Naive Bayes = 86.7 Gaussian Naive Bayes = 77.3

Linear SVM = 36 Quadratic SVM = 68.2 Quadratic SVM = 68.2
Quadratic SVM = 10.6 Cubic SVM = 43.8 Cubic SVM = 43.8

Training Time (s) Cubic SVM = 10046 Gaussian Naive Bayes = 2.2045 Gaussian Naive Bayes = 11.019
Linear SVM = 7252.9 Quadratic SVM = 719.51 Quadratic SVM = 719.51
Quadratic SVM = 5742.1 Cubic SVM = 806.3 Cubic SVM = 806.3

MCE (#) Cubic SVM = 149331 Gaussian Naive Bayes = 3008 Gaussian Naive Bayes = 28609
Linear SVM = 172670 Quadratic SVM = 7175 Quadratic SVM = 7175
Quadratic SVM = 241081 Cubic SVM = 12661 Cubic SVM = 12661

Prediction Speed (obs/sec) Cubic SVM = 250000 Gaussian Naive Bayes = 210000 Gaussian Naive Bayes = 42000
Linear SVM = 3000 Quadratic SVM = 33000 Quadratic SVM = 33000
Quadratic SVM = 3300000 Cubic SVM = 16000 Cubic SVM = 16000

V. CONCLUSION
This study presents an evaluation of various ML techniques
for the Smart Factory SCADA network in terms of accuracy,
training time, MCE and prediction speed using a trade-off
in time and accuracy. From the comparative analysis of
three (3) state-of-art cyber-security datasets, the evaluation
result shows that all adaptions of the Decision Trees (DT)
and K-Nearest Neighbours (KNN) are the most suitable for
vulnerability detection. All classes of DT and KNN presents

a combined advantage of good accuracy, least training time,
MCE and observation per second. Thus, the DT and KNN
algorithms had the best performance in detecting and clas-
sifying attacks in the Smart Factory SCADA network. It is
shown by the rapid classification and high predictive capacity
of the model with superior accuracy, time-efficiency, ease
of interpretation and better stability which, is occasioned by
adequately mapping non-linear relationships effectively. The
Gaussian Naive Bayes, Cubic, Linear and Quadratic SVM
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FIGURE 4. Confusion Matrix of the Best Performed Algorithms in the Three (3) Compared Cyber-security Datasets

FIGURE 5. ROC of the Best Performed Algorithms in the Three (3) Compared Cyber-security Datasets

performed poorly in training time, accuracy, MCE and obser-
vation per second during evaluation. The poor performance
of this class of SVM is due to their non-linear inclination to
classification, utilizing the kernel trick hence favour pattern
analysis.
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