The VLDB Journal
https://doi.org/10.1007/500778-021-00686-1

SPECIAL ISSUE PAPER l‘)

Check for
updates

Cross-chain deals and adversarial commerce

Maurice Herlihy'® - Barbara Liskov? - Liuba Shrira3

Received: 29 November 2020 / Revised: 7 May 2021 / Accepted: 27 May 2021
© The Author(s) 2021

Abstract

Modern distributed data management systems face a new challenge: how can autonomous, mutually distrusting parties
cooperate safely and effectively? Addressing this challenge brings up familiar questions from classical distributed systems:
how to combine multiple steps into a single atomic action, how to recover from failures, and how to synchronize concurrent
access to data. Nevertheless, each of these issues requires rethinking when participants are autonomous and potentially
adversarial. We propose the notion of a cross-chain deal, a new way to structure complex distributed computations that
manage assets in an adversarial setting. Deals are inspired by classical atomic transactions, but are necessarily different,
in important ways, to accommodate the decentralized and untrusting nature of the exchange. We describe novel safety and
liveness properties, along with two alternative protocols for implementing cross-chain deals in a system of independent
blockchain ledgers. One protocol, based on synchronous communication, is fully decentralized, while the other, based on
semi-synchronous communication, requires a globally shared ledger. We also prove that some degree of centralization is

required in the semi-synchronous communication model.

1 Introduction

The emerging domain of electronic commerce spanning mul-
tiple blockchains is a kind of fun-house mirror of classical
distributed computing: familiar features are recognizable,
but distorted. For example, atomic transactions are often
described in terms of the well-known ACID properties [29]:
atomicity, consistency, isolation, and durability. We will see
that cross-chain commerce requires structures superficially
similar to, but fundamentally different from, atomic trans-
actions. In particular, the notions of correctness for atomic
transactions must be rethought.

Here we propose the notion of a cross-chain deal, a
new computational abstraction for structuring interactions
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that mirror standard (non-blockchain) commercial practices.
Cross-chain deals are inspired by classical atomic transac-
tions and modern cross-chain swaps [11,12,19,30,31,42,43,
54,55], but differ, in essential ways, from both.

Here is a simple example. Alice is a ticket broker. She buys
tickets at wholesale prices from event organizers and resells
them at retail prices to consumers, collecting a modest com-
mission. Alice lives in the future, where tickets are managed
on a ticket blockchain, a tamper-proof replicated ledger that
tracks ticket ownership. Similarly, the coins paid for those
tickets live on a distinct coin blockchain. Both blockchains
support contracts (sometimes “‘smart contracts’), simple pro-
grams that control when and how ownership of tickets and
coins is transferred. One day Bob, a theater owner, decides
to sell two coveted tickets to a hit play for 100 coins. Alice
knows that Carol would be willing to pay 101 coins for
those tickets, so Alice moves to broker a deal between Bob
and Carol. The challenge is to devise a distributed protocol,
executed by Alice, Bob, and Carol, communicating through
contracts running on various blockchains, to execute a cross-
chain deal that transfers the tickets from Bob to Carol, and
the coins from Carol to Bob, minus Alice’s commission. If
all goes as planned, all transfers take place, and if anything
goes wrong (someone crashes or tries to cheat), no honest
party should end up worse off. For example, if Alice follows
the protocol, then even in the presence of failures, she should
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not end up holding tickets she cannot sell or coins that she
must refund. If Carol follows the protocol and pays for the
tickets, then she and she alone should receive them.

Cross-chain deals, although somewhat like transactions,
are not transactions. In one way they are simpler: transac-
tions are used to carry out complex, possibly distributed, state
changes, while deals, by contrast, simply exchange assets
among parties. But in a fundamental way they are more
complex. A transaction runs on behalf of only one party,
which is in charge of what the transaction does and whether
it commits. By contrast, a cross-chain commercial deal runs
on behalf of multiple parties, each party acting in its own
interest. One party’s actions may affect the other parties in
complex ways, and parties may misbehave in malicious and
even irrational ways.

These differences mean that the ACID properties must be
reformulated. Classical atomicity means that a transaction’s
effects take place everywhere or nowhere. This notion of
atomicity cannot be guaranteed when parties are potentially
malicious: the best one can do is to ensure that honest parties
cannot end up “worse off” due to the actions of dishonest
parties.

Classical isolation guarantees that concurrent transactions
cannot interfere in destructive ways. Isolation is typically
provided by a concurrency control regime such as serializ-
ability or snapshot consistency. These regimes are poorly
suited to cross-chain commerce, where mutually distrusting
parties may require multiple cautious interactions to set up
and execute a deal. Instead, non-interference takes the form of
protection against double-spending: ensuring that one party
does not concurrently sell the same asset to multiple coun-
terparties.

Returning to our example, suppose (deviating) Carol erro-
neously sends 1001 coins to Alice, instead of the 101 she
expected. If the deal is consummated, then (compliant) Alice
ends up with a commission of 901 coins, an outcome that is
neither “all” nor “nothing,” even for compliant parties. Of
course, such an outcome is unlikely in practice, but such dis-
tinctions matter when reasoning about correctness.

Adversarial commerce, defined as economic exchange
among mutually untrusted autonomous parties, is here to stay.
Moreover, a system architecture composed of autonomous
untrusted parties that communicate via shared tamper-proof
data stores is the most natural way to organize such a sys-
tem. Although we will propose protocols based on today’s
blockchains and contracts, our principal claims do not depend
on specific blockchain technologies, or even on blockchains
as such. Instead, we focus on computational abstractions cen-
tral to any systematic approach to adversarial commerce, no
matter what technology underlies the shared data stores.

This paper makes the following contributions.
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We propose the cross-chain deal as a new computa-
tional abstraction for structuring complex distributed
exchanges in an adversarial setting. Deals require new
notions of correctness and new distributed protocols.

— We propose new safety and liveness properties to replace
the classical notions of transactional atomicity.

— We describe two protocols for implementing cross-
chain deals: a fully decentralized timelock protocol that
assumes a synchronous communication model, and a
more centralized certified blockchain (CBC) protocol for
a semi-synchronous model where synchronous commu-
nication may be intermittent.

— We present a proof that any protocol that tolerates periods
of asynchrony must rely on a centralized blockchain (or
similar ledger structure).

— We sketch implementations of the two protocols and
use them to analyze the costs of the protocols. Given
the immature state of today’s blockchain technology,
we focus on inherent, abiding, platform-independent
trade-offs and costs rather than explicit performance mea-
surements. Our intent is to illustrate the costs associated
with the qualitatively different ways in which cross-chain
deals can be supported.

The remainder of the paper is organized as follows. We
begin in Sect. 2 by providing additional examples of deals
and comparing them to a simpler notion: the cross-chain
swap Sect. 3 defines deals and our correctness properties.
Section 4 provides a brief discussion of blockchains and what
we assume about them. We describe how deals work in Sect.
5, explain our two protocols in Sects. 6 and 7, and analyze
their costs in Sect. 8. We prove that a centralized resource is
required in any protocol that tolerates periods of asynchrony
in Sect. 9. We discuss related work in Sect. 10, compare the
two approaches in Sect. 11, and conclude in Sect. 12.

2 Deals and swaps

This section provides two more examples motivating the need
for on-chain commerce protocols not readily realizable by
prior proposals. Then it uses the examples to explain the
differences between cross-chain deals and cross-chain swaps.

To simplify the examples, we assume that Alice, Bob, and
Carol have all agreed to participate prior to the start of each
scenario.

2.1 Cross-chain auctions

Suppose Alice wants to auction some tickets to Bob and
Carol. She offers the tickets for sale, and both Bob and Carol
make their bids. If neither bid is greater than Alice’s reserve
price the deal falls through: Alice retains the tickets and Bob
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and Carol retain their money. Otherwise, the winner gets the
tickets, Alice gets the winner’s money, and the loser retains
his or her money.

Here, too, Alice needs a distributed protocol that causes
the appropriate transfer of assets based on the behavior of the
participating parties. The exchange of assets should happen
atomically: if Alice takes the winner’s coins, then the winner
gets the tickets and the loser regains their coins.

2.2 Cross-chain flash loans

Blockchains have given rise to novel financial instruments,
such as flash loans [9], in which a lender provides an unse-
cured short-term loan to a borrower, subject to the condition
that both the loan and its repayment take place in a single deal.
This same-deal condition is essential because it allows the
lender to avoid the usual risks of lending: the “counterparty
risk” that the borrower will default, and the “opportunity
cost” of having those assets locked up for a long time.

Today, flash loans are possible only within a single
blockchain, but there are uses for cross-chain flash loans.
However, to support this possibility there is a need for cur-
rency that can be used on more than one blockchain.

One way to accomplish this is through the use of a stable-
coin, a cryptocurrency issued by an organization that pledges
to back each coin by anon-electronic asset or basket of assets.
For example, Tether [51] is backed by US dollars, and Libra
[6] by a basket of fiat currencies. Parties that use stablecoins
trust that the stablecoin organization will not issue unse-
cured coins. A stablecoin can typically be used on multiple
blockchains. For example, the Tether stablecoin is currently
supported on seven different blockchains [16].

Suppose Alice discovers the following arbitrage opportu-
nity. She finds two automated market maker contracts [10]
(AMMs): AMM X will sell Alice 1 token in return for 990
units of the stablecoin, while AMM Y will sell Alice 1000
stablecoins in return for 1 token. (Both AMM prices include
their commissions.) Alice needs to find enough capital to
make this tiny difference worth exploiting. She would like to
arrange a “flash loan” [9] of 990 stablecoins from Bob, con-
vert them to 1000 stablecoins through arbitrage, then repay
Bob 993 stablecoins including interest, for a profit of 7 sta-
blecoins. Bob is willing to charge a low interest rate for the
flash loan because he is assured that his loan is risk-free: if
the deal completes, he collects his interest, but if not, he gets
his coins back right away.

The catch is that Bob holds his stablecoins on the blue
blockchain, but Alice’s arbitrage opportunity is on the red
blockchain. Alice and Bob need a distributed protocol that
enlists the stablecoin organization to transfer Bob’s loan to
Alice, and Alice’s repayment back to Bob.

2.3 Cross-chain deals versus cross-chain swaps

Today, cross-chain swaps are the most common form of
cross-chain exchanges. Each party first places an asset into
escrow, transferring custody of that asset to a contract, which
will eventually either transfer ownership of the asset to a
counterparty, or refund the asset to the original owner. Once
all parties have escrowed their assets, each party inspects the
escrowed assets it is due to receive. When and if all parties
approve, the transfers take place. In most of these proposals,
transfers are triggered by producing the preimage to a hashed
value within a certain time (a hashed timelock), but there are
also proposals to use blockchain-based two-phase commit
protocols [54].

While cross-chain swaps are a special case of cross-chain
deals, cross-chain deals are substantially more flexible and
powerful. Alice, Bob, and Carol’s simple ticket brokering
deal cannot be expressed as a classical cross-chain swap
because Alice is trading assets she does not own, and there-
fore cannot escrow. Alice pays Bob with coins she receives
from Carol, and sells Carol a ticket she receives from Bob.
Alice cannot commit to any transfers at the start of the pro-
tocol because she does not yet have custody of any assets.
Instead, Alice contributes value by acting as a broker, a mid-
dleman relaying assets between Bob and Carol (or more
realistically, between a pool of wholesale sellers and a pool
of retail buyers).

The use of assets a party does not own also occurs in the
cross-chain flash loan, so this exchange cannot be expressed
as a cross-chain swap. Here Alice exploits her arbitrage
opportunity using stablecoins she does not own at the start of
the protocol, and she pays Bob back with assets she does not
acquire until the end of the protocol. The auction example
cannot be expressed as a cross-chain swap because the auc-
tion’s outcomes (reserve price exceeded, identity of winner)
cannot be determined until all bids have been submitted.

3 Cross-chain deals

Here we define cross-chain deals, what it means to execute
them, and what it means for them to be correct.

3.1 Specifying the deal

Each payoff (set of final transfers) for a deal can be expressed
as a matrix (or table), where each row and column is labeled
with a party, and the entry at row i and column j shows the
assets to be transferred from party i to party j. A party’s
column states what it expects to acquire from the deal (its
incoming assets), and its row states what it expects to relin-
quish (its outgoing assets). Summarizing outcomes using
matrices is convenient when the number of distinct payoffs is
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Table 1 Alice brokers a ticket sale between Bob and Carol (Rows
represent outgoing transfers, and columns incoming transfers)

Alice Bob Carol
Alice 100 coins tickets
Bob Tickets
Carol 101 coins

Table 2 Two possible auction outcomes: Bob outbids Carol, and vice
versa

Alice Bob Carol
Alice Tickets 100
Bob 200
Carol 100
Alice 200 Tickets
Bob 200
Carol 300

small, but can become unwieldy if there are too many distinct
outcomes. In that case, a different formalism, such as sets of
parameterized constraints, can be used.

For the ticket brokering deal, the payoff is given by the
3 x 3 matrix in Table 1. Carol expects to transfer 101 coins to
Alice in return for tickets transferred from Alice. Similarly,
Bob expects to transfer tickets to Alice in return for 100 coins
from Alice. Although the table refers only to “tickets,” the
specific (non-fungible) tickets to be provided would be part
of the deal specification, while the specific (fungible) coins
would likely be omitted.

The deal where Alice auctions the tickets to Bob and Carol
requires two matrices, one for each successful outcome: (1)
if Bob outbids Carol, Alice transfers her asset to Bob and
refunds Carol’s bid, and (2) if Carol outbids Bob, the transfers
are symmetric. (A more detailed description of an on-chain
auction might also include fees and deposits to penalize mali-
cious behavior by bidders.)

Table 3 displays the payoff matrix for the cross-chain
flash loan example. Asset amounts are shown in red or blue
to highlight whether the transfer occurs on the red or blue
blockchains. As noted, Bob is present on the Blue blockchain,
Alice on the Red blockchain, and the Stablecoin organiza-

tion (“stablecoin.org”) executing the cross-chain transfers is
present on both.

These three examples have an important property in com-
mon: each party can decide for itself whether it wants to
accept or reject the proposed final exchange, based on the
assets that appear in its own row and column. In the ticket
brokering example, Carol can decide whether the tickets are
acceptable before paying for them. In the auction example,
Alice can decide to accept only bids that exceed her reserve
price. In the flash loan example, Bob will choose to make the
loan only if Alice is prepared to repay it as part of the deal
in which it was lent.

3.2 Correctness

Parties to a deal carry out a protocol to complete the deal’s
transfers. In an environment where parties cannot be guaran-
teed to follow a protocol, it is impossible to guarantee that
all transfers take place as promised by the deal specification.
Which kind of partial transfers should be deemed acceptable?

Instead of distinguishing between faulty and non-faulty
parties, as in classical models, we distinguish only between
compliant parties who follow the protocol, and deviating
parties who do not. Many kinds of fault-tolerant distributed
protocols require that some fraction of the parties be com-
pliant. For example, proof-of-work consensus [39] requires
a compliant majority, while most Byzantine fault-tolerant
(BFT) consensus protocols require a supermajority of more
than two-thirds of the participants to be compliant. For cross-
chain deals, however, it is prudent to make no assumptions
about the number of deviating parties.

This classification of parties as either compliant or devi-
ating is partly inspired by the classification in the BAR
model [2], which identifies parties as rational, altruistic, or
Byzantine, although the two classifications are not directly
comparable (c.f. [24]). Our model does not distinguish
between rational and altruistic parties. Critically, our classifi-
cation differs from that of BAR (and other standard models of
Byzantine behavior) by not limiting the number of Byzantine
parties.

The most fundamental safety property is (informally) that
compliant parties should end up “no worse off,” even when
other parties deviate arbitrarily from the protocol. A party’s

Table 3 Alice takes and repays

a flash loan from Bob to exploit Alice Bob Stablecoin Org. AMM X AMM Y
an arbitrage opportunity Alice 993 coins 990 coins 1 token
Bob 990 coins
Stablecoin Org. 990 coins 993 coins
AMM X 1 token
AMMY 1000 coins
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payoff for a protocol execution is the sets of incoming and
outgoing assets actually transferred. Some payoffs are con-
sidered acceptable, the rest are not. Some acceptable payoffs
are preferable to others, but any acceptable payoff leaves that
party “no worse off.”

Every party considers the following payoffs acceptable:
ALL, where all agreed transfers take place, and NOTHING,
where no transfers take place. In addition, we allow a party to
consider other payoffs acceptable. For example, a party that
expects three incoming transfers and three outgoing transfers
may be willing to accept a payoff where it receives only two
incoming transfers in return for only two outgoing transfers.
Of course, any such choice is deal-dependent.

Payoffs can be ordered by acceptability: if one payoff
is acceptable to a party, so is any payoff where that party
receives more incoming assets (it gets something extra for
nothing), and so is any payoff where that party transfers fewer
outgoing assets (it gets something it wants for a discount
price). For example, a payoff where a party transfers no out-
going assets but receives some incoming assets is preferable
to the NOTHING payoff, and hence is acceptable. Such out-
comes, while uncommon in practice, cannot be excluded if
parties can act irrationally, or their rationales are unknown.

A cross-chain deal protocol satisfies safety if:

Property 1 For every protocol execution, every compliant
party ends up with a payoff it deems acceptable.

This notion of safety replaces the classical all-or-nothing
property of atomic transactions, which, as noted, cannot be
guaranteed in the presence of deviating parties.

Cross-chain protocols typically rely on some form of
escrow, where each party transfers ownership of each out-
going asset to an intermediate escrow contract that retains
custody of that asset until the outcome of the deal is resolved.
The following weak liveness property ensures that conform-
ing parties’ assets cannot be locked up forever.

Property 2 No asset belonging to a compliant party is
escrowed forever.

Finally, protocols should satisfy the following strong live-
ness property:

Property 3 If all parties are compliant and consider their
proposed payoffs acceptable, then all transfers eventually
happen (all parties’ payoffs are ALL).

It well-known [23] that strong liveness is possible only in
periods when the communication network is synchronous,
ensuring a fixed upper bound on message delivery time. One
of the two protocols proposed later depends on an explicit
bound on how long it takes to complete all transfers and a
party is considered to be deviating if it misses the deadline;
the other does not.

tickets tickets

100 coins, 101 coins

Fig.1 Alice, Bob, and Carol’s ticket brokering deal as a digraph

3.3 Well-formed deals

Not all deals make sense. As an extreme example, suppose
Alice and Bob agree that Alice will send 100 coins to Bob,
but Bob will do nothing in return. Here, Bob is a “free rider,”
collecting something for nothing, and if Alice is rational, she
would never agree to such a deal. (Of course, Bob should be
suspicious if Alice does agree.)

It is sometimes convenient to represent a payoff matrix as
a directed graph (“digraph”), where each vertex represents
a party, and each directed arc represents a transfer. Figure
1 shows the ticket-brokering payoff expressed as a digraph.
We define a deal to be well-formed if every payoff digraph
is strongly connected: there is a directed path from any node
to any other node. If the payoff digraph is not strongly con-
nected, then there are parties that act as free riders: they
collectively take assets from the others without giving any
in return (see Herlihy [31] for a more complete discussion).
No rational party would accept a deal with free riders, but
even if they did, they would have no incentive to conform
to the protocol because they could improve their payoffs by
collectively skipping all transfers to free riders.

Recall that for simplicity, we assume that all asset transfers
take place on blockchains. One way to extend the model
to accommodate off-chain asset transfers (such as mailing
a package in response to a cryptocurrency payment), is to
add a fictional “external” blockchain to represent off-chain
transfers. Of course, measures beyond the scope of this paper
would still be needed to ensure the entries recorded on this
external blockchain are accurate.

4 System model

For our purposes, a blockchain is a publicly readable, tamper-
proof distributed ledger (or database) that tracks ownership
of assets among various parties or contracts. An asset may be
fungible, like a sum of money, or non-fungible, like a theater
ticket. A party can be a person or an organization. We assume
multiple independent blockchains, each managing a differ-
ent kind of asset. We restrict our attention to blockchains that
track asset ownership, and to deals that transfer asset owner-
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ship from one party to another. We assume all value transfers
are explicitly represented on the blockchain. For example,
Alice does not send paper tickets to Carol off-chain.

A party can publish an entry on a blockchain, and it can
monitor one or more blockchains, receiving notifications
when other parties publish entries. In our model, publish-
ing an entry usually executes a blockchain-resident program
called a contract. We will use contracts for escrow: an asset
owner temporarily transfers ownership of an asset to a con-
tract. If certain conditions are met, the contract transfers that
asset to a counterparty, and otherwise it refunds that asset to
the original owner.

A party can publish a new contract on a blockchain, or call
a function exported by an existing contract. Contract code
and contract state are public, so a party calling a contract
knows what code will be executed. Contract code must be
deterministic because it is executed by multiple validators
who must all observe the same results.

A contract accesses data on the blockchain where it
resides, but it cannot directly access data from the outside
world. We refer to this limitation as contract myopia. Con-
tract myopia means that a contract is unable to observe what
is happening on other blockchains and it cannot call con-
tracts on other blockchains. Instead a contract on blockchain
A can learn of a change to a blockchain B only if some party
explicitly informs A of B’s change, along with some kind
of “proof” that the information reported about B’s state is
correct.

Parties are given a protocol, which each party may or may
not follow. All protocol actions are accomplished by parties
invoking functions (methods) provided by smart contracts
on blockchains. All states used in protocol descriptions are
ultimately implemented as states within contracts. All state
transitions are the results of parties calling contract functions.
Contract code is passive, public, deterministic, and trusted,
while parties are active, autonomous, and mutually untrust-
ing. Parties may or may not act rationally.

‘We make standard cryptographic assumptions. Each party
has a public key and a private key, and any party’s public key
is known to all. Messages are signed so they cannot be forged,
and they include single-use labels (“nonces”) so they cannot
be replayed.

5 How deals work

This section gives a formal definition of a cross-chain deal
in terms of a simple state machine that tracks ownership
of assets, and whose transitions represent escrows, trans-
fers, commits, and aborts. The section makes explicit which
properties of blockchains and blockchain-like systems are
essential to cross-chain deals.

@ Springer

Let P be a domain of parties, and A a domain of assets.
(A party may be a person or a contract, and assets are digital
tokens representing items of value.) An asset has exactly one
owner at atime: Owns(P, a) is true if P and only P owns a.

A deal tentatively transfers asset ownership from one party
to another. We say a tentative transfer commits if it becomes
permanent, and it aborts if it is discarded. A deal commits
if all its tentative transfers commit, and it aborts if all its
tentative transfers abort.

While a deal is in progress, its state encompasses two
(partial) maps, C : A — P and A : A — P, both initially
empty. C(a) indicates the eventual owner of asset a if the deal
commits at a’s blockchain, and A(a) the owner if it aborts at
that blockchain. We use Ownsc (P, a) to indicate that P will
own « if the deal commits, and Owns 4 (P, a) to indicate that
P will own a if the deal aborts.

Escrow plays the role of classical concurrency control,
ensuring that a single asset cannot be transferred to different
parties at the same time. Here is what happens when P places
a in escrow during deal D:

Pre: Owns(P, a)

Post: Owns(D, a) and Ownsc (P, a) and Owns (P, a)
The precondition states that P can escrow a only if P ownsa.
If that precondition is satisfied, the postcondition states that
ownership of a is transferred from P to D (via the escrow
contract), but P remains the owner of a in both C and A;
since no tentative transfer has happened yet, P would regain
ownership of a if D were to terminate either way. For exam-
ple, when Bob escrows his tickets, they temporarily become
the property of the contract, but should the deal commit or
abort right then, the tickets would revert to Bob.

Next we define what happens when party P tentatively
transfers an asset (or assets) a to party Q as part of deal D.

Pre: Owns(D, a) and Ownsc (P, a)
Post: Ownsc(Q, a)

The precondition requires a to be held in escrow by D, with
P the indicated owner should D commit. If the precondition
is satisfied, the postcondition states that Q will become the
owner of the transferred asset a should D commit (at this
point). For example, when Carol transfers 101 coins to Alice,
Alice becomes the owner of those coins in C. Alice can then
transfer 100 of those coins to Bob, retaining one for herself,
allin C.

Assets remain in escrow until the deal terminates. If the
deal terminates by committing, the owners of assets in C
become the actual owners (displacing D). If it terminates by
aborting, the owners of assets in A become the actual owners
(again displacing D).
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5.1 Phases
A deal is executed in the following phases.
Clearing phase

The participants find one another through a market-clearing
service that establishes the proposed transfers, and possibly
other deal-specific information. The market clearing service
may or may not be centralized, but it is not a trusted party,
because each party later decides for itself whether to partici-
pate, and whether to complete the deal. The precise structure
of the market-clearing service is beyond the scope of this

paper.
Escrow phase

Parties escrow their outgoing assets. For example, Bob
escrows his tickets and Carol her coins.

Transfer phase

The parties perform the sequence of tentative ownership
transfers according to the deal. For example, Bob tentatively
transfers the tickets to Alice, who subsequently transfers
them to Carol.

Validation phase

Once the tentative transfers are complete, each party checks
that its incoming assets are properly escrowed (so they cannot
be double-spent), that it is still willing to transfer its outgoing
assets, and that the overall payoff is acceptable. For the ticket
brokering example, Carol checks that the tickets to be trans-
ferred are escrowed, that the seats are (at least as good as)
the ones agreed upon, and that she is not about to somehow
overpay.

In adversarial commerce, it is necessary that each party
decide for itself whether the proposed payoffs are acceptable.
For example, only Carol can decide whether the tickets she
is about to purchase are ones she wants.

Commit phase

The parties vote on whether to make the tentative transfers
permanent. If all parties vote to commit in a timely way, the
escrowed assets are transferred to their new owners; other-
wise they are refunded to their original owners.

5.2 Discussion

Cross-chain deals rely on two critical, intertwined mech-
anisms. First, the escrow mechanism prevents double-

spending by making the escrow contract itself the asset
owner. Although contracts can be trusted to faithfully execute
their own publicly visible code, care must be taken to ensure
weak liveness: assets belonging to compliant parties must not
remain escrowed forever in the presence of malicious behav-
ior by counterparties. Second, the commit protocol must be
resilient in the presence of malicious misbehavior. A deviat-
ing party may be able to steal assets if it can convince some
parties that the deal completed successfully, and others that it
did not. If a deviating party can prevent (or delay) a decision
by the commit protocol, then it can keep assets locked up
forever (or a long time).

The principal challenge in implementing cross-chain deal
protocols is the design of the integrated escrow management
and commit protocol. Just as with classical transaction mech-
anisms, there are many possible choices and trade-offs. In the
remainder of this paper, we describe two cross-chain deal
protocols, implemented via contracts, one for a synchronous
communication model, and one for a semi-synchronous
model, each making different trade-offs concerning decen-
tralization and fault-tolerance. We will prove that these
protocols satisfy the correctness conditions introduced ear-
lier.

6 Timelock protocol

We now describe a timelock deal protocol where escrowed
assets are released if all parties vote to commit in a timely
way. Parties do not explicitly vote to abort. Instead, timeouts
are used to ensure that escrowed assets are not locked up
forever if some party crashes or walks away from the deal.

This protocol assumes a synchronous network model
where there is a known upper bound A on the propaga-
tion time for one party’s change to the blockchain state to
be noticed by the other parties. Protocols such as Bitcoin
[39] and Ethereum [21] operate in this model. In practice,
synchronous protocols may require countermeasures against
denial-of-service attacks, such as choosing timeouts care-
fully, or establishing “watchtowers” [14], agents paid to
watch for and respond to certain events in a timely way.

In our brokerage example, Bob places his tickets into
escrow, then transfers them to Alice, who transfers them to
Carol. All parties examine their incoming assets, and if the
resulting payoffs are acceptable, the parties vote to commit
at the escrow contract on each asset’s blockchain. For exam-
ple, if Alice, Bob, and Carol all register commit votes on
the ticket blockchain, the escrow contract releases the tickets
to Carol. All votes are subject to timeouts: if any commit
vote fails to appear before the contract’s timeout expires, the
tickets revert to Bob. (Symmetric conditions apply to Carol’s
coins.)

@ Springer
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Because of the adversarial nature of a deal, each party is
motivated to publish its vote on the blockchains controlling
its incoming assets (it is eager to be paid), but not on the
blockchains controlling its outgoing assets (it is not so eager
to pay). To align the protocol with incentives, one party’s
commit vote may be forwarded from one escrow contract to
another by a motivated party.

For example, Bob is motivated to publish his commit vote
only on the coin blockchain. However, once published, Bob’s
vote becomes visible to Carol, who is motivated to forward
that vote to the ticket blockchain. Carol’s position is sym-
metric: she is motivated to publish her vote only on the
ticket blockchain, but Bob is motivated to forward it to the
coin blockchain. Alice is motivated to send her vote to both
blockchains. (Nevertheless, no harm occurs if a party sends
its commit vote directly to any contract.)

To be compliant in this protocol, parties must respond to
events in a timely manner. A tricky part of this protocol is
how to assign timeouts. A protocol that simply assigns each
party a timeout for voting on each asset is incorrect, as shown
by the following example.

Suppose the protocol assigns timeouts so that Alice must
vote to commit on the ticket blockchain before time A;,
and she must vote to commit on the coin blockchain before
time A.. Let A be the worst-case propagation time: the
delay between when a party observes a change to one
blockchain, and when it makes a subsequent change to
another blockchain. Suppose Bob and Carol have both voted
to commit on both blockchains. Alice waits until just before
A, to register her vote on the coin blockchain, unlocking
Carol’s payment to Bob. If Alice now pauses, it may take
another A for Carol to observe Alice’s vote and forward it to
the ticket blockchain, implying that A; > A, + A. In another
scenario, Alice waits until just before A, to register her vote
on the ticket blockchain, unlocking Bob’s ticket transfer to
Carol. If Alice now pauses, it may take another A for Bob to
observe Alice’s vote and forward it to the coin blockchain,
implying that A, > A, + A, a contradiction.

To resolve this dilemma, each escrow contract’s timeout
for a party’s commit vote depends on the length of the path
along which that vote was forwarded. For example, if Alice
votes directly, her vote will be accepted only if it is received
within A of the commit protocol’s starting time. This vote
must be signed by Alice. If Alice forwards a vote from Bob,
that vote will be accepted only if it is received within 2 - A
of the starting time, where the extra A reflects the worst-case
extra time needed to forward the vote. This vote must be
signed first by Bob, then Alice. Finally, if Alice forwards
a vote that Bob forwarded from Carol, that vote will be
accepted only if it is received within 3 - A, and so on. This
vote must be signed first by Carol, then Bob, then Alice. We
refer to this chain of signatures as the vote’s path signature.
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In general, a vote from party X received with path signa-
ture p must arrive within time |p| - A of the pre-established
commit protocol starting time, where |p| is the number of
distinct signatures for that vote.

6.1 Running the protocol

Here is how to execute the phases of a timelock protocol.

Clearing phase

The parties learn the following information from the market-
clearing service: the deal identifier D, the list of parties plist,
a commit phase starting time 7y used to compute timeouts,
and the timeout delay A. Most blockchains measure time
imprecisely, usually by multiplying the current block height
by the average block rate. The choice of #) should be far
enough in the future to take into account the time needed to
perform the deal’s tentative transfers, and A should be large
enough to render irrelevant any imprecision in blockchain
timekeeping. Because 7y and A are used only to compute
timeouts, their values do not affect normal, deviation-free
execution times, where all votes are received in a timely way.
If deals take minutes (or hours), then A could be measured
in hours (or days).

Escrow phase

Each party places its outgoing assets in escrow through an
escrow contract

escrow(D, Dinfo, a).
on that asset’s blockchain. Here D is the deal identifier and
Dinfo is the rest of the information about the deal (plist, t,

and A); the escrow requests take effect only if the party is
the owner of @ and a member of plist.

Transfer phase

Party P transfers an asset (or assets) a tentatively owned by
P to party Q by sending

transfer(D, a, Q).

to the escrow contract on the asset’s blockchain. The party
must be the owner of a and Q must be in the plist.

Validation phase

Each party examines its escrowed incoming assets to see if
they represent an acceptable payoff and the deal information
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provided by the market-clearing service is correct. If so, the
party decides to commit.

Commit phase

Each compliant party sends a commit vote to the escrow
contract for each incoming asset. (A compliant party is free
to altruistically send commit votes to other escrow contracts
as well.) A party uses

commit(D, v, p)

to vote directly and to forward votes to the deal’s escrow
contracts, where v is the voter and p is the path signature for
v’s vote. For example, if Alice is forwarding Bob’s vote then v
is Bob, and p contains first Bob’s signature, and then Alice’s
signature. (Throughout, we assume that deal identifiers are
unique to guard against replay attacks.)

A contract accepts a commit vote only if it arrives in time
and is well-formed: all parties in the path signature are unique
and in the plist, and their signatures are valid and attest to a
vote from v. If the commit is accepted, that contract has now
accepted a vote from the party.

A contract releases the escrowed asset to the new owner(s)
when it accepts acommit vote from every party. If the contract
has not accepted a vote from every party by time o + N - A,
where N is the number of parties participating in the deal,
and 7y the starting time, it will never accept the missing votes,
so the contract times out and refunds its escrowed assets to
the original owner.

If a deal is well-formed (see Sect. 3.3), compliant par-
ties are required only to forward votes from outgoing assets’
contracts to incoming assets’ contracts, although nothing
prevents them from doing more. This minimal approach is
desirable, because parties typically will not want to inter-
act with blockchains they do not otherwise use. If the deal
is not well-formed, however, parties may need to forward
votes from other contracts to ensure their incoming assets’
contracts receive votes in time.

6.2 What could possibly go wrong?

Perhaps counter-intuitively, this protocol does not guaran-
tee that all parties agree on whether the deal committed or
aborted. For example, suppose Bob wants to trade b-coins
for c-coins, and Carol wants the reverse. Alice brokers their
deal, taking 101 b-coins (c-coins) from Bob (Carol), then
forwarding 100 coins to each counterparty, keeping a 1-coin
commission from each side. This time, Alice happens to hold
both kinds of coins. To save time, she transfers 101 of Bob’s
b-coins into her account, and simultaneously transfers 100
of her own b-coins to Carol, and similarly for Carol (in the
opposite direction). Now suppose Alice is infected by a virus,

and starts to behave irrationally. After Bob releases his vote,
Alice neglects to transfer this vote to Bob’s contract (which
controls the money for her), but she communicates normally
with Carol. Bob’s timelock will eventually expire, and he
will take back his coins, so for him the deal aborted. Carol,
however, will transfer her 101 c-coins to Alice and receive
her 100 b-coins, so for her the deal committed normally.

Although this outcome is not “all-or-nothing,” it is con-
sidered acceptable because all compliant parties end up with
acceptable outcomes. But Alice, who irrationally deviated
from the protocol, foots the bill, paying Carol without being
paid by Bob. We emphasize the unenforceability of classical
correctness properties because it may seem counter-intuitive.
But if we want to verify that protocols are correct, we must
take care to use a realizable notion of correctness.

6.3 Correctness

The correctness of the timelock protocol depends on a com-
bination of cryptographic hashes and the public visibility
of data on blockchains. Forwarding a commit vote from
one blockchain to another enables subsequent transfers, and
the use of cryptographic techniques ensures these votes and
transfers cannot be forged.

Theorem 1 The timelock protocol satisfies safety.

Proof By construction, transferring a compliant party X’s
escrowed incoming and outgoing assets is an acceptable pay-
off for X (since X has voted to commit). Suppose by way
of contradiction that X’s outgoing asset a is released from
escrow and transferred (with commit votes from every party),
but the escrow for X’s incoming asset b times out and is
refunded because of a missing vote from party Z. Suppose
Z’s commit vote at a’s contract arrived with path signature
p- The signatures in p cannot include X’s, because X is com-
pliant and would have already forwarded Z’s vote to b. Z’s
vote must have arrived at a before time 79 + | p| - A. Since X
is compliant, it forwards that vote to b’s contract before time
to+(|p|+1)- A, where that vote is accepted, a contradiction.

]

Theorem 2 The timelock protocol satisfies weak liveness: no
compliant party’s outgoing assets are locked up forever.

Proof Every escrow created by a compliant party has a finite
timeout. O

Theorem 3 The timelock protocol satisfies strong liveness.

Proof 1If all parties are compliant, they send commit votes
to the escrow contracts for their incoming assets and then
forward votes of counterparties as they appear on other con-
tracts. If the deal is well-formed, it is enough to forward votes
from incoming to outgoing arcs in the deal digraph. It follows
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that all commit votes are forwarded to all contracts in time.
O

Suppose that Bob acquires Alice and Carol’s votes on
time, and forwards them to claim the coins, but Alice and
Carol are driven offline by a denial-of-service attack before
they can forward Bob’s vote to the ticket blockchain, so Bob
ends up with both the coins and the tickets. Technically, Alice
and Carol have deviated from the protocol by not claiming
their assets in time. As a countermeasure, A should be cho-
sen large enough to make sustained denial-of-service attacks
prohibitively expensive.

Vulnerability to extended denial-of-service attacks is not
unique to the timelock protocol. For example, both the origi-
nal hashed-timelock protocol [42] and the Lightning payment
network [45] suffer from the same vulnerability: a party that
goes off-line at the wrong time may miss a deadline and lose
its escrowed assets. Such vulnerabilities can be alleviated
by the use of watchtowers [14], robust on-line services that
monitor escrow contracts on behalf of off-line parties.

7 CBC protocol

Now we describe a protocol that operates in the more
demanding semi-synchronous communication model [20],
where there is initially no bound on propagation time, but the
system eventually reaches a global stabilization time (GST)
after which the system becomes synchronous. (In practice,
the synchronous periods need only last “long enough” to
stabilize the protocol.) Consensus protocols such as Algo-
rand [27], Libra [6], and Hot-Stuff [1] operate in this model.
Semi-synchronous protocols avoid explicit timeouts, but as
shown in Sect. 9, they necessarily require a greater degree of
centralization than synchronous protocols.

Unlike in the classical two-phase commit protocol [8],
there is no coordinator; instead we use a special blockchain,
the certified blockchain, or CBC, as a kind of shared white-
board. The CBC might be a stand-alone blockchain, or one
already used in the deal. Since we cannot use timed escrow
to ensure weak liveness, we allow parties to vote to abort if
presented with unacceptable payoffs, or if too much time has
passed.

The critical property of the CBC is that it orders events.
After all assets have been escrowed, each party to a deal sends
the CBC a vote whether to commit or abort that deal. Parties
can vote more than once, and they can vote for different out-
comes. The deal commits if the CBC ordering implies that
every party voted to commit the deal before any party voted
to abort. The deal aborts if the CBC ordering implies that
some party voted to abort before every party voted to com-
mit. The CBC resolves voting race conditions: if a deviating
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Alice simultaneously votes to commit and to abort, the CBC
decides the order in which those votes take effect.

A party can rescind an earlier commit vote by voting to
abort (for example, if the deal is taking too long to complete).
To ensure strong liveness, a compliant party that has voted
to commit must wait long enough to give the other parties a
chance to vote before it changes its mind and votes to abort.

A party can extract a proof from the CBC that particular
votes were recorded in a particular order. A party claiming
an asset (or a refund) presents a proof of commit (or abort)
to the contract managing that asset. The contract checks the
proof’s validity and carries out the requested transfers if the
proofis valid. A proof of commit proves that every party voted
to commit the deal before any party voted to abort, while a
proof of abort proves that some party voted to abort before
every party voted to commit.

7.1 Running the protocol

Here is how to execute the phases of a CBC protocol.

Clearing phase

The parties consult the market-clearing service to learn a
unique identifier D and a list of participating parties plist
(this protocol does not require the #; starting time or A). One
party records the start of the deal on the CBC by publishing
an entry:

startDeal (D, plist).

The calling party must appear in plist. If more than one
startDeal for D is recorded on the CBC, the earliest is con-
sidered definitive.

Escrow phase

Each party places its outgoing assets in escrow:

escrow(D, plist, h, a, e)

Here, & is a hash that identifies a particular startDeal entry on
the CBC that started the deal; it is needed in case there is more
than one such entry on the CBC. The e argument indicates
data structures that vary depending on the algorithm used
to implement the CBC, as discussed in Sect. 7.4. As in the
timelock protocol, the sender must be the owner of asset a
and a member of plist.
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Transfer phase

Party P transfers an asset (or assets) a tentatively owned by
P to party Q by sending

transfer(D, a, Q).

to the escrow contract on the asset’s blockchain. P must be
the owner of @ and Q must be in the plist.

Validation phase

As before, each party checks that its proposed payoff is
acceptable and that assets are properly escrowed with the
correct plist and h.

Commit phase

The commit phase is split into two sub-phases: first, each
party votes, and second, when the voting is complete, each
party uses a record of that vote to unlock escrowed assets.

Each party P publishes either a commit or abort vote for
D on the CBC:

commitDeal(D, h) or abortDeal(D, h)

where D is the deal identifier, and & is the startDeal. As
usual, each voter must be in the start-of-deal plist.

Each party P monitors the CBC to find out when the
outcome of the deal is known. Then the party transfers this
information to the appropriate contract(s). If the deal com-
mits, a party sends

commit(D, h, pr)
to its incoming assets, while if the deal aborts, the party sends
abort(D, h, pr)

to its outgoing assets. In either case P must be in the plist.
Here pr is a proof that the requested action is correct; we
discuss these proofs further in Sect. 7.4.

7.2 What could possibly go wrong?

When things go wrong, the CBC protocol permits fewer
outcomes than the timelock protocol, because all compli-
ant parties agree on whether the deal committed or aborted.
For example, in the timelock protocol, parties must respect
timeouts to remain compliant: a persistent denial-of-service
attack may cause a party to miss a timeout, deviate from the
protocol, and lose an escrowed asset. In the CBC protocol,
a persistent denial-of-service attack may cause the deal to

fall through by suppressing a party’s vote to commit, but any
affected party remains compliant, and ends up no worse off.

7.3 Correctness

The CBC protocol establishes a public ordering on parties’
votes to commit or abort. Safety is satisfied because com-
pliant parties agree on whether a deal commits or aborts.
Weak liveness is satisfied because any compliant party whose
assets are locked up for too long will eventually vote to abort.
Strong liveness is satisfied in periods when the network is
synchronous because every party votes to commit before any
party votes to abort.

7.4 Cross-chain proofs

Here we briefly turn our attention from the communication
and failure model of the deal protocol to the communication
and failure model of possible CBC implementations.

It is easy for (active) parties to ascertain whether a deal
committed or aborted; it is not so easy for myopic (passive)
contracts, which cannot directly observe other blockchains,
to do so.

A deal’s decisive vote is the one that determines whether
the deal commits or aborts. A straightforward approach is
to present each contract with a subsequence of the CBC’s
blocks, starting with the deal’s first startDeal record, and
ending with its decisive vote. But how can the contract tell
whether the blocks presented are really on the CBC? The
answer depends partly on the kind of algorithm underlying
the CBC blockchain.

7.5 Byzantine fault-tolerant consensus

Let us assume the CBC relies on Byzantine fault-tolerant
(BFT) consensus [1,4,13,47]. BFT protocols guarantee safety
even when communication is asynchronous, and they ensure
liveness when communication becomes synchronous after
the GST.

Blocks are approved by a known set of 3 f + 1 validators'
of which at most f can deviate from the protocol. (The details
of how validators reach consensus on new blocks are not
important here.) To support long-term fault tolerance, the
blockchain is periodically reconfigured by having at least
2 f+1 current validators elect a new set of validators. For ease
of exposition, assume each block contains the next block’s
group of validators and their keys.

Each block in a BFT blockchain is vouched for by a cer-
tificate containing at least f + 1 validator signatures of that
block’s hash. (Any f 4 1 signatures are enough because at

I'1n proof-of-stake blockchains such as Algorand [27], the number of
validators may vary.
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least one of them must come from an honest validator.) This
sequence of blocks and their certificates can be used as a
proof. Parties must identify correct validators when putting
assets in escrow, and they must make sure that their incom-
ing escrow contracts were passed the right validators and the
right i before voting to commit.

Checking the proof as just described is a lot of work; the
proofis likely to be spread over many blocks, each containing
a large number of entries. Furthermore, we cannot shorten
the proof by omitting irrelevant block entries, because then
a malicious party might fool a contract into making a wrong
decision. But there are many ways to make BFT proofs more
efficient.

A straightforward optimization is to take advantage of the
fact that the CBC has validators. This allows the parties to
request certificates from the CBC. Such a certificate would
vouch for the current state of the deal (active, committed,
aborted). This certificate alone constitutes a proof provided
the original validators are still active; otherwise the party
must also provide the chain of validators across each recon-
figuration.

7.6 Proof-of-work (nakamoto) consensus

Existing proof-of-work blockchains (such as Bitcoin [39] or
Ethereum [21]) require a synchronous model of communi-
cation. In this model, proofs of commit or abort generated
by a CBC implemented using proof-of-work consensus are
possible, but care is needed because such blockchains lack
finality: any such proof might be contradicted by a later proof,
although forging a later, contradictory proof becomes more
expensive to the adversary the longer it waits. (Kiayias et al.
[33,34] propose changes to standard proof-of-work proto-
cols that would make such “proofs-of-proof-of-work™ more
compact.)

Here is a scenario where Alice can construct a fake “proof
of abort” for a proof-of-work CBC. As soon as the deal
execution starts, Alice (perhaps aided by partners in crime)
privately mines a block that contains an abort vote from
Alice. When her part of the deal is complete, however, Alice
publicly sends a commit vote to the CBC. If, by the time all
parties have voted commit, Alice was able to mine a private
abort block, then Alice can use that fake proof of abort to halt
outgoing transfers of her assets, while using the legitimate
proof of commit to trigger incoming transfers.

In the spirit of proof-of-work, such an attack can be made
more expensive by requiring a proof of commit or abort to
include some number of confirmation blocks beyond the one
containing the decisive vote, forcing Alice to outperform
the rest of the CBC’s miners for an extended duration. To
deter rational cheaters, the number of confirmations required
should vary depending on the value of the deal, implying that
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high-value deals would take longer to resolve than lower-
value deals.

To summarize, while it is technically possible to produce
commit or abort proofs from a proof-of-work CBC, the result
is likely to be slow and complex. In the same way a proof-
of-work blockchain can fork, a “proof-of-proof-of-work”
[33] can be contradicted by a later “proof-of-proof-of-work.”
Similarly, to make the production of contradictory proofs
expensive, the proof’s difficulty must be adjusted to match
the value of the assets transferred by the deal. By contrast, a
BFT certificate of commit or abort is final, and independent
of the value of the deal’s assets.

8 Cost analysis

This section analyzes the costs associated with each of the
protocols. The code shown here is written in pseudocode
based on the Solidity programming language [46]. It not
intended to be a detailed implementation; it is only intended
to illustrate how such implementations might be organized.
(For readability we have taken minor liberties with the Solid-
ity language’s syntax and semantics.)

To compare their implementation costs, we use a cost
model inspired by the Ethereum [52] blockchain, cur-
rently the best-developed platform. The costs of non-PoW
blockchains are likely to be similar.

To make denial-of-service attacks prohibitively expensive,
virtual machines that execute contracts typically charge for
each instruction executed. In Ethereum [52], this charge is
expressed in terms of gas units, whose value (in fractions
of ether, the blockchain’s native currency) varies according
to demand. For example, the gas cost of simple arithmetic
operations or accesses to short-lived memory is in single
digits, and control flow or read operations from long-lived
storage is in double or triple digits. In general, gas costs are
dominated by two kinds of operations: writing to long-lived
storage is (usually) 5000 gas, and each signature verification
is 3000 gas.

Table 4 summarizes gas costs for a deal with n parties, m
assets, and ¢t < n transfers.

8.1 Gas costs

Toillustrate our gas cost analysis, Fig. 2 shows a fragment of a
pseudocode implementation of a generic EscrowManager
contract for a fungible asset. (This contract follows the pop-
ular ERC20-standard [25] for fungible tokens.) The heart
of the EscrowManager contract is a pair of mappings:
escrow records how many tokens each party has escrowed
(Line 3), and onCommit records how many tokens each
party would receive if the deal commits (Line 4). For clarity,
some error and sanity checking has been omitted.
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Table4 Gas costs

Protocol Escrow Transfer and Validation Commit or Abort
Timelock O (m) writes O (t) writes O (mn?) sig. ver. + O (m) writes
CBC O (m) writes O(t) writes O(m(f + 1)) sig. ver. + O (m) writes
Fig.2 Pseudocode code for . 1 contract EscrowManager  {
Zfﬁirgzvd?n transfer (some details 2 ERC20Interface asset; // contract holding assets
3 mapping(address = > uint) escrow; // escrowed assets
4 mapping(address = > uint) onCommit; // result of tentative transfers
5
6 // transfer into escrow account
7 function escrow (uint amount)  public {
8 require (asset.transferFrom( msg.sender, this , amount));
9 escrow| msg .sender] = escrow|[ msg .sender] + amount;
10 onCommit[ msg .sender] = onCommit][ msg .sender] + amount;
11 }
12 // tentative transfer
13 function transfer (address to, uint amount) public {
14 require (onCommit[ msg .sender] >= amount);
15 onCommit[ msg .sender] = onCommit[ msg .sender] — amount;
16 onCommit[to] = onCommit[to] + amount;
17 }
18
19}

Escrow phase

Each party calls the escrow function to escrow some number
of tokens. This function incurs 2 storage writes (in a function
call) to transfer the token from the sender to the escrow con-
tract (Line 8), and 1 storage write each to update the escrow
(Line 9) and the onCommit (Line 10) maps, for a total of 4
storage writes. Globally, the escrow phase incurs O (m) gas
costs.

Transfer phase

Each party calls the transfer function to transfer some
number of escrowed tokens to another party. This function
incurs 1 storage write to decrement the sender’s tentative
onCommit balance (Line 15), and another to increment the
recipient’s balance (Line 16). Globally, the transfer phase
incurs O (t) gas costs.

Validation phase

Each party monitors its incoming and outgoing escrow con-
tracts to ensure it is satisfied with the assets it is due to acquire
and relinquish. This computation takes place entirely at the
parties, and incurs no gas cost.

Timelock protocol commit phase

Timelock escrow contracts verify commit path signatures.
Note that signatures are generated by parties, not by con-
tracts, so while signature generation incurs computation costs
at parties, it incurs no gas costs at contracts.

Figure 3 shows a pseudocode fragment for a timelock
escrow contract. The contract records the set of parties partic-
ipating in the deal (Line 2) and which ones have voted (Line
2). The commit function takes as arguments the voter, the
set of signers, and their signatures. It checks that the deal has
not timed out (Line 6), that the voter is legitimate (Line 7),
that the vote has not already been recorded (Line 8), and that
there are no duplicate signers (Line 9). The expensive steps
are verifying each of the signatures (Line 11), and recording
the voter (Line 13) in long-lived storage.

Each escrow contract verifies a vote from each of n parties,
and each party’s vote could have been signed by up ton — 1
others, yielding a worst-case per-contract bound of O (n?)
signature verifications, plus a constant number of storage
writes for other bookkeeping. Since there are m contracts,
the timelock commit protocol incurs an O (mn?) global gas
cost. In the best case, a deal can abort with no signature
verifications, but in the worst case, aborting can cost almost
as much as committing.
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Fig.3 Pseudocode fragment for

1 contract TimelockManager is EscrowManager{
timelock contract voting (some 2 address [| parties ; // participating parties
details omitted) 3 address [| voted; // which parties have voted
4
5 function commit (address voter, address[] signers, bytes32[] sigs) public {
6 require (now < start 4+ (path.length() = DELTA)); // not timed out
7 require ( parties . contains(voter )); // legit voters only
8 require (!voted. contains(voter)); // no duplicate votes
9 require (checkUnique(signers)); // no duplicate signers
10 for (int i =0; i < signers.length; i++) {
11 require (checkSig(voter, signers[i], sigs[i])); // expensive
12
13 voted. push(voter ); // remember who voted
14 }
15
16 }
Fig.4 Pseudocode fragment for 1 contract CBCManager is EscrowManager{
CBC proof-checking (some 2 address[] validators ; // CBC validators
details omitted) 3
4 // check commit proof is valid
5 function commit (address[] signers, bytes32[] sigs) public {
6 require (checkUnique(signers)); // no duplicate signers
7 require ( validators . contains(signers )); // only validators voted
8 require (signers.length >= f41); // enough validators voted
9 for (int i =0; i < f+1; i++) {
10 require (checkSig(signers [i], sigs[i])); // expensive
11
12 outcome = COMMITTED; // remember we committed
13 }
14
15 }

CBC protocol commit phase

Escrow contracts check proofs from the CBC by verifying
that they are correctly signed by enough validators. Figure 4
shows a pseudocode fragment for an escrow contract for a
CBC using an underlying BFT consensus protocol that tol-
erates f Byzantine validators. We assume the optimization
where parties request status certificates from the CBC; for
brevity, we assume there have been no reconfigurations.

The contract keeps track of the CBC’s current set of val-
idators (Line 2); it also knows their public keys. The commit
function takes as arguments the set of signers and their sig-
natures. It checks that there are no duplicate validators (Line
6), that all signers are validators (Line 7), and that there are
enough votes (Line 8). The expensive step is verifying each
of the validator signatures (Line 10); there will also be a con-
stant number of storage writes to record the outcome and to
update the escrow and ownership mappings.

Each contract verifies f + 1 signatures, or (k+ 1)(f + 1)
if the set of validators has changed k times. The global gas
costis O(m(f + 1)) signature verifications plus a constant
number of storage writes to update the escrow mappings.
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8.2 Time costs

We analyze each commit protocol’s timing delays when the
network is synchronous, with bound A on the time needed
both to change a blockchain state, and to have that change
observed by any interested party. The results are summarized
in Table 5; here we assume each asset is transferred k times.

For both protocols, if all parties are conforming, the
escrow phase takes time at most A, since every party updates
its outgoing assets’ escrow contracts in parallel. Similarly, the
transfer phase takes time at most k - A. It may be possible to
execute transfers concurrently, in which case this phase takes
time at most A. At the end of the transfer phase, validation
is local and immediate.

Timelock protocol commit phase

If each party sends its commit vote only to the blockchains
managing its incoming assets, then the worst-case duration
of the commit phase is proportional to the longest sequence
of transfers, which is bounded by n A.
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Table5 Delays for

. Protocol Escrow Transfer and Validation Commit Abort
synchronous communication
Timelock A kAor A on)A on)A
CBC A kA or A oA Per-party timeout

CBC protocol commit phase

All conforming parties send their votes to the CBC in parallel,
and these votes are available very quickly when the CBC is
implemented using a BFT protocol such as from the PBFT
family [1,13]. It requires at most another A for the escrow
contracts to transfer or refund their assets.

9 Centralization

A commit protocol is decentralized if there is no single
blockchain that must be accessed by all parties in any execu-
tion. A single blockchain shared by all parties in a protocol
is not a safety hazard, since blockchains are tamper-proof,
but the common blockchain could be the target of denial-
of-service attacks, causing assets to be temporarily locked
up. Moreover, parties must trust the common blockchain’s
validators not to engage in censorship, where validators
selectively choose to ignore certain deals, causing them to
abort when they could otherwise have committed.

The timelock protocol of Sect. 6 is decentralized in this
sense because for well-formed deals each party interacts only
with blockchains on its incoming and outgoing arcs. A com-
pliant party first sends votes to the escrow contracts on its
incoming arcs, then it monitors the blockchains on its out-
going arcs, and forwards new votes to its incoming arcs. In
particular, there is no single blockchain that must be accessed
by all compliant parties.

The CBC protocol is not decentralized, because the CBC
itself acts as a common whiteboard shared by all parties.

In this section we show that some degree of centralization
in the CBC protocol is inevitable: any protocol that toler-
ates periods of asynchrony, and in which every compliant
party agrees on whether the deal committed or aborted, must
include a single blockchain accessed by every party in some
execution.

Consider a model in which deal protocols take place
exclusively through operations on shared blockchains. Each
blockchain provides two operations: a party can read a
blockchain’s current state, or it can publish an entry on that
blockchain. A blockchain’s state is just a (totally ordered)
sequence of published entries that is interpreted by contracts.

By way of contradiction, let us assume we have a proto-
col that guarantees (1) all compliant parties agree whether

the deal committed or aborted, and (2) all compliant parties
decide after taking a finite number of steps.

A deal’s state consists of the states of the compliant parties
and the set of blockchain states. A deal state is bivalent if the
deal’s final status (committed vs aborted) is not yet fixed:
there is some execution starting from that state in which the
compliant parties all enter a final committed state, and one
in which they all enter a final aborted state. A deal state is
univalent if the deal’s fate is fixed: the deal has the same
fate in every execution starting from that state. A univalent
state is commit-valent if the deal’s fate is to commit, and
abort-valent otherwise.

A deal’s set of possible states forms a tree, where each tree
node represents a deal state, each edge represents a step where
a party reads or publishes on a blockchain, and each leaf node
represents a final state where the deal has either committed or
aborted. A bivalent state is a node whose descendants in the
tree include leaves where the deal commits and leaves where
it aborts, while a univalent state is a node whose descendant
leaves assign the same fate to the deal.

Itis enough to prove our claims for executions where devi-
ating parties behave correctly up to a point and then simply
halt. We place no limits on the number of deviating parties,
but we do assume there are at least two conforming parties.
To rule out uninteresting cases, a deal is non-trivial if there
is some execution in which the compliant parties abort.

First, we observe that an initial bivalent state exists, mean-
ing that the fate of the deal cannot be predetermined.

Lemma 1 Every non-trivial deal protocol has a bivalent ini-
tial state.

Proof 1If all parties are compliant, then the deal completes by
strong liveness. Nevertheless, by non-triviality, there is an
execution in which the deal aborts. O

A deal state is critical if:

— It is bivalent, and
— if any compliant party takes a step, the deal state becomes
univalent.

Lemma 2 Every non-trivial deal has a critical state.

Proof Suppose not. By Lemma 1, the deal has a bivalent
initial state. Start the protocol in this state. As long as some
party can take a step without making the deal state univalent,
take that step. By hypothesis, the deal cannot run forever
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without committing or aborting, so the deal must eventually
enter a critical state. O

Theorem 4 There is some execution in which every compli-
ant party reads or publishes on the same blockchain.

Proof By Lemma 2, there is an execution where the deal
reaches a critical state s. We claim that in that critical state,
all compliant parties must be about to publish on the same
blockchain. We can assume the system is in the asynchronous
phase before the GST, so no party can wait for another to
take a step (because the other may be deviating and halted).
In particular, any party that executes the remainder of the
protocol by itself (running solo) must commit or abort after
a finite number of steps.

We can divide the compliant parties into two sets: each
party in A is about to carry the protocol to an abort-valent
state, and each party in C is about to carry the protocol to a
commit-valent state.

Suppose a is about to read from a blockchain, while ¢ is
about to read or publish to the same or different blockchain.
Consider two possible execution scenarios. In the first, a
takes the first step, driving the deal to an abort-valent state
s. Party a then pauses, and ¢ runs solo and aborts after a
finite number of steps. In the second scenario, ¢ moves first,
driving the protocol to a commit-valent state s". Party ¢ then
runs solo starting in s’ and eventually commits. But s and s’
are indistinguishable to ¢ (the read a performed could only
change its local state which is not visible to ¢), which means
that ¢ either commits in both or aborts in both executions, a
contradiction. (The symmetric argument holds if ¢ reads and
a publishes.)

Suppose instead both parties are about to publish to dif-
ferent blockchains. Party a is about to publish on by and ¢ on
b1. Here are two execution scenarios. In the first, a publishes
on by and then ¢ publishes on by, so the resulting protocol
state is abort-valent because a went first. In the second, ¢
publishes on b; and then a publishes on by, so the resulting
protocol state is commit-valent because ¢ went first. But both
scenarios lead to indistinguishable protocol states: neither a
nor ¢ can tell which party acted first, a contradiction.

The only remaining possibility is that both a and ¢ are
about to publish on the same blockchain. Since this argument
works for any a € A and ¢ € C, it follows that all compliant
parties are about to publish on the same blockchain. O

10 Related work

Today, the most common way to trade electronic assets is to
use a trusted third party, sometimes called a crypto exchange,
such as Coinbase or Binance. Such exchanges are typically
unregulated, and provide no guarantees of any kind. Crypto
exchanges have been known to lose substantial sums to
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hackers [7], and even to vanish along with their customers’
deposits [49].

The need for safety in adversarial commerce has inspired
an outburst of interest in cross-chain swaps [11,12,19,31,
42,43,54,55], where each party transfers an asset to another
party and halts. Cross-chain swaps are attractive because
they reduce or eliminate the use of exchanges, some of
which have proved to be untrustworthy [49,50]. However,
we have seen that existing cross-chain swap proposals have
limited expressive power: they cannot support indirect trans-
fers, as mediated by a broker, nor can they support conditional
exchanges such as auctions, where the seller exchanges assets
only with the highest bidder. In general, cross-chain swaps do
not support the kinds of complex “business logic” required
by many kinds of modern financial deals.

To our knowledge, the only cross-chain swap protocols
used in practice are hashed timelocked contracts [11,12,
19,42,43]. Herlihy [31] generalizes prior two-party cross-
chain swap protocols to a protocol for multi-party swaps
on arbitrary strongly connected directed graph. Herlihy also
observes that the classical “all-or-nothing” correctness prop-
erty is ill-suited to cross-chain swaps, and proposes an
alternative correctness property which is more specialized
than the one presented here because it is formulated explicitly
in terms of direct swaps, not the more general structures per-
mitted by cross-chain deals. For example, Herlihy assumed
that any swap outcome where a party receives only partial
inputs and partial outputs is unacceptable, but the notions of
correctness introduced here allow parties to specify whether
some such partial deal outcomes are acceptable.

The timelock commit protocol presented here has a sim-
pler structure than the one proposed by Herlihy. That protocol
used secrets held by a carefully chosen subset of parties. Our
protocol replaces secrets with votes performed by everyone,
so it is possible to treat all parties uniformly, and there is
no need for a careful contract deployment phase. Our proto-
col also clarifies when parties review the transactions’ final
outcomes. Both commit protocols use timeout mechanisms
based on path signatures.

Zakhary et al. [54] propose a cross-chain swap protocol
for proof-of-work blockchains using a witness blockchain
as a central coordinator. A contract on the witness chain is
given a master plan for the transaction. Each participant sends
this contract a proof that it has completed its part, and the
contract then decides the transaction outcome. The witness
chain proof of the decided transaction’s outcome is sent to
each participant’s blockchain. Each such cross-chain proof
effectively requires one blockchain to partially simulate the
other, implying that the witness chain’s contracts must be
aware of each participant chain’s internal structure, and vice
versa. Moreover, as discussed earlier, proof-of-work chains
must produce proofs proportional in size and computational
complexity to the value of the assets traded. By contrast, in the
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CBC protocol for cross-chain deals, participants’ contracts
must understand proofs produced by the CBC, but the CBC
can treat participants as black boxes. The CBC simply tallies
and orders votes, so it does not need to know anything about
the deal’s master plan.

Off-chain payment networks [18,28,30,40,45] and state
channels [17] use hashed timelock contracts to circumvent
the scalability limits of existing blockchains. They conduct
repeated off-chain transactions, finalizing their net transac-
tions in a single on-chain transaction. The use of hashed
timelock contracts ensures that parties cannot be cheated
if one party tries to settle an incorrect final state. Lind et
al. [37] propose using (hardware) trusted execution environ-
ments to ease synchrony requirements. It remains to be seen
whether cross-chain deals can be implemented on off-chain
networks. Arwen [30] supports multiple off-chain atomic
swaps between parties and exchanges, but their protocol is
specialized to currency trading and does not seem to support
non-fungible assets. Komodo [43] supports off-chain cross-
platform payments.

Sharded blockchains [3,35] address scalability limits of
blockchains by partitioning the state into multiple shards so
that transactions on different shards can proceed in parallel,
and support multi-step atomic transactions spanning multiple
shards. An atomic transaction that spans multiple shards is
executed at the client in Chainspace [3], or at the server in
Omniledger [35]. In these systems a transaction represents a
single trusted party and there is no support for transactions
involving untrusted parties.

Chainspace [3] allows transactions to specify immutable
proof contracts to be executed at the server. The proofs
are used to validate client execution traces resembling opti-
mistic concurrency control. Channels [5], an extension of
Omniledger Atomix protocols, uses proofs in a two-phase
protocol similar to our CBC, for atomic untrusted cross-shard
single-step multi-party UTXO [32] transfers, but does not
support multi-step deals or non-fungible assets.

The BAR (byzantine, altruistic and rational) computa-
tion model [2,15] supports cooperative services spanning
autonomous administrative domains that are resilient to
Byzantine and rational manipulations. Like Byzantine fault-
tolerant systems, BAR-tolerant systems assume a bounded
number of Byzantine faults, and as such do not fit the adver-
sarial deal model, where any number of parties may be
Byzantine.

The CBC somewhat resembles an oracle [44], a trusted
data feed that reports physical-world occurrences to con-
tracts.

The fair exchange problem [26,38] is a precursor to the
atomic cross-chain swap problem. Alice has a digital asset
Bob wants, and vice versa, and at the end of the protocol,
either Alice and Bob have exchanged assets, or they both
keep their assets. In the absence of blockchains, trusted, or

semi-trusted third parties are required, but the roles of those
trusted parties can be minimized in clever ways.

The auction example presented earlier is intentionally sim-
plistic, serving to illustrate how a deal might have contingent
outcomes. Modern auctions come in many different for-
mats, including English, Vikray, Dutch, and others [36,41].
(A comprehensive and accessible survey of modern auction
theory appears in the citation for the 2020 Nobel Prize for
Economics [48].) The authors are convinced that the appli-
cation of cross-chain deals to modern distributed auctions
merits further study.

The proof of Theorem 4 uses techniques first proposed by
Fischer, Lynch, and Paterson [23].

11 Discussion

Deals can be enhanced to provide incentives for good behav-
ior. For example, a party might escrow a small deposit that is
lost if that party is the first to cause the deal to fail. Design-
ing and implementing such incentives is an area of ongoing
research [22,53].

In the timelock commit protocol, if A is too small, parties
may be vulnerable to an extended denial-of-service attack,
which can cause them to lose their incoming assets. There is
a similar threat to the CBC commit protocol, where the CBC
itself might be the target of a denial of service attack, but an
attack on the CBC causes the deal’s assets to be locked up
for the duration of the attack, not lost forever.

A more subtle issue concerning the CBC commit protocol
is that the parties must trust the CBC not to engage in cen-
sorship, where CBC validators selectively choose to ignore
or postpone certain deals, causing them to abort when they
could otherwise have committed.

The main difference in performance in the timelock and
CBC protocols is the number of signatures that must be veri-
fied to complete the protocol, so we need to consider n parties
vs. f + 1 validators. Many deals will likely have only a few
participants, and in this case it will be more expensive to
commit a CBC deal (O(m(f + 1))) than a timelock deal
(O (mn?)); in a deal with many participants the reverse may
be true. Even if the CBC protocol is more expensive, one
gets what one pays for: the CBC protocol works in a more
demanding timing model.

12 Conclusions

Today’s distributed data management systems face a new and
daunting challenge: enabling commerce among autonomous
parties who do not know or trust one another, a model we
have called adversarial commerce. Prior approaches, such as
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atomic transactions or cross-chain swaps, are inappropriate
for the trust model or have limited expressive power.

In adversarial commerce, each party in a deal decides for
itself whether to participate in a particular interaction. Par-
ties agree to follow a common protocol, an agreement that
can be monitored, but not enforced. Correctness is local and
selfish: all parties that follow the protocol end up “no worse
off” than when they started, even in the presence of faulty or
malicious behavior by an arbitrary number of other parties.
Examples of adversarial commerce include securities trad-
ing, digital asset management, the Internet of Things, supply
chain management, and, of course, cryptocurrencies.

Itis easy to confuse cross-chain deals with atomic transac-
tions, and with cross-chain swaps, since they address similar
needs. We hope this paper has clarified the critical distinc-
tions between them, and explained why cross-chain deals are
needed to address the demands of adversarial commerce.
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