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In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. 'is
classifier includes a layer to predict the numerical feature corresponded to labels or classes.'e presented classifier is implemented
in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. 'e classification is
performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%,
61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100%
with the fractal feature extraction method and brain tumor diagnosis based onMRI images. Based on the results, the best classifier
for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT
and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this
paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with
a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we
performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the
brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with
a high true-positive rate.

1. Introduction

A wavelet neural network (WNN) utilizes localized basis
functions in the hidden layer to accomplish the required
input-output mapping. 'e benefits of the WNN over the
NN for the complex nonlinear system modeling are due to
the integration of wavelet localization features with NN
learning abilities [1]. 'e wavelet transform is capable of
analyzing nonstationary data and revealing their local fea-
tures. Neural networks can self-learn, which improves the
model’s accuracy. Fuzzy logic provides for the reduction of

data complexity as well as the modeling of uncertainty and
imprecision.

Nevertheless, type-1 fuzzy systems may be unable to
manage rule uncertainty, in which case type-2 fuzzy systems
may be used to solve the problem [1]. In WNNs, wavelet
functions are utilized as activation functions in the hidden
layer of the NN rather than local functions in time such as
Gaussian and sigmoid functions. WNN structures are di-
vided into two categories. Wavelets are used as activation
functions in the initial one, derived from the continuous
wavelet transform. As a result, the wavelet function’s dilation
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and translation parameters can be any real-positive integer,
and these parameters and the output layer weights can be
changed. Wavelets as activation functions are derived from
the discrete wavelet transform [2] of the second kind. FNNs
are challenging to utilize to estimate unknown functions in
the dynamics of hyperchaotic systems because they are high-
dimensional nonlinear processes. 'e usage of wavelet
neural networks is one of the easy ways to deal with these
drawbacks (WNN). WNNs have been utilized in a variety of
applications, including control [3], prediction [4, 5], fore-
casting [6, 7], and classification [8]. Due to its nonlinear
structure and the presence of localized basis functions in the
hidden layer of these neural networks, WNNs have been
proven to operate well compared to traditional neural
networks. TSK fuzzy models comprise a collection of rules,
each serving as a “local model” by partitioning the input
space into local fuzzy regions using fuzzy sets. 'ese laws’
consequences are expressed by a global function’s constant
or linear equation [9]. 'e wavelet concept is used in
conjunction with fuzzy systems in many research studies. In
literature, two forms of wavelet fuzzy neural networks have
been suggested. 'e wavelet function is utilized as the ac-
tivation function in the hidden layer of the neural network in
the first one [10]. 'e wavelet function is employed in the
subsequent section of TSK fuzzy systems in the second
example. In these instances, the wavelet function replaces the
linear function of the inputs [11, 12]. Various fuzzy neural
network architectures are discussed, including radial basis
function networks (RBFNs) [13] and multilayer perceptron
(MLP). Fuzzy neural networks have recently been utilized
for pattern recognition [14], image processing, approxi-
mations [15], identification [16], control [17], and other
disciplines of science and industry. In addition, the fuzzy
neural network’s additional features such as time-series
prediction [18], identification of nonlinear dynamical sys-
tems [12], dynamic fuzzy wavelet neural network [19],
function learning [9], type-2 fuzzy wavelet neural network
[20], indirect adaptive fuzzy wavelet neural network [21],
and variable structure fuzzy wavelet neural network [22] are
detailed in the following sections.

'e objective of fuzzy models is to improve function
estimate accuracy by lowering the number of wavelet com-
ponents in the THEN section of fuzzy rules and the wavelet
translation and dilation parameters. Furthermore, the pos-
sibility of using innovative methods of identification might
alter precision. As a result, a new fuzzy wavelet neural net-
work (FWNN) was developed. In certain studies, the gradient
technique adapts and updates FWNN structural parameters
such as the wavelet function’s dilation and translation and
network weights, resulting in greater competence and ac-
curacy than WNNs. 'e use of adaptive learning algorithms
based on the Lyapunov theory to update an adaptable FWNN
structure [21, 23] has recently been proposed.

Consequently, the number of iterations required to train
the FWNN structure is reduced, and function approxima-
tion precision is improved over NNs [24]. In this paper, the
presented classifier is implemented in the brain tumor di-
agnosis. For feature extraction, a fractal model with four
Gaussian functions is used.

2. Literature Review

In the presence of unknown dynamics, uncertainty in
nonlinear system parameters, and external disturbances,
Ebrahimi et al. developed a technique for creating a con-
troller for nonlinear systems characterized by the Taka-
gi–Sugeno (T-S) fuzzy model.'e control law is divided into
two sections. 'e first portion is based on the parallel dis-
tributed compensation (PDC) approach, which generates
each control rule from the T-S fuzzy models relevant rule.
'e fuzzy wavelet neural network (FWNN) estimator, which
is triggered by the premise of wavelet transformation
multiresolution analysis (MRA) and fuzzy notions, is found
in the second section. In the T-S fuzzy model, it is accurate to
predict uncertainties and external disturbances. 'e T-S
fuzzy models suggested approach for observer-based con-
troller design for uncertain nonlinear systems has been
improved [24]. Zirkohi and Shoja-Majidabad [25] suggested
an efficient adaptive control technique to explore syn-
chronizing two chaotic systems. 'is method resulted in a
type-2 fuzzy wavelet neural network that can better estimate
unknown variables and external disturbances in chaotic
system dynamics. An optimum robust control term was also
introduced to the suggested controller to increase its resil-
ience against unknown system disturbances and uncer-
tainties. As a model-free controller, this method has many
advantages. It was determined that the suggested control
approach could ensure the synchronization and stability of
the closed-loop control system [25], employing the Lya-
punov stability theory and transient performance analysis.

Peker [26] created a deep learning-based hybrid model
for hyperspectral image categorization. A convolutional
neural network (CNN) was utilized to derive multilayer
picture representation. A complex-valued wavelet neural
network (CVWNN) was used to categorize the image by
utilizing the recovered features. 'e process steps of the
recommended technique are listed below. First and fore-
most, hyperspectral pictures were subjected to the CNN
algorithm. 'is stage has resulted in the acquisition of ef-
ficient characteristics. A unique random-based transfor-
mation approach was used to convert the collected
characteristics into a complex-valued number format. As a
result, a new complex-valued attribute set for the HSI
classification has been discovered. 'e CVWNN algorithm
has been given the acquired features as input. For improving
CNN’s resilience and generalization, the hybrid approach
substitutes the real-valued neural network with the
CVWNN. Huang et al. created a hybrid fuzzy wavelet neural
network (FIWN) by combining polynomial neural networks
(PNNs) with fuzzy inference-based wavelet neurons
(HFWNN). 'e fuzzy set inference-based wavelet neurons
(FSIWNs) and fuzzy relation inference-based wavelet neu-
rons (FRIWNs) are two forms of FIWNs that have been
suggested. A wavelet neuron (WN) is a FIWN lacking any
fuzzy set components (e.g., the hypothesis portion of a fuzzy
rule). 'e variables of wavelet functions in FIWNs or WNs
have started utilizing the C-means clustering approach to
overcome the constraints of traditional wavelet neural
networks or fuzzy wavelet neural networks whose variables
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are generated on a purely random basis. 'e following are
the key tactics used in the development of HFWNN. FIWNs
(for instance, FSIWN or FRIWN) make up the network’s
initial layer, which indicates data uncertainty. 'e second
and higher layers are composed of WNs, which are flexible
and can accomplish a linear combination of wavelet func-
tions. Second, genetic optimization is utilized to fine-tune
the parameters employed in the HFWNN’s design [27].
According to Golestaneh et al., each fuzzy rule relates to a
subwavelet neural network composed of wavelets with
varying dilations and translations. In the THEN part of each
fuzzy rule, one coefficient is assessed per every two inputs to
achieve a compromise between network complexity and
performance accuracy. 'is article first establishes the
equality of an FWmodel and an SLFN, following which ELM
may be applied directly to the model. All wavelet coefficients
and free membership function parameters are generated at
random. Using a one-pass learning approach, only the
output weights are calculated analytically. On different
benchmark datasets, FW-ELM is compared to prominent
fuzzy models such as OS-Fuzzy-ELM, Simple TS, ANFIS,
and numerous other significant algorithms such as ELM, BP,
and SVR. Table 1 shows the summary of some utility of the
fuzzy wavelet neural network [28].

3. Methods and Materials

For classification purposes, the suggested network combines
a fuzzy neural network and a wavelet neural network. 'e
network has eight levels, according to the suggested
method’s design (see Figures 1 and 2).

(1) First Layer. 'e input characteristics of the issue are
the first layer of the proposed FWNNet. Independent
variables, picture classification features, and time
series are all included. X � Xj|j � 1, . . . , n􏽮 􏽯 can be
used to display it.

(2) Second Layer. 'e second layer comprises wavelet
neural networks and fuzzy neural networks for an
estimate.'e wavelet is computed using the equation
in the wavelet portions of the layer:

ψk
ij � ψ

xj − b
k
ij

a
k
ij

⎛⎝ ⎞⎠, i � 1, . . . , N, j � 1, . . . , n. (1)

'e number of wavelets is N, while the number of
input features is n. Wavelet transformations can
simultaneously display functions and disclose their
local characteristics in the time-frequency domain.
'ese characteristics make it easier to train neural
networks to model extremely nonlinear data accu-
rately. 'is is how the wavelet is written:

ψa,b � |a|
− (1/2)ψ

x − b

a
􏼠 􏼡, a, b ∈ R, a≠ 0, (2)

where ψ(x) ∈ L2(R) is the wavelet function
depending on the equation

Cψ � 􏽚
+∞

0

|􏽢ψ(ω)|

ω
dω< +∞. (3)

Assume 􏽢ψ(ω) is the Fourier transform of ψ(x). To
mimic multivariable processes, multidimensional
wavelets must be developed.
Furthermore, the fuzzy membership function is
computed in the fuzzy regions of the second layer
using the following equation:

μkj � e
− Xj − ckj( 􏼁/σkj( 􏼁

2

, (4)

where ckj denotes the centers and σkj is the standard
deviation for the rule k membership function.

(3) 'ird Layer. 'e outputs of layer 3 must be multi-
plied together in the third layer, the aggregation
layer. In layer 3 of the rules, multiple WNNs with Nk

wavelet activation functions are employed in the
wavelet portions:

Ψk
i � 􏽙

n

j�1
ψk

ij, k, 1, . . . , M. (5)

In addition, each node in layer 3 indicates one fuzzy
rule. 'e output signals (6) are calculated using the
AND operator:

Ok � 􏽙
n

j�1
μkj, k, 1, . . . , M. (6)

(4) Fourth Layer. 'e result of the wavelet components
is computed at the fourth layer. 'e following is the
overall structure of the rules:

Rk: IF x1 isAk1 . . .AND xn isAkn,

THEN Yk � 􏽘

Nk

i�1
w

k
iΨ

k
i + yk.

(7)

Let x1, x2, . . . , xn represent the input feature,
Y1, Y2, . . . , YM represent the fourth layer output
layer, and Akj represents the kth fuzzy set with
normal membership. 'e matrix of weights and the
bias are stored in this hidden layer as wk

i and yk.
(5) Fifth Layer. 'e outputs of the fuzzy neural network

in the third layer Ok and the result of the fourth layer
of the wavelet neural network Yk are combined in the
fifth layer. 'e defuzzification inference is discussed
in layers 5–8. Layer 5 multiplies layer 3’s output data
by layer 4’s output data.

(6) Sixth Layer. Two neurons act as summing operators
for layer 5 and layer 3 output signals, respectively, at
this layer. 'e quotient is generated by layer 7’s
output neuron, which shows each wavelet neural
network’s output proportion to the proposed-ulti-
mate FWNNet’s output.
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Table 1: Summary of some utility of fuzzy wavelet neural network.

Author Year Method Goal Utility Results

Ghoushchi et al.
[29] 2021 Fuzzy wavelet

neural network Forecasting Forecasting of short-term wind
power

'e findings revealed that the
suggested technique was a more

efficient tool with greater precision for
short-term wind power forecasting
than previously published methods.

Shao et al. [30] 2021 Fuzzy wavelet
neural control Control Control of micro-electro-

mechanical system gyroscope

'e effectiveness of the control
technique was confirmed by

simulation findings and comparisons

Hamedani et al.
[31] 2021

Recurrent fuzzy
wavelet neural

network
Control Control of robotic manipulators

In the case of significant disturbances,
the suggested fuzzy gain dynamic
surface was utilized to force the

manipulator’s end-effector to track the
required impedance profile

Ebrahimi et al.
[24] 2021 Fuzzy wavelet

neural network Control
Observer-based controller

design for uncertain nonlinear
systems

Without using the usual conservative
lemma or considering constraints on
uncertainties, the suggested controller

managed the uncertainties and
external disturbances in the T-S fuzzy

model

Luo et al. [32] 2021 Fuzzy wavelet
neural network Dynamical analysis Self-sustained electromechanical

seismograph system

'e suggested scheme’s efficacy and
benefits were demonstrated through

numerical simulation

Abiyev and
Abizada [33] 2021

Type-2 fuzzy
wavelet neural

network
Prediction Energy performance of

residential buildings

'e obtained findings suggested that
the T2FWNN system may be used to
estimate energy performance and
anticipate energy consumption in

residential structures

Zirkohi and
Shoja-
Majidabad [25]

2021
Type-2 fuzzy
wavelet neural

network
Dynamical analysis

Estimating the unknown terms
and the external disturbance in
the chaotic systems’ dynamics

'e suggested technique outperforms
radial basis function neural networks
in simulations, demonstrating its

advantages in secure communication
applications

Peker [26] 2021
Fully complex-
valued wavelet
neural network

Classification Classification of hyperspectral
imagery

'ree data sets containing three
popular hyperspectral aerial pictures

were used in the tests. When
compared to previous classification
methods, the proposed method
improved classification accuracy

Huang et al.
[27] 2018

Hybrid fuzzy
wavelet neural

networks
Prediction Fuzzy inference-based wavelet

neurons

When compared to the outcomes
provided by several prior well-known

and widely utilized neurofuzzy
models, experimental experiments

including three extensively used data
sets reveal some encouraging findings

Golestaneh
et al. [28] 2018

Fuzzy wavelet
extreme learning

machine

Prediction,
classification, and
dynamic analysis

Base method

While the number of linear learning
parameters is reduced and SDs are

lower, the performance of FW-ELM is
equivalent to that of OS-fuzzy-ELM
and better than other published works
for classification and regression tasks
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Figure 1: 'e FWNNet architecture for feature categorization.
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Figure 2: 'e FWNNet layer’s architecture in deep learning.
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O
(5)
k � O

(3)
k · O

(4)
k � Ok · Yk,

O
(6)
1 � 􏽘

M

k�1
O

(5)
k ,

O
(6)
2 � 􏽘

M

k�1
O

(3)
k .

(8)

(7) Seventh Layer. 'e output of the outputs is collected
at the seventh layer.

y � O
(7)

�
O

(6)
1

O
(6)
2

�
􏽐

M
k�1 OkYk

􏽐
M
k�1 Ok

. (9)

(8) Eighth Layer. 'is is the network’s final layer for the
categorization of the feature. It is an activation
function that converts data into output layer values.
'e round function is provided in our suggested
model. 'e gradient descent approach is utilized for
training the proposed-FWNNet after variable cali-
bration utilizing inline-PSO. 'e gradient of the
objective variable is calculated in the opposite di-
rection based on Θ � (ckj, σkj, bk

ij, ak
ij, wk

i , yk) as
follows:

E(Θ, x, y) �
1
2
(y − f)

2
,

Θ(t + 1) � Θ(t) + ΔΘ,

ΔΘ � − cc

zE

zckj

, − cσ
zE

zσkj

, − cb

zE

zb
k
ij

, − ca

zE

za
k
ij

, − cw

zE

zw
k
i

, − cy

zE

zyk

⎛⎝ ⎞⎠.

(10)

4. Results and Discussion

4.1. Data Collection. A brain tumor is one of the most
dangerous illnesses that may affect both children and adults.
Benign tumors, malignant tumors, pituitary tumors, and
other types of brain tumors are categorized. Proper therapy,
planning, and precise diagnostics should be performed to
increase the patients’ life expectancy. MRI is the most ef-
fective method for detecting brain cancers. During the scans,
an enormous amount of picture data is created. A radiologist
examines these pictures. Because of the complexity of brain
tumors and their characteristics, a manual examination
might be subject to mistakes. 'is study utilized the Brain
Tumor Classification (MRI) dataset from Kaggle to identify
and detect brain tumors [34]. Furthermore, we applied the
suggested method to five different brain diseases. Alz-
heimer’s, Glioma, Huntington’s, Meningioma, and Sarcoma
are among the diseases included in the database. MRI images
from Harvard Medical School’s repository [35] are examples
of illness imaging. All images are 256× 256 pixels and are
from T2-weightedMR brain imaging in the axial plane. Each
image is analyzed and processed independently using an
unsupervised method.

4.2. Feature Extraction. 'e fractal method was used with
covariance analysis to generate eigenvalues from the picture
and reduce the dimension. One picture is a two-dimensional
matrix and a single vector in the fractal method, which needs
identical input images. Grayscale images with a certain
resolution are required. By reshaping matrices, each image is

transformed into a column vector. An M × N matrix was
used to take the images. 'e number of images is M, and
every image has a pixel value of N. To determine the normal
distribution of each original image, the average image must
be determined. 'e covariance matrix may then be calcu-
lated, and the covariance matrix’s eigenvalues and eigen-
vector can be created. In the fractal system, M denotes the
number of training pictures, Fi is the average of the images,
and li denotes each image inTi. In the beginning, there areM
pictures, each of which is N × N pixels in size [36, 37]. We
used a summation of four Gaussian functions to model
image histograms using the fractal feature extraction ap-
proach. As a result, each image has four characteristics.
Figure 3 shows an instance of a feature extraction histogram.

According to Figure 3, the blue line is the input image’s
histogram, and the total of the four green Gaussian functions
should match the blue line. 'e red line represents the
summing of the normal functions.

4.3. Classification Results. In this section, we used the
presented FWNNet method for the classification of brain
tumors. 'e suggested FWNNet layer architecture is shown
in Figure 2. 'e dataset includes four classes of images
including (0) Normal tissue, (1) Glioma, (2) Meningioma,
and (3) Pituitary Tumor. In this paper, we used the presented
FWNNet to classify the tumors. 'e results of classification
are presented in Figures 4 and 5.

'e output labels 0, 1, 2, and 3 are simulated by utilizing
input fractal features in the FWNNet technique findings in
Figure 4. We used 2000 PNG pictures of the brain MRI to
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train the model. According to the findings, the provided
approach can accurately predict the output value. In the
following portion of the hybrid learning scheme, the RMSE
reduction curve during training and testing of the gradient
descent method is shown in Figure 4(b). In addition, Fig-
ure 4 depicts the test signal’s actual and anticipated outputs
(Figure 4(a)). As demonstrated in Figure 4, when iteration
modest learning rates are used, the RMSE values can drop
gradually with iteration owing to proper initialization of the
network in the stage of two-layer inline-PSO, whose ad-
justment method is coordinated with the subsequent gra-
dient descent.

Each WNN in our research has two rules (M� 2) and
two wavelet neurons (Nk � 2; k� 1; 2). 'e number of
variables that may be changed is N� 30. 'e FWNNet is
trained using the hybrid learning method. 'e optimization

results of inline-PSO and basic PSO are compared and il-
lustrated in Figure 5(a). To save time and avoid overtraining
the training signal, the population size psize� 20, and the
termination iteration number Maxgen� 50 is kept low. 'is
might cause a restricted testing signal search region. 'e
linear decreasing inertia weight is utilized, with both c1 and
c2 acceleration coefficients set to 2. Inline-PSO has a slower
convergence rate than PSO, as illustrated in Figure 5(a).

'e confusion matrix of the classification based on the
presented FWNNet is presented in Figure 5(b). In the
confusion matrix, the accuracy of the proposed method for
diagnosing the brain tumor is 100%. It means that all images
are detected with high sensitivity and precision. Based on the
fractal feature extraction method, the proposed classifier is
compared with other machine learning classifiers including
decision tree (DT), K-nearest neighbor (KNN), linear
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Figure 3: Modeling of an image using fractal feature extraction method.
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Figure 4: RMSE value in the training process is based on numerical labels. Findings of classification utilizing presented FWNNet: (a) output
labels over modeled labels and (b) RMSE value in the training process based on numerical labels.
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discrimination analysis (LDA), naı̈ve Bayes (NB), multilayer
perceptron (MLP), and support vector machine (SVM). 'e
results of the traditional classifiers are illustrated in Figure 6.

In Figure 6, the green cells show the true value of the
classification, and white cells represent the false results.
Moreover, horizontal gray cells illustrate the sensitivity value
of the diagnosis of each class, and the vertical gray cells are
the precision values. Finally, the corner cell shows the ac-
curacy value of the classifiers. Based on the outcome of the
DT classifier, from 500 normal brain tumors, 480 (96%)
images are detected correctly. 'us, 6 of them were classified
in Glioma, 12 in Meningioma, and 2 in Pituitary class. Based
on this classifier, the sensitivity of the DT for detecting the
Normal tissue, Glioma, Meningioma, and Pituitary Tumor is
96%, 92.8%, 93.8%, and 91.4%, respectively. To compare
with other classifiers, the DT results in the highest accuracy
of 93.5%. However, the KNN methods show the second
highest accuracy of 87.6%. In this classifier, the lowest
sensitivity is found in the Meningioma tumor. Regarding
this result, from 500 images of Meningioma tumor, 373 of
them were detected successfully. Also, the lowest precision
belongs to the meningioma with an 88.4% value. 'is value
means that from all images detected as Meningioma, 373 of
them are Meningioma. However, 15, 20, and 14 are long for
Pituitary, Glioma, and Normal tissue. Compared with other
machine learning classifiers, the lowest accuracy has resulted
in the SVM approach with 43.6%. Regarding the results, the
accuracy of the DT, KNN, LDA, NB, MLP, and SVM is
93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively.
Based on the results, the presented FWNNet illustrates the
highest accuracy of 100% with the fractal feature extraction
method and brain tumor diagnosis based on MRI images.
For the best illustration of this comparison, the ROC curve
(receiver operating characteristic curve) shows the perfor-
mance of each classifier. 'is curve is plotted based on the
true-positive rate versus the false-positive rate. 'e best

classifier has the highest true-positive rate and lowest false-
positive values based on this curve.

'e ROC curve is illustrated in Figure 7. Based on the
results, the best classifier for the diagnosis of brain tumor is
the presented FWNNet architecture. However, the second
and third high-performance classifiers are the DTand KNN,
respectively.

4.4. Segmentation Results. In this part of the paper, we
developed the FWNNet architecture for the segmentation of
brain tumors. Figure 8 shows the flowchart of the presented
method for the supervised segmentation method. Based on
the architecture represented in Figure 2, the segmentation
method has the following steps. First, we need two images,
including input images with RGB and grayscale with a two-
dimensional scale and a ground truth image. In the ground
truth image, the tumor place should be labeled with the pixel
value of 255. Based on the intrinsic structure of fuzzy logic
and wavelet transformation, it is better to transform an
image into an image that lowers the number of zeros.

'erefore, in this paper, the input images are trans-
formed with the Gabor filter. Based on the architecture of the
FWNNet layer, the size of the input image is shown to be
higher than ground truth images so that the input matrix
with 2M× 2M size should have corresponded to the ground
truth image with the size of M×M. In the training process,
input images with a sweeping filter should be reshaped to
vectors that correspond to reshaped ground truth images. In
the training process, we performed a PSO algorithm to
optimize the gradient descent algorithm. Finally, the ROC
curve illustrates the performance of the presented seg-
mentation methods. 'e results of segmentation are rep-
resented in Figure 9. In this figure, the left images are the
input images that are segmented using the presented
FWNNet layer.
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'e results of the segmented tumor are illustrated in the
middle column of Figure 9. 'e ground truth image in the
vector is illustrated in the right column of Figure 9. Based on
the results of the presented method, the predicted ground
truth values are almost equal to target values. In this paper,

80 images are used to segment the brain tumor. 'e per-
formance of the presentedmethod for each image is depicted
in Figure 10. Based on the results of the ROC curve, it can be
estimated that the presented layer can segment the brain
tumor with a high true-positive rate.
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5. Conclusion

A new classifier dependent on fuzzy logic and wavelet
transformation in a neural network was described in this
study. A layer in this classifier predicts the numerical
characteristic associated with labels or classifications. 'e
proposed classifier is used to diagnose brain tumors. A
fractal model with four Gaussian functions is utilized to
extract features. A total of 2000 MRI pictures are used in the
categorization. According to the results of the DT classifier,

480 (96 percent) pictures from 500 typical brain tumors are
accurately recognized. As a result, six were categorized as
Glioma, twelve as Meningioma, and two as Pituitary.
According to this classifier, the DT’s sensitivity for recog-
nizing Normal tissue, Glioma, Meningioma, and Pituitary
Tumor is 96 percent, 92.8 percent, 93.8 percent, and 91.4
percent, respectively. When compared to other classifiers,
the DT has the greatest accuracy (93.5%). 'e KNN tech-
niques, on the other hand, have the second greatest accuracy
of 87.6 percent. 'e Meningioma tumor has a minor sen-
sitivity in this classifier.

In this case, 373 images of Meningioma tumors were
effectively identified out of 500 total images. Meningioma
also has the lowest precision, with an 88.4 percent value.'is
result indicates that 373 of the pictures identified as Me-
ningioma are Meningioma. 15, 20, and 14 of them, on the
other hand, are looking for Pituitary, Glioma, and Normal
tissue, respectively. 'e SVM method has the least accuracy
of 43.6 percent when compared to other machine learning
classifiers. 'e accuracy of the DT, KNN, LDA, NB, MLP,
and SVM, respectively, is 93.5 percent, 87.6 percent, 61.5
percent, 57.5 percent, 68.5 percent, and 43.6 percent.
According to the findings, the given FWNNet demonstrates
the maximum accuracy of 100 percent using the fractal
feature extraction approach and brain tumor identification
based on MRI scans. According to the findings, the given
FWNNet demonstrates the maximum accuracy of 100
percent using the fractal feature extraction approach and
brain tumor identification based onMRI scans. According to
the findings, the FWNNet architecture is offered as the best
classifier for brain tumor diagnosis.'eDTand KNN, on the
other hand, are the second and third high-performance
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Figure 9: 'e results of segmentation based on the presented FWNNet layer.

ROC for Classification by Logistic Regression

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: 'e ROC curve of the presented supervised segmen-
tation method.

Computational Intelligence and Neuroscience 11



classifiers, respectively. For the segmentation of brain tu-
mors, the described FWNNet technique is used. We offer a
unique supervised segmentation approach depending on the
FWNNet layer in this work. First, we will need RGB and
grayscale input images with two-dimensional scales and a
ground truth image. 'e input pictures are converted with a
Gabor filter in this article. Sweeping filters must reshape
input pictures into vectors that match altered ground truth
images during the training phase. We used a PSO method to
optimize the gradient descent technique throughout the
training procedure. Ultimately, the ROC curve depicts the
performance of the segmentation methods provided. 'e
brain tumor is segmented using 80 MRI scans for this
reason. 'e provided layer may segment the brain tumor
with a high true-positive rate, according to the findings of
the ROC curve.
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