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For batch processes that are extensively applied in modern industry and characterized by nonlinearity and dynamics, quality
prediction is significant to obtain high-quality products and maintain production safety. However, some quality variables and key
performance indicators are difficult to measure online. In addition, the mechanism-based model for batch processes is usually
tough to acquire due to the strong nonlinearity and dynamics, which makes quality prediction a challenge. With the accumulation
of historical process data, data-driven methods for quality prediction gain increasing attention, among which convolutional
neural network (CNN) is quite successful for its automatic feature extraction of nonlinear features from raw data. Considering
that most CNN-based methods mainly take the variety of extracted features into account and ignore the redundancy between
them, this paper introduces the minimal-redundancy-maximal-relevance algorithm to select features obtained by original CNN
and further improves it with a feature selection layer to form the proposed method referred as mRMR-CNN. )en, a quality
prediction model is established based on mRMR-CNN and the effectiveness of it is verified on the penicillin fermentation process,
where the proposed method shows remarkable performance.

1. Introduction

In modern industry, batch processes are extensively applied
to the production of high-value products in many areas such
as pharmaceutical, biotechnology, and polymer and semi-
conductor manufacturing industries [1–4]. Due to complex
process mechanism, process uncertainties, and special
production requirements, batch processes are characterized
by strong nonlinearity and dynamics. For such nonlinear
dynamic processes, it is quite prominent to ensure high-
quality products and safely running production process,
which makes it necessary to monitor quality variables or key
performance indicators of the process. However, con-
strained by hard sensors or economic efficiency, such var-
iables or indicators are usually difficult to measure [5]. To
address this issue, a generic scheme is used to establish a

prediction model to estimate the value of quality variables
using easy-to-measure variables in the process, which fa-
cilitates the existence of numerous quality prediction
methods.

)e methods for quality prediction are mainly cate-
gorized into two types, mechanism-based methods and
data-driven methods [6]. Due to nonlinearity and com-
plexity of batch processes, it is essentially tough to es-
tablish accurate mathematical models, which greatly
inhibit the development of mechanism-based approaches
to batch processes [7]. With the accumulation of indus-
trial historical data, which are considered to cover ade-
quate information of batch processes, data-driven
methods grow into the mainstream of academia, esti-
mating the value of target quality variables by mainly
seeking information from historical data.
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With respect to data-driven methods, they are mainly
referred to statistic methods and machine learning
methods [8], which include partial least squares (PLS) [9],
supported vector regression (SVR) [10, 11], back-propa-
gation (BP) neural network [12, 13], and autoencoder (AE)
[14–16]. However, such methods with shallow structures
may not fit the complex and large-scale industrial data well.
)en, with deep learning gaining increasing attention,
there exist methods with deep structures, such as stacked
autoencoder (SAE) [17, 18], deep belief network (DBN)
[14, 19], and convolutional neural network (CNN) [20].
Among all these methods, CNN is well known for its ex-
cellent automatic feature extraction capability and is suc-
cessfully applied to many fields, such as image recognition,
computer vision, and natural language processing [21].
Owing to its outstanding performance and extensive ap-
plications, CNN is selected as the basis of the proposed
method in this study.

When applying CNN to quality prediction, it is
common to form a 2D matrix input by segmenting time-
series data composed of different variables alongside the
sampling time. Basically, there exist both time and variable
axes in the input data fed into the CNN model, in sense of
which the CNN model can not only consider the rela-
tionship between local adjacent variables at the same
sampling points but also consider the relationship between
local adjacent sampling points of the same variables. It
indicates that CNN can extract local features contained in
historical data from both the spatial (or variable) and
temporal perspectives. )erefore, CNN can extract various
features from industrial historical data, for which it is
common to be of extensive applications in quality mon-
itoring. Wei et al. [22] developed a soft sensor model based
on CNN and extreme learning machine (ELM) to measure
fill level inside ball mill, fully exploiting vibration fre-
quency spectrum. Sun et al. [23] proposed a virtual sensor
model using CNN to predict dynamic responses in
structural systems and obtain relatively high accuracy. Zhu
et al. [24] applied CNN to predicting next time step
measurements and utilized moving window to cover time-
dependent correlation information, which achieved re-
markable performance on industrial pyrolysis reactor.
Shevchik et al. [25] used spectral CNN to classify data
collected by acoustic emission sensors, thus achieving
quality monitoring in additive manufacturing. Olivier
et al. [26] employed CNN to characterize the feed size of
run-of-mine ore and trained the constructed model using
transfer learning to reduce required data. Wang et al. [27]
took process dynamics into consideration and integrated
finite impulse response with CNN, which can effectively
improve the prediction accuracy. Jiang et al. [28] presented
a semi-supervised soft sensor to balance the labeled and
unlabeled data by constructing 2D data and used CNN to
extract spatial information contained in the 2D data. Yuan
et al. [29] comprehensively considered local correlations
between variables to form a multichannel CNN for soft
sensing, which significantly improved the estimation ac-
curacy. In addition, Yuan et al. [30] also proposed a dy-
namic CNN to learn hierarchical dynamic nonlinear

feature, based on which they developed a soft sensor model
exploring both the spatial and temporal correlations from
industrial data.

However, all these methods try to extract abundant
discriminative features, while the redundancy between
extracted features is neglected, which may degrade the
performance of CNN-based models. It is quite a common
contradiction. On the one hand, it is desired that numerous
features can be extracted by CNN from historical data,
which indicates the necessity of various representations to
form an effective predictor. On the other hand, it cannot be
guaranteed that all the obtained features are independent of
each other. Furthermore, if certain dependent features
cannot provide enough extra useful information to the
prediction of target variables, they may even add noises
[31]. Considering that eliminating irrelevant and redun-
dant features can benefit the improvement of model
learning performance [32], it is essential to enable CNN the
capability of selecting features to behave better in quality
prediction.

Although some works [33–35] suggest that L1 regula-
rization can be added to CNN to make the structure sparse,
which can implicitly perform feature selection, it is not
straightforward and may not guarantee the required pre-
diction precision. To take feature redundancy into account
and select features under guidance, an algorithm named
minimal-redundancy-maximal-relevance (mRMR) [36] is
introduced to the original CNNmodel; that is, a CNNmodel
is pretrained to extract plenty of features and then mRMR
algorithm is applied to extracted features to form a feature
subset that can best fit the model so that the original CNN
can be enriched with a feature selection layer, after which the
modified model will be retrained to promote the
performance.

)e main contributions of this paper are summarized
into the following three points:

(1) A CNN model, LeNet-5, is employed as the baseline
to automatically extract adequate nonlinear dis-
criminative features from given data.

(2) mRMR algorithm is applied to select extracted
features and a feature selection layer is then inte-
grated with the original CNN model to form the
proposed method, noted as mRMR-CNN, so that
feature redundancy is taken into consideration to
improve the performance of original CNN model.

(3) A quality prediction model based on mRMR-CNN is
established and the effectiveness of proposed
mRMR-CNN method is validated on the penicillin
fermentation process, where the proposed method
distinguishes itself with considerable increase in
quality prediction precision.

)e remainders of this paper are arranged as follows.
Section 2 basically introduces primary conceptions of CNN
and mRMR. )en, Section 3 discusses the proposed method
in detail, while Section 4 conducts an experiment to validate
the proposed method. )e final section draws a conclusion
of this paper.
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2. Related Works

)e basic knowledge of CNN and mRMR is briefly intro-
duced in this section.

2.1. CNN. CNN is a successful deep learning technique
proposed by Lecun et al. [20], which simulates the mech-
anism of cat’s visual cortex [37]. Moreover, it is well known
for its excellent automatic feature extraction ability and
extensively applied to image classification, computer vision,
and natural language processing fields. Recent years have
seen the arising of multitudinous CNN models, such as
AlexNet [38], VGGNet [39], GoogLeNet [40], ResNet [41],
and DenseNet [42], all of them exhibiting elite performance.

However, this subsection is about to discuss the time-
tested fundamental CNN structure, namely, LeNet-5, on
which the approach proposed in this paper is based. )e
basic structure of it is depicted in Figure 1.

As illustrated in Figure 1, LeNet-5 is composed of two
parts, a feature extractor and a classifier (for classification)/
regressor (for regression). )e former part consists of an
input layer, alternating adjacent convolutional layer, and
subsampling layer (or pooling layer), in charge of feature
extraction from input data. )e latter part contains a couple
of fully connected layers, performing classification/regres-
sion tasks based on features obtained by the extractor [43].

It is obvious that CNN is essentially a type of multilayer
feedforward artificial neural networks (ANNs). However, it is
unique for its convolutional layer, pooling layer, and usually 2D
input data when compared to conventional ANNs [44].

)e convolutional layer, which typically contains several
feature mappings, makes CNN special with sharing weights
and local receptive field [20]. More specifically, in the
convolutional layer, each feature mapping is connected to
the previous layer through a different square convolution
kernel; thus, each unit of the same feature mapping shares
the weights contained in the related convolution kernel. Due
to such sparse connections and considering that the size of a
convolution kernel is much smaller than that of the input,
each unit of the feature mapping in the current layer merely
corresponds to a small zone of original input image data,
which interprets local receptive field. It is notable that all
these connections rely on convolution operation, which is to
express below. Assume that there is an input feature
mapping with size of wi × hi and a convolution kernel with
size of f × f. s defines the sliding stride of convolution while
there is no zero padding. )e dimension wo × ho of the
output feature mapping obtained by convolution operation
can be calculated using the following equations (1) and (2):

wo �
wi − f( 􏼁

s + 1
, (1)

ho �
hi − f( 􏼁

s + 1
. (2)

)en, the basic convolution operation is visually illus-
trated in Figure 2 and precise value oi,j at coordinate (i, j) in
output feature mapping can be mathematically expressed
with the following equation:

oi,j � σ 􏽘

f

k�1
􏽘

f

l�1
wk,lx(i×s+k−1),(j×s+l−1) + b⎛⎝ ⎞⎠, 1≤ i≤wo, 1≤ j≤ ho, (3)

where wk,l represents the weight value at coordinate (k, l) of
the convolution kernel, while b refers to the bias value.
x(i×s+k−1),(j×s+l−1) is the unit response at coordinate (i × s +

k − 1, j × s + l − 1) of input feature mapping. σ denotes the
activation function, as which rectified linear unit (ReLU)
function is usually designated in CNN.

As for the subsampling layer, which is as well referred as the
pooling layer, it generally follows the convolutional layer, per-
forming pooling operation to reduce spatial resolution and data
dimension of featuremappings derived from the preceding layer
[20].)ere exist mainly two types of pooling operations, average
pooling and max pooling, the latter of which is the most used
one. When max pooling functions, each feature mapping of the
previous convolutional layer is implicitly divided into a couple of
2× 2 square areas, known as pooling fields, with no overlapping
and no gap.)en, the maximum value of responses in each area
is calculated to form the corresponding unit of the current
pooling layer. )ereby, the number of feature mappings in the
pooling layer is identical to that in the prior convolutional layer.
)e max pooling is intuitively illustrated in Figure 3.

2.2. mRMR. mRMR is an effective feature selection model
proposed for classification tasks by Peng et al. [36], which is
based on mutual information between variables.

Assume two random variables X and Y, to which
p(x), p(y), and p(x, y) are the probabilistic density
functions related. )en, the mutual information I(X; Y)

between the two variables can be defined by the following
formula:

I(X; Y) � 􏽘
x∈X

􏽘
y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
. (4)

When implementing mRMR, the purpose is to find a
feature subset S with m features, which is the solution of the
following optimization problem:

max D − R, (5)

in which the specific expression of D and R is given in the
following formulas:
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D �
1

|S|
􏽘
xi∈S

I xi; c( 􏼁, (6)

R �
1

|S|
2 􏽘

xi,xj∈S
I xi; xj􏼐 􏼑, (7)

where |S| indicates the feature number of set S. D is defined
to quantify the average relevance between each feature
variable xi and related class c, while R denotes the quan-
titative redundancy between feature variables when the
feature subset is given. )erefore, to optimize the problem
defined by (5) is essentially maximizing the relevance be-
tween variables and related class while minimizing the re-
dundancy among variables, under the guidance of which
unnecessary features are screened out and a feature subset
that can fit the target task well is reserved.

Although mRMR is originally developed for classifica-
tion tasks, it works for regression tasks as well.)e difference
lies in calculating the mutual information between depen-
dent variable x and independent variable y, instead of
variables x and related class c, to quantify corresponding
relevance D. )is makes the relevance D slightly different in
formula as the following expression:

D �
1

|S|
􏽘
xi∈S

I xi; y( 􏼁. (8)

3. Proposed Method

Due to nonlinearity and complexity of batch processes, it is
necessary to extract abundant features from the historical
data to cover the most discriminative ones that can fit the
desired estimation well, in sense of which the obtained
features are usually more than it genuinely requests.
However, traditional CNN lacks the ability to directly
perform feature selection. )en, how to make CNN able to
decrease feature redundancy is a crucial problem to be
handled. Although several works report that L1 regula-
rization can make sparse the structure of CNN and im-
plicitly attain feature reduction, it is not intuitive and may
not guarantee prediction precision. Hence, this paper
proposes an improved CNN model combined with

minimal-redundancy-maximal-relevance, referred as
mRMR-CNN to straightly select the extracted features so
that a feature selection layer is added to original CNN, of
whom the performance can be improved.

Specifically, a CNN model is initially constructed and
pretrained slightly overfitting the given training samples,
which empirically implies that the built CNN model
achieves relatively acceptable performance and last con-
volutional (or pooling) layer of it covers numerous dis-
criminative features. Since these features are automatically
extracted and not necessarily independent of each other,
then mRMR serves here performing feature selection to
reduce redundant information. mRMR takes CNN-
extracted features and expected model outputs as algorithm
input. When feature preservation proportion is given,
mRMR derives from the extracted features a feature subset
that can fit given data well and have the least redundancy.
Feature preservation proportion is used here to indicate the
number of features to be reserved, which should be ex-
perimentally determined. After mRMR functions, a feature
selection layer is added into CNN, closely following the last
convolutional (or pooling) layer, to achieve feature re-
duction. )e feature selection layer mainly contains a
constant weight matrix of size Ne ×Ns filled with 0 and 1,
where Ne is the number of CNN-extracted features and Ns
is the number of mRMR-selected features. Each column of
the weight matrix functions to pick out one feature; thus,
each column contains only one element 1, while the rest
elements are all zeros. Finally, the modified CNN, mRMR-
CNN, is retrained to attain better performance. Figure 4
illustrates the main idea of proposed method and divides it
into pretraining and retraining parts.

In addition, the detailed procedures of proposedmRMR-
CNN are described as follows:

(1) Step 1: preprocess raw data samples, scale them to [0,
1], and convert them into 2D matrix data.

(2) Step 2: construct a classical CNN framework
inheriting the structure of LeNet-5.

(3) Step 3: keep revising the parameters and structure of
the constructed model and pretrain the model to a
relatively acceptable performance so that most of the
discriminative features can be obtained.

INPUT
32×32

Classifier/Regressor

Feature Extractor

Convolutions Subsampling SubsamplingConvolutions

C1: feature maps
6@28×28

S2: f. maps
6@14×14

C3: f. maps 16@10×10
S4: f. maps 16@5×5

C5: layer
120

F6: layer
84

OUTPUT
10

Full connection
Full connection Gaussian connections

Figure 1: )e structure of LeNet-5 [20].
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(4) Step 4: recover features generated in the last con-
volutional layer (or pooling layer) of CNN model
constructed in step 1, and performmRMR algorithm
to determine the features to be maintained when
given the preservation proportion or percentage.

(5) Step 5: based on the results of step 4, add a feature
selection layer right between the last convolutional
layer and the first fully connected layer.)en, retrain
and fine-tune the modified CNN model, mRMR-
CNN.

(6) Step 6: use the grid search approach to determine the
best feature subset and eventually fix the structure of
mRMR-CNN owning best performance, which is a
loop to repeat steps 3–5 until all the given feature
preservation proportions are examined.

To further state the proposed method, the final structure
of mRMR-CNN is briefly depicted in Figure 5, and a more
detailed architecture of it will be displayed in Table 1 of
Section 4.2. In the proposed mRMR-CNN, the main dif-
ference from original CNN is an additional feature selection
layer succeeding the feature extractor, which is determined
by mRMR algorithm and CNN-extracted features.

Based on the aforementioned presentation of proposed
method, a quality prediction model is established for batch
processes and the scheme of it is depicted in Figure 6, which
consists of two phases, training phase and testing phase. )e
training phase mainly adheres to the procedures of proposed
method to determine the structure of mRMR-CNN, while the
testing phase is simply an application of fixed mRMR-CNN.

4. Case Study

)e effectiveness of mRMR-CNN on quality prediction
modeling is verified on the penicillin fermentation process
with simulation software PenSim v2.0 [45]. Two widely used
indices, RMSE and the coefficient of determination R2, are
introduced to evaluate the experiment results. )e mathe-
matical expression of two indices is defined as follows:

RMSE �

��������������

1
NT

􏽘

NT

i�1
yi − ŷi􏼐 􏼑

2

􏽶
􏽴

,

R
2

� 1 −
􏽐

NT

i�1 yi − 􏽢yi( 􏼁
2

􏽐
NT

i�1 yi − y( 􏼁
2 ,

(9)

where NT stands for the sample number. yi represents the
real value, while 􏽢yi denotes the estimation value, and y is
noted as the mean of all the real values.

To implement the experiment, all codes are written in
Python 3.7 under deep learning framework TensorFlow 2.1.0
except that mRMR-concerned codes are written inMATLAB.
All programs are carried out in Windows 10 64 bit enterprise
edition with Intel (R) Xeon (R) Sliver 4110 CPU @ 2.10GHz,
32.0GB RAM, and NVIDIA Quadro P620 2GB GPU.

4.1. Penicillin Fermentation Process and Experiment
Configuration. )e penicillin fermentation process is a
benchmark widely used for validating the performance of
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Figure 2: Convolution with convolution kernel of size 3× 3, stride of 1, and no zero padding.
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max pooling with pooling size of 2×2
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Figure 3: Visual illustration of max pooling.
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batch process quality prediction modeling. )e simulation
software of it can be downloaded from http://www.chee.iit.
edu/∼control/software.html. Figure 7 displays the flowchart
of penicillin fermentation process.

Based on certain works [45–47], difficult-to-measure
penicillin concentration is the key quality variable of pen-
icillin fermentation process and the rest sixteen variables are
regarded as auxiliary variables, which involve aeration rate
(L/h), agitator power (W), substrate feed rate (L/h), substrate
feed temperature (K), substrate concentration (g/L), dis-
solved oxygen concentration (g/L), biomass concentration
(g/L), culture volume (L), carbon dioxide concentration
(mmol/L), pH, fermenter temperature (K), generated heat
(cal), acid flow rate (L/h), base flow rate (L/h), cold water
flow rate (L/h), and hot water flow rate (L/h). 25 groups of
data, totally 10000 samples, are obtained with parameter
settings suggested by related works [46–48]. )e obtained
data are divided into training data set of 8000 samples and
testing data set of 2000 samples according to production
batches. Among training samples, 7200 of them are ran-
domly selected for training the constructed model and the
rest for validating and fine-tuning the model.

4.2. Structure Determination of mRMR-CNN. )is subsec-
tion attempts to determine the structure of mRMR-CNN
with the best performance and the well-known dropout
technique is adopted in the fully connected layer to ensure
the prediction capability, which is as well applied to other
neural network-based methods used in this paper, if not
specified. 960 features are extracted by pretrained CNN, and
the prominent grid search approach is executed using fea-
ture preservation proportion grid [0.20, 0.25, 0.30, 0.35, 0.40,
0.50, 0.55, 0.60, 0.65, 0.70]. Under each proportion, the

corresponding model is trained 10 times with training
epochs of 300, training batch size of 128, and ReLU as default
activation function. Adam’s algorithm is adopted to achieve
error back propagation and learn the trainable parameters.
Specifically, learnable parameters, including weights in
convolution kernel and fully connected layer, can be iter-
atively updated using the following equations:

gi �
zL

zw
|wi−1

,

mi � β1mi−1 + 1 − β1( 􏼁gi,

vi � β2vi−1 + 1 − β2( 􏼁g
2
i ,

􏽢mi �
mi

1 − βi
1􏼐 􏼑

,

􏽢vi �
vi

1 − βi
2􏼐 􏼑

,

wi � wi−1 −
α · 􏽢mi

􏽢vi + ε( 􏼁
,

(10)

where i is the iteration index,w is the weight to update, L is the
loss function, m is the first momentum variable, and v is the
second rawmomentum variable. Meanwhile, α is the learning
rate, ε is an extremely small positive number in case of zero
division, and β1 and β2 are the exponential decay rates for the
momentum variables. Here, hyper-parameters use the default
settings, α� 0.001, β1 � 0.9, β2 � 0.999, and ε� 10−7.

)en, the average validating prediction values on test
data set are adopted as the final prediction values, on which
the calculation of RMSE and R2 is based. If not specified, all

CNN

mRMR-CNN

Extracted
Features

Selected
Features

Output

sample number

Data

mRMR

Pretraining

Retraining

modify

Feature Selection
Layer

ou
tp

ut

...

...

Figure 4: Illustration of mRMR-CNN.

6 Mathematical Problems in Engineering

http://www.chee.iit.edu/%7Econtrol/software.html
http://www.chee.iit.edu/%7Econtrol/software.html


neural network-based models employed in this study take
the same strategy.

Detailed RMSE and R2 values under varied feature
preservation proportions are given in Table 2, where the
best results are highlighted in bold font. )e results in-
dicate that validating RMSE value reaches the lowest and
coefficient of determination R2 value attains highest when
feature preservation proportion is set as 0.35, which
means the mRMR-CNN achieves its best performance
under current given conditions. )en, the specific
structure of finally fixed mRMR-CNN is offered in Ta-
ble 1. It is noticeable that feature selection essentially

decreases nodes connected to those in the first fully
connected layer. To put it differently, the number of
trainable parameters in the first fully connected layer will
increase to 38,440 if the feature selection layer is dropped.
)erefore, there is actually a 64.9% reduction in trainable
parameters in the first fully connected layer when
compared with CNN.

To visually present the validating results, Figures 8 and 9
are drawn to display part of the prediction results and pre-
diction errors under different feature preservation propor-
tions, respectively. In Figure 8, the closer the scattered points
(painted in blue) distribute to the reference line (the red solid

Full Connection

Full Connection

Output

Fully
Connected

Layer

Feature
Selection

Layer

Final
Pooling
Layer

Convolution Max Pooling

Feature Selection

•••

variables

tim
e

2-D Matrix
Input Convolutional

Layer
Pooling Layer

Figure 5: )e structure of mRMR-CNN.

Table 1: Specific structure of fixed mRMR-CNN.

Type Kernel size/stride Output size Parameters Trainable
Convolution 3× 3/1 50×16×10 100 True
Max pooling 2× 2/2 25× 8×10 — —
Convolution 3× 3/1 25× 8× 20 1820 True
Max pooling 2× 2/2 12× 4× 20 — —
Feature selection — 336 336 False
Dropout (50%) — 336 — —
Full-connection — 40 13480 True
Dropout (50%) — 40 — —
Output — 1 41 True

Training data
preprocessing

CNN
pretraining

Training
Phase

Testing
Phase

mRMR

Improved CNN
retraining

mRMR-CNN
structure determination

CNN
modifying

Testing data
preprocessing

Fixed
mRMR-CNN

Quality prediction
result

Figure 6: Scheme of quality prediction modeling based on mRMR-CNN.
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one), the better prediction results. In such sense, prediction
results are fairly acceptable when preserving 35.0% CNN-
extracted features, where scattered points are the closest to the
reference line. Figure 9 is presented to show the fluctuation of
prediction results, where prediction errors vary in smaller
scale under feature preservation proportion 0.35 when
compared to other proportions. It implies that prediction
results are relatively stable and precise under proportion 0.35.

4.3. Comparison between Different Methods. To further
validate the performance of proposed method, it is
compared with SVR, AE, BP, SAE, original CNN, and
CNN-L1, which applies L1 regularization to the first
fully connected layer. SVR is a traditional machine
learning method, and the rest are neural network-based
methods.

In this paper, the basic parameter settings for SVR are
sensitivity ϵ of 0.08, penalty factor C of 1000, and using radial
basis function (RBF) with kernel coefficient c of 0.02 as
kernel function. BP is a three-layer neural network (ex-
cluding input layer) with (336, 40, 1) nodes in each layer. AE
shares the structure of 16-13-16 and SAE stacks two AEs,
following the structure of 16-13-11-13-16. )e features
learned by AE and SAE are then fed into a three-layer neural
network with 384-64-1 structure to regress the target var-
iable. It is notable that both ReLU and sigmoid functions are
employed in AE and SAE. )e specific structure of mRMR-
CNN here is the same as listed in Table 1. Baseline CNN is
similar to the mRMR-CNN, merely removing the feature
selection layer. CNN-L1 mainly distinguishes itself from
CNN with L1 regularizer adopted in the first fully connected
layer, and regularization coefficient is set as 0.0001. All
neural network-based methods here are trained using
training epochs of 300 and Adam to optimize trainable
parameters. Other relevant hyper-parameters here are

α� 0.001, β1 � 0.9, β2 � 0.999, and ε� 10−7, where α is the
learning rate.

RMSE and R2 of training and testing with different
approaches are listed in Tables 3 and 4, respectively. )e
proposed mRMR-CNN outperforms other methods on
testing data set with the lowest RMSE value of 0.0249 and
highest R2 value of 0.9893, while SVR behaves worst on both
training and testing data sets. It is worth noting that CNN
reaches almost the same performance as mRMR-CNN on
the training data set but performs 3.4% inferior to mRMR-
CNN on the testing data set in terms of R2, andmRMR-CNN
behaves 50.8% superior to CNN on testing samples in terms
of RMSE.)e performance of CNN-L1 is acceptable on both
training and testing samples but slightly worse than that of
mRMR-CNN. To justify the performance results, Table 5
provides the prediction time per sample consumed by CNN,
CNN-L1, and mRMR-CNN when testing. It can be seen that
mRMR-CNN makes predictions slightly faster than the
other two approaches.

Additionally, prediction results of different methods are
illustrated in Figures 10 and 11. In Figure 10, a shorter
average distance of scattered points to the reference line
indicates better prediction results. It can be seen that
scattered points under mRMR-CNN distribute densely close
to the reference line, while those of other approaches dis-
tribute either sparser or even far away from the reference
line. In Figure 11, tracking results given by SVR, BP, AE, and
CNN-L1 exhibit several sharp leaps when real output grows
from zero. Meanwhile, SAE seems to make predictions with
noises, resulting in sustaining small fluctuation. In contrast,
the tracking curve obtained by CNN and mRMR-CNN is
smoother and more stable. Especially, mRMR-CNN obtains
predictions closer to the real values.

To further investigate the prediction results, the pre-
diction errors and their corresponding distribution under
different methods are shown in Figures 12 and 13 ,

ACID

BASE

Cold
Water

Hot
Water
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Substrate
Tank

FC

T

pH

FC
Fermenter

Figure 7: Flowchart of penicillin fermentation process.

Table 2: Validating RMSE and R2 under varied feature preservation proportions.

proportion 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 1.00
RMSE 0.0423 0.0375 0.0336 0.0249 0.0327 0.0359 0.0391 0.0397 0.0423 0.0435 0.0468 0.0506
R2 0.9692 0.9758 0.9805 0.9893 0.9816 0.9777 0.9736 0.9728 0.9691 0.9673 0.9621 0.9558
Best results are highlighted in bold font.
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respectively. From Figure 12, prediction errors of mRMR-
CNN have the smallest fluctuation scale, ranging from −0.15
to 0.1, while those of most other methods are even down to
−0.3. From Figure 13, mRMR-CNN obtains the narrowest
box plot. In addition, the mean of prediction errors (the blue
dash line in the tiny box) nearly equals the median (the red

solid line), close to zero, in box plot for mRMR-CNN. It
indicates prediction errors of mRMR-CNN distribute
roughly around zero.

From the above results, mRMR-CNN outperforms some
traditional methods (such as SVR, BP, and AE) and even
certain deep learning methods (such as SAE, CNN, and
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Figure 8: Part of the prediction results under different feature preservation proportions. (a) 30.0% features reserved, (b) 35.0% features
reserved, (c) 40.0% features reserved, and (d) all features reserved.
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Figure 9: Part of the prediction errors under different feature preservation proportions. (a) 30.0% features reserved, (b) 35.0% features
reserved, (c) 40.0% features reserved, and (d) all features reserved.

Table 3: Training RMSE and R2 of different methods.

Methods SVR BP AE SAE CNN CNN-L1 mRMR-CNN
RMSE 0.0571 0.0297 0.0270 0.0397 0.0246 0.0293 0.0232
R2 0.9560 0.9881 0.9901 0.9788 0.9918 0.9884 0.9927
Bold indicates the lowest RMSE value and highest R2 value.

Table 4: Testing RMSE and R2 of different methods.

Methods SVR BP AE SAE CNN CNN-L1 mRMR-CNN
RMSE 0.0735 0.0495 0.0407 0.0614 0.0506 0.0359 0.0249
R2 0.9071 0.9579 0.9716 0.9351 0.9558 0.9778 0.9893
Bold indicates the lowest RMSE value and highest R2 value.

Table 5: Testing prediction time consumed by three methods: CNN, CNN-L1, and mRMR-CNN.

Methods CNN CNN-L1 mRMR-CNN
Seconds per sample 6.0057×10−5 6.0600×10−5 6.0005×10−5

Bold font indicates the best result, which indicates the shortest testing prediction time.
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Figure 10: Prediction results under varied methods. (a) SVR, (b) BP, (c) AE, (d) SAE, (e) CNN, (f) CNN-L1, and (g) mRMR-CNN.
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Figure 11: Continued.
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Figure 11: Prediction tracking on real value under different methods. (a) SVR, (b) BP, (c) AE, (d) SAE, (e) CNN, (f) CNN-L1, and (g)
mRMR-CNN.
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Figure 12: Prediction errors of different methods. (a) SVR. (b) BP. (c) AE. (d) SAE. (e) CNN. (f) CNN-L1. (g) mRMR-CNN.
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CNN-L1), which could be owed to the excellent feature
extraction ability of CNN and the explicit feature selection in
the training stage of mRMR-CNN. Other approaches except
CNN-L1 fail either to capture valid features or to reduce
feature redundancy, resulting in unsatisfactory performance.
Although CNN-L1 obtains acceptable performance, it suf-
fers subtle instability in prediction, probably due to implicit
feature selection. Based on the above analyses, it can be
concluded that mRMR-CNN, which explicitly facilities CNN
with the ability of feature selection, can effectively promote
quality prediction precision. It implies as well the signifi-
cance of feature selection in CNN-based model, in con-
sideration of feature redundancy.

5. Conclusion

In this study, a novel mRMR-CNN approach is proposed to
model quality prediction for batch processes, of which the
key idea is using mRMR to remove redundant features
obtained by original CNN so that a feature selection layer
can be added to the original CNN to enhance the quality
prediction precision. )en, the performance of proposed
method is verified on the penicillin fermentation process,
where the results indicate that the proposedmethod achieves
a significant improvement when compared to the original
CNN. Furthermore, in terms of penicillin fermentation
process, the performance of proposed method is superior to
that of certain methods such as CNN-L1, SAE, and SVR.
Additionally, mRMR-CNN can also greatly decrease
trainable parameters when compared to the original CNN,
although it is not the concern of this study.

However, as mentioned before, the training stage of
proposed method is divided into two phases, pretraining
phase and retraining phase. )erefore, the training time that
the proposed method consumes is obviously more than the
traditional CNN and CNN-L1 methods. )en, the future
focus may lie in how to dynamically integrate mRMR into
the training stage of CNN to enhance model performance
and shorten training time.

Data Availability

)e training and testing data used to support the findings of
this study are available from the corresponding author upon
request.

Conflicts of Interest

)e authors declare that there are no conflicts of interest.

Acknowledgments

)is work was mainly funded by the National Key Research
and Development Program of China (2021YFC2101100) and
National Natural Science Foundation of China (21878081)
and was partially supported by the Open Funding Project of
the State Key Laboratory of Bioreactor Engineering. )e
authors appreciate the support of the above organizations.

References
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