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Abstract: Deep neural networks with rate-based neurons have exhibited tremendous progress in
the last decade. However, the same level of progress has not been observed in research on spiking
neural networks (SNN), despite their capability to handle temporal data, energy-efficiency and low
latency. This could be because the benchmarking techniques for SNNs are based on the methods
used for evaluating deep neural networks, which do not provide a clear evaluation of the capabilities
of SNNs. Particularly, the benchmarking of SNN approaches with regards to energy efficiency and
latency requires realization in suitable hardware, which imposes additional temporal and resource
constraints upon ongoing projects. This review aims to provide an overview of the current real-world
applications of SNNs and identifies steps to accelerate research involving SNNs in the future.

Keywords: spiking neural networks; neuromorphic computing; brain-inspired learning

1. Introduction

Similar to artificial neural networks (ANN), spiking neural networks (SNN) are also
inspired by the neural networks observed in biology. However, unlike ANNs, SNNs employ
processing units that process information using neuronal units that are much closer to their
biological counterparts. Biological neurons process and transmit information using action
potentials, also known as spikes, which underlie the incredible energy efficiency exhibited
by the brain. These similarities between spiking neurons and biological neurons also
imply that SNNs with similar power requirements as the human brain could potentially
be developed. This has motivated several studies to compare ANNs and SNNs from
different perspectives [1–3]. Despite these capabilities, SNNs have not seen the same level
of advances as observed in ANNs.

In this review article, we present recent advances in the development of technical
approaches for learning in SNNs and their real-world applications. The ideas discussed
in the next seven sections can be used to identify important areas for current and future
research on SNNs that could potentially close the gap between ANNs and SNNs. The layout
of this article is as follows: Section 2 describes the fundamental principles underlying a
spiking neuron. Section 3 presents different architectures of SNNs that have been developed
using spiking neurons. Section 4 provides an overview of different learning algorithms
that have been proposed for training SNNs. Generic applications of SNNs are presented in
Section 5. Section 6 presents the development of neuromorphic hardware systems for SNN.
Section 7 presents one trend in the development of SNN architectures called brain-inspired
SNN, along with their specific applications. Section 8 is the conclusion for this review and
offers a discussion.
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2. Fundamentals of a Spiking Neuron

The fundamental units that process information in spiking neural networks are called
spiking neurons. Inspired by biological neurons, spiking neurons utilize temporal signals
consisting of binary events, termed as spikes, as their input and output. Spiking neurons
utilize the precise time of spikes to encode information. Each spike received by a spiking
neuron alters its state, which is termed as membrane potential. When the membrane
potential of a neuron reaches a certain threshold value, the spiking neuron generates a
spike that is transmitted to other spiking neurons over a synapse.

The response of a biological neuron depends on a multitude of ionic currents inside
and outside the cell membrane. Hodgkin and Huxley proposed a detailed computational
model based on the information propagation in a giant axon of the squid [4]. However,
a detailed computational model of a biological neuron is less suitable for applications in
computational intelligence because of its excessive computational overhead. To overcome
this issue, several computationally efficient spiking neuron models have been proposed in
literature, such as the leaky integrate-and-fire (LIF) neuron [5] and Izhikevich neuron [6].
Below, we provide a description of the LIF neuron and Izhikevich neuron for discussing
the topics presented in subsequent sections. A thorough discussion on various existing
spiking neuron models has been presented in [7].

2.1. Leaky Integrate-and-Fire Neuron

The membrane potential (v(t)) at time t of an LIF neuron is described by the following
differential equation

τ
dv(t)

dt
= −(v(t)− vr) + RI(t) (1)

where v(t) represents the membrane potential of the neuron at time t, and vr represents
the resting potential, i.e., the potential of the neuron when it is not receiving any input. τ
represents the time constant of the neuron and R represents the resistance of the neuron.
I(t) represents the input current received by the neuron over the incoming synapses.

2.2. Izhikevich Neuron Model

The Izhikevich neuron [6] was developed with the aim of reproducing the spiking
characteristics of various cortical neurons using a computationally simple model. The
membrane potential (v) and membrane recovery variable (u) of a spiking neuron modeled
as an Izhikevich neuron are given by

dv(t)
dt

= 0.04v(t)2 + 5v(t) + 140 − u + I (2)

du(t)
dt

= a(bv(t)− u) (3)

u provides negative feedback to v, thereby making it harder for a neuron to spike
again after generating a spike. The neuron generates a spike when its potential crosses a
threshold value (c). After every spike, the value of v is reset to the resting potential and the
value of u is incremented by d. In Equation 3, the parameter a determines the time scale of
u and the parameter b captures the impact of subthreshold variations in v on u. Together,
the values for the parameters a, b, c and d in the above equations enable simulation of
different spiking behaviors exhibited by cortical neurons.

3. Architectures of Spiking Neural Networks

There are primarily two types of architectures that have been utilized for SNNs,
namely feedforward and recurrent SNNs. A feedforward SNN consists of neurons that are
organized into multiple layers. The neurons in a given layer are connected only to neurons
in the next layer. One of the first approaches for training an SNN employing a feedforward
architecture was proposed by Bohte et al. in 2002 [8]. On the other hand, a recurrent SNN
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does not utilize a layered structure. A recurrent neural network is akin to a pool of neurons
that are connected to one another in a randomized fashion.

Several approaches for SNNs have also developed custom architectures that target
specific problems. In [9], a feedforward SNN that utilizes neurons with three different
types of dynamics connected with each other in a specific topology was proposed for
simultaneous classification and motion-prediction. The differences in the dynamics of the
neurons enables the network to extract short-term and long-term spike patterns present
in the input data. In [10], authors proposed a custom SNN architecture that is specifically
designed for learning spatio-motor transformations in a fault-tolerant manner.

Another class of SNN architectures that has received significant attention in the litera-
ture is evolving SNNs. Information in evolving SNNs also propagates in a feedforward
manner. Evolving SNNs are inspired by the idea of neurogenesis [11], which is a process
through which new neurons are formed in the brain. The general idea behind evolving
SNNs is to estimate the number of neurons required by the network for a given task during
the training process. This results in compact network architectures and helps in avoiding
apriori assumptions about the architecture of an SNN for a given task. Several works on
evolving SNNs have been proposed in the literature that primarily differ in terms of their
approaches to learning [12–14].

Brain-inspired SNN architectures that are structured according to brain templates,
one of which is NeuCube [15], represent a new trend in SNN architectures, as discussed
in Section 7.

4. Learning in Spiking Neural Networks

Similar to traditional artificial neural networks, learning in SNNs can also be classified
into three different categories, namely unsupervised learning, supervised learning and
reinforcement learning. Like ANNs, several dedicated libraries have been developed for
training SNNs using various learning paradigms. In this regard, BindsNET [16] is one of
the first libraries for developing SNNs. Below, we have presented existing approaches for
SNNs in each of these categories.

4.1. Unsupervised Learning

Unsupervised learning in SNNs focuses on the adaptation of network parameters
based on correlations between neural activity without any reliance on class labels. The
representations of input spike patterns learned using unsupervised learning can be used
for a variety of problems, such as clustering and classification.

Spike-timing-dependent plasticity (STDP) [17,18] is, probably, the most fundamental
form of the unsupervised learning rule observed in biology. It is closely related to Hebb’s
postulate: “Neurons that fire together, wire together” [19]. The hypothesis underlying the
STDP rule is that the change in the weight of a synapse between two neurons is proportional
to the separation between pre- and postsynaptic spike times. If the postsynaptic spike
occurs after a presynaptic spike, then the change in the weight of the synapse is positive (i.e.,
weight is increased), thereby strengthening the causal relationship between the pre- and
postsynaptic spikes. On the other hand, if the presynaptic spike occurs after a postsynaptic
spike, then the change in the weight of the synapse is negative (i.e., weight is reduced),
thereby further weakening the causal relationship between the pre- and postsynaptic
spikes. Furthermore, in both cases, the change in the weight is negatively correlated with
the difference between the pre- and postsynaptic spike times, i.e., the change in weight
is smaller for higher values of the difference between the spike times of the pre- and
postsynaptic neurons. The change in weight of a synapse based on STDP is given by

∆w =

 A+ exp
(
− s

τ+

)
s > 0

A− exp
(

s
τ−

)
s ≤ 0

 (4)
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where A+ and A− represent the coefficients for potentiation and depression, and τ+ and
τ− represent the time constants for STDP in the respective cases. s is the time difference
between the spike times of the post- and presynaptic neuron. Figure 1 shows the relation-
ship between the change in weight (∆w) and s for given values of different parameters
associated with STDP.

Figure 1. Relationship between the change in weight of a synapse and the difference between spike
times of the pre- and postsynaptic neurons. ∆t = tpost − tpre where tpost and tpre represent the spike
times for the pre- and postsynaptic neurons, respectively. Figure was generated using the following
values: A+ = 1, A− = −0.4, τ+ = 60 and τ− = 100.

STDP is the basis of many unsupervised learning approaches for SNNs, most of
which use the learned representations for classification tasks. STDP is used along with
lateral inhibition and an adaptive spiking threshold to learn representations for input spike
patterns that are suitable for classification [20]. Based on the representations learnt using
STDP, an accuracy of 95% is reported on the MNIST dataset. Several approaches have also
used STDP in combination with winner-take-all approaches to learn representations that
are suitable for classification [21].

4.2. Supervized Learning

Supervized learning in SNNs focuses on adapting the network parameters to minimize
some formulation of error based on a network’s actual output spike pattern and the desired
output spike pattern. The value that is represented by the desired output spike pattern
depends on the task being handled by the network. For instance, in a classification
task, desired output spike patterns encode the class label associated with a given sample,
whereas, in regression tasks, it encodes a real value. Depending on the fundamental
principles of a learning algorithm, the supervised learning approaches for SNNs can be
classified into the following categories: gradient-based learning, bio-inspired learning and
other learning algorithms. Below, we look at each of the categories separately.

4.2.1. Gradient-Based Learning

The general idea behind gradient-based approaches is to update weights in the net-
work based on the gradient of an error function. The success of gradient-based algorithms
for ANNs has inspired the development of many similar approaches for SNNs. These
approaches have focused on the development of better techniques for computing gradients
at the time of spike, which cannot be computed analytically because of the discontinuity in
the neuronal response [8]. SpikeProp is one of the first gradient-based learning approaches
for SNNs that computes a gradient at the time of spike by assuming that the potential of the
neuron changes linearly around this time [8]. In [22], authors employed low-pass filtering
to smoothen the changes in the membrane potential of the neuron around the time of spike,
thereby enabling computation of the gradient. Recently, the concept of surrogate gradients
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in spiking neural networks has been proposed, which involves replacing each spike in
the network by a continuous differentiable function [23]. The effectiveness of surrogate
gradients in training deep neural networks have led to their utilization in a large number
of recent studies [24–26].

4.2.2. Bio-Inspired Learning

Bio-inspired learning algorithms are based on learning strategies which are observed
in the brain (such as STDP) or utilize an observation from biology as a foundational
idea (such as rank-order coding [27]). Most bio-inspired approaches have focused on
shallow two-layered SNNs [28,29] or utilized layer-wise training [30,31] due to a lack
of understanding about how learning occurs across hierarchical networks in the brain.
Many studies based on shallow SNNs have proposed approaches that combine STDP
with a supervisory signal to train SNNs [28,29]. In [29], STDP is combined with the
Bienenstock–Cooper–Munro learning rule to modulate the height of the plasticity window
associated with STDP. In [28], STDP is used to train a network that utilizes synapses with
time-varying weights. Layer-wise training approaches train a deep network layer-by-layer,
which alleviates the need for computation of gradients for back propagation. A layer-wise
training approach that utilizes a local learning rule was developed to train a three-layer
SNN for classification tasks in [32]. Kheradpisheh et al. proposed an STDP-based layer-
wise training approach for a deep neural network [30]. The representations inferred in the
last layer of the network are used for image classification.

To overcome issues pertaining to longer training times associated with layer-wise
training algorithms, some studies have proposed techniques that combine gradient-based
approaches with bio-inspired learning rules. In [33], STDP is combined with a gradient-
based approach to train deep SNNs. To overcome issues arising because of the discontinuity
around spikes, the application of gradient descent is limited to small intervals with zero
or one spike. In [34], authors combined STDP with self-regulation to develop a learning
algorithm that can use different learning strategies depending on the error in the network’s
response for a given spike pattern.

Bio-inspired learning approaches such as STDP and rank-order learning have also
been employed for the development of training algorithms for evolving SNNs. Evolving
spiking neural networks (eSNN) use rank-order learning based on the first spikes generated
by neurons in the network for learning and evolving the network [35]. Dynamic eSNN
is an extension of eSNN that uses the first spike for evolving the network but uses all
spikes for adapting the weights [36]. Learning in Dynamic eSNN is conducted using the
spike-driven synaptic plasticity learning rule, which is a variant of the STDP.

4.2.3. Other Learning Algorithms

This category represents a class of algorithms that are neither reliant on gradients nor
utilize learning mechanisms observed in biology for training SNNs. In [32], the authors
developed a learning rule that utilizes the normalized contributions of the presynaptic
neurons towards the spikes generated by postsynaptic neurons for learning. Chronotron
utilizes the Victor and Purpura distance metric for spike patterns to develop a local learning
rule for training shallow SNNs [37]. The learning rule in Chronotron utilizes the difference
between synaptic current due to actual presynaptic spikes and desired spikes for learning.
SPAN convolves the spike patterns generated by input neurons with a continuous function
and then utilizes the Widrow–Hoff learning rule to update the synaptic weights in a two-
layered SNN [38]. SPAN is an algorithm that trains a spiking neuron to generate a sequence
of output spikes at desired future times. It is a supervised learning algorithm where time
is not only represented in the input spike sequences but also learned in the spike output
sequences generated by the spiking neuron.
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4.3. Reinforcement Learning

Reinforcement learning (RL) involves adapting the parameters of an SNN based on
external feedback that depends on the predictions generated by the network. RL has not yet
received significant attention in the field of SNNs. One of the well-known approaches for RL
using SNNs is reward-modulated STDP, which has been utilized in multiple studies [39,40].
Recently, policy gradients have been used to develop a reinforcement learning approach
for SNNs [41]. The approach models each spiking neuron as a generalized linear model to
overcome issues associated with the computation of gradients in SNNs.

5. Generic Applications of SNN in Computational Intelligence

In principle, SNNs can be used for all the applications that an artificial neural network
can be used for. However, the binary nature of spikes renders SNNs more energy efficient
and faster with regards to response latency in comparison to ANNs. Furthermore, the
temporal nature of spikes renders SNNs more suitable for the processing of spatiotemporal
inputs. In this section, we present a brief survey of generic applications of SNNs, followed
by a more detailed overview of applications focusing on SNNs realized using neuromor-
phic chips in Section 6 and the applications of specific brain-inspired SNN architectures
in Section 7.

With regards to supervised learning, many studies have reported performance on
benchmark datasets such as MNIST and CIFAR-10 for classification tasks [22,26,31]. The
most significant applications of SNNs involve directly utilizing the sensor data received
from dynamic vision sensors. Dynamic vision sensors are more sensitive to visual changes
and have very low power requirements [42]. This is particularly useful for development of
energy-efficient, end-to-end processing pipelines with low response latency.

Recently, many of the applications of SNNs have focused on RL, as it is generally
easier to frame real-world problems, such as robot control, as an RL task. In [43], an
end-to-end SNN-based approach was proposed for a lane-keeping vehicle. The approach
directly utilizes the spike-based input received from the neuromorphic vision sensor on
a simulated pioneer robot to train it for performing a right-lane-keeping task. The SNN
is trained using STDP modulated according to the reward received by the agent for its
actions. In [44], the authors developed a multiplicative version of the reward-modulated
STDP for training an agent for collision avoidance using reinforcement learning.

6. SNNs on Neuromorphic Chips

Most likely, the most significant advantage of SNNs in comparison to artificial neural
networks is their potential to perform energy-efficient computing, due to the way infor-
mation is represented in SNNs. Here, energy efficiency refers to the power requirements
of the hardware used to simulate a SNN. The binary and sparse nature of spikes renders
SNNs suitable for edge-based computing, i.e., devices with limited on-board power. How-
ever, due to the lack of effective means for porting software implementations of SNNs to
hardware, there have been limited efforts in using SNNs for real-world applications. The
research in this direction is mainly driven by the capabilities of the neuromorphic chips for
realizing SNNs in hardware.

Loihi is a neuromorphic chip developed by Intel using its 14 nm process [45]. The
first version of the chip was able to simulate 130,000 neurons and 130 million synapses
while consuming 35 to 140 watts of power [45]. The Loihi chip has a form factor of USB,
which makes it ideal for applications where it is not feasible to install high-performance
computing infrastructure, for instance, unmanned aerial vehicles (UAV). In [46], the low-
power computing capabilities of the Loihi chip were exploited to develop a functional
PID controller for a UAV with one degree of freedom. In [47], the Loihi chip was used to
develop an optic-flow based approach for autonomous landing of UAVs. Recently, the chip
was used by researchers at the University of Zurich to develop a high-speed controller for
UAV [48]. A more rigorous survey of Loihi applications was provided in [49].
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TrueNorth is a neuromorphic chip developed by IBM that operates using 70 milliwatts
of power [50], which is much closer to the energy requirements of the brain. The TrueNorth
chip can simulate up to 1 million programmable neurons and 256 million programmable
synapses. However, a single neuron on the TrueNorth chip can have at most 256 synapses.
The extremely low energy footprint of the TrueNorth chip has made it useful for applica-
tions where charging cycles can be very long, for instance, in wearables devices. In [51],
a TrueNorth chip was used for decoding the electroencephalogram (EEG) and local field
potential (LFP) signals observed in the brain. In [52], an image segmentation approach, re-
alized on TrueNorth, was used for identifying the spinal anatomy in images obtained using
medical resonance imaging. In [53], the TrueNorth chip was used to develop an end-to-end
neuromorphic framework for object detection and tracking in a surveillance application.

Besides Loihi and TrueNorth, there are several other neuromorphic hardwares which
have been developed with the aim of improving the performance of existing alternatives.
SpiNNaker [54], BrainScaleS [55] and Neurogrid [56] were developed with a focus on
efficient and faster simulations for neuroscientific studies. FlexLearn [57] provides a general
framework to support brain simulations with on-chip learning based on a multitude of
plasticity mechanisms observed in the brain. SpinalFlow [58] developed an efficient
method to compute the potential of a spiking neuron to improve the throughput of existing
neuromorphic hardwares. NEBULA [59] employs a magnetic tunnel junction that can
simulate both synapses as well as neurons with ultra-low voltage requirements. These
advances have resulted in the development of efficient hardware solutions for simulated
SNNs. The adoption of these solutions on a wider scale could be further accelerated through
collaborative efforts between hardware groups and researchers focusing on developing
learning approaches for SNNs. Neuromorphic chips have also been utilized for purposes
that do not require SNNs but can benefit from the energy-efficient information propagation
mechanism of spiking neurons. Such applications are beyond the scope of this article, but
a detailed review on this topic has been presented in [60].

7. Future Trends: Brain-Inspired SNN Architectures

One aspect of brain-inspired SNN (BI-SNN) architectures is the use of a brain template
to structure a 3D SNN structure that is trained on spike sequence data [15]. Such a brain-
template could be Talairach [61], MNI, MRI [62] or other brain structural information.

7.1. The NeuCube Architecture

NeuCube is a BI-SNN, which was originally developed for modelling spatio-temporal
data obtained from the brain but has since been used for a variety of applications, such as
climate data modelling and stroke prediction. The architecture of NeuCube is shown in
Figure 2. The main parts (modules) of NeuCube are:

- Input information encoding module;
- 3D SNN reservoir/cube module (SNNc), or also neurogenetic brain cube (NBC), for

unsupervised learning;
- Output classification/regression module for supervised learning;
- Gene regulatory network module (optional).
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Figure 2. A schematic diagram of the NeuCube architecture (adopted from [15]).

NeuCube utilizes three types of mutually interacting memories, which are:

- Short-term memory, represented as changes of the membrane potential level and
temporary changes of synaptic efficacy;

- Long-term memory, represented as a stable establishment of synaptic efficacy—LTP
and LTD;

- Genetic memory, represented as a genetic code.

Short term memory in NeuCube is represented via similar activation patterns, termed
as ‘polychronous waves’ in the SNNs with recurrent connections. The weights of the
synaptic connections can be updated using LTP or LTD. NeuCube can be used for study-
ing/learning long spatio-temporal patterns and for building associative memories. At the
end of training, NeuCube retains the connections which represent long-term memory in
NeuCube. Current applications of NeuCube include:

- Predicting brain re-wiring through mindfulness [63];
- Modelling neuroimaging data such as EEG and fMRI [62];
- Personalized brain data modelling [64];
- Emotion recognition [65];
- Speech, sound and music recognition [66];
- Moving object recognition [67];
- Prediction of events from temporal climate data (stroke) [64];
- Brain–computer interfaces (BCI) [68].

7.2. Integration of Multimodal Data in a BI-SNN Architectures

As the brain integrates multiple input stimuli into one learning system, a BI-SNN can
also be used for such integration. Examples are:

- Integrating time, space and orientation data, such as fMRI and DTI [66,69]: An
extension of the STDP learning rule was proposed in [69], called oiSTDP, where if
two or more postsynaptic neurons spike after a pre-synaptic neuron, the closer a
postsynaptic neuron is to the orientation vector, the higher the increase is in the
connection weight of that postsynaptic neuron. The proposed rules are utilized
for integrating MRI and DTI data to create a personalized model for predicting the
response of schizophrenic patient to clozapine. Based on the proposed approach, it
has been shown that higher prediction accuracy is achieved using the integrated data;

- Integrating audio and visual streaming data [66]: In [66], left and right stereo music
encoded using cochleogram encoders was presented to the NeuCube. Based on the
presented input, the network could discriminate between the music of Bach, Vivaldi
and Mozart;
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- Integrating genetic data into a neurogenetic SNN architecture [70]: In [70], a gene
interaction network model was suggested as part of a spiking neuron model based on
the neuroreceptors AMPAR and NMDAR. For a given problem, such as modelling
AD, genes can be connected to these neuroreceptors in a gene regulatory network,
thereby influencing the performance of the SNN as a whole.

8. Conclusions

In this article, we have presented an overview of the recent technical advances per-
taining to SNNs and their usage in real-world applications. Based on this, we have also
identified interesting future trends and directions of research. The natural capabilities of
spiking neurons to represent temporal information renders them suitable for processing
spatio-temporal data arising in various domains such as brain and cognitive data analytics,
brain-computer interfaces, knowledge transfer between humans and machines, brain-like
robotics, incremental and transfer learning of multisensory streaming data. Further evalua-
tion and appreciation of the advantages of SNNs are expected in terms of energy-efficiency,
response latency and explainability [68]. Further development in SNN is expected in
many directions, including new neuromorphic chip design [71,72], on-line and real-time
applications, predictive modelling of brain diseases and the integration of new knowl-
edge from bioinformatics and neuroinformatics. Dedicated research in these directions
would contribute towards the identification of other suitable areas where neuromorphic
computing could offer substantial advantages over traditional ANNs, thereby accelerating
research on SNNs.
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