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Abstract
This paper considers a make-to-order system where production gets disrupted due to a random supply failure. To avoid 
potential stock-out risk and responding price increase during disruption, customers might decide to stockpile extra units for 
future consumption. We investigate the contingent sourcing strategy for the manufacturer to cope with the disruption. To this 
end, we first discuss the optimal post-disruption stockpiling decision for customers. In view of expected disruption duration, 
price rise, and inventory holding cost, three types of stockpiling behavior are analytically provided for the customers: non-
stockpiling, gradual stockpiling, and instantaneous stockpiling. Next, a model is formulated to optimize the joint decision of 
contingent sourcing time and quantity, with the objective of maximizing profit expectation. Finally, by conducting numerical 
analysis, we generate further insights into the role of relative factors and provide specific managerial suggestions on how 
to adapt dynamic contingent sourcing strategies to alleviate different disruptions, under different market environments and 
customer behaviors.

Keywords  Supply disruption management · Dynamic sourcing strategies · Customer stockpiling behavior

Introduction

Unexpected events (such as natural disasters) appearing at 
any nodes could lead to partial or full breakdowns of supply 
chain systems, resulting in devastating short-term and long-
term losses [1]. For example, during the early phase of the 
COVID-19 pandemic, 94% of the Fortune 1000 companies 
have been undergone coronavirus-driven SC disruptions by 
March 2020 [2].

In designing an effective supply risk mitigation strategy, 
it is critical to understand and precisely capture the post-dis-
ruption demand. However, to the best of our knowledge, the 
existing literature did not pay enough attention to this direc-
tion. In the context of supply chain disruption management, 
customers’ reaction is commonly captured as backorders or 
lost sales, and identified as deterministic demands or indeter-
ministic demands with given distributions [3]. In fact, after 

the occurrence of a disruption, consumers often stockpile 
products through alternative channels to avoid future short-
ages or price rises, especially during the disruptions caused 
by natural disasters. For instance, in 2011, after the radio-
active leak at Japan’s Fukushima nuclear plant, consumers 
went on panic buying various groceries to prevent radiation 
poisoning. More recently, during the COVID-19 pandemic, 
stockpiling essential groceries such as food and toilet paper, 
have been emerging around the world [4].

The problem regarding consumer stockpiling behavior 
has been gaining growing attention in both marketing and 
supply chain research. In specific to the context of supply 
chain disruption management, the existing literature starts 
to identify changes in customers’ purchasing behavior, trig-
gered by the fear of future supply shortages or price rises. 
However, to date, the research is still in its infancy in estab-
lishing mitigation tactics for manufacturers/retailers, consid-
ering customer stockpiling decisions in the presence of sup-
ply disruptions. We thus attempt to fill this gap in this study.

To this end, we consider an MTO production system 
where a manufacturer sources from a single supplier and 
competitive manufacturers provide alternative products in 
the market. After the occurrence of a supply disruption, 
production pauses immediately if no countermeasure is 
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taken. As a reaction, customers switch to the competitive 
manufacturers and might stockpile by purchasing more 
alternative products than their real-time needs. Driven by 
the shortage of products, the selling price of alternative 
products provided by competitors increases over time. 
To hedge against the negative impacts, the manufacturer 
employs a supply-side contingent sourcing. Sufficient sur-
veys have pointed out that contingent sourcing is a widely 
utilized emergency countermeasure in practical [5]. Sev-
eral essential research questions arise accordingly: driven 
by the fear that price will continue growing during the 
shortage, how do the consumers dynamically adjust their 
purchasing behavior? What is the optimal joint decision of 
contingent sourcing time and quantity, taking into account 
the dynamic process of customers’ stockpiling?

In answering these two questions, our present study 
contributes to the existing literature with two unique folds. 
First, in view of disruption durations and price rises, we 
provide three patterns of optimal post-disruption stockpil-
ing decisions for the customers: non-stockpiling, gradual 
stockpiling, and instantaneous stockpiling. The corre-
sponding conditions under which they should choose the 
three decisions are also presented. Second, we propose 
dynamic contingent sourcing strategies that identify opti-
mal joint decision of time and quantity for the manufac-
turer. The strategies enable him/her to arrive at more prof-
its during random supply disruptions. We also generate 
specific managerial insights on how to adjust the strategies 
with respect to relative factors including inventory holding 
cost, mean value of disruption duration, and prices before 
and after the occurrence of disruption.

The remainder of the paper is organized as follows. In 
“Related literature”, the related work is briefly reviewed. 
“Problem description” describes the problem. Customer 
stockpiling behavior is analyzed in “Customers’ stock-
piling behavior during disruption”. Dynamic contingent 
sourcing strategies are developed in “Manufacturer’s con-
tingent sourcing policy”. Finally, “Conclusions” gives 
conclusions and future research directions.

Related literature

To alleviate the negative impact caused by supply chain 
failures, a fruitful of tactics have been proposed, for 
instance, supplier diversification, contingent sourcing, 
inventory buffering, production scheduling and recovery, 
customer compensation, etc. [6–10]. The relevant litera-
ture mainly falls into two streams: contingent sourcing 
policy, and post-disruption demand identification consid-
ering stockpiling behavior.

Contingent sourcing policy

Contingent sourcing is a default countermeasure for dis-
ruption mitigation and attracts extensive work in academ-
ics. Under contingent sourcing, the manufacturer places 
an emergency purchase from secondary/backup suppliers 
in the event of a failure at its main supplier [11]. Accord-
ingly, related research mainly focuses on optimizing the 
order placement in emergency purchases. For example, 
considering two competing manufacturers, [12] and [13] 
investigate optimal order allocation decisions under emer-
gency procurement strategy. Subsequent studies extend 
this optimization problem in various directions, such as 
incorporating price competition [14], focusing on the sup-
ply chains of specific industries, etc. [15, 16].

The direction closer to our study is the extension to 
dynamic aspects. For instance, by modeling a time-
dependent supply failure through a standby approach, [17] 
proposes an optimal sourcing strategy considering a com-
bination of supply risk, a ratio of operational cost vs. loss, 
and supply period length. Modeling dynamic disruption 
risks as chains, [18] develops the optimal backup flex-
ibility design for resilience increase. Some work concerns 
the optimal sourcing time on top of the optimal sourcing 
quantity decision. Taking an uncertain lead time into con-
sideration, [19] investigates the optimal timing and quan-
tity of an emergency order under a periodic review inven-
tory system. By forecasting customers’ reactions through 
a demand-learning model, [20] identifies the optimal con-
tingent sourcing time to minimize disruption costs.

As can be seen from the brief review above, little 
research has been done on dynamic contingent sourc-
ing strategies, taking into account consumer stockpiling 
behavior. In fact, a few studies point out that consumer 
stockpiling behavior might exacerbate the impact caused 
by supply disruption [21]. Thus, we intend to bridge this 
research gap. The literature most relevant to our paper is 
the ones by [22] and [23]. They examine optimal sourc-
ing strategy for the retailer who sells a product over two 
periods, considering that customers might hoard one extra 
unit of the product in period 1 to prevent the potential 
shortage in period 2. In the present paper, we focus on 
the optimal joint decision of contingent sourcing time and 
quantity, considering a supply disruption that will last a 
random length.

Post‑disruption demand identification considering 
stockpiling

Post-disruption demand is commonly identified as various 
types of stochastic demand distributions or deterministic 
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demand functions [24, 25]. Nonetheless, another stream 
of studies questions that such methodologies might be 
ineffective to capture the fast-changing characteristics of 
customers’ reactions, thus develops forecasting methods 
to further identify post-disruption demand [26]. For exam-
ple, [27] establishes an improved model of grey neural 
networks for demand prediction, in the context of trans-
portation disruption.

In specific to customer stockpiling (or panic buying) 
behavior that is frequently observed after the appearance 
of unexpected events such as natural disasters, the focus 
of related research is commonly confined to investigat-
ing changes in customers’ purchasing behavior, driven 
by the supply failures of goods and services [28–31]. For 
example, considering both limited quantity scarcity and 
limited time scarcity, [32] identifies consumers’ panic 
buying behaviors during COVID-19 through the models 
of Stimuli-Organism-Response and Competitive Arousal. 
Using archival retail scanner data and real‐time data, 
[33] studies consumer precautionary stockpiling behav-
ior before landfalls of the hurricane and points out three 
types of contributing factors including the characteristics 
of supply-side, demand-side, and disaster itself. On the 
other hand, the present topic also attracts great attention 
in marketing literature, concentrating on two questions: 
how forward-looking consumers stockpile non-perishable 
products under changing sales prices [34], and how such 
behavior affects the pricing decision of suppliers [35]. Guo 
and Villas-Boas [36] provides a systematic overview of the 
existing research on panic buying.

However, to date, little literature has been found explor-
ing the optimal stockpiling behavior for customers in the 
presence of supply failures. One of our objectives is to 
address this research gap.

Problem description

Notations are defined in Table 1.
A firm produces and sells a single product to customers, 

and sources from a regular supplier who is unreliable. There 
is an emergency supplier who is reliable and expensive, and 
a competitive manufacturer selling alternative products. The 
demand rate of finished products is deterministic and nor-
malized to be “1”. The firm practices make-to-order manu-
facturing, i.e., no inventory of finished products is hoarding 
in the system. Before the appearance of supply disruption, 
the production is realized at the demand rate “ 1 ”. Without 
loss of generality, we assume that a supply disruption occurs 
at time ‘0’ and will last T  periods. Here T  is a random vari-
able with a mean value E(T) . Due to the event of supply 
disruption, the selling price of the product increases over 
time, denoted as:

where 0 ≤ t ≤ T  . p0 represents the selling price before the 
supply disruption occurs, and � stands for the rate of the 
price increase.

Without the adoption of countermeasures, the produc-
tion stops immediately leading to a stock-out for customers. 
Facing stock-out, customers purchase alternative products 
from the competitive manufacturer. To avoid a loss of utility 
caused by the later increase in price, customers may stock-
pile by purchasing more than needed during the early stages.

In this study, we examine two questions: how the rela-
tive factors such as expected disruption length and price rise 
affect the consumers’ post-disruption purchasing behavior, 
and what is the optimal sourcing time and quantity for the 
manufacturer to cope with the supply disruption, taking cus-
tomers’ stockpiling dynamics into consideration.

(1)p(t) = p0 + �t.

Table 1   Notations Notations Description

Decisions Q Contingent sourcing quantity
t∗ Contingent sourcing time

Parameters T Disruption duration
E(T) Mean value of the random variable T
TP Time when customers stop stockpiling
p(t) Selling price per unit of product (including alternative product)
v Consumers' valuation of one unit of product
v0 Consumers' valuation of one unit of an alternative product, v0 < v

d(t) Demand rate at time t  after the occurrence of a disruption
cs Unit extra sourcing cost from the emergency supplier
ch Unit inventory holding cost per unit of time for customers
cH Unit inventory holding cost per unit of time for the manufacturer
IC(t) , I(t) Inventory held by customers and the manufacturer
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Next, we start by exploring the customers’ purchasing 
behavior during disruption.

Customers’ stockpiling behavior 
during disruption

Based on the expectation E(T) of the supply disruption dura-
tion, customers decide to purchase d(t) units of the alterna-
tive products at time t , arriving at an expected utility U:

The first term of (2) captures the expected utility that 
customers perceive from the alternative products during dis-
ruption, and the second term presents the utility loss caused 
by holding inventory. Where the inventory dynamics IC(t) 
is formulated as:

As indicated in (3), the inventory dynamics could fall 
into three phases, dependent on the pattern under which cus-
tomers conduct their purchasing behavior. In the first phase 
[0, TP] , the inventory keeps increasing due to d(t) > 1 , that 
is, customers are stocking up. Then, in the second phase 
[TP, T0] , in view of the inventory accumulated during the pre-
vious phase, customers might choose to purchase less than 
their needs, i.e., 0 < d(t) ≤ 1 . Thus, inventory is required 
to be gradually consumed at the rate of 1 − d(t) . Lastly, in 
the third phase [T0,E(T)] , no purchase is conducted. As a 
result, customers’ inventory is consumed at the maximum 
rate of “1”.

Given (2), the customers’ optimal stockpiling decision 
can be formulated as the following problem.

The objective function (4) maximizes the customers’ 
expected utility. Equation (5) guarantees that the inventory 
held by customers is entirely depleted at the end of the dis-
ruption, i.e., IC(t) = 0 if t = E(T) . Equation (6) ensures the 
non-negativity of customers’ purchase quantity. Equation (7) 

(2)U = ∫
E(T)

0

[v0 − p(t)]d(t)dt − ch∫
E(T)

0

IC(t)dt.

(3)

IC(t) =

⎧
⎪⎨⎪⎩

t∫
0

[d(�) − 1]d�, if t ∈
�
0, TP

�
∪
�
TP, T0

�
;

T0∫
0

[d(�) − 1]d� −
�
t − TP

�
, if t ∈

�
T0,E(T)

�
.

(4)max U.

(5)Subject to
E(T)∫
0

d(t)dt = E(T).

(6)d(t) ≥ 0.

(7)d(0) > 1.

illustrates that the customers’ stockpiling behavior occurs 
during the early phases of supply disruption.

To generate further insights, we assume that the cus-
tomers’ stockpiling behavior follows a linear pattern, i.e., 
d(t) = b − at . Here, a, b ≥ 0 . Note that, by doing so, we 
extend the assumption utilized in most related literature that 
customers’ stockpiling behavior is confined to a one-time 
purchase [22, 23].

As depicted in (Fig. 1a, b), customers’ behavior might 
fall into two patterns under the present linear assumption.

In Pattern 1 where T0 ≤ E(T) , customers stockpile at a 
large speed during the first phase [0, TP] so that there is no 
need for them to purchase any products at the late period 
[T0,E(T)].

In Pattern 2 where T0 > E(T) , the stocking speed is rela-
tively small, thus the accumulated inventory does not suf-
fice to fulfill the future consumption that appears after the 
time point TP . Therefore, the purchase is required during the 
entire interruption, i.e., d(t) > 0 for all t ∈ [0,E(T)].

In particular, in view of the customers’ stocking speed, 
these two patterns could reach three boundaries, referred to 
as Cases 1–3 in the following.

	 (i)	 In Case 1 where d(t) = 1 : no stockpiling behavior 
appears.

	 (ii)	 In Case 2 where d(t) = d1(t) = 2 −
2

E(T)
t : customers 

stockpile at a medium speed. To be specific, to fulfill 
their real-time consumption rate “1”, they choose to 
purchase “2” units of the products at the beginning 
of the supply failure, then gradually reduce the pur-
chase rate until d(t) reaches zero at the expected end 
time E(T) of disruption (Fig. 1d).

	 (iii)	 In Case 3 where d(0) = b = E(T) : customers stock-
pile the total expected inventory required for the 
entire disruption immediately at the initial time t = 0 . 
In other words, to avoid the mark-up, customers pur-
chase zero product thereafter, i.e., d(t) = 0 for t > 0 
(Fig. 1c).

Solving problem (4)–(7) under the linear assumption, we 
find that the customers’ optimal stockpiling decisions are 
achieved at the above three boundaries, as shown in Table 2.

The calculation of Table 2 is detailed in the appendix.
As indicated in Table 2, the customers’ optimal stockpil-

ing behavior is critically linked to the following factors: the 
rate � of price increase, the inventory holding cost ch , and 
the disruption length represented by the mean value E(T) . 
The results provide the following suggestions for customers. 
First, customers only refrain from stockpiling (i.e., Case 1) 
in the event that there will be no substantial price increase 
and the disruption lasts short. Second, if the disruption lasts 
significantly short and the selling price will rise sharply, it 
is superior for the customers to instantly stockpile a large 
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number of products at the beginning (i.e., Case 3). Except 
for these two special circumstances, the optimal purchasing 
decision falls into gradual stockpiling (i.e., Case 2).

Manufacturer’s contingent sourcing policy

In this section, based on customers’ stockpiling behavior, 
we propose dynamic contingent sourcing policies for the 
manufacturer, identifying the optimal sourcing quantity and 
time. Note, as indicated in Table 2, the likelihood of Case 3 
is rare, we then focus on Cases 1–2 in the following.

Manufacturer’s profit

Suppose the manufacturer reroutes to a secondary source at 
the time t∗ and purchases Q units of raw material to alleviate 
the disruption and customers’ stockpiling. With contingent 
sourcing, the manufacturer resumes production immediately. 

As a result, the remaining demand d(t) can be partially or 
fully satisfied, depending on the quantity Q . Note that, com-
pared with the alternative products provided by competitors 
in the market, customers evaluate a larger utility v on the 
product provided by the manufacturer. Thus, we assume that 
the customers will choose to order from the manufacturer 
in priority.

The inventory held by the manufacturer exhibits compli-
cated patterns, depending on customers stockpiling behavior 
and the time and quantity of contingent sourcing. We depict 
the inventory dynamics in Figs. 2 and 3, respectively for 
Cases 1–2. The manufacturer’s profits gaining from contin-
gent sourcing are described accordingly.

(i)	 In Case 1

Without stockpiling, demand maintains at d(t) = 1 . 
Therefore, as depicted in Fig.  2, the manufacturer’s 

Fig. 1   Customers’ possible 
stockpiling behaviors under the 
linear assumption
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Table 2   Customers’ optimal 
stockpiling behavior

Cases Conditions Customers’ optimal stockpiling behavior

1 𝜃 < ch E(T) <
3

4
+

ch

4𝜃
Non-stockpiling, d(t) = 1

2 E(T) >
3

4
+

ch

4𝜃
Gradual stockpiling, d(t) = d1(t) = 2 −

2

E(T)
t

𝜃 > ch E(T) >
3
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−

ch

2𝜃

3 E(T) <
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2
−
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Instantaneous stockpiling, d(0) = E(T)
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inventory I(t) drops at the constant rate “ 1 ” until it reaches 
zero at time t∗ + Q . Then, the manufacturer purchase from 
the main supplier once she/he is available. On the other 
hand, the selling price stops increasing and returns to p0 
immediately at the end of supply disruption.

Compared with the decision of doing nothing but 
passively waiting for supply restoration, the manufac-
turer achieves an extra sale revenue R1 in the period 
[t∗, min{T , t∗ + Q}] by selling products at an increased sell-
ing price p(t) = p0 + �t . However, to resume production at 
the time t∗ , two costs are incurred: the contingent sourcing 
cost S1 generated from the mark-up price of contingent 
sources, and the inventory holding cost I1.

Summing up, the manufacturer’s expected profit E(ΔP1) 
is derived, as stated in Table 3.

	 (ii)	 In Case 2

As afore-described in Fig. 1, due to the customers’ 
s tockp i l i ng  behav io r ,  demand  ma in t a in s  a t 
d(t) = d1(t) = 2 −

2

E(T)
t during the period [t,E(T)] and 

d(t) = 1 thereafter. Accordingly, the manufacturer’s inven-
tory I(t) falls into two scenarios, depending on the critical 
time point when inventory is entirely depleted.

(a)	 In Scenario 1 where Q ≤ ∫ E(T)

t∗
d1(t)dt : the manufacture 

purchases a relatively small amount of contingent 
sources. As a result, the inventory drops at the demand 
rate d1(t) and reaches zero at the time point t1

Q
 . Here, t1

Q
 

is defined by the equation ∫ t1
Q

t∗
d1(t)dt = Q , and 

t1
Q
< E(T) (see Figs.3(a-c)).

(b)	 In Scenario 2 where Q > ∫ E(T)

t∗
d1(t)dt : the manufacture 

purchases massive contingent sources, leading to a 
positive inventory of raw material left in the production 
system at the time E(T) . Then, inventory is consumed 
at the rate “ 1 ” until it reaches zero at the time 
t2
Q
= E(T) + [Q − ∫ E(T)

t∗
d1(t)dt] (see Fig. 3d–f).

Similar to Case 1, based on the inventory dynamics stated 
above, the manufacturer’s expected profit E(ΔP2) that is 
composed of the extra sale revenue R2 and the costs I2 and S2 
of inventory holding and contingent sourcing, can be gener-
ated for Case 2. Table 3 summarizes E(ΔP2) arrived in both 
Scenarios 1 and 2.

Where, c1 is the unit productioncost and fT represents the 
probability density function of the random variable T  . 
A = p0 + �t − c1 ,  R1a

2
= ∫ T

t∗
d(t)Adt  ,  R1b

2
= ∫ t1

Q

t∗
d(t)Adt  , 

R2a
2

= ∫ T

t∗
d(t)Adt  ,  R2b

2
= ∫ E(T)

t∗
d(t)Adt + ∫ T

E(T)
Adt  ,  and 

R2c
2
= ∫ E(T)

t∗
d(t)Adt + ∫ t2

Q

E(T)
Adt.

The optimal sourcing policy

Based on the calculation of E(ΔP1) and E(ΔP2) presented 
in Table 3, the model for determining the optimal contin-
gent sourcing time t∗ and quantity Q , with the objective of 
maximizing the manufacturer’s profit, can be formulated as 
follows.

where (9) guarantees the non-negativities of the decision 
variables. In particular, if t∗ = 0 , a policy of instantaneous 
contingent sourcing is superior at the occurrence of the sup-
ply failure. Otherwise, it indicates that it is advisable to wait 
for some time before contingent sourcing.

Due to the complex expressions of E(ΔP1) and E(ΔP2) , 
problem (8)–(9) cannot be analytically examined. Therefore, 
we next investigate the optimal contingent sourcing policy 
via numerical analysis.

To simplify the analysis, we follow a common assump-
tion that the disruption length T  follows a uniform distribu-
tion on the interval [0, 2E(T)] [37]. That is, the probability 
density function of the random variable T  is determined as 

(8)(t∗,Q) ∈ argmax
{
E
(
ΔP1

)
,E

(
ΔP2

)}
.

(9)Subject to t∗ ≥ 0 and Q ≥ 0.

Fig. 2   Manufacturer’s inventory 
I(t) under contingent sourcing 
Q(t∗) in Case 1

0 

( ) 

Time

(a) 

 

 

 

0

( )

 

Time 

(b) 

Resume

sourcing

Resume 

sourcing 

 

∗  ∗∗ ∗



Complex & Intelligent Systems	

1 3

fT = 1∕M . Here, M = 2E(T) . Note, the present assumption 
represents the following common case: the upper bound of 
the disruption length T is acknowledged to the manufacturer. 
However, he/she has no access to more accurate information 
to conduct a more precise prediction on T .

Then, by establishing a basic set of parameter values as: 
p0 = 5, c1 = 1, cs = 1, ch = 0.5, cH = 1, � = 1.5 , we solve 
the problem (8)–(9) under the giving setting. The optimal 
sourcing policy that indicates sourcing time t∗ and quantity 

Q for disruption with a mean length E(T) can be obtained 
accordingly. We let the relevant parameters vary and observe 
how the optimal joint decision (t∗,Q) will change. Note that, 
we focus on the variation trends of relative factors and have 
run abundant analysis on other basic values of these factors. 
Our main findings generated from the given setting would 
not change.

Figure 4a, b show the optimal sourcing time t∗ and quan-
tity Q to cope with disruptions with different mean values 
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Fig. 3   Manufacturer’s inventory I(t) under contingent sourcing Q(t∗) in Case 2
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of length, under different inventory holding costs cH . The x 
axis represents the mean value of disruption length. Several 
main findings are indicated.

First, Fig. 4a reveals that a larger Q is suggested in cop-
ing with longer disruptions, or if the inventory holding cost 
cH is less. In particular, if cH becomes extremely small, the 
optimal sourcing quantity could exceed E(T) . In other words, 
facing significant advantages in sourcing cost, we suggest 
that the manufacturer procures massive contingent sources 
to cope with the uncertainty that the disruption length might 
exceed the mean value with a probability of 50%. By doing 
so, he/she could arrive at more profits once the situation 
occurs. Second, as shown in Fig. 4b, it is optimal to employ 
contingent sourcing immediately at the beginning (i.e., 
t∗ = 0 ) in mitigating short supply disruptions, and to wait 
for some time before rerouting for contingent replenishments 
(i.e., t∗ > 0 ) if the supply failure lasts long. We also observe 
that the advantage of such transient sourcing decision dimin-
ishes with cH . Thus, third, the sourcing time exhibits two 
trends as cH increases: the instantaneous contingent sourcing 
becomes inadvisable for shorter disruptions; the manufac-
turer should wait for longer periods in the process of hedging 
against long disruptions.

To address further investigation on how the customers’ 
stockpiling behavior affects the manufacturer’s sourcing 
decision, we further examine the optimal decision (t∗,Q) 
without taking into consideration the customers’ stockpiling 
behavior. That is, assuming that demand always remains at 
d(t) = 1 , a serial of false-optimal joint decisions is depicted 

in Fig. 4c, d. Comparing the results presented in Fig. 4a, 
b with the false-optimal joint decisions, we find that the 
manufacturer reroutes to the secondary sources later than the 
optimal time point if he/she neglects customers’ stockpiling. 
As a result, a significant loss in profit is incurred. Note, the 
y axes in Fig. 4e, f respectively stand for the manufacturer’s 
profits with and without considering customers’ stockpiling 
behavior.

Figure 5 depicts the insights on how to adjust optimal 
dynamic sourcing policies in accordance with the two 
aspects of the selling price: the pre-disruption selling price 
p0 and the price increase rate � during disruption. In gen-
eral, growth in selling price, no matter before or after the 
presence of disruption (i.e., p0 or � ), leads to an increase in 
sourcing quantity. On the other hand, the variation trends of 
the optimal sourcing time with these two price factors reveal 
several different findings.

First, the decision of instantaneous sourcing is advanta-
geous if � is small. A higher � leads to a larger sourcing 
time in mitigating long disruptions. Second, if p0 is small, 
the optimal sourcing time is determined as t∗ ≥ E(T  ) for 
long disruptions. That is, under this circumstance, we sug-
gest that the manufacturer allows lost sales before time E(T  ) 
and employ contingent sourcing to satisfy demands arriving 
thereafter if the disruption length actually exceeds the mean 
value. The non-intuitive reason is stated as follows. Due to 
customers’ stockpiling behavior, the demand rate initiates 
from the maximum value and drops over time during (0,E(T
)). Therefore, when the selling price is not profitable enough, 

Table 3   Manufacturer’s profits 
under contingent sourcing

Case The extra profits gained from contingent sourcing Q(t∗)

1 I1 cHQ
2∕2

S1 csQ

R1 R1 = Ra
1
= ∫ T

t∗
Adt if t∗ ≤ T ≤ Q + t∗;

R1 = Rb
1
= ∫ Q+t∗

t∗
Adt if Q + t∗ < T ≤ M

E(ΔP1) ∫ Q+t∗

t∗
fTR

a
1
dT + ∫ M

Q+t∗
fTR

b
1
dT − I1 − S1

2 Scenario 1 I2
cH

t1
Q∫
t∗

(
Q −

t∫
t∗
d(t)dt

)
dt

S2 csQ

R2 R2 = R1a
2

 if t∗ ≤ T ≤ t1
Q
;

R2 = R1b
2

 if t1
Q
< T ≤ M

E(ΔP2) ∫ t1
Q

t∗
fTR

1a
2
dT + ∫ M

t1
Q

fTR
1b
2
dT − I2 − S2

Scenario 2 I2
cH

[
E(T)∫
t∗

(
Q −

t∫
t∗
d(t)dt

)
dt +

1

2

(
t2
Q
− E(T)

)2
]

S2 csQ

R2 R2 = R2a
2

 if t∗ ≤ T ≤ E(T);
R2 = R2b

2
 if E(T) < T ≤ t2

Q
;

R2 = R2c
2

 if t2
Q
< T ≤ M

E(ΔP2) ∫ E(T)

t∗
fTR

2a
2
dT + ∫ t2

Q

E(T)
fTR

2b
2
dT + ∫ M

t2
Q

fTR
2c
2
dT − I2 − S2
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Fig. 4   The optimal dynamic sourcing policies under different c
H
 , with and without considering customers’ stockpiling behavior
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it could be better for the manufacture to contingently resume 
production after the demand rate returns to “1” after time 
E(T  ). On the contrary, once the pre-disruption selling price 
of the product exceeds a certain level, it is always preferable 
to implement instantaneous sourcing at the beginning of the 
supply failure, no matter whether or not the selling price 
will significantly grow, or how long the disruption will last.

Conclusions

In this paper, we consider a maker-to-order system where a 
manufacturer halts production due to a supply disruption. 
There are competing products in the market that customers 
will turn into during stock-outs. Based on identifying cus-
tomer stockpiling behavior, we investigate dynamic contin-
gent sourcing strategies for the manufacturer.

By characterizing customer utility under possible selling 
price rises and expected disruption duration, we analytically 
illustrate that customer post-disruption stockpiling behavior 
falls into three patterns: non-stockpiling, gradual stockpil-
ing, and instantaneous stockpiling. If the disruption lasts 
short and no significant price rise appears during disruption, 
non-stockpiling is suggested for customers. Conversely, if 
the disruption will last significantly short and the selling 

price will rise sharply, instantaneous stockpiling of the prod-
ucts required for the entire disruption is performed. In gen-
eral occasions other than these two cases, stockpiling should 
be gradually adopted at a medium speed.

In view of the complicated cases regarding the dynamics 
of customer stockpiling behavior, the manufacturer decides 
to order from a second supply source. To this end, we estab-
lish the dynamic patterns of the demand and inventory with 
closed forms. A model for developing dynamic contingent 
sourcing strategies is then formulated, identifying the opti-
mal joint decision of sourcing time and quantity to maximize 
the profit generated after the occurrence of disruption.

By conducting numerical analyses, we provide two 
managerial suggestions for practitioners. First, in hedging 
against short disruptions, we suggest that the manufacturer 
acquire replenishments from a secondary supplier instan-
taneously at the appearance of a supply failure in many 
circumstances. However, the advantage of instantaneous 
sourcing diminishes on the following two occasions: price 
grows significantly during disruption, or inventory hold-
ing cost is large. For long disruptions, we suggest that the 
manufacturer waiting some time before contingent sourcing. 
Second, the according sourcing quantity is suggested to be 
less for a higher inventory holding cost, a shorter disruption, 
or a low selling price. In addition to specific suggestions, we 

Fig. 5   The optimal dynamic 
sourcing policies under different 
� and p
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visually indicate how the two components of price, i.e., the 
pre-disruption price and the increased rate of price during 
disruption, play different roles in the optimal sourcing time. 
The profit loss that can be incurred from neglecting cus-
tomer stockpiling behavior during the process of designing 
mitigation strategies, is presented as well.

The present study suggests several relative topics for 
future research. First, we consider a linear assumption 
when characterizing the dynamics of customer stockpiling 
behavior in this paper. Although the discussion extends the 
identification of customer stockpiling behavior from static 
descriptions to a dynamic pattern, it would be valuable to 
further extend this assumption to other possible patterns. 
Second, the random disruption is subjected to a uniform 
distribution here, capturing the uncertainty of disruption to 
a certain extent. To present more widely applicable sourcing 
strategies, another area worthy of exploration is to character-
ize disruptions via more types of general distributions.

Appendix: Calculation for Table 2

In accordance with Fig. 1, the inventory dynamics for Pat-
terns 1 and 2 are presented in Fig. 6.

(i)	 In Pattern 1 where T0 ≤ E(T):

Based on the dynamics of inventory and demand given in 
Figs. 1 and 6, we have

Thus, the customers’ expected utility (2) can be further 
specified as:

	 (ii)	 In Pattern 2 where T0 > E(T):

Similarly, the customers’ expected utility in Pattern 2 is 
derived as:

(10)IC(t) =

⎧
⎪⎨⎪⎩

t�
0

(b − a𝜏 − 1)d𝜏 = (b − 1)t −
1

2
at2, if 0 ≤ t ≤ T0;

(b − 1)T0 −
1

2
aT2

0
−
�
t − T0

�
= bT0 −

1

2
aT2

0
− t, if T0 < t ≤ E(T).

(11)

U1 = ∫
T0

0

(
v0 − p0 − �t

)
(b − at)dt

− ch∫
T0

0

[
(b − 1)t −

1

2
at2

]
dt

− ch∫
E(T)

T0

(
bT0 −

1

2
aT0

2 − t
)
dt.

As indicated in (11) and (12), both U1 and U2 are linear to 
the parameters a and b . Thus, the maximization of U1 and U2 
can only be achieved at the boundaries of the linear function 
d(t) = b − at , that is, Cases 1–3.

Next, we compare the customers’ expected utilities on 
these boundaries to determine the optimal decision of cus-
tomers. By substituting the expressions of d(t) (see Fig. 1) 
into (2), the customers’ expected utilities of Cases 1–3 are 
derived, denoted as U1 , U2 , and U3 , respectively.

Note, b = 2 and a = 2∕E(T) are determined for 
d(t) = b − at in Case 2.

Accordingly, the differences in customers’ utilities are 
determined. Furthermore, we see that:

Summing up (16)–(19), Table 4 is achieved.

(12)

U2 = ∫
E(T)

0

(
v0 − p0 − �t

)
(b − at)dt − ch∫

E(T)

0

[
(b − 1)t −

1

2
at2

]
dt.

(13)

U1 = ∫
E(T)

0

(
v0 − p0 − �t

)
dt =

(
v0 − p0

)
E(T) −

1

2
�E(T)2.

U2 = ∫
T

0

(
v0 − p0 − �t

)
(b − at)dt − ch∫

T

0

[
(b − 1)t −

1

2
at2

]
dt

(14)=
(
v0 − p0

)
E(T) − �E(T)2 +

2

3
�E(T)3 −

1

6
E(T)2ch.

(15)U3 =
(
v0 − p0

)
E(T) −

1

2
chE(T)

2.

(16)
U2 − U3 = −𝜃E(T)2 +

2

3
𝜃E(T)3 +

1

3
chE(T)

2
> 0. ↔ E(T) >

3

2
−

ch

2𝜃
.

(17)

U2 − U1 = −
1

2
𝜃TE(T)2 +

2

3
𝜃E(T)3

−
1

6
E(T)2ch > 0. ↔ E(T) <

3

4
+

ch

4𝜃
.

(18)U3 − U1 = −
1

2
chE(T)

2 +
1

2
𝜃E(T)2. ↔ 𝜃 > ch.

(19)

3

2
−
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2𝜃
> 1 >

3

4
+

ch

4𝜃
if 𝜃 > ch, and

3

2
−

ch

2𝜃
< 1 <

3

4
+
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Table 2 is directly deduced from Table 4.
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