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ABSTRACT  Managing GPGPU resources in cloud systems is challenging as workloads with various 

resource usage patterns coexist. To determine the co-location of workloads, previous studies have shown that 

run-time performance profiling and dynamic relocation of workloads is necessary due to interference between 

workloads. However, this makes instant scheduling difficult and also affects the performance of workload 

executions. In this article, we show that efficient resource sharing in GPGPU is possible without run-time 

profiling if resource usage characteristics of workloads are analyzed down to a fine-grained unit level. To 

extract workload characteristics, we do not perform profiling at scheduling time, but separates profiling from 

scheduling, thereby reducing the run-time complexity of previous approaches. Specifically, we anatomize the 

characteristics of various GPGPU workloads and present a new scheduling policy that aims at balancing 

resource utilization by co-locating workloads with complementary resource demands. Simulation 

experiments under various virtual machine scenarios show that the proposed policy improves the GPGPU 

throughput by 119.5% on average and up to 191.7%. 

INDEX TERMS  GPGPU, resource utilization, cloud system, multitasking, thread block scheduler.  

I. INTRODUCTION 

With the rapid advances in many-core computing 

technologies, general-purpose GPUs (GPGPUs) have been 

widely adopted in cloud data centers as well as desktop 

systems. GPGPUs have a massive number of computing units, 

which allow thread-level parallelism for various application 

domains including deep learning, graphic rendering, and 

genome analysis [1, 2, 3].  

Multitasking of heterogeneous workloads has not received 

much attention from traditional GPU management as GPUs 

are generally adopted in systems dedicated to specific 

workloads. However, due to the widespread adoption of cloud 

systems, heterogeneous workloads are concurrently executed 

within a GPGPU device, and thus maximizing resource 

utilization by multitasking in GPGPU has become an 

important issue [4, 5, 6]. As shown in Figure 1, modern cloud 

systems are equipped with GPGPU devices along with 

traditional host resources (CPU, memory, storage, etc.), and 

various workloads are executed as virtual machines that share 

resources.  

Traditional host resources such as CPU, memory, and I/O 

devices in cloud systems can be shared among heterogeneous 

workloads through resource planning in the host operating 

system and virtualization software [7, 8]. However, this is 

challenging in GPGPU systems as the principle of resource 

management in GPGPU is to simplify hardware logic and 

maximize parallelism for a given workload rather than sharing 

resources for heterogeneous workloads. For this reason, some 

resources of the GPGPU may be exhausted whereas others are 

still under-utilized.  

Previous studies have also focused on this issue, and the 

concurrent execution of multiple applications within GPGPU 

has been addressed [9, 10]. Specifically, SMK (simultaneous 

multi-kernel) and Maestro were introduced as software 

techniques to provide multitasking of heterogeneous 

workloads within SMs (streaming multiprocessors) [9, 10]. 

The basic principle of these techniques is to co-locate 

workloads with compensating resource usage in the same SM 

to balance the utilization of overall resources. Specifically, 

pairing memory-intensive and computing-intensive 

workloads in the same SM can significantly improve the 

overall utilization of resources.  

Unfortunately, the resource under-utilization problem 

cannot be resolved if the bottleneck resource for all workloads 

is the same. That is, we cannot make use of the co-location 

strategy aforementioned if there are only computing-intensive 
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or memory-intensive workloads. Also, previous approaches 

require run-time performance profiling and dynamic re-

arrangement of workloads to cope with interference between 

workloads. However, this makes instant scheduling difficult 

and also affects the performance of workload executions.  

In this article, we show that efficient resource sharing in 

GPGPU is possible without run-time profiling if resource 

usage characteristics of workloads are analyzed down to a 

fine-grained unit level. Specifically, we analyze fine-grained 

resource usage patterns for a variety of GPGPU workloads and 

discuss how this analysis can be utilized in resource planning 

for multitasking GPGPUs. To extract workload 

characteristics, we do not perform profiling at scheduling time, 

but separates profiling from scheduling, thereby reducing the 

run-time complexity of previous approaches.  

Let us consider a workload situation where only computing-

intensive workloads exist in the system. Even in this case, our 

analysis shows that placing two computing-intensive 

workloads in the same SM is efficient if their bottleneck 

resources within the SM are different. For example, if one 

workload performs integer arithmetic and the other performs 

floating-point arithmetic, they can be assigned to the same SM 

without conflict as GPGPUs typically have separate units for 

integer and floating-point arithmetic within an SM.  

In order to maximize resource utilization through 

multitasking, this article classifies GPGPU workloads into 

computing-bound, memory-bound, and dependency-latency-

bound, and then refines the classification based on detailed 

resources that cause bottlenecks. In particular, we show that 

bottleneck resources can be different even for workloads with 

the same classification.  

Based on this observation, we present a GPGPU workload 

placement scheme for cloud systems that assigns workloads 

with different bottleneck resources on the same SM in order to 

maximize overall resource utilization. Specifically, we design 

a thread block scheduling policy, called FRU-RR (Fine-

grained Resource Utilization aware Round-Robin) that assigns 

pending thread blocks to SMs in a Round-Robin order but also 

considers each SM’s fine-grained resource utilization. 

Experimental results for various virtual machine scenarios 

show that FRU-RR improves GPGPU throughput by 119.5% 

on average and up to 191.7% compared to Round-Robin 

scheduler, and by 30.1% on average and up to 42.9% 

compared to previous studies that allow co-locations of 

workloads within the same SM [9, 10]. Our findings and 

contributions can be summarized as follows. 

 

 Due to the coexistence of heterogeneous workloads and 

various resource types to manage, GPGPU scheduling in 

cloud systems incurs resource under-utilization problems. 

 Previous approaches have addressed this issue, but they need 

run-time performance profiling and dynamic relocation 

overhead. 

 We observe that efficient resource sharing in GPGPU is 

possible without run-time profiling if resource usage 

patterns are analyzed down to a fine-grained unit level. 

 We separate profiling from scheduling, thereby reducing the 

run-time complexity of previous approaches, and quantify 

the resource usage patterns of various GPGPU workloads. 

 We propose a scheduling policy that aims to balance 

resource utilizations by co-locating workloads with 

complementary resource demands, and validate it through a 

variety of cloud scenarios. 

The remainder of this article is organized as follows. 

Section II briefly explains the internal structure of GPGPU 

devices and the CUDA platform architecture. Section III 

presents the analysis of various GPGPU workloads with 

respect to resource utilization. In Section IV, we explain the 

proposed thread block scheduling policy and conduct the 

validation of the policy by simulation experiments under 

various virtual machine scenarios. Section V summarizes 

previous studies related to this article, specially focusing on 

thread block scheduling. Finally, we conclude this article in 

Section VI.  

 

  

FIGURE 1. A cloud host machine that equips the GPGPU device and 

various workloads are executed as virtual machines that share the 

resources including GPGPU. 
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II. THE GPGPU ARCHITECTURE  

A. INTERNAL STRUCTURE OF GPGPU 

Modern general-purpose GPUs (GPGPUs) have tens of 

thousands of computing units, which can accelerate the 

computing performance by executing threads in parallel [11]. 

In general, a GPGPU application has a large number of 

concurrent threads and they are grouped into thread blocks, 

which are basic resource allocation units. The GPGPU 

hardware consists of tens of stream multiprocessors (SMs), 

and thread blocks are allocated to the SMs by the thread block 

scheduler [12, 13, 14]. As SM adopts the SIMT (Single 

Instruction Multiple Thread) model, it executes the same 

instruction for multiple threads simultaneously [15]. The 

maximum number of threads that can be executed per SM is 

typically 2048. The thread block scheduler manages the 

number of allowable threads per SM not to exceed this limit 

while allocating thread blocks to the SM [16].  

Meanwhile, a series of threads that should be executed 

simultaneously within the same hardware unit are called a 

Warp, which consists of up to 32 threads. Each thread block 

consists of at least one Warp, and the number of Warps 

increases by 1 whenever the number of threads within a Warp 

exceeds 32. Thus, SM may not execute all threads in a thread 

block simultaneously, but threads within the same Warp are 

essentially executed simultaneously [17]. 

Figure 2 shows the internal structure of a typical SM [18]. 

As shown in the figure, each SM consists of Instruction Cache, 

two or four Processing Blocks, Texture / L1 Cache, Texture 

Memory, and Shared Memory. Each Processing Block has 

various types of computing units such as FP64 cores, INT32 

cores, FP32 cores, Load/Store units, and SFUs (special 

function units). Recently, a new type of computing units called 

Tensor cores, designed specifically for deep learning matrix 

operations, are increasingly being added to SMs [18].  

Each Processing Block also has Instruction Buffer, Register 

File, Dispatch Unit, and Warp Scheduler. Dispatch Unit passes 

instructions to be executed to each core, and Warp Scheduler 

performs the scheduling of threads in Warp units.  

B. CUDA PLATFORM AND MEMORY ARCHITECTURE 

CUDA (Compute Unified Device Architecture) is a parallel 

computing platform designed by NVIDIA [19]. As CUDA 

provides an application programming interface (API) model 

that supports industry standard languages like C, software 

developers can implement parallel processing algorithms in 

GPGPU efficiently.  

Figure 3 shows the memory architecture of CUDA [19]. It 

consists of on-chip memory (right-hand side) and off-chip 

memory (left-hand side). On-chip memory consists of 

Registers, Shared Memory, Constant Cache, and Texture 

Cache. Registers are statically dedicated to each thread during 

thread block scheduling, and Shared Memory is used for inter-

thread communication within the thread block.  

Due to the limited capacity of Registers, the on-chip 

memory may be exhausted, and then Local Memory, which is 

one of the off-chip memory, can be used. Off-chip memory 

also has Global Memory that can be accessed by all threads, 

Constant Memory that is shared by all threads but read-only, 

and Texture Memory. For better memory performance, 

application developers should take full advantage of the 

memory structure and characteristics of CUDA.  
 

III. ANALYZING RESOURCE UTILIZATIONS OF GPGPU 
WORKLOADS  

In this section, we analyze the fine-grained resource 

utilization of various GPGPU workloads in order to manage 

the GPGPU efficiently and improve resource utilization. As 

we increase the load on the GPGPU up to its resource limit, 

either a computing or a memory resource usually becomes the 

performance bottleneck. Based on this bottleneck resource, we 

classify GPGPU workloads into computing-bound and 

memory-bound workloads.  

A workload is classified as computing-bound if the 

utilization of the computing resource is much higher than that 

of the memory resource, thereby reaching its limit first. In 

contrast, a memory-bound workload uses high memory 

bandwidth, which becomes a bottleneck resource. Meanwhile, 

 

FIGURE 2. Internal structure of SM (Stream Multiprocessor). 

 

   

FIGURE 3. Memory architecture of CUDA. 
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there are cases that neither the computing resource nor the 

memory resource becomes a bottleneck resource although we 

increase the load of the GPGPU up to its maximum capacity. 

In this case, resource utilization is limited by the execution 

dependency of the workload, which we classify as a 

dependency-latency-bound type. 

We investigate the resource utilization of various GPGPU 

workloads by making use of the NVIDIA’s profiling tool. 

Specifically, we execute 15 workloads consisting of NVIDIA 

SDK and Rodinia, which are popular benchmarks used for 

GPGPU performance evaluations [20, 21]. We also perform 

profiling for Conv2D, a convolutional neural network as a 

representative benchmark for machine learning, and SHA256, 

a secure hashing algorithm mainly used in Bitcoin’s PoW 

(Proof of Work). Our execution configurations of the 

workloads are listed in Table I.  

A. COMPUTING-BOUND WORKLOADS  

 Figure 4 shows the utilization of computing and memory 

resources for the workloads classified as computing-bound out 

of the 17 workloads we considered. Low resource utilization 

here indicates that the resource has been idle for a long time, 

and 100% utilization means that the resource is a bottleneck. 

As shown in the figure, in computing-bound workloads, 

computing resources are bottlenecked, whereas memory 

resources are under-utilized.  

 

 

The computing resources of GPGPU can be further 

classified into a single-precision arithmetic unit, a double-

precision arithmetic unit, a control flow unit, a load store unit, 

and a special function arithmetic unit.  

Figure 5 shows the detailed resource utilization of each 

computing unit for the computing-bound workloads in Figure 

4. As shown in the figure, even for the same computing-bound 

workloads, the specific resource type that causes the 

bottleneck is different. Of the 7 workloads, Back Propagation, 

Hotspot, LavaMD, Particle Filter, and Srad exhibit high 

utilization of over 80% in double-precision arithmetic units, 

whereas other resources such as single-precision arithmetic 

units and special function arithmetic units show low utilization. 

Specifically, in the case of Back Propagation and LavaMD, 

the utilization of the double-precision arithmetic unit is almost 

100%, whereas the utilization of the single-precision 

arithmetic unit and the special function arithmetic unit is 10% 

and 0%, respectively. From this analysis, we can summarize 

that most of computing-bound workloads we consider perform 

arithmetic operations on 64-bit double-precision data. 

On the other hand, Nbody and Conv2D show significantly 

different resource usage patterns. Specifically, the utilization 

of the double-precision arithmetic unit is 0%, whereas the 

utilization of the single-precision arithmetic unit is about 80%. 

Thus, we can conclude that most computations of Nbody and 

Conv2D consist of 32-bit single-precision data. 

TABLE I 
GPGPU WORKLOADS ANALYZED IN THIS ARTICLE. 

Workload Kernel name Benchmark Grid size Block size Application domain 

Lava MD kernel_gpu_cuda Rodinia 3.1 [41, 1, 1] [256, 1, 1] Molecular dynamics 

Nbody integrateBodies NVIDIA CUDA SDK [16, 1, 1] [256, 1, 1] Simulation 

Back Propagation bpnn_adjust_weights_cuda Rodinia 3.1 [1, 4096, 1] [16, 16, 1] Pattern recognition 

Hotspot caculate_temp Rodinia 3.1 [43, 43, 1] [16, 16, 1] Physics simulation 

Particle Filter collideD Rodinia 3.1 [256, 1, 1] [64, 1, 1] Medical imaging 

Srad srad Rodinia 3.1 [450, 1, 1] [512, 1, 1] Image processing 

Stream Cluster kernel_compute_cost Rodinia 3.1 [128, 1, 1] [512, 1, 1] Data mining 

Black Scholes BlackScholesGPU NVIDIA CUDA SDK [15625, 1, 1] [128, 1, 1] Finance 

Convolution Texture convolutionColumnskernel NVIDIA CUDA SDK [192, 128, 1] [16, 12, 1] Image processing 

HS Optical Flow JacobiIteration NVIDIA CUDA SDK [20, 80, 1] [32, 6, 1] Image processing 

Fluids GL RealComplex_compute NVIDIA CUDA SDK [512, 1, 1] [256, 1, 1] Simulation 

Heartwall kernel Rodinia 3.1 [41, 1, 1] [512, 1, 1] Medical imaging 

NN euclid Rodinia 3.1 [168, 1, 1] [256, 1, 1] Data mining 

B+tree findK Rodinia 3.1 [10000, 1, 1] [256, 1, 1] Search 

Conv2D scudnn_relu_nn PyTorch [160, 1, 1] [512, 1, 1] Deep Learning 

SHA256 sha256_cuda Public Domain [80, 1, 1] [1024, 1, 1] Crytocurrency 
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B. MEMORY-BOUND WORKLOADS  

 Memory-bound workloads exhibit high memory 

bandwidth utilization, and thus performance is limited by 

memory resources within the GPGPU. This occurs when 

memory resources are not able to provide data at the speed of 

execution in computing resources. This lowers the utilization 

of computing resources, thereby limiting overall GPGPU 

performances.  

In this subsection, we show resource utilizations for 

memory-bound workloads, and identify specific memory 

resources that cause performance bottlenecks. Specifically, we 

analyze the utilization of each memory resource in GPGPU, 

namely Shared Memory, Unified Cache, L2 Cache, Device 

Memory, and System Memory to identify the performance 

limiting factors. 

 
(a) Back Propagation 

 
(b) Nbody 

 
(c) Hotspot 

 
(d) LavaMD 

 
(e) Particle Filter 

 
(f) Srad 

 

(g) Conv2D 

FIGURE 5. Utilization of each computing resource. 
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(a) Back Propagation                              (b) Nbody 

 

(c) Hotspot                                         (d) LavaMD 

 

(e) Particle Filter                                         (f) Srad 

 

(g) Conv2D 

FIGURE 4. Resource utilization of computing-bound workloads 
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Figure 6 shows the utilizations of computing resources and 

memory resources for the memory-bound workloads we 

investigated. Black Scholes, Stream Cluster, Convolution 

Texture, Fluids GL, and HS Optical Flow were classified as 

memory-bound workloads due to their high memory usage. 

Figure 7 shows the utilizations of each memory resource. As 

shown in the figure, in all workloads except for Convolution 

Texture, Device Memory, one of off-chip memories, shows 

the highest utilization. In the case of Convolution Texture, 

Unified Cache shows the highest utilization of almost 100%. 

This is because Convolution Texture performs frequent read 

accesses to Texture Memory.  

Through the analysis in this section, we can summarize that 

different types of memory resources can be a performance 

bottleneck even for the same memory-bound workloads.  

 

C. DEPENDENCY-LATENCY-BOUND WORKLOADS  

We classify a workload as dependency-latency-bound when 

both computing and memory resources are under-utilized due 

to a dependency problem in the execution. This implies that 

resources are not fully utilized because the dependencies of the 

workload execution cause a certain stall. Causes of this stall 

include instruction fetch delay, pipeline busy, synchronization 

delay, memory dependency, execution dependency, constant 

miss, texture overhead, and memory throttling. 

Figure 8 shows the utilizations of computing and memory 

resources for workloads classified as dependency-latency-

bound. As shown in the figure, neither computing nor memory 

resources exhibit high utilization in these workloads. Figure 9 

analyzes the reasons for stalls in the dependency-latency-

bound workloads. The meaning of the stall reasons in the 

figure can be summarized as follows.  

  

 Instruction fetch delay – The next assembly instruction has 

not yet been fetched. 

  

(a) Black Scholes                           (b) Stream Cluster 

 

(c) Convolution Texture                          (d) Fluids GL 

 

(e) HS Optical Flow 

FIGURE 6. Resource utilization of memory-bound workloads.  
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FIGURE 7. Utilization of each memory resource. 
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 Pipeline busy – The computing resource required for the 

instruction is not yet available. 

 Synchronization delay – Execution is blocked at a thread 

synchronization call. 

 Texture overload – The texture subsystem is fully utilized or 

it has too many requests. 

 Memory dependency – A load/store cannot be performed as 

the target data is not available yet.  

 Execution dependency – The input required for the 

instruction is not yet available.  

 Memory throttling – A large number of pending memory 

operations prevent further forward progress.  

 Constant miss – A constant load is blocked due to a miss in 

the constant cache. 

 Not selected – The workload is ready to issue, but another 

workload has been issued.  

 

As shown in Figure 9, there are different reasons of stalls 

for each workload. In some cases, such stalls may not be 

resolved by efficient management of GPGPU resources alone, 

but improvements can be expected when application 

developers configure their workloads to improve resource 

utilizations.  

 

IV. GPGPU WORKLOAD ALLOCATION BASED ON FINE-
GRAINED RESOURCE UTILIZATION   

In this section, we present a thread block scheduling policy 

for GPGPU based on the fine-grained resource utilization 

analyzed in the previous section. To allocate thread blocks to 

SMs, GPGPU typically makes use of the Round-Robin 

scheduling policy that sequentially allocates thread blocks to 

each SM [22]. Figure 10 shows the basic role of the thread 

block scheduler, which allocates the next thread block in the 

queue based on the Round-Robin policy.  

As Round-Robin scheduling is simple, easy to implement, 

and starvation-free, it is efficient to implement in hardware 

logic [23]. However, Round-Robin scheduling does not 

consider the resource utilization of workloads. For example, if 

all the threads allocated are double-precision arithmetic 

operations, the FP64 units may be overloaded in some SMs, 
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FIGURE 9. Stall reasons of dependency-latency-bound workloads. 
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whereas the same resources may be under-utilized in other 

SMs, where threads do not have these types of operations. 

Similar to Round-Robin, our scheduling policy deletes a 

pending thread block from the queue, and inserts to an SM, 

which is selected by the sequential order. Before inserting it, 

however, our policy checks whether the utilization of a certain 

resource in the SM exceeds its capacity in case the pending 

thread block is allocated to it. If so, our policy skips the current 

SM and moves to the next one. Previous studies also tried to 

consider resource utilizations by co-locating thread blocks 

from different workloads within the same SM if their resource 

usage classification is different [9, 10]. We call this scheme 

Multi-kernel placement throughout this paper. Although the 

basic philosophies of Multi-kernel and our policy are similar, 

our policy considers fine-grained resource utilization whereas 

Multi-kernel determines whether thread blocks from different 

applications can be co-located within an SM based on coarse-

grained classification (i.e., computing-bound or memory-

bound).  

From now on, we will explain the exact workings of the 

proposed policy in comparison with Multi-kernel and Round-

Robin with an example. Suppose a GPGPU device that has 

four SMs and three pending thread blocks in the queue. Tables 

II and III list the current resource utilizations of SMs and the 

resource demand of pending thread blocks, respectively. In 

this simple example, we only consider two computing 

resources, i.e., single and double precisions, and two memory 

resources, i.e., device memory and shared memory. The 

coarse-grained utilization columns in the tables are calculated 

by the maximum value of the fine-grained utilizations within 

the same resource classifications.  

Now, let us see the scheduling results. In our policy, TB1 is 

allocated to SM1 as it does not incur the overflow of any fine-

grained resource utilizations. Note that the fine-grained 

utilizations of SM1 are updated from (90, 10, 0, 10) to (100, 

100, 0, 20) after TB1 is scheduled. Similarly, TB2 and TB3 

are allocated to SM2 and SM3, respectively. In the Multi-

kernel scheme, the scheduling is performed by comparing the 

coarse-grained utilization of the current SM and that of the 

pending thread block. Thus, TB1 cannot be allocated to either 

SM1 or SM2, as it incurs the overflow of computing resources. 

After proceeding to the next SM, Multi-kernel finally allocates 

TB1 to SM3. Similarly, TB2 is allocated to SM4. However, 

TB3 cannot be allocated to any SM even after scanning all 

SMs from SM1 to SM4 due to the overflow of computing 

resources. In this case, TB3 should wait in the queue until any 

SM becomes available. In the Round-Robin scheme, TB1, 

TB2, and TB3 are allocated to SM1, SM2, and SM3, 

respectively. Note that Round-Robin allocates thread blocks 

to SMs one by one without considering resource utilization 

although it becomes over 100% as long as thread blocks 

assigned to an SM does not exceed hardware limitations.  

As the purpose of our profiling is to extract the 

characteristics of workloads in advance, we do not perform 

online profiling at scheduling time. For workloads that have 

already been executed before, our policy retains previously 

profiled results and uses them while scheduling the workloads. 

If there is no profiling history for the workload (i.e. first run), 

a shadow virtual machine (VM) can perform the profiling 

separately from the VM that is actually running the workload. 

Note that a shadow VM is used for the profiling purpose in our 

cloud GPGPU. Our empirical studies showed that the profiling 

process requires only 1 to 30 milliseconds for extracting the 

characteristics of workloads we experimented, which is quite 

shorter than executing actual workloads in GPGPU. Thus, 

although our scheduling requires prior knowledge of 

 

FIGURE 10. An example of Round-Robin scheduling that allocates Thread 

Blocks (TB) to SM. 
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TABLE II 
CURRENT RESOURCE UTILIZATIONS OF SMS 

 

Fine-grained utilization 
Coarse-grained 

utilization 

Comp. 
(Single) 

Comp. 
(Double) 

Mem. 
(Device) 

Mem. 
(Shared) 

Comp. Mem. 

SM1 90 10 0 10 90 10 

SM2 50 80 0 10 80 10 

SM3 10 10 0 10 10 10 

SM4 10 80 0 10 80 10 

 

TABLE III 

RESOURCE DEMAND OF PENDING THREAD BLOCKS 

 

Fine-grained utilization 
Coarse-grained 

utilization 

Comp. 

(Single) 

Comp. 

(Double) 

Mem. 

(Device) 

Mem. 

(Shared) 
Comp. Mem. 

TB1 10 90 0 10 90 10 

TB2 10 20 80 10 20 80 

TB3 80 0 10 10 80 10 
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workloads, it is also possible to utilize profiling results after a 

short training period during the current run.  

Separation of profiling and scheduling has the advantage of 

reducing the run-time complexity of previous studies that 

relied on online profiling. That is, previous studies mostly 

arrange and re-arrange workloads to SMs periodically based 

on performance metrics such as throughput and execution time 

rather than utilizing the prior knowledge of resource usage 

patterns. Thus, in a cloud system with many concurrent 

workloads, the number of possible combinations becomes 

excessively large. For example, suppose that there are four 

workloads A, B, C, and D, without the prior knowledge of 

workload characteristics. Then, all possible combinations, i.e., 

AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and 

ABCD may be tried to find an efficient co-location of 

workloads on the same SM. In contrast, as we know the fine-

grained resource usage patterns of workloads A, B, C, and D, 

we can find an efficient schedule without checking various 

combinations. The only run-time overhead in our policy is to 

identify the resource utilizations of each SM. Actually, this 

does not incur significant overhead as the thread block 

scheduler can keep track of the resource utilizations of each 

SM by aggregating the resource demand of thread blocks 

whenever a thread block is newly allocated or completed. 

To assess the effectiveness of our thread block scheduling 

policy, we perform simulation experiments under 7 scenarios 

consisting of 25 virtual machines. Tables IV and V list the 

workload situations of each scenario we experimented and the 

system and resource characteristics of our experiments.  

Scenario 1 consists of two virtual machines, VM-1 and 

VM-2, which execute two computing-bound workloads, 

Nbody and Srad, respectively. Scenario 2 consists of three 

virtual machines, VM-3, VM-4, and VM-5, which execute 

three computing-bound workloads, Lava MD, Nbody, and 

Back Propagation, respectively. Scenario 3 consists of three 

virtual machines, VM-6, VM-7, and VM-8, which execute 

three memory-bound workloads, Black Scholes, Stream 

Cluster, and Convolution Texture, respectively. Scenario 4 

consists of four virtual machines, VM-9, VM-10, VM-11, and 

VM-12, which perform four computing-bound workloads, 

Nbody, Hotspot, LavaMD, and Srad, respectively. Scenario 5 

consists of four virtual machines, VM-13, VM-14, VM-15, 

and VM-16, which execute four memory-bound workloads, 

Stream Cluster, Convolution Texture, Fluids GL, and HS 

Optical Flow, respectively. Scenario 6 consists of four virtual 

machines, of which VM-17 and VM-18 execute computing-

bound workloads, Particle Filter and Hotspot, respectively, 

whereas VM-19 and VM-20 execute memory-bound 

workloads, Convolution Texture and Black Scholes, 

respectively. Finally, Scenario 7 consists of five virtual 

machines, of which VM-21, VM-23, VM-24, and VM-25 

execute computing-bound workloads, Conv2D, Back 

Propagation, Srad, and Nbody, respectively, whereas VM-22 

executes a dependency-latency-bound workload, SHA256. 

We assume that each virtual machine executes the given 

workload repeatedly to see the effect of simultaneous 

execution of heterogeous workloads in cloud systems.  

Under these scenarios, we conduct simulation experiments 

with the three scheduling policies, Round-Robin (RR), Multi-

kernel, and the proposed policy that we call FRU-RR (Fine-

grained Resource Utilization aware Round-Robin). The 

utilization metrics that we use for FRU-RR are the resource 

utilizations of each computing unit (i.e., single-precision, 

double-precision, control flow, load-store, and special 

function) and each memory unit (i.e., shared memory, unified 

cache, L2 cache, device memory, and system memory). For 

performance metric, we use the throughput of each virtual 

machine and the host machine. The throughput of a virtual 

machine indicates the number of the workload’s threads 

completed per unit time, and we show the throughput of each 

scheduling policy normalized to that of the Round-Robin. The 

TABLE IV 
EXPERIMENTAL SCENARIOS IN THE EXPERIMENTS. 

Scenario VM Workload Classification 

Scenario 1 
VM–1 
VM–2 

Nbody 
Srad 

Computing-bound 
Computing-bound 

Scenario 2 

VM–3 

VM–4 

VM–5 

Lava MD 

Nbody 

Back Propagation 

Computing-bound 

Computing-bound 

Computing-bound 

Scenario 3 
VM–6 
VM–7 

VM–8 

Black Scholes 
Stream Cluster 

Convolution Texture 

Memory-bound 
Memory-bound 

Memory-bound 

Scenario 4 

VM–9 
VM–10 

VM–11 

VM–12 

Nbody 
Hotspot 

LavaMD 

Srad 

Computing-bound 
Computing-bound 

Computing-bound 

Computing-bound 

Scenario 5 

VM–13 
VM–14 

VM–15 

VM–16 

Stream Cluster 
Convolution Texture 

Fluids GL 

HS Optical Flow 

Memory-bound 
Memory-bound 

Memory-bound 

Memory-bound 

Scenario 6 

VM–17 

VM–18 

VM–19 
VM–20 

Particle Filter 

Hotspot 

Convolution Texture 
Black Scholes 

Computing-bound 

Computing-bound 

Memory-bound 
Memory-bound 

Scenario 7 

VM–21 

VM–22 

VM–23 
VM–24 

VM–25 

Conv2D 

SHA256 

Back Propagation 
Srad 

Nbody 

Computing-bound 

Dependency-latency 

Computing-bound 
Computing-bound 

Computing-bound 

 

TABLE V 
SYSTEM AND RESOURCE CHARACTERISTICS OF OUR EXPERIMENTS. 

Configuration Value 

# of host CPU cores 
Host memory capacity 

# of GPGPU devices 

Emulated GPGPU model 
# of SMs 

GPGPU memory capacity 

Shared memory per SM 
Register file size per SM 

20 
64GB 

2 

Nvidia Tesla V100 
80 

16GB 

96KB 
256KB 
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throughput of a host machine indicates the total number of 

threads completed per time unit including the threads of all 

virtual machines and the host itself. In case of our policy, the 

profiling overhead is reflected in the host throughput, 

implying that the threads executed for profiling are excluded 

from the host throughput after counting all threads that have 

completed.   

Figure 11 shows the throughput of the proposed policy, 

FRU-RR, in comparison with Round-Robin and Multi-kernel. 

We experimented each scenario ten times and plotted the 

average and their standard deviations. Let us first discuss the 

performance comparison of our policy with Round-Robin. As 

shown in the figure, the proposed policy performs 

significantly better than Round-Robin in all scenarios and 

workloads. Specifically, the performance improvement is 

119.5% on average and up to 191.7%. The main reason of 

Round-Robin’s low performance is that it fails to balance the 

load between SMs. Although Round-Robin pursues load 

balancing by distributing thread blocks to each SM one by one, 

the result did not come out as intended because it does not 

consider the characteristics of workloads. This implies that 

Round-Robin, which is currently adopted as the thread block 

scheduler of most GPGPU devices, can be improved 

significantly.  

Now, let us discuss the performance of our policy in 

comparison with Multi-kernel. As shown in Figure 11, Multi-

kernel also yields better performance than Round-Robin, but 

the performance improvement of our policy against Multi-

                 
(a) Scenario 1                                                             (b) Scenario 2                                                                 (c) Scenario 3 

 

(d) Scenario 4                                                            (e) Scenario 5   

  

 (f) Scenario 6                                                             (g) Scenario 7 

FIGURE 11. Comparisons of the Round Robin, Multi-kernel, and the proposed policy for various virtual machine scenarios. 
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kernel is 30.1% on average and up to 42.9%. This is because 

our policy accurately analyzes the fine-grained bottleneck 

resource for each application and allocates workloads that do 

not have the same bottleneck resource on the same SM, 

whereas Multi-kernel does this based-on the coarse-grained 

classification. The largest improvement is observed in 

Scenario 1, where the improvement of our policy is 42.9%. 

This is because the two workloads in Scenario 1 are all 

computing-intensive, and thus Multi-kernel cannot co-locate 

them within the same SM. However, the bottleneck resources 

for the two virtual machines are different. Specifically, VM-1 

uses the FP32 unit but does not use the FP64 unit at all, 

whereas VM-2 mostly uses the FP64 unit, and thus our policy 

can place the two workloads together within the same SM 

without conflicting situations, which is not possible in Multi-

kernel.  

In Scenarios 2 and 3, the system adopting our policy 

performs 35.7% and 34.1% better than Multi-kernel, 

respectively. Similar to Scenario 1, all virtual machines in 

Scenarios 2 and 3 have homogeneous workloads. That is, 

workloads in Scenario 2 are all computing-bound, whereas 

Scenario 3 has all memory-bound workloads. Thus, Multi-

kernel cannot co-locate any two workloads within the same 

SM, whereas our policy can do so in case the resource that 

causes bottleneck is different. When we compare the results 

with Scenario 1, the performance gap between Multi-kernel 

and our policy becomes relatively small in Scenarios 2 and 3. 

This is due to the characteristics of virtual machines in these 

scenarios. In particular, Scenario 1 has only two virtual 

machines, VM-1 and VM-2, which can be placed on the same 

SM in our policy, but Scenarios 2 and 3 have three virtual 

machines, two of which have the same bottleneck resources, 

and thus chances for placing different VMs on the same SM 

have been reduced. 

Now, let us see the results for Scenarios 4 and 5, in which 

the number of virtual machines has been increased to four. As 

shown in Figures 11(d) and 11(e), the performance 

improvement of our policy against Multi-kernel is 22.7% and 

22.6%, respectively, for Scenarios 4 and 5. Similar to previous 

scenarios, these two scenarios consist of homogeneous 

workloads, and thus Multi-kernel cannot co-locate any two 

workloads within the same SM. In this case, some resource 

types in the SM are certain to be under-utilized. For example, 

if one workload performs single-precision arithmetic while the 

other performs double-precision arithmetic, allocating a single 

workload to an SM cannot utilize both types of resources. 

Unlike Multi-kernel, however, our policy puts these two 

computing-bound workloads together on the same SM as they 

do not have conflicting resource usage patterns. Thus, both 

single- and double-precision arithmetic units can be fully 

utilized. This will eventually improve the throughput of the 

workloads as well as the host machine.  

Scenario 4 consists of 4 computing-bound workloads, of 

which VM-9 mainly performs single-precision arithmetic, 

whereas VM-10, VM-11, and VM-12 perform double-

precision arithmetic operations. Thus, our policy can locate 

VM-9 to any SM to execute single-precision arithmetic 

without conflicting situations as all the other VMs have 

different bottleneck resources of double-precision arithmetic. 

However, VM-10 to VM-12 have the same bottleneck 

resource, and thus they cannot be co-located within the same 

SM in our policy. Thus, the performance improvement is not 

large compared to previous scenarios. Note that similar results 

can be observed for Scenario 5, where computing-bound 

workloads are replaced by memory-bound workloads.  

Now, let us discuss the performance of our policy in 

comparison with Multi-kernel in Scenario 6. This scenario 

consists of four virtual machines, of which VM-17 and VM-

18 are computing-bound, whereas VM-19 and VM-20 are 

memory-bound. Thus, Multi-kernel can co-locate workloads 

with different classifications on the same SM in this scenario. 

However, our policy further increases the possibility of co-

locating VMs as the two memory-bound workloads, VM-19 

and VM-20, have different bottleneck resources. Although the 

performance gap is not wide, our policy performs better than 

Multi-kernel by 15.5% on average.  

Finally, let us see the results of Scenario 7. This scenario 

consists of 5 virtual machines, of which VM-21, VM-23, VM-

24, and VM-25 perform computing-bound workloads, 

whereas VM-22 performs a dependency-latency-bound 

workload. Multi-kernel can co-locate VM-22 with other VMs 

as they have different workload classifications. However, 

balancing resource utilization is difficult in Multi-kernel as a 

majority of workloads have the same classifications of 

computing-bound. Our policy has further chances to balance 

resource utilizations since fine-grained resource usage of the 

computing-bound workloads is different. Specifically, most 

operations in VM-21 and VM-25 are single-precision 

arithmetic, whereas those in VM-23 and VM-24 are double-

precision arithmetic. Due to this reason, the performance 

improvement of our policy against Multi-kernel in this 

scenario is as large as 37.5%.  

 

V. RELATED WORKS  

In the early days of GPGPU multitasking, a single SM could 

not accommodate multiple workloads, and thus the main issue 

with multitasking was determining the number of SMs 

assigned to each workload. In these environments, Kayıran et 

al. [24] observed that GPGPU performance drops sharply 

when some types of memory-bound workloads occupy more 

than a certain number of SMs. They found that such 

configurations significantly reduce the number of active 

instructions due to the stalls caused by global memory, which 

is shared between SMs. Based on this, they proposed 

DYNCTA that limits the number of SMs allocated to 

workloads using global memory, not to cause performance 

degradations. By doing so, computing-bound workloads have 

relatively high priorities, and this incurs the fairness problem 

as memory-bound workloads have performance penalties. 
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Lee et al. [12] showed that GPGPU performance is 

gradually improved as the number of thread blocks allocated 

to an SM increases, but the performance drops sharply when 

it exceeds a certain resource limit. To address this problem, 

they determine the maximum number of thread blocks 

allocated per SM based on the profiling of the first thread 

block’s execution. They call this scheme LCS (Lazy 

Cooperative-thread-arrays Scheduling). After allocating by 

LCS, they observed some idle resources in the SM, and they 

additionally proposed mCKE (mixed Concurrent Kernel 

Execution) to allocate other workloads with different resource 

usage characteristics on the same SM. 

Studies on GPGPU multitasking increasingly partitions a 

single SM across multiple workloads. Xu et al. [25] explored 

various intra-SM slicing strategies, and showed that there is 

not one intra-SM slicing strategy that derives the best 

performance for all application pairs. Based on this 

observation, they proposed Warped-Slicer, a dynamic intra-

SM slicing strategy that determines how each workload’s 

performance is varied as more thread blocks are assigned to an 

SM based on an analytical model. They showed that their 

analytical model can be applied to each workload by 

performing short on-line profiling runs. 

SMK [9] co-executes workloads with compensating 

resource usage in the same SM to achieve high utilization and 

efficiency. Specifically, SMK pairs a memory-intensive 

workload with a computing-intensive workload in the same 

SM to greatly improve utilization of both memory and 

computing resources. SMK also takes into account the fairness 

among different workloads while dispatching thread blocks.  

Park et al. [10] proposed GPGPU Maestro, which runs 

multiple workloads on the same SM like SMK, but 

dynamically manages resource partitioning on GPGPU to 

maximize the system performance. Specifically, they showed 

that multitasking performance varies heavily because of 

dynamism within a workload and interference between 

workloads. To cope with this situation, Maestro monitors the 

performance counters for different allocations with a subset of 

SMs, and discovers the best performing resource partition 

exploiting both spatial multitasking and SMK.  

Allen et al. [5] presented Slate, a software-based workload-

aware GPGPU multitasking framework. Similar to Maestro, 

Slate selects concurrent workloads that have complementary 

resource demands at run-time to minimize interference for 

individual workloads and improve resource utilization. Unlike 

Maestro, however, Slate classifies computing and memory 

resource usage into three stages: low, medium, and high, and 

categorizes each workload through online or offline profiling. 

Based on this, Slate determines whether two different 

workloads can be performed on the same SM according to the 

resource characteristics of them. 

Table VI briefly compares the aforementioned schemes 

with respect to multi-tasking granularities, profiling metrics, 

resource granularities, and profiling methods.  

 

VI. CONCLUSIONS  

With the widespread adoption of multitasking GPGPU in 

cloud systems, maximizing the resource utilization by 

judicious allocation of heterogeneous workloads in GPGPU 

has become an important issue. In this article, we investigated 

the resource utilization characteristics of 17 popular GPGPU 

workloads, and classified them into computing-bound, 

memory-bound, and dependency-latency-bound, and then 

refined the classifications based on the detailed resource that 

causes the performance bottleneck. As the bottleneck resource 

may be different even for workloads with the same 

classifications, we presented a thread block scheduling policy 

TABLE VI 

A SUMMARY OF GPGPU MULTITASKING SCHEMES.  

 
System or 

algorithm 

Multi-tasking 

granularity 
Profiling metric Resource Granularity Profiling method 

Kayıran et al. 

[24] 
DYNCTA Inter-SM level 

Idle cycles, memory 

stalls 
Computing / Memory 

Online profiling with 

workload run 

Lee et al. [12] LCS, mCKE Intra-SM level 
# of instructions 

executed 
Computing / Memory 

Online profiling with 

first TB run 

Xu et al. [25] Warped-Slicer Intra-SM level 
IPC (Instructions per 
Cycle) 

Computing / Memory 
Short online profiling 
runs 

Wang et al. [9] SMK Intra-SM level 
WIPC (Warp 
Instructions per Cycle) 

Computing / Memory 
Online profiling with 
dedicated SMs 

Park et al. [10] Maestro Intra-SM level Performance counter Computing / Memory 

Dynamic profiling for 

different partitions 

with performance 
counters 

Allen et al. [5] Slate Intra-SM level 
FLOPS, memory 

bandwidth 
Computing / Memory 

Online profiling at the 

first run  

Proposed 

scheme 
FRU-RR Intra-SM level Resource utilizations Fine-grained unit  Separate profiling  
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that considers the fine-grained resource utilization for cloud 

systems. Unlike previous approaches, we separated profiling 

from scheduling, thereby reducing the run-time complexity of 

scheduling. By co-locating workloads with complementary 

resource demands on the same SM, our policy aims to 

maximize the overall resource utilizations in the GPGPU 

device. Experimental results with various virtual machine 

scenarios showed that our thread block scheduling policy 

improves the GPGPU throughput of cloud systems by 119.5% 

on average and up to 191.7%. 
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