
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2020 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2021.Doi Number

Characterizing Fine-Grained Resource Utilization
for Multitasking GPGPU in Cloud Systems

Kyungwoon Cho and Hyokyung Bahn, Member, IEEE
Department of Computer Engineering, Ewha University, Seoul, 120-750, Republic of Korea

Corresponding author: Hyokyung Bahn (e-mail: bahn@ewha.ac.kr).

ABSTRACT Managing GPGPU resources in cloud systems is challenging as workloads with various

resource usage patterns coexist. To determine the co-location of workloads, previous studies have shown that

run-time performance profiling and dynamic relocation of workloads is necessary due to interference between

workloads. However, this makes instant scheduling difficult and also affects the performance of workload

executions. In this article, we show that efficient resource sharing in GPGPU is possible without run-time

profiling if resource usage characteristics of workloads are analyzed down to a fine-grained unit level. To

extract workload characteristics, we do not perform profiling at scheduling time, but separates profiling from

scheduling, thereby reducing the run-time complexity of previous approaches. Specifically, we anatomize the

characteristics of various GPGPU workloads and present a new scheduling policy that aims at balancing

resource utilization by co-locating workloads with complementary resource demands. Simulation

experiments under various virtual machine scenarios show that the proposed policy improves the GPGPU

throughput by 119.5% on average and up to 191.7%.

INDEX TERMS GPGPU, resource utilization, cloud system, multitasking, thread block scheduler.

I. INTRODUCTION

With the rapid advances in many-core computing

technologies, general-purpose GPUs (GPGPUs) have been

widely adopted in cloud data centers as well as desktop

systems. GPGPUs have a massive number of computing units,

which allow thread-level parallelism for various application

domains including deep learning, graphic rendering, and

genome analysis [1, 2, 3].

Multitasking of heterogeneous workloads has not received

much attention from traditional GPU management as GPUs

are generally adopted in systems dedicated to specific

workloads. However, due to the widespread adoption of cloud

systems, heterogeneous workloads are concurrently executed

within a GPGPU device, and thus maximizing resource

utilization by multitasking in GPGPU has become an

important issue [4, 5, 6]. As shown in Figure 1, modern cloud

systems are equipped with GPGPU devices along with

traditional host resources (CPU, memory, storage, etc.), and

various workloads are executed as virtual machines that share

resources.

Traditional host resources such as CPU, memory, and I/O

devices in cloud systems can be shared among heterogeneous

workloads through resource planning in the host operating

system and virtualization software [7, 8]. However, this is

challenging in GPGPU systems as the principle of resource

management in GPGPU is to simplify hardware logic and

maximize parallelism for a given workload rather than sharing

resources for heterogeneous workloads. For this reason, some

resources of the GPGPU may be exhausted whereas others are

still under-utilized.

Previous studies have also focused on this issue, and the

concurrent execution of multiple applications within GPGPU

has been addressed [9, 10]. Specifically, SMK (simultaneous

multi-kernel) and Maestro were introduced as software

techniques to provide multitasking of heterogeneous

workloads within SMs (streaming multiprocessors) [9, 10].

The basic principle of these techniques is to co-locate

workloads with compensating resource usage in the same SM

to balance the utilization of overall resources. Specifically,

pairing memory-intensive and computing-intensive

workloads in the same SM can significantly improve the

overall utilization of resources.

Unfortunately, the resource under-utilization problem

cannot be resolved if the bottleneck resource for all workloads

is the same. That is, we cannot make use of the co-location

strategy aforementioned if there are only computing-intensive

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 2

or memory-intensive workloads. Also, previous approaches

require run-time performance profiling and dynamic re-

arrangement of workloads to cope with interference between

workloads. However, this makes instant scheduling difficult

and also affects the performance of workload executions.

In this article, we show that efficient resource sharing in

GPGPU is possible without run-time profiling if resource

usage characteristics of workloads are analyzed down to a

fine-grained unit level. Specifically, we analyze fine-grained

resource usage patterns for a variety of GPGPU workloads and

discuss how this analysis can be utilized in resource planning

for multitasking GPGPUs. To extract workload

characteristics, we do not perform profiling at scheduling time,

but separates profiling from scheduling, thereby reducing the

run-time complexity of previous approaches.

Let us consider a workload situation where only computing-

intensive workloads exist in the system. Even in this case, our

analysis shows that placing two computing-intensive

workloads in the same SM is efficient if their bottleneck

resources within the SM are different. For example, if one

workload performs integer arithmetic and the other performs

floating-point arithmetic, they can be assigned to the same SM

without conflict as GPGPUs typically have separate units for

integer and floating-point arithmetic within an SM.

In order to maximize resource utilization through

multitasking, this article classifies GPGPU workloads into

computing-bound, memory-bound, and dependency-latency-

bound, and then refines the classification based on detailed

resources that cause bottlenecks. In particular, we show that

bottleneck resources can be different even for workloads with

the same classification.

Based on this observation, we present a GPGPU workload

placement scheme for cloud systems that assigns workloads

with different bottleneck resources on the same SM in order to

maximize overall resource utilization. Specifically, we design

a thread block scheduling policy, called FRU-RR (Fine-

grained Resource Utilization aware Round-Robin) that assigns

pending thread blocks to SMs in a Round-Robin order but also

considers each SM’s fine-grained resource utilization.

Experimental results for various virtual machine scenarios

show that FRU-RR improves GPGPU throughput by 119.5%

on average and up to 191.7% compared to Round-Robin

scheduler, and by 30.1% on average and up to 42.9%

compared to previous studies that allow co-locations of

workloads within the same SM [9, 10]. Our findings and

contributions can be summarized as follows.

 Due to the coexistence of heterogeneous workloads and

various resource types to manage, GPGPU scheduling in

cloud systems incurs resource under-utilization problems.

 Previous approaches have addressed this issue, but they need

run-time performance profiling and dynamic relocation

overhead.

 We observe that efficient resource sharing in GPGPU is

possible without run-time profiling if resource usage

patterns are analyzed down to a fine-grained unit level.

 We separate profiling from scheduling, thereby reducing the

run-time complexity of previous approaches, and quantify

the resource usage patterns of various GPGPU workloads.

 We propose a scheduling policy that aims to balance

resource utilizations by co-locating workloads with

complementary resource demands, and validate it through a

variety of cloud scenarios.

The remainder of this article is organized as follows.

Section II briefly explains the internal structure of GPGPU

devices and the CUDA platform architecture. Section III

presents the analysis of various GPGPU workloads with

respect to resource utilization. In Section IV, we explain the

proposed thread block scheduling policy and conduct the

validation of the policy by simulation experiments under

various virtual machine scenarios. Section V summarizes

previous studies related to this article, specially focusing on

thread block scheduling. Finally, we conclude this article in

Section VI.

FIGURE 1. A cloud host machine that equips the GPGPU device and

various workloads are executed as virtual machines that share the

resources including GPGPU.

Host

memory

CPU

task

GPU

task

Storage

App3App2

Storage

App1

Hypervisor

Host Machine

VM 1

Core Core

Core Core

Core Core

GPU

GPU

memory

Storage

...

...

GPU

memory

Storage

GPU

memory

Storage

GPU

memory

VM 2 VM 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 3

II. THE GPGPU ARCHITECTURE

A. INTERNAL STRUCTURE OF GPGPU

Modern general-purpose GPUs (GPGPUs) have tens of

thousands of computing units, which can accelerate the

computing performance by executing threads in parallel [11].

In general, a GPGPU application has a large number of

concurrent threads and they are grouped into thread blocks,

which are basic resource allocation units. The GPGPU

hardware consists of tens of stream multiprocessors (SMs),

and thread blocks are allocated to the SMs by the thread block

scheduler [12, 13, 14]. As SM adopts the SIMT (Single

Instruction Multiple Thread) model, it executes the same

instruction for multiple threads simultaneously [15]. The

maximum number of threads that can be executed per SM is

typically 2048. The thread block scheduler manages the

number of allowable threads per SM not to exceed this limit

while allocating thread blocks to the SM [16].

Meanwhile, a series of threads that should be executed

simultaneously within the same hardware unit are called a

Warp, which consists of up to 32 threads. Each thread block

consists of at least one Warp, and the number of Warps

increases by 1 whenever the number of threads within a Warp

exceeds 32. Thus, SM may not execute all threads in a thread

block simultaneously, but threads within the same Warp are

essentially executed simultaneously [17].

Figure 2 shows the internal structure of a typical SM [18].

As shown in the figure, each SM consists of Instruction Cache,

two or four Processing Blocks, Texture / L1 Cache, Texture

Memory, and Shared Memory. Each Processing Block has

various types of computing units such as FP64 cores, INT32

cores, FP32 cores, Load/Store units, and SFUs (special

function units). Recently, a new type of computing units called

Tensor cores, designed specifically for deep learning matrix

operations, are increasingly being added to SMs [18].

Each Processing Block also has Instruction Buffer, Register

File, Dispatch Unit, and Warp Scheduler. Dispatch Unit passes

instructions to be executed to each core, and Warp Scheduler

performs the scheduling of threads in Warp units.

B. CUDA PLATFORM AND MEMORY ARCHITECTURE

CUDA (Compute Unified Device Architecture) is a parallel

computing platform designed by NVIDIA [19]. As CUDA

provides an application programming interface (API) model

that supports industry standard languages like C, software

developers can implement parallel processing algorithms in

GPGPU efficiently.

Figure 3 shows the memory architecture of CUDA [19]. It

consists of on-chip memory (right-hand side) and off-chip

memory (left-hand side). On-chip memory consists of

Registers, Shared Memory, Constant Cache, and Texture

Cache. Registers are statically dedicated to each thread during

thread block scheduling, and Shared Memory is used for inter-

thread communication within the thread block.

Due to the limited capacity of Registers, the on-chip

memory may be exhausted, and then Local Memory, which is

one of the off-chip memory, can be used. Off-chip memory

also has Global Memory that can be accessed by all threads,

Constant Memory that is shared by all threads but read-only,

and Texture Memory. For better memory performance,

application developers should take full advantage of the

memory structure and characteristics of CUDA.

III. ANALYZING RESOURCE UTILIZATIONS OF GPGPU
WORKLOADS

In this section, we analyze the fine-grained resource

utilization of various GPGPU workloads in order to manage

the GPGPU efficiently and improve resource utilization. As

we increase the load on the GPGPU up to its resource limit,

either a computing or a memory resource usually becomes the

performance bottleneck. Based on this bottleneck resource, we

classify GPGPU workloads into computing-bound and

memory-bound workloads.

A workload is classified as computing-bound if the

utilization of the computing resource is much higher than that

of the memory resource, thereby reaching its limit first. In

contrast, a memory-bound workload uses high memory

bandwidth, which becomes a bottleneck resource. Meanwhile,

FIGURE 2. Internal structure of SM (Stream Multiprocessor).

FIGURE 3. Memory architecture of CUDA.

Instruction Cache

Processing

Block 2

Processing

Block 1

Processing

Block 3

Processing

Block 4

Texture / L1 Cache

Tex Tex Tex Tex

Shared Memory

Instruction Buffer

Warp Scheduler

Dispatch Unit

Register File

Dispatch Unit

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

INT INT

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SFU

SM

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 4

there are cases that neither the computing resource nor the

memory resource becomes a bottleneck resource although we

increase the load of the GPGPU up to its maximum capacity.

In this case, resource utilization is limited by the execution

dependency of the workload, which we classify as a

dependency-latency-bound type.

We investigate the resource utilization of various GPGPU

workloads by making use of the NVIDIA’s profiling tool.

Specifically, we execute 15 workloads consisting of NVIDIA

SDK and Rodinia, which are popular benchmarks used for

GPGPU performance evaluations [20, 21]. We also perform

profiling for Conv2D, a convolutional neural network as a

representative benchmark for machine learning, and SHA256,

a secure hashing algorithm mainly used in Bitcoin’s PoW

(Proof of Work). Our execution configurations of the

workloads are listed in Table I.

A. COMPUTING-BOUND WORKLOADS

 Figure 4 shows the utilization of computing and memory

resources for the workloads classified as computing-bound out

of the 17 workloads we considered. Low resource utilization

here indicates that the resource has been idle for a long time,

and 100% utilization means that the resource is a bottleneck.

As shown in the figure, in computing-bound workloads,

computing resources are bottlenecked, whereas memory

resources are under-utilized.

The computing resources of GPGPU can be further

classified into a single-precision arithmetic unit, a double-

precision arithmetic unit, a control flow unit, a load store unit,

and a special function arithmetic unit.

Figure 5 shows the detailed resource utilization of each

computing unit for the computing-bound workloads in Figure

4. As shown in the figure, even for the same computing-bound

workloads, the specific resource type that causes the

bottleneck is different. Of the 7 workloads, Back Propagation,

Hotspot, LavaMD, Particle Filter, and Srad exhibit high

utilization of over 80% in double-precision arithmetic units,

whereas other resources such as single-precision arithmetic

units and special function arithmetic units show low utilization.

Specifically, in the case of Back Propagation and LavaMD,

the utilization of the double-precision arithmetic unit is almost

100%, whereas the utilization of the single-precision

arithmetic unit and the special function arithmetic unit is 10%

and 0%, respectively. From this analysis, we can summarize

that most of computing-bound workloads we consider perform

arithmetic operations on 64-bit double-precision data.

On the other hand, Nbody and Conv2D show significantly

different resource usage patterns. Specifically, the utilization

of the double-precision arithmetic unit is 0%, whereas the

utilization of the single-precision arithmetic unit is about 80%.

Thus, we can conclude that most computations of Nbody and

Conv2D consist of 32-bit single-precision data.

TABLE I
GPGPU WORKLOADS ANALYZED IN THIS ARTICLE.

Workload Kernel name Benchmark Grid size Block size Application domain

Lava MD kernel_gpu_cuda Rodinia 3.1 [41, 1, 1] [256, 1, 1] Molecular dynamics

Nbody integrateBodies NVIDIA CUDA SDK [16, 1, 1] [256, 1, 1] Simulation

Back Propagation bpnn_adjust_weights_cuda Rodinia 3.1 [1, 4096, 1] [16, 16, 1] Pattern recognition

Hotspot caculate_temp Rodinia 3.1 [43, 43, 1] [16, 16, 1] Physics simulation

Particle Filter collideD Rodinia 3.1 [256, 1, 1] [64, 1, 1] Medical imaging

Srad srad Rodinia 3.1 [450, 1, 1] [512, 1, 1] Image processing

Stream Cluster kernel_compute_cost Rodinia 3.1 [128, 1, 1] [512, 1, 1] Data mining

Black Scholes BlackScholesGPU NVIDIA CUDA SDK [15625, 1, 1] [128, 1, 1] Finance

Convolution Texture convolutionColumnskernel NVIDIA CUDA SDK [192, 128, 1] [16, 12, 1] Image processing

HS Optical Flow JacobiIteration NVIDIA CUDA SDK [20, 80, 1] [32, 6, 1] Image processing

Fluids GL RealComplex_compute NVIDIA CUDA SDK [512, 1, 1] [256, 1, 1] Simulation

Heartwall kernel Rodinia 3.1 [41, 1, 1] [512, 1, 1] Medical imaging

NN euclid Rodinia 3.1 [168, 1, 1] [256, 1, 1] Data mining

B+tree findK Rodinia 3.1 [10000, 1, 1] [256, 1, 1] Search

Conv2D scudnn_relu_nn PyTorch [160, 1, 1] [512, 1, 1] Deep Learning

SHA256 sha256_cuda Public Domain [80, 1, 1] [1024, 1, 1] Crytocurrency

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 5

B. MEMORY-BOUND WORKLOADS

 Memory-bound workloads exhibit high memory

bandwidth utilization, and thus performance is limited by

memory resources within the GPGPU. This occurs when

memory resources are not able to provide data at the speed of

execution in computing resources. This lowers the utilization

of computing resources, thereby limiting overall GPGPU

performances.

In this subsection, we show resource utilizations for

memory-bound workloads, and identify specific memory

resources that cause performance bottlenecks. Specifically, we

analyze the utilization of each memory resource in GPGPU,

namely Shared Memory, Unified Cache, L2 Cache, Device

Memory, and System Memory to identify the performance

limiting factors.

(a) Back Propagation

(b) Nbody

(c) Hotspot

(d) LavaMD

(e) Particle Filter

(f) Srad

(g) Conv2D

FIGURE 5. Utilization of each computing resource.

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow
U

ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Load/Store Texture Single Double Special Control-flow

U
ti
li
z
a

ti
o

n
 [
%

]

(a) Back Propagation (b) Nbody

(c) Hotspot (d) LavaMD

(e) Particle Filter (f) Srad

(g) Conv2D

FIGURE 4. Resource utilization of computing-bound workloads

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Device memory

Function Unit (Double)

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Shared memory

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a
ti
o
n
 [
%

]

Shared memory

Function Unit (Double)

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Texture Instruction Unit

Function Unit (Double)

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Texture memory

Function Unit (Double)

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Texture memory

Function Unit (Double)

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Shared Memory

Arithmetic op.

Control-flow op.

Memory op.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 6

Figure 6 shows the utilizations of computing resources and

memory resources for the memory-bound workloads we

investigated. Black Scholes, Stream Cluster, Convolution

Texture, Fluids GL, and HS Optical Flow were classified as

memory-bound workloads due to their high memory usage.

Figure 7 shows the utilizations of each memory resource. As

shown in the figure, in all workloads except for Convolution

Texture, Device Memory, one of off-chip memories, shows

the highest utilization. In the case of Convolution Texture,

Unified Cache shows the highest utilization of almost 100%.

This is because Convolution Texture performs frequent read

accesses to Texture Memory.

Through the analysis in this section, we can summarize that

different types of memory resources can be a performance

bottleneck even for the same memory-bound workloads.

C. DEPENDENCY-LATENCY-BOUND WORKLOADS

We classify a workload as dependency-latency-bound when

both computing and memory resources are under-utilized due

to a dependency problem in the execution. This implies that

resources are not fully utilized because the dependencies of the

workload execution cause a certain stall. Causes of this stall

include instruction fetch delay, pipeline busy, synchronization

delay, memory dependency, execution dependency, constant

miss, texture overhead, and memory throttling.

Figure 8 shows the utilizations of computing and memory

resources for workloads classified as dependency-latency-

bound. As shown in the figure, neither computing nor memory

resources exhibit high utilization in these workloads. Figure 9

analyzes the reasons for stalls in the dependency-latency-

bound workloads. The meaning of the stall reasons in the

figure can be summarized as follows.

 Instruction fetch delay – The next assembly instruction has

not yet been fetched.

(a) Black Scholes (b) Stream Cluster

(c) Convolution Texture (d) Fluids GL

(e) HS Optical Flow

FIGURE 6. Resource utilization of memory-bound workloads.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Device memory

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory
U

ti
li
z
a

ti
o

n
 [
%

]

Device memory

Function Unit (Single)

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Texture memory

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Device memory

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Device memory

Arithmetic op.

Control-flow op.

Memory op.

(a) Black Scholes

(b) Stream Cluster

(c) Convolution Texture

(d) Fluids GL

(e) HS Optical Flow

FIGURE 7. Utilization of each memory resource.

0

20

40

60

80

100

Shared
Memory

Unified Cache L2 Cache Device
Memory

System
Memory
(Write)

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Shared
Memory

Unified Cache L2 Cache Device
Memory

System
Memory
(Write)

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Shared
Memory

Unified Cache L2 Cache Device
Memory

System
Memory
(Write)

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Shared
Memory

Unified Cache L2 Cache Device
Memory

System
Memory
(Write)

U
ti
li
z
a

ti
o

n
 [
%

]

0

20

40

60

80

100

Shared
Memory

Unified Cache L2 Cache Device
Memory

System
Memory
(Write)

U
ti
li
z
a

ti
o

n
 [
%

]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 7

 Pipeline busy – The computing resource required for the

instruction is not yet available.

 Synchronization delay – Execution is blocked at a thread

synchronization call.

 Texture overload – The texture subsystem is fully utilized or

it has too many requests.

 Memory dependency – A load/store cannot be performed as

the target data is not available yet.

 Execution dependency – The input required for the

instruction is not yet available.

 Memory throttling – A large number of pending memory

operations prevent further forward progress.

 Constant miss – A constant load is blocked due to a miss in

the constant cache.

 Not selected – The workload is ready to issue, but another

workload has been issued.

As shown in Figure 9, there are different reasons of stalls

for each workload. In some cases, such stalls may not be

resolved by efficient management of GPGPU resources alone,

but improvements can be expected when application

developers configure their workloads to improve resource

utilizations.

IV. GPGPU WORKLOAD ALLOCATION BASED ON FINE-
GRAINED RESOURCE UTILIZATION

In this section, we present a thread block scheduling policy

for GPGPU based on the fine-grained resource utilization

analyzed in the previous section. To allocate thread blocks to

SMs, GPGPU typically makes use of the Round-Robin

scheduling policy that sequentially allocates thread blocks to

each SM [22]. Figure 10 shows the basic role of the thread

block scheduler, which allocates the next thread block in the

queue based on the Round-Robin policy.

As Round-Robin scheduling is simple, easy to implement,

and starvation-free, it is efficient to implement in hardware

logic [23]. However, Round-Robin scheduling does not

consider the resource utilization of workloads. For example, if

all the threads allocated are double-precision arithmetic

operations, the FP64 units may be overloaded in some SMs,

(a) Huffman (b) NN

(c) Heartwall (d) B+tree

(e) SHA256

FIGURE 9. Stall reasons of dependency-latency-bound workloads.

Execution
Dependency

Instruction
Fetch

Pipeline
Busy

Constant
miss

Texture

Memory
Throttling

Not
Selected

Others

Synchronization

Memory
Dependency

Execution
Dependency

Instruction
Fetch

Pipeline
Busy

Constant
miss

Texture

Memory
Throttling

Not
Selected

Others

Synchronization

Memory
Dependency

Execution
Dependency

Instruction
Fetch

Pipeline
Busy

Constant
miss

Texture

Memory
Throttling

Not
Selected

Others

Synchronization

Memory
Dependency

Execution
Dependency

Instruction
Fetch

Pipeline
Busy

Constant
miss

Texture

Memory
Throttling

Not
Selected

Others

Synchronization

Memory
Dependency

Execution
Dependency

Instruction
Fetch

Pipeline
Busy

Constant
miss Texture

Memory
Throttling

Not
Selected

Others

Synchronization

Memory
Dependency

(a) Huffman (b) NN

(c) Heartwall (d) B+tree

(e) SHA256

FIGURE 8. Resource utilization of dependency-latency-bound workloads

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

L2 cache

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory
U

ti
li
z
a

ti
o

n
 [
%

]

Texture Instruction Unit

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Texture memory

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Texture memory

Arithmetic op.

Control-flow op.

Memory op.

0

10

20

30

40

50

60

70

80

90

100

Compute Memory

U
ti
li
z
a

ti
o

n
 [
%

]

Device Memory

Arithmetic op.

Control-flow op.

Memory op.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 8

whereas the same resources may be under-utilized in other

SMs, where threads do not have these types of operations.

Similar to Round-Robin, our scheduling policy deletes a

pending thread block from the queue, and inserts to an SM,

which is selected by the sequential order. Before inserting it,

however, our policy checks whether the utilization of a certain

resource in the SM exceeds its capacity in case the pending

thread block is allocated to it. If so, our policy skips the current

SM and moves to the next one. Previous studies also tried to

consider resource utilizations by co-locating thread blocks

from different workloads within the same SM if their resource

usage classification is different [9, 10]. We call this scheme

Multi-kernel placement throughout this paper. Although the

basic philosophies of Multi-kernel and our policy are similar,

our policy considers fine-grained resource utilization whereas

Multi-kernel determines whether thread blocks from different

applications can be co-located within an SM based on coarse-

grained classification (i.e., computing-bound or memory-

bound).

From now on, we will explain the exact workings of the

proposed policy in comparison with Multi-kernel and Round-

Robin with an example. Suppose a GPGPU device that has

four SMs and three pending thread blocks in the queue. Tables

II and III list the current resource utilizations of SMs and the

resource demand of pending thread blocks, respectively. In

this simple example, we only consider two computing

resources, i.e., single and double precisions, and two memory

resources, i.e., device memory and shared memory. The

coarse-grained utilization columns in the tables are calculated

by the maximum value of the fine-grained utilizations within

the same resource classifications.

Now, let us see the scheduling results. In our policy, TB1 is

allocated to SM1 as it does not incur the overflow of any fine-

grained resource utilizations. Note that the fine-grained

utilizations of SM1 are updated from (90, 10, 0, 10) to (100,

100, 0, 20) after TB1 is scheduled. Similarly, TB2 and TB3

are allocated to SM2 and SM3, respectively. In the Multi-

kernel scheme, the scheduling is performed by comparing the

coarse-grained utilization of the current SM and that of the

pending thread block. Thus, TB1 cannot be allocated to either

SM1 or SM2, as it incurs the overflow of computing resources.

After proceeding to the next SM, Multi-kernel finally allocates

TB1 to SM3. Similarly, TB2 is allocated to SM4. However,

TB3 cannot be allocated to any SM even after scanning all

SMs from SM1 to SM4 due to the overflow of computing

resources. In this case, TB3 should wait in the queue until any

SM becomes available. In the Round-Robin scheme, TB1,

TB2, and TB3 are allocated to SM1, SM2, and SM3,

respectively. Note that Round-Robin allocates thread blocks

to SMs one by one without considering resource utilization

although it becomes over 100% as long as thread blocks

assigned to an SM does not exceed hardware limitations.

As the purpose of our profiling is to extract the

characteristics of workloads in advance, we do not perform

online profiling at scheduling time. For workloads that have

already been executed before, our policy retains previously

profiled results and uses them while scheduling the workloads.

If there is no profiling history for the workload (i.e. first run),

a shadow virtual machine (VM) can perform the profiling

separately from the VM that is actually running the workload.

Note that a shadow VM is used for the profiling purpose in our

cloud GPGPU. Our empirical studies showed that the profiling

process requires only 1 to 30 milliseconds for extracting the

characteristics of workloads we experimented, which is quite

shorter than executing actual workloads in GPGPU. Thus,

although our scheduling requires prior knowledge of

FIGURE 10. An example of Round-Robin scheduling that allocates Thread

Blocks (TB) to SM.

App 1

TBS

(Thread block

Scheduler)

SM1

TB1

SM2

SM3

SM4

TB2

TB3

TB4

TB5

TB1

TB2

TB7

TB8

App 3

TB5

TB6

App 2

TB3

TB4 TB7TB8

Queue

TB6

Round-Robin

TABLE II
CURRENT RESOURCE UTILIZATIONS OF SMS

Fine-grained utilization
Coarse-grained

utilization

Comp.
(Single)

Comp.
(Double)

Mem.
(Device)

Mem.
(Shared)

Comp. Mem.

SM1 90 10 0 10 90 10

SM2 50 80 0 10 80 10

SM3 10 10 0 10 10 10

SM4 10 80 0 10 80 10

TABLE III

RESOURCE DEMAND OF PENDING THREAD BLOCKS

Fine-grained utilization
Coarse-grained

utilization

Comp.

(Single)

Comp.

(Double)

Mem.

(Device)

Mem.

(Shared)
Comp. Mem.

TB1 10 90 0 10 90 10

TB2 10 20 80 10 20 80

TB3 80 0 10 10 80 10

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 9

workloads, it is also possible to utilize profiling results after a

short training period during the current run.

Separation of profiling and scheduling has the advantage of

reducing the run-time complexity of previous studies that

relied on online profiling. That is, previous studies mostly

arrange and re-arrange workloads to SMs periodically based

on performance metrics such as throughput and execution time

rather than utilizing the prior knowledge of resource usage

patterns. Thus, in a cloud system with many concurrent

workloads, the number of possible combinations becomes

excessively large. For example, suppose that there are four

workloads A, B, C, and D, without the prior knowledge of

workload characteristics. Then, all possible combinations, i.e.,

AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD, and

ABCD may be tried to find an efficient co-location of

workloads on the same SM. In contrast, as we know the fine-

grained resource usage patterns of workloads A, B, C, and D,

we can find an efficient schedule without checking various

combinations. The only run-time overhead in our policy is to

identify the resource utilizations of each SM. Actually, this

does not incur significant overhead as the thread block

scheduler can keep track of the resource utilizations of each

SM by aggregating the resource demand of thread blocks

whenever a thread block is newly allocated or completed.

To assess the effectiveness of our thread block scheduling

policy, we perform simulation experiments under 7 scenarios

consisting of 25 virtual machines. Tables IV and V list the

workload situations of each scenario we experimented and the

system and resource characteristics of our experiments.

Scenario 1 consists of two virtual machines, VM-1 and

VM-2, which execute two computing-bound workloads,

Nbody and Srad, respectively. Scenario 2 consists of three

virtual machines, VM-3, VM-4, and VM-5, which execute

three computing-bound workloads, Lava MD, Nbody, and

Back Propagation, respectively. Scenario 3 consists of three

virtual machines, VM-6, VM-7, and VM-8, which execute

three memory-bound workloads, Black Scholes, Stream

Cluster, and Convolution Texture, respectively. Scenario 4

consists of four virtual machines, VM-9, VM-10, VM-11, and

VM-12, which perform four computing-bound workloads,

Nbody, Hotspot, LavaMD, and Srad, respectively. Scenario 5

consists of four virtual machines, VM-13, VM-14, VM-15,

and VM-16, which execute four memory-bound workloads,

Stream Cluster, Convolution Texture, Fluids GL, and HS

Optical Flow, respectively. Scenario 6 consists of four virtual

machines, of which VM-17 and VM-18 execute computing-

bound workloads, Particle Filter and Hotspot, respectively,

whereas VM-19 and VM-20 execute memory-bound

workloads, Convolution Texture and Black Scholes,

respectively. Finally, Scenario 7 consists of five virtual

machines, of which VM-21, VM-23, VM-24, and VM-25

execute computing-bound workloads, Conv2D, Back

Propagation, Srad, and Nbody, respectively, whereas VM-22

executes a dependency-latency-bound workload, SHA256.

We assume that each virtual machine executes the given

workload repeatedly to see the effect of simultaneous

execution of heterogeous workloads in cloud systems.

Under these scenarios, we conduct simulation experiments

with the three scheduling policies, Round-Robin (RR), Multi-

kernel, and the proposed policy that we call FRU-RR (Fine-

grained Resource Utilization aware Round-Robin). The

utilization metrics that we use for FRU-RR are the resource

utilizations of each computing unit (i.e., single-precision,

double-precision, control flow, load-store, and special

function) and each memory unit (i.e., shared memory, unified

cache, L2 cache, device memory, and system memory). For

performance metric, we use the throughput of each virtual

machine and the host machine. The throughput of a virtual

machine indicates the number of the workload’s threads

completed per unit time, and we show the throughput of each

scheduling policy normalized to that of the Round-Robin. The

TABLE IV
EXPERIMENTAL SCENARIOS IN THE EXPERIMENTS.

Scenario VM Workload Classification

Scenario 1
VM–1
VM–2

Nbody
Srad

Computing-bound
Computing-bound

Scenario 2

VM–3

VM–4

VM–5

Lava MD

Nbody

Back Propagation

Computing-bound

Computing-bound

Computing-bound

Scenario 3
VM–6
VM–7

VM–8

Black Scholes
Stream Cluster

Convolution Texture

Memory-bound
Memory-bound

Memory-bound

Scenario 4

VM–9
VM–10

VM–11

VM–12

Nbody
Hotspot

LavaMD

Srad

Computing-bound
Computing-bound

Computing-bound

Computing-bound

Scenario 5

VM–13
VM–14

VM–15

VM–16

Stream Cluster
Convolution Texture

Fluids GL

HS Optical Flow

Memory-bound
Memory-bound

Memory-bound

Memory-bound

Scenario 6

VM–17

VM–18

VM–19
VM–20

Particle Filter

Hotspot

Convolution Texture
Black Scholes

Computing-bound

Computing-bound

Memory-bound
Memory-bound

Scenario 7

VM–21

VM–22

VM–23
VM–24

VM–25

Conv2D

SHA256

Back Propagation
Srad

Nbody

Computing-bound

Dependency-latency

Computing-bound
Computing-bound

Computing-bound

TABLE V
SYSTEM AND RESOURCE CHARACTERISTICS OF OUR EXPERIMENTS.

Configuration Value

of host CPU cores
Host memory capacity

of GPGPU devices

Emulated GPGPU model
of SMs

GPGPU memory capacity

Shared memory per SM
Register file size per SM

20
64GB

2

Nvidia Tesla V100
80

16GB

96KB
256KB

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 10

throughput of a host machine indicates the total number of

threads completed per time unit including the threads of all

virtual machines and the host itself. In case of our policy, the

profiling overhead is reflected in the host throughput,

implying that the threads executed for profiling are excluded

from the host throughput after counting all threads that have

completed.

Figure 11 shows the throughput of the proposed policy,

FRU-RR, in comparison with Round-Robin and Multi-kernel.

We experimented each scenario ten times and plotted the

average and their standard deviations. Let us first discuss the

performance comparison of our policy with Round-Robin. As

shown in the figure, the proposed policy performs

significantly better than Round-Robin in all scenarios and

workloads. Specifically, the performance improvement is

119.5% on average and up to 191.7%. The main reason of

Round-Robin’s low performance is that it fails to balance the

load between SMs. Although Round-Robin pursues load

balancing by distributing thread blocks to each SM one by one,

the result did not come out as intended because it does not

consider the characteristics of workloads. This implies that

Round-Robin, which is currently adopted as the thread block

scheduler of most GPGPU devices, can be improved

significantly.

Now, let us discuss the performance of our policy in

comparison with Multi-kernel. As shown in Figure 11, Multi-

kernel also yields better performance than Round-Robin, but

the performance improvement of our policy against Multi-

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5

 (f) Scenario 6 (g) Scenario 7

FIGURE 11. Comparisons of the Round Robin, Multi-kernel, and the proposed policy for various virtual machine scenarios.

0.0

0.5

1.0

1.5

2.0

2.5

Host VM-1 VM-2

T
h
ro

u
g
h
p
u
t

RR Multi-kernel FRU-RR

0.0

0.5

1.0

1.5

2.0

2.5

Host VM-3 VM-4 VM-5

T
h
ro

u
g
h
p
u
t

RR Multi-kernel FRU-RR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Host VM-6 VM-7 VM-8

T
h

ro
u

g
h
p

u
t

RR Multi-kernel FRU-RR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Host VM-9 VM-10 VM-11 VM-12

T
h
ro

u
g
h
p
u
t

RR Multi-kernel FRU-RR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Host VM-13 VM-14 VM-15 VM-16

T
h

ro
u

g
h

p
u

t

RR Multi-kernel FRU-RR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Host VM-17 VM-18 VM-19 VM-20

T
h

ro
u

g
h

p
u

t

RR Multi-kernel FRU-RR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Host VM-21 VM-22 VM-23 VM-24 VM-25

T
h

ro
u

g
h

p
u

t

RR Multi-kernel FRU-RR

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 11

kernel is 30.1% on average and up to 42.9%. This is because

our policy accurately analyzes the fine-grained bottleneck

resource for each application and allocates workloads that do

not have the same bottleneck resource on the same SM,

whereas Multi-kernel does this based-on the coarse-grained

classification. The largest improvement is observed in

Scenario 1, where the improvement of our policy is 42.9%.

This is because the two workloads in Scenario 1 are all

computing-intensive, and thus Multi-kernel cannot co-locate

them within the same SM. However, the bottleneck resources

for the two virtual machines are different. Specifically, VM-1

uses the FP32 unit but does not use the FP64 unit at all,

whereas VM-2 mostly uses the FP64 unit, and thus our policy

can place the two workloads together within the same SM

without conflicting situations, which is not possible in Multi-

kernel.

In Scenarios 2 and 3, the system adopting our policy

performs 35.7% and 34.1% better than Multi-kernel,

respectively. Similar to Scenario 1, all virtual machines in

Scenarios 2 and 3 have homogeneous workloads. That is,

workloads in Scenario 2 are all computing-bound, whereas

Scenario 3 has all memory-bound workloads. Thus, Multi-

kernel cannot co-locate any two workloads within the same

SM, whereas our policy can do so in case the resource that

causes bottleneck is different. When we compare the results

with Scenario 1, the performance gap between Multi-kernel

and our policy becomes relatively small in Scenarios 2 and 3.

This is due to the characteristics of virtual machines in these

scenarios. In particular, Scenario 1 has only two virtual

machines, VM-1 and VM-2, which can be placed on the same

SM in our policy, but Scenarios 2 and 3 have three virtual

machines, two of which have the same bottleneck resources,

and thus chances for placing different VMs on the same SM

have been reduced.

Now, let us see the results for Scenarios 4 and 5, in which

the number of virtual machines has been increased to four. As

shown in Figures 11(d) and 11(e), the performance

improvement of our policy against Multi-kernel is 22.7% and

22.6%, respectively, for Scenarios 4 and 5. Similar to previous

scenarios, these two scenarios consist of homogeneous

workloads, and thus Multi-kernel cannot co-locate any two

workloads within the same SM. In this case, some resource

types in the SM are certain to be under-utilized. For example,

if one workload performs single-precision arithmetic while the

other performs double-precision arithmetic, allocating a single

workload to an SM cannot utilize both types of resources.

Unlike Multi-kernel, however, our policy puts these two

computing-bound workloads together on the same SM as they

do not have conflicting resource usage patterns. Thus, both

single- and double-precision arithmetic units can be fully

utilized. This will eventually improve the throughput of the

workloads as well as the host machine.

Scenario 4 consists of 4 computing-bound workloads, of

which VM-9 mainly performs single-precision arithmetic,

whereas VM-10, VM-11, and VM-12 perform double-

precision arithmetic operations. Thus, our policy can locate

VM-9 to any SM to execute single-precision arithmetic

without conflicting situations as all the other VMs have

different bottleneck resources of double-precision arithmetic.

However, VM-10 to VM-12 have the same bottleneck

resource, and thus they cannot be co-located within the same

SM in our policy. Thus, the performance improvement is not

large compared to previous scenarios. Note that similar results

can be observed for Scenario 5, where computing-bound

workloads are replaced by memory-bound workloads.

Now, let us discuss the performance of our policy in

comparison with Multi-kernel in Scenario 6. This scenario

consists of four virtual machines, of which VM-17 and VM-

18 are computing-bound, whereas VM-19 and VM-20 are

memory-bound. Thus, Multi-kernel can co-locate workloads

with different classifications on the same SM in this scenario.

However, our policy further increases the possibility of co-

locating VMs as the two memory-bound workloads, VM-19

and VM-20, have different bottleneck resources. Although the

performance gap is not wide, our policy performs better than

Multi-kernel by 15.5% on average.

Finally, let us see the results of Scenario 7. This scenario

consists of 5 virtual machines, of which VM-21, VM-23, VM-

24, and VM-25 perform computing-bound workloads,

whereas VM-22 performs a dependency-latency-bound

workload. Multi-kernel can co-locate VM-22 with other VMs

as they have different workload classifications. However,

balancing resource utilization is difficult in Multi-kernel as a

majority of workloads have the same classifications of

computing-bound. Our policy has further chances to balance

resource utilizations since fine-grained resource usage of the

computing-bound workloads is different. Specifically, most

operations in VM-21 and VM-25 are single-precision

arithmetic, whereas those in VM-23 and VM-24 are double-

precision arithmetic. Due to this reason, the performance

improvement of our policy against Multi-kernel in this

scenario is as large as 37.5%.

V. RELATED WORKS

In the early days of GPGPU multitasking, a single SM could

not accommodate multiple workloads, and thus the main issue

with multitasking was determining the number of SMs

assigned to each workload. In these environments, Kayıran et

al. [24] observed that GPGPU performance drops sharply

when some types of memory-bound workloads occupy more

than a certain number of SMs. They found that such

configurations significantly reduce the number of active

instructions due to the stalls caused by global memory, which

is shared between SMs. Based on this, they proposed

DYNCTA that limits the number of SMs allocated to

workloads using global memory, not to cause performance

degradations. By doing so, computing-bound workloads have

relatively high priorities, and this incurs the fairness problem

as memory-bound workloads have performance penalties.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 12

Lee et al. [12] showed that GPGPU performance is

gradually improved as the number of thread blocks allocated

to an SM increases, but the performance drops sharply when

it exceeds a certain resource limit. To address this problem,

they determine the maximum number of thread blocks

allocated per SM based on the profiling of the first thread

block’s execution. They call this scheme LCS (Lazy

Cooperative-thread-arrays Scheduling). After allocating by

LCS, they observed some idle resources in the SM, and they

additionally proposed mCKE (mixed Concurrent Kernel

Execution) to allocate other workloads with different resource

usage characteristics on the same SM.

Studies on GPGPU multitasking increasingly partitions a

single SM across multiple workloads. Xu et al. [25] explored

various intra-SM slicing strategies, and showed that there is

not one intra-SM slicing strategy that derives the best

performance for all application pairs. Based on this

observation, they proposed Warped-Slicer, a dynamic intra-

SM slicing strategy that determines how each workload’s

performance is varied as more thread blocks are assigned to an

SM based on an analytical model. They showed that their

analytical model can be applied to each workload by

performing short on-line profiling runs.

SMK [9] co-executes workloads with compensating

resource usage in the same SM to achieve high utilization and

efficiency. Specifically, SMK pairs a memory-intensive

workload with a computing-intensive workload in the same

SM to greatly improve utilization of both memory and

computing resources. SMK also takes into account the fairness

among different workloads while dispatching thread blocks.

Park et al. [10] proposed GPGPU Maestro, which runs

multiple workloads on the same SM like SMK, but

dynamically manages resource partitioning on GPGPU to

maximize the system performance. Specifically, they showed

that multitasking performance varies heavily because of

dynamism within a workload and interference between

workloads. To cope with this situation, Maestro monitors the

performance counters for different allocations with a subset of

SMs, and discovers the best performing resource partition

exploiting both spatial multitasking and SMK.

Allen et al. [5] presented Slate, a software-based workload-

aware GPGPU multitasking framework. Similar to Maestro,

Slate selects concurrent workloads that have complementary

resource demands at run-time to minimize interference for

individual workloads and improve resource utilization. Unlike

Maestro, however, Slate classifies computing and memory

resource usage into three stages: low, medium, and high, and

categorizes each workload through online or offline profiling.

Based on this, Slate determines whether two different

workloads can be performed on the same SM according to the

resource characteristics of them.

Table VI briefly compares the aforementioned schemes

with respect to multi-tasking granularities, profiling metrics,

resource granularities, and profiling methods.

VI. CONCLUSIONS

With the widespread adoption of multitasking GPGPU in

cloud systems, maximizing the resource utilization by

judicious allocation of heterogeneous workloads in GPGPU

has become an important issue. In this article, we investigated

the resource utilization characteristics of 17 popular GPGPU

workloads, and classified them into computing-bound,

memory-bound, and dependency-latency-bound, and then

refined the classifications based on the detailed resource that

causes the performance bottleneck. As the bottleneck resource

may be different even for workloads with the same

classifications, we presented a thread block scheduling policy

TABLE VI

A SUMMARY OF GPGPU MULTITASKING SCHEMES.

System or

algorithm

Multi-tasking

granularity
Profiling metric Resource Granularity Profiling method

Kayıran et al.

[24]
DYNCTA Inter-SM level

Idle cycles, memory

stalls
Computing / Memory

Online profiling with

workload run

Lee et al. [12] LCS, mCKE Intra-SM level
of instructions

executed
Computing / Memory

Online profiling with

first TB run

Xu et al. [25] Warped-Slicer Intra-SM level
IPC (Instructions per
Cycle)

Computing / Memory
Short online profiling
runs

Wang et al. [9] SMK Intra-SM level
WIPC (Warp
Instructions per Cycle)

Computing / Memory
Online profiling with
dedicated SMs

Park et al. [10] Maestro Intra-SM level Performance counter Computing / Memory

Dynamic profiling for

different partitions

with performance
counters

Allen et al. [5] Slate Intra-SM level
FLOPS, memory

bandwidth
Computing / Memory

Online profiling at the

first run

Proposed

scheme
FRU-RR Intra-SM level Resource utilizations Fine-grained unit Separate profiling

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3132492, IEEE Access

VOLUME XX, 2021 13

that considers the fine-grained resource utilization for cloud

systems. Unlike previous approaches, we separated profiling

from scheduling, thereby reducing the run-time complexity of

scheduling. By co-locating workloads with complementary

resource demands on the same SM, our policy aims to

maximize the overall resource utilizations in the GPGPU

device. Experimental results with various virtual machine

scenarios showed that our thread block scheduling policy

improves the GPGPU throughput of cloud systems by 119.5%

on average and up to 191.7%.

REFERENCES
[1] A. Fonseca and B. Cabral, “Prototyping a GPGPU neural network for

deep-learning big data analysis,” Big Data Research, vol. 8, pp. 50-56,
2017.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng “Tensorflow: a system for large-scale
machine learning,” Proceedings of USENX OSDI Conferences, pp.
265-283, 2016.

[3] D. Shin, K. Cho, and H. Bahn, “File type and access pattern aware
buffer cache management for rendering systems,” Electronics, vol. 9,
no. 1, article 164, 2020.

[4] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee,
S. Keckler, M. Kandemir, and C. Das “Anatomy of GPU memory
system for multi-application execution,” Proceedings of the ACM
Symposium on Memory Systems, pp 223-234, 2015.

[5] T. Allen, X. Feng, and R. Ge, “Slate: enabling workload-aware
efficient multiprocessing for modern GPGPUs,” Proceedings of the
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 252-261, 2019.

[6] S. Pai, M.J. Thazhuthaveetil, and R. Govindarajan, “Improving
GPGPU concurrency with elastic kernels,” Proceedings of the ACM
SIGARCH Computer Architecture News, vol. 41, pp. 407-418, 2013.

[7] H. Bahn and J. Kim, “Separation of virtual machine I/O in cloud
systems,” IEEE Access, vol. 8, pp. 223756-223764, 2020.

[8] E. Lee, H. Bahn, M. Jeong, S. Kim, J. Yeon, S. Yoo, S. Noh, and K.
Shin, “Reducing journaling harm on virtualized I/O systems,”
Proceedings of the 9th ACM International on Systems and Storage
Conference (SYSTOR), pp. 1-6, 2016.

[9] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Simultaneous multikernel GPU: multi-tasking throughput processors
via fine-grained sharing,” Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pp.358-369, 2016.

[10] J. Park, Y. Park, and S. Mahlke, “Dynamic resource management for
efficient utilization of multitasking GPUs,” Proceedings of the 21nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 527-540, 2017.

[11] O. Maitre, N. Lachiche, P. Clauss, L. Baumes, A. Corma, and P. Collet,
“Efficient parallel implementation of evolutionary algorithms on
GPGPU cards,” Proceedings of the European Conference on Parallel
Processing, Springer, Berlin, Heidelberg, 2009.

[12] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU resource utilization through alternative thread
block scheduling,” Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architecture (HPCA), pp.
260-271, 2014.

[13] M. Huzaifa, J. Alsop, A. Mahmoud, G. Salvador, M. D. Sinclair, and
S. V. Adve, “Inter-kernel reuse-aware thread block scheduling,” ACM
Transactions on Architecture and Code Optimization, vol. 17, no. 3,
article 24, pp. 1-27, 2020.

[14] G. Gilman, S. S. Ogden, T. Guo, and R. J. Walls, “Demystifying the
placement policies of the NVIDIA GPU thread block scheduler for

concurrent kernels,” ACM SIGMETRICS Performance Evaluation
Review, vol. 48, no. 3, pp. 81-88, 2020.

[15] J. Lee, N. B. Lakshminarayana, H. Kim, and R. Vuduc, “Many-thread
aware prefetching mechanisms for GPGPU applications,” Proceedings
of the IEEE/ACM International Symposium on Microarchitecture,
2010.

[16] K. Cho and H. Bahn, “Performance analysis of thread block schedulers
in GPGPU and its implications,” Applied Sciences, vol. 10, no. 24,
article 9121, 2020.

[17] C. Su, P. Chen, C. Lan, L. Huang, and K. Wu, “Overview and
comparison of OpenCL and CUDA technology for GPGPU,” IEEE
Asia Pacific Conference on Circuits and Systems, 2012.

[18] G. Gasior, “Nvidia’s Volta GPU to feature on-chip DRAM,” Techical
Report. Available at https://techreport.com/news/24529/nvidias-
volta-gpu-to-feature-on-chip-dram/.

[19] NVIDIA CUDA, CUDA C Programming Guide, 2018.
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[20] GPU Computing SDK, http://developer.nvidia.com/gpu-computing-
sdk.

[21] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K.
Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
Proc. IEEE Symp. Workload Characterization, pp. 44-54, 2009.

[22] Q. Wang and C. Xiaowen, “GPGPU performance estimation with core
and memory frequency scaling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, pp. 2865-2881, 2020.

[23] J. Nieh, C. Vaill, and H. Zhong, “Virtual-time Round-Robin: an O(1)
proportional share scheduler,” Proceedings of the 2001 USENIX
AnnualTechnical Conference, 2001.

[24] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more
nor less: Optimizing thread-level parallelism for GPGPUs,”
Proceedings of 22nd IEEE International Conference on Parallel
Architectures and Compilation Techniques, pp. 157-166, 2013.

[25] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-
slicer: efficient intra-sm slicing through dynamic resource partitioning
for gpu multiprogramming,” Proceedings of 43rd ACM/IEEE
International Symposium on Computer Architecture (ISCA), pp. 230-
242, 2016.

KYUNGWOON CHO received the B.S., M.S.,

and Ph.D. degrees in computer science and

engineering from Seoul National University, in
1995, 1997, and 2012, respectively. He is currently

a senior researcher at the Embedded Software

Research Center, Ewha University, Seoul,
Republic of Korea. Before joining Ewha, he was a

chief officer in the Clunix R&D Center, Seoul,

Republic of Korea. His research interests include
multimedia systems, cloud computing, real-time

systems, embedded systems, and operating systems.

HYOKYUNG BAHN (M’02) received the B.S.,

M.S., and Ph.D. degrees in computer science and
engineering from Seoul National University, in

1997, 1999, and 2002, respectively. He is currently

a full professor of computer science and
engineering at Ewha University, Seoul, Republic

of Korea. His research interests include operating

systems, caching algorithms, storage systems,
embedded systems, system optimizations, and

real-time systems. Prof. Bahn has published more

than 100 papers in leading conferences and journals in these fields,
including USENIX FAST, IEEE Transactions on Computers, IEEE

Transactions on Knowledge and Data Engineering, and ACM Transactions

on Storage. He also received the Best Paper Awards at the USENIX
Conference on File and Storage Technologies in 2013.

