
Jointly Adversarial Enhancement Training for Robust End-to-End Speech
Recognition

Bin Liu1,2, Shuai Nie1, Shan Liang1, Wenju Liu1, Meng Yu3, Lianwu Chen4, Shouye Peng5,
Changliang Li6

1 National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of
Sciences, China

2 School of Artificial Intelligence, University of Chinese Academy of Sciences, China
3 Tencent AI Lab, Bellevue, WA, USA
4 Tencent AI Lab, Shenzhen, China

5 Xueersi Online School, China
6 kingsoft AI lab, China

{bin.liu2015,shuai.nie,sliang,lwj}@nlpr.ia.ac.cn, {raymondmyu,lianwuchen}@tencent.com
pengshouye@100tal.com, lichangliang@kingsoft.com

Abstract
Recently, the end-to-end system has made significant break-
throughs in the field of speech recognition. However, this s-
ingle end-to-end architecture is not especially robust to the in-
put variations interfered of noises and reverberations, resulting
in performance degradation dramatically in reality. To alleviate
this issue, the mainstream approach is to use a well-designed
speech enhancement module as the front-end of ASR. How-
ever, enhancement modules would result in speech distortions
and mismatches to training, which sometimes degrades the AS-
R performance. In this paper, we propose a jointly adversarial
enhancement training to boost robustness of end-to-end system-
s. Specifically, we use a jointly compositional scheme of mask-
based enhancement network, attention-based encoder-decoder
network and discriminant network during training. The discrim-
inator is used to distinguish between the enhanced features from
enhancement network and clean features, which could guide en-
hancement network to output towards the realistic distribution.
With the joint optimization of the recognition, enhancement and
adversarial loss, the compositional scheme is expected to learn
more robust representations for the recognition task automat-
ically. Systematic experiments on AISHELL-1 show that the
proposed method improves the noise robustness of end-to-end
systems and achieves the relative error rate reduction of 4.6%
over the multi-condition training.
Index Terms: end-to-end speech recognition, robust speech
recognition, speech enhancement, generative adversarial net-
works

1. Introduction
Recently, end-to-end neural networks have made significan-
t breakthroughs in the field of speech recognition [1, 2, 3], chal-
lenging the dominance of DNN-HMM hybrid architectures [4].
Attention-based encoder-decoder network integrates the acous-
tic and language modeling components with a single neural ar-
chitecture. However, speech inputs for ASR systems are gener-
ally interfered by various background noises and reverberations
in realistic environments. The single end-to-end architecture is
not especially robust to the input variations and the performance
drops dramatically in reality, which remains a challenge to im-
prove the robustness of end-to-end ASR systems.

The mainstream approach to boost noise robustness is
adding a speech enhancement component during the front-end
of ASR, including traditional statistical methods like Wiener fil-
ter [5] and DNN-based speech enhancement methods, such as
the time-frequency (T-F) masking [6, 7, 8], signal approxima-
tion [9, 10] and spectral mapping [11, 12]. However, the speech
enhancement part is usually distinct from the recognition part
and therefore enhancement method fails to optimize towards the
final objective, which leads to a suboptimal solution [13]. More-
over, the enhancement method generally uses hand-engineering
loss functions such as mean squared error, which tends to gen-
erate over-smoothed spectra that lack the fine structures that are
near to those of the true speech. The speech distortions and
mismatches to training sometimes degrade the end-to-end ASR
performance [14].

In order to obtain an optimal performance and alleviate
the speech distortions, integrating the speech enhancement and
end-to-end recognition network via jointly training is proposed
for robust speech recognition [14, 15]. A key concept of
the joint end-to-end framework is to optimize the entire in-
ference procedure based on the final ASR objectives, such as
word/character error rate (WER/CER). In addition, generative
adversarial nets (GANs) [16] have been applied to speech en-
hancement [17, 18] and robust ASR [19, 20], where the gen-
erator synthesizes increasingly more realistic data in attempt to
fool a competing discriminator.

The end-to-end system predicts the next output symbol con-
ditioned on the full sequence of previous predictions. If a mis-
take occurred in one estimation step due to the noise interfer-
ence, the next prediction steps will be disrupted, which would
lead to a series of mistakes. Therefore, it is critical to improve
the robustness of end-to-end ASR system for the practical ap-
plication.

In this paper, we propose a jointly adversarial enhancement
training to boost noise robustness of end-to-end ASR systems.
Specifically, we use a jointly compositional scheme of mask-
based enhancement network (for the enhancement componen-
t), attention-based encoder-decoder network (for the recogni-
tion component) and discriminant network in the training phase.
The discriminant network is used to distinguish between the en-
hanced features from enhancement network and clean features,
which could guide enhancement network to output towards the
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Figure 1: Overview of the robust end-to-end ASR system ar-
chitecture: Enhance module is the mask-based enhancement
network; E2E ASR module is the attention-based recognition
network; Fbank module is used to extract fbank features; Dis-
criminator is the discriminant network.

realistic clean distribution. The use of adversarial training cir-
cumvents the limitation of hand-engineering loss functions and
captures the underlying structural characteristics from the noisy
signals. With the joint optimization of the recognition, enhance-
ment and adversarial loss, the compositional scheme is expected
to learn more robust representations suitable for the recognition
task automatically.

2. Related Work
Generative adversarial nets (GANs) have been applied speech
enhancement in the time domain [17] and frequency domain
[18]. They have also been employed to improve the robust-
ness of traditional hybrid [20] and end-to-end ASR models [19].
However, these methods don’t investigate the joint training with
the speech enhancement component.

The joint training framework is proposed to integrate the
components of speech enhancement and recognition into a s-
ingle neural-network-based architecture [14, 15]. And we pro-
pose a jointly adversarial enhancement training to boost noise
robustness of end-to-end ASR systems.

3. Robust End-to-end ASR
3.1. Overview

Fig. 1 illustrates an overview of our proposed jointly adver-
sarial enhancement training framework for robust end-to-end
speech recognition (JAE E2E ASR). The system consists of a
mask-based enhancement network, an attention-based encoder-
decoder network, a fbank feature extraction network and a dis-
criminant network. Given the noisy speech input X and clean
input X∗, which consists of a short-time Fourier transform
(STFT) feature sequence, we represent the entire procedure of
the JAE E2E ASR system in the following forms:

X̂ = Enhance(X), (1)

Ô = Fbank(X̂), (2)
O∗ = Fbank(X∗), (3)

P (Y |Ô) = E2E ASR(Ô), (4)

P (D|Ô, O∗) = Discriminate(Ô, O∗). (5)

Here, Enhance(·) is a speech enhancement function realized
by the mask-based enhancement network, which transform-
s the noisy STFT features X to the enhanced STFT features
X̂ . Fbank(·) is a function to extract the normalized log fbank
features, which converts X̂ to Ô. Subsequently, E2E ASR(·)
is an end-to-end ASR function realized by the attention-based

encoder-decoder network, which estimates the posteriori prob-
abilities for output labels Y . Moreover, Discriminate(·) is a
discriminant network to distinguish between the enhanced fea-
tures and clean ones, which gets the clean and enhanced fbank
features as inputs.

3.2. Mask-based enhancement network

The mask-based enhancement method estimate a masking func-
tion to multiply by the frequency-domain feature of the noisy
speech, in order to form an estimate of the clean speech.

We consider the complex short-time spectrum of the noisy
speech xf,t, the noise nf,t, and the clean speech x∗f,t, where
t and f index time and frequency respectively. Given an es-
timated masking function m̂f,t, the estimated clean speech is
x̂f,t = m̂f,txf,t. In the rest of this section, we drop f, t and
consider a single time-frequency bin for simplicity.

In parallel training, the clean and noisy speech signals are
provided and the signal approximation objective measures the
error between the enhanced signal and the target clean speech:
Lsa(m̂) = L(x∗|m̂x) = |m̂x− x∗|2. And the ideal mask
is the complex filter micf = x∗/x. [10] proposed the phase-
sensitive filter which keeps the noisy phase under the constraint
m ∈ R. The formulation is

mpsf = Re(
x∗

x
) =
|x∗|
|x| Re

(
ei(θ

x∗
−θx)

)
=
|x∗|
|x| cos(θ) (6)

where θ = θx
∗
−θx. For training, the proposed phase-sensitive

spectrum approximation (PSA) objective is Lpsa(m̂) =
(m̂ |x| − |x∗| cos(θ))2. And the enhancement loss function is
defined as:

Lenh =
1

T

∑
t,f

Lpsa(m̂) =
1

T

∑
t,f

(m̂ |x| − |x∗| cos(θ))2 .

(7)
where m̂ is the estimated mask at time t and frequency f , and
T is the number of total frames in the dataset.

At the test stage, after obtaining the estimated mask from
the noisy speech using the trained network, we multiply it point-
wisely with the spectrogram of the noisy speech to get the en-
hanced spectrogram, i.e., X̂ = M̂ ⊗ X , where X̂ is the en-
hanced STFT features, M̂ is the estimated mask, X is the noisy
STFT features and ⊗ denotes point-wise matrix multiplication.

3.3. Fbank extraction network

We extract the normalized log Mel filterbank feature ôt ∈ RDO

as an input of attention-based encoder-decoder, which is com-
puted from the enhanced STFT feature x̂t ∈ RDF :

ôt = Fbank(x̂t) = Norm(log(Mel(x̂t))) (8)
where Mel(·) is the operation of DO × F Mel matrix multipli-
cation, and Norm(·) is the operation of global mean and vari-
ance normalization so that its mean and variance become 0 and
1. Therefore, the fbank feature extraction procedure used as a
layer of network is differentiable.

3.4. Attention-based encoder-decoder network

Fig. 2 illustrates an overview of the attention-based encoder-
decoder network, which consists of an encoder network that
maps the input feature sequence into a higher-level representa-
tion and an attention-based decoder that predicts the next output
conditioned on the full sequence of previous predictions.

Given feature sequence O = {ot ∈ RDO | t = 1, · · · , T},
where ot is a DO-dimensional fbank feature at input time step
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Figure 2: Overview of the attention-based e2e system.
t and T is the input sequence length, the network estimates the
posteriori probabilities for output label sequence Y = {yn ∈
V | n = 1, · · · , N}, where yn is a label symbol (e.g., character)
at output time step n, N is the output sequence length and V is
a set of labels as follows:

P (Y |O) =
∏
n

P (yn|O, y1:n−1), (9)

H = Encoder(O), (10)
cn = Attention(an−1, sn, H), (11)
yn = Decoder(cn, y1:n−1), (12)

where y1:n−1 is a label sequence from y1 to yn−1. Eqs. (9)
to (12) correspond to E2E ASR in Eq. (4).

For input sequence O, the encoder in Eq. (10) first trans-
forms it to the L-length representation H = {hl ∈ RDH | l =
1, · · · , L}, where hl is a DH-dimensional state vector at time
step l. Next the location-based attention mechanism [2] in E-
q. (11) computes L-dimensional attention weight vector an ∈
[0, 1]L to integrate all encoder outputs H into a context vector
cn ∈ RDH . Then the decoder in Eq. (12) estimates the poste-
riori probability for output label yn at output time step n con-
ditioned on the previous predictions y1:n−1 and context vector
cn. If a mistake occurred in one estimation step due to the noise
interference, the next prediction steps will be disrupted, which
would lead to a series of mistakes.

Based on the cross-entropy criterion, the loss function is
defined using Eq. (9) as follows:

Lasr = − lnP (Y ∗|O) = −
∑
n

lnP (y∗n|O, y∗1:n−1) (13)

where Y ∗ is the ground truth of a whole sequence of output
labels and y∗1:n−1 is the ground truth from output step 1 to n−1.

3.5. Discriminant network

The discriminant network aims to distinguish between the en-
hanced features and clean ones, which could guide the enhance-
ment network to output towards the realistic distribution. Giv-
en clean features O∗ from the dataset and enhanced features
Ô from the enhancement network, with the LSGANs [21] ap-
proach, the formulation is

Ld =
1

2
EX∗∼pdata(O∗)

[
(Discriminate(O∗)− 1)2

]
+

1

2
EX∼pdata(Ô)

[
(Discriminate(Ô))2

]
,

(14)

where O∗ = Fbank(X∗) is the clean features and Ô =
Fbank(Enhance(X)) is the enhanced features.

3.6. Training

We build a robust end-to-end speech recognition system, which
converts noisy speech signals to texts with a single network.
Note that all procedures, such as enhancement, feature extrac-
tion, attention-based encoder-decoder and discriminant network

are implemented with neural networks and the parameters are
updated by stochastic gradient descent.

Besides the phase sensitive spectrum approximation objec-
tive in Section 3.2, the enhancement network is also trained to
produce outputs that cannot be distinguished from clean sam-
ples by the discriminator. In this way, the discriminator is in
charge of transmitting information to enhancement network of
what is real and what is fake, such that enhancement network
can correct its output towards the realistic distribution. The ad-
versarial loss, with the LSGANs approach, becomes

Lgan =
1

2
EX∼pdata(Ô)

[
(Discriminate(Ô)− 1)2

]
. (15)

We alternatively train the parameters of the enhancemen-
t, recognition and discriminant network based on the jointly
adversarial enhancement training. For the enhancement and
recognition network, we combine three losses Lasr, Lenh and
Lgan based on Eqs. (7), (13) and (15),

L = Lasr + αLenh + βLgan. (16)
The magnitude of the enhancement loss and adversarial loss is
controlled by hyperparameters α and β. And we train the dis-
criminant network according to Eq. (14).

4. Experiments
4.1. Data

We systemically evaluate the proposed jointly adversarial en-
hancement training on an open-source Mandarin speech cor-
pus called AISHELL-1 [22], which contains 400 speakers and
over 170 hours of Mandarin speech data. Training set contains
120,098 utterances from 340 speakers; development set con-
tains 14,326 utterance from 40 speakers and test set contains
7,176 utterances from 20 speakers.

For multi-condition training (MCT), we artificially corrup-
t each utterance of AISHELL-1 with background noises at S-
NRs randomly sampled between [0dB,+20dB]. And the back-
ground noises are from CHiME-4 corpus [23]. Apart from the
“matched” noisy AISHELL-1 test set corrupted with CHiME-4
noises, we also create the “unmatched” noisy test set corrupted
with NOISE-92 corpus noises [24].

4.2. Configurations

For the enhancement network, the input is the 257-dimensional
logarithmic STFT features and all input vectors are normalized
to have zero mean and unit variance using the training data s-
tatistics. We use three LSTM layers with 128 nodes. And a
linear layer with the sigmoid activation function is connected
to the last LSTM layer, whose output size is equal to the in-
put size. The network outputs the masking estimate to multiply
by the STFT of the noisy speech and forms the estimate of the
clean speech.

The fbank extraction network is a linear layer to transform
the STFT features to fbank features, which operates 257 × 80
matrix multiplication. After the matrix multiplication, we al-
so do the logarithmic operation and global mean and variance
normalization based on Eq. (8).

For the attention-based encoder-decoder network, we use
80-dimensional normalized log Mel filterbank features from the
fbank extraction network as an input feature. We use 4-layer
bidirectional LSTM with 320 cells in the encoder and 1-layer
unidirectional LSTM with 320 cells in the decoder. After every
BLSTM layer, a linear projection layer with 320 units is used
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to combine the forward and backward LSTM outputs. In the
encoder, we subsample the hidden states of the first and second
layers and use every second of hidden states for the subsequent
layer’s inputs [25]. For the location-based attention mechanis-
m, 10 centered convolution filters of width 100 are used to ex-
tract the convolutional features and the attention inner product
dimension is set as 320. We adopt a joint CTC-attention multi-
task loss function [26] and set the CTC loss weight as 0.1.

The discriminant network is the 4-layer convolution net-
work, where the num of channel is 32, 64, 128, 256, the ker-
nel size is 3 × 3 and stride is 2 × 2. All convolutions are fol-
lowed by rectified linear unit (Relu) activation function [27].
We use PatchGANs formulation [28], which can be applied to
arbitrarily-sized inputs in a fully convolutional fashion and av-
eraging all responses to provide the final output.

For decoding, we use a beam search algorithm with the
beam size 12. CTC scores are also used to re-score the hy-
potheses with 0.1 weight [26]. An end detection technique [26]
is used to stop the beam search. We also integrate external RNN
language model with 0.2 weight during decoding and the lan-
guage model is trained with the training transcripts.

All the parameters are initialized with the range [−0.1, 0.1]
of a uniform distribution. We use the AdaDelta algorithm [29]
with gradient clipping [30] for optimization and the AdaDelta
hyper-parameters are initialized ρ = 0.95 and ε = 1e−8. Once
the performance of the validation set is degraded, we decrease
the hyper-parameter ε by multiplying it by 0.01 at each subse-
quent epoch. The training procedure is stopped after 15 epochs.

4.3. Results

In the following results, we use character error rate (CER)
to quantify the system performance. We report CER of the
AISHELL-1 test set with three conditions. “clean” refers to
the original clean AISHELL-1 test set. “matched” denotes the
noisy test set corrupted with CHiME-4 background noises that
are matched to the training. “unmatched” refers to the noisy test
set corrupted with NOISE-92 corpus noises.

Table 1: CER results of E2E ASR system trained by clean data
and multi-condition training (MCT) without the enhancement.

E2E ASR CER Results(%)
clean matched unmatched

E2E ASR-Clean 12.3 83.1 85.7
E2E ASR-MCT 12.9 51.8 59.7

Firstly, we train the E2E ASR network using the clean
speech data (E2E ASR-Clean) and multi-condition training s-
trategy (E2E ASR-MCT), i.e., optimization with both the clean
and noisy speech. The result is shown in Table 1. The
E2E ASR-Clean network performs very poorly in the noisy test
set, which demonstrates the necessity of the robust E2E ASR
investigation. The E2E ASR-MCT significantly improves the
system robustness, which outperforms E2E ASR-Clean by
37.7% in “matched” test set and 30.3% in “unmatched”.

Table 2: CER results of the E2E ASR system trained by the
clean data and multi-condition training with the enhancement.

E2E ASR CER Results(%)
clean matched unmatched

E2E ASR-Clean 13.1 63.2 65.5
E2E ASR-MCT 13.6 55.5 64.5

Secondly, we train the mask-based enhancement network
according to Section 3.2, which converts the noisy speech into
the enhanced version. Then the enhanced features are fed into

the well-trained E2E ASR-Clean and E2E ASR-MCT network
to generate the final label sequence. The result is shown in Table
2. For the E2E ASR-Clean network, the speech enhancemen-
t component significantly improves the system robustness and
outperforms E2E ASR-Clean system without the enhancemen-
t module by 23.9% in “matched” test set and 23.6% in “un-
matched”, which confirms the effectiveness of combining the
speech enhancement with E2E ASR framework. However, for
the E2E ASR-MCT network, the speech enhancement degrades
the system performance, consistent with observations in [18].
The enhancement and E2E ASR network are separately trained
by the different objectives and the enhanced process may intro-
duce unseen distortions that degrades the performance.

Table 3: CER results of the E2E ASR system using the retrain-
ing and joint training with and without the GAN procedure.

Model CER Results(%)
clean matched unmatched

E2E ASR-Retraining 12.3 51.5 59.2
Joint-Enhance-E2E ASR 12.3 50.2 58.5
Joint-Enhance-E2E ASR-GAN 12.2 49.1 57.3

Next, we retrain E2E ASR-MCT network using enhanced
features hoping to alleviate the speech distortion problem. We
feed all the training data into the well-trained enhancement net-
work and the enhanced features are used to retrain E2E ASR
network, which is referred to E2E ASR-Retraining. The result
is shown in the first row of Table 3. Compared to the E2E ASR-
MCT network, the performance improvement of the E2E ASR-
Retraining is limited.

Finally, we jointly train the enhancement and E2E ASR
network without and with the adversarial training according
to Eq. (16). The joint model is initialized from the existing
enhancement and E2E ASR-MCT network checkpoint. Joint-
Enhance-E2E ASR denotes the system trained by the joint op-
timization of the recognition and enhancement loss. We set
magnitude of the enhancement loss α = 5.0 and adversari-
al loss β = 0. Joint-Enhance-E2E ASR-GAN refers to the
system with the adversarial training and magnitude of the ad-
versarial loss is set β = 2.0. The result is shown in the
last two rows of Table 3. Compared to the E2E ASR-MCT
network, Joint-Enhance-E2E ASR improves the system perfor-
mance. And Joint-Enhance-E2E ASR-GAN improves perfor-
mance further, exceeding the performance of E2E ASR-MCT
by 5.2% in “matched” test set and 4.0% in “unmatched”, sug-
gesting the potential of the adversarial training.

5. Conclusions
In this paper, we propose a jointly adversarial enhancemen-
t training to imporove robustness of end-to-end systems. We use
a jointly compositional scheme of enhancement, recognition
and discriminant network. The discriminator is used to distin-
guish between the clean and enhanced features. Experiments on
AISHELL-1 demonstrate effectiveness of the proposed method.
In future, we will investigate different network architectures and
training strategies to obtain greater performance improvement.
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