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Abstract
The recent exploration of deep learning for supervised speech
separation has significantly accelerated the progress on the
multi-talker speech separation problem. The multi-channel ap-
proaches have attracted much research attention due to the ben-
efit of spatial information. In this paper, integrated with the
power spectra and inter-channel spatial features at the input
level, we explore to leverage directional features, which im-
ply the speaker source from the desired target direction, for
target speaker separation. In addition, we incorporate an at-
tention mechanism to dynamically tune the model’s attention to
the reliable input features to alleviate spatial ambiguity prob-
lem when multiple speakers are closely located. We demon-
strate, on the far-field WSJ0 2-mix dataset, that our proposed
approach significantly improves the performance of speech sep-
aration against the baseline single-channel and multi-channel
speech separation methods.

Index Terms: target speaker separation, directional features,
attention mechanism, permutation invariant training

1. Introduction
Speech separation, which is to isolate an observed mixture
speech signal to an individual, contiguous and intelligible
stream for each speaker, has been widely studied for decades
[1, 2, 3, 4]. Recently, the deep learning based techniques such
as deep clustering (DC) [5], deep attractor network (DANet)
[6] and permutation invariant training (PIT) [7] address the la-
bel permutation problem for separating multi-talker speech. In
most of these work, speaker-independent features such as spec-
tral features (e.g., log power spectra) and spatial features (e.g.,
inter-channel phase difference) are fed into the network, and the
time-frequency (T-F) masks of all speakers are estimated. The
output speakers’ identities remain unknown. However, in most
of real applications, only one or a few desired speakers are of
interest. The speaker-dependent information is thereby needed
for separating interested speakers from the mixture.

A simple yet effective feature is the voice characteristics.
The target speaker representation has been proposed to work
with the spectra features. The network is either adapted to spe-
cific speakers [8], or attend and filter the target speech through
interaction between the joint trained speaker features and mix-
ture input[9]. For example, deep extractor network (DENet)
[10] used a short audio clip from the target speaker as an anchor,
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and formed a target extractor in a canonical high-dimensional
embedding space. [11] proposed a VoiceFilter to separate the
voice of a target speaker from multi-speaker signals, by mak-
ing use of a reference signal from the target speaker. Although
the voice characteristics based methods have been proven suc-
cessful for extracting target speaker, a common limitation is that
they all require the prior knowledge about the reference signal.

Another speaker-dependent information is sound location,
which can be either estimated from acoustic/visual signals, or
predefined based on real usage scenario. Chen et al. proposed
a location-based angle feature which computes the cosine dis-
tance between the steering vector and inter-channel phase dif-
ference (IPD) for each speaker in mixture [12]. The phase ambi-
guities creates difficulties for precisely discriminate one speaker
from another in certain frequency bands. With the direction of
arrival (DOA) information, beamforming techniques [13, 14]
can be applied to enhance the speaker from the desired direc-
tion. In [15], Wang et al. developed two directional features to
improve speech separation. One is the compensated IPD, the
other derives from beamforming outputs as beamforming con-
structively combines target signals and destructively for non-
target signals. Although impressive improvement is achieved
with the directional features, it is a 2-stage system with high
computational complexity.

In this paper, we perform target speaker separation by mak-
ing use of directional features in a neural network model, named
Neural Spatial Filter. Two novel directional features are prop-
erly designed based on fixed beamformer outputs, which are
then integrated with the conventional multi-channel speech sep-
aration training features (e.g. power spectra and inter-channel
spatial features) at the input level for the target speaker separa-
tion training. Under the supervision of the ideal T-F mask, the
network can learn better mask estimation with the assistance
from directional features. A limitation of the conventional neu-
ral network based speech separation methods is that the max-
imum number of mixing streams the model can handle is de-
termined by the network architecture, e.g., the PIT with two
output segments will not work for three-talker speech separa-
tion. The directional features aim to inform the neural network
of the target speaker direction and therefore no prior knowledge
on the number of mixing speakers is required for this model ar-
chitecture. Furthermore, we introduce an attention mechanism
to alleviate the spatial ambiguity issue discussed in [16] that the
performance of multi-channel speech separation drastically de-
grades when the speakers locate close to each other. In this case,
the spatial and directional features become less discriminative.

The rest of paper is organized as follows. Section 2 de-
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scribes the proposed neural spatial filter in detail. The training
paradigms are presented in Section 3. Experimental setups and
results are summarized in Section 4. We conclude this paper in
Section 5.

2. Neural Spatial Filter
2.1. Multi-channel speech separation

In this paper, we follow the multi-channel setup in [12] where
IPDs are used as spatial cues and incorporated with spectral
features at the input level. For a M -channel mixture signal
y ∈ R

M×S , we extract K microphone pairs of IPDs, noted
as (k1, k2), where k1 and k2 represents the first and second
microphone index of the k-th pair, respectively. The first chan-
nel’s logarithm power spectrum (LPS) and K pairs of IPDs are
concatenated as input of the neural network, and the T-F masks
for target speakers are estimated in the output of network.

2.2. Speaker-dependent directional features

Spatial feature such as IPD successfully extracts the spatial in-
formation of all the sources in the mixture signal. Moreover,
with some or all of the target speaker directions, features of
specific speaker-dependent direction could be extracted to im-
prove the performance of separation further. In this paper, it is
assumed that the oracle location of each speaker is known by
the separation system, this is an reasonable assumption in some
real applications, for example, the speaker location could be de-
tected by face detection techniques with very high accuracy.

A location-guided feature for speech separation was intro-
duced in [12]. This feature measures the cosine distance be-
tween the steering vector, which is formed according to the di-
rection of target speaker, and IPD:

AFθ(t, f) =

K∑
k=1

eθ,k1(f)
Yk1(t,f)
Yk2(t,f)∣∣∣eθ,k1(f)
Yk1(t,f)
Yk2(t,f)

∣∣∣
(1)

where eθ,k1(f) is the steering vector coefficient for target
speaker from θ at frequency f for first microphone of k-th pair,
and Yk1(t, f)/Yk2(t, f) is the IPD between k1 and k2. Also,
the pre-masking step in [12] is also applied to add the discrim-
ination of AF. Note that Eq. 1 can be applied to general mi-
crophone array topology rather than the special seven-element
microphone array used in [12]. This angle feature provides the
desired speaker’s directional information to the network so that
the network is expected to attend to the target speech.

The beamforming, along with its spatial separation capa-
bility, has been well studied in the array processing literature.
We propose two new directional features, Directional Power
Ratio (DPR) and Directional Signal-to-Noise Ratio (DSNR),
based on the output power of multi-look fixed beamformers.
For a given microphone array and a pre-defined direction grid
{θ1, θ2, ...θP }, a set of fixed filters, e.g. Super Cardioid fixed
beamformer [17], is designed and denoted as wp(f) ∈ C

M ,
which aims to enhance sound sources from direction θp for
f -th frequency bin. Assuming these fixed filters can provide
well enough spatial separation and the multiple speakers are not
closely located in the space, we can use the processing output
power of wp(f) as a reasonable estimation of the signal power
from direction θp. Therefore, the DPR can be considered as an
indicator of how well is a T-F bin (t, f) dominated by the signal
from direction θp, defined as follows:

DPRθp(t, f) =

∥∥wH
p (f)Y(t, f)

∥∥2

2∑P
k=1 ‖wH

k (f)Y(t, f)‖2
2

(2)

LPS of mixture mic. 0 LPS of target beamformer output

LPS of estimated target speech

LPS of clean target speech

DPR for target speaker

DSNR for target speaker

Figure 1: A example in WSJ0 2-mix of the mixture logarithm
power spectrum, output power of the fixed beamformer focuses
at target direction, directional features and recovered target
speech. The angle difference between 2 speakers is 102 degrees.

where Y(t, f) is the complex spectral vector of multi-channel
mixture signal in T-F bin (t, f). Furthermore, in most of the
beam-pattern design techniques, there are multiple nulling ar-
eas by each fixed spatial filter. For example, signals from the
neighborhood of θp are well preserved by wp(f) while severely
attenuated by wk(f), θk ∈ Ωp. Here, Ωp is the set of directions
whose beam-patterns have null at the direction θp. It can be
well-determined during beamformer design stage. Therefore, if
the direction grid covers the whole space, the DSNR can be in-
terpreted as the ratio of signal power from θp over the strongest
interference:

DSNRθp(t, f) =

∥∥wH
p (f)Y(t, f)

∥∥2

2

max
k∈Ωp

(
‖wH

k (f)Y(t, f)‖2
2

) (3)

Figure 1 illustrates the proposed DPR and DSNR features
when applied to a sample in dataset WSJ0 2-mix. Although the
designed beamformer that focuses at target direction does not
provide significant separation performance, the proposed DPR
and DSNR can clearly provide cues for separating target speech
from the interference.

2.3. Attention mechanism

An attention mechanism is introduced to alleviate spatial over-
lap issue discussed in [16], where the performance of multi-
channel speech separation drastically degrades when the speak-
ers locate close to each other or the angle difference (AD) be-
tween speakers is small. This issue is mainly caused by the in-
creasing dependency that network has on spatial features, since
spatial features are more discriminative than spectral features
under large AD. Therefore, the network compromises on per-
formances of small angle samples and put too much weight on
spatial features in order to achieve overall improvement.

To tackle this issue, we apply an attention mechanism to
guide the network to selectively focus on spectral, spatial or di-
rectional features under different ADs. The attention is a func-
tion of the angle difference ad:

att(ad) = 2 ∗max (σ(ad)− 0.5, 0) (4)

where σ(ad) = 1/(1+exp(−w(ad−b))) is the sigmoid score
denotes how much emphasis should be put on spatial and direc-
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Figure 2: The overview of our proposed neural spatial filter with
attention mechanisum.

tional features, w and b are trainable parameters. Figure 2 illus-
trates our proposed neural spatial filter and feature formulation
with attention mechanism. On the right is the attention curve
under different ADs. Spectral, spatial and directional features
are concatenated along frequency axis. The attention weight is
multiplied to all spatial and directional features before feeding
them to the upper layers. The neural network weights might go
large during the training in case that the input features are at-
tenuated by the attention weights, so we add L2 regularization
on the input layer and several preceding layers of the separation
network, respectively.

3. Training Paradigms
3.1. Permutation Invariant Training

Formulated the speech separation in T-F domain, the T-F rep-
resentation of a C-mixed speech mixture can be interpreted
as Y(t, f) =

∑C
c=1 Xc(t, f), where Xc(t, f) is the com-

plex spectrogram of speaker c. Under supervised learning
framework, when the network has multiple outputs, DNN-based
speech separation systems often suffer from label permutation
problem [7]. It’s difficult to assign reference labels for the net-
work outputs, and the order of which can be arbitrary. Permu-
tation Invariant Training (PIT) [7, 18] tackled this problem by
calculating spectrogram estimation errors between all pairs (C!)
of reference signals and estimated signals and always choosing
the minimum error for backpropagation:

LPIT = min
ρ∈P

C∑
c=1

∑
t

∥∥∥
(
M̂ρ(c)(t)−Mc(t)

)
◦ |Y(t)|

∥∥∥
2

2
(5)

where P contains all possible permutations for C! output order,

M and M̂ are ideal and estimated T-F mask respectively, and
|Y| is the mixture magnitude spectrogram. Eq. 5 is known as a
spectrum approximation (SA) loss, which is commonly used in
speech separation and enhancement tasks [19].

3.2. Target Extraction Training

For target extraction training, each output of network is
bounded to a particular target speaker i:

LTGT =
∑
t

∥∥∥
(
M̂i(t)−Mi(t)

)
◦ |Y(t)|

∥∥∥
2

2
(6)

PIT is used for multi-talker speech separation when there is no
input directional feature. While for single target extraction, we
exploit target extraction training (TET). When there are more
than one targets, the order of directional features can indicate
the output order of target speakers. Two types of inputs are in-
vestigated: 1) tgt: only the target speaker’s directional features
are provided for the separation network; 2) tgt & int: both tar-
get and interference speakers’ directional features are used as
the input. If there are more than one interference speaker, their
directional features will be averaged as one interference input.
The reason we add the directional features for the interference
speaker is that, given distinct interference information as hints,
the network will learn to have more confidence to filter out in-
terference from a latent direction.

4. Experiments and Results
4.1. Dataset simulation and feature extraction

We simulated a spatialized reverberant dataset derived from
Wall Street Journal 0 (WSJ0) 2-mix corpus, which is an open
and well-studied dataset used in monaural and multi-channel
speech separation [5, 7, 20, 21, 22]. There are 20,000, 5,000 and
3,000 multi-channel, reverberant, two-speaker mixed speech in
training, development and test set respectively. The perfor-
mance evaluation is all done on test set, the speakers in which
are all unseen during training. We consider a 6-microphone cir-
cular array of 7cm diameter with speakers and the microphone
array randomly located in the room. The two speakers and mi-
crophone array are on the same plane and all of them are at least
0.3m away from the wall. The image method [23] is employed
to simulate RIRs randomly from 3000 different room configura-
tions with the size(length-width-height) ranging from 3m-3m-
2.5m to 8m-10m-6m. The reverberation time T60 is sampled
in a range of 0.05s to 0.5s. Samples with angle difference of
0°-15°, 15°-45°, 45°-90°and 90°-180°respectively account for
16%, 29%, 26% and 29% in the dataset.

For short time Fourier transform (STFT) setting, the win-
dow size is 32 ms and the hop size is 16 ms. 512-point FFT
is used to extract 257-dimensional LPS. The LPS is computed
from the first channel waveform of speech mixture. IPDs are
extracted between microphone pairs (1, 4), (2, 5), (3, 6), (1, 2),
(3, 4) and (5, 6). These pairs are selected considered that the
distance between each pair is either the furthest or nearest. For
DPR and DSNR computation, we use 36 fixed spatial filters and
the p-th filter is steered at azimuth 10p°.

4.2. Network structure and evaluation metrics

All the methods share the same network configuration, contain-
ing 3 LSTM layers each with 512 nodes, followed by a 512-
node fully-connected layer. The output layer consists of 257
nodes for each output speaker. Batch size is set as 64. Adam
optimizer is utilized in training. We always use the whole utter-
ance during training and evaluation [18]. For attention experi-
ments, the regularization coefficient is set as 2e-5 empirically.

Results are evaluated on two metrics: scale-invariant signal-
to-noise ratio improvement (SI-SNRi), which is commonly used
in recent speech separation tasks [5, 7, 20, 24] and signal-to-
distortion rate improvement (SDRi) computed with MATLAB
bss eval toolbox [25]. The reverberant speech of each source is
used as reference to compute the metric. The performances are
evaluated under different range of ADs between speakers.
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Table 1: SDRi (dB) and SI-SNRi (dB) performances of target separation systems on far-field WSJ0 2-mix.

# of target Features & Setup Training SI-SNRi (dB) SDRi (dB)loss <15° 15°-45° 45°-90° >90° Ave.

2 LPS PIT 4.71 5.35 5.15 5.30 5.18 5.62
2 LPS, 6IPD PIT 3.00 6.71 7.90 8.20 6.88 7.35

2 LPS, 6IPD, DPR (2-tgt) TET 3.31 8.08 9.09 9.38 7.98 8.42
2 LPS, 6IPD, DSNR (2-tgt) TET 2.20 7.87 8.91 9.21 7.72 8.07
2 LPS, 6IPD, DPR + DSNR (2-tgt) TET 2.83 8.34 9.28 9.56 8.06 8.49
2 LPS, 6IPD, DPR + DSNR + AF (2-tgt) TET 4.87 8.77 9.71 10.04 8.78 9.17
1 LPS, 6IPD, DPR + DSNR (tgt) TET 0.70 7.32 8.75 9.10 7.27 7.35
1 LPS, 6IPD, DPR + DSNR (tgt & int) TET 2.08 8.90 9.81 10.02 8.49 8.87
1 LPS, 6IPD, DPR + DSNR + AF (tgt) TET 4.83 8.92 9.91 10.26 8.93 9.21
1 LPS, 6IPD, DPR + DSNR + AF (tgt & int) TET 4.84 9.17 10.15 10.50 9.14 9.56

Table 2: SI-SNRi (dB) performance of two target speaker separation with attention mechanism on far-field WSJ0 2-mix.

Features Setup SI-SNRi (dB)
<15° 15°-45° 45°-90° >90° Ave.

LPS, 6IPD - 3.00 6.71 7.90 8.20 6.88
LPS, 6IPD wLPIT 2.70 4.19 5.20 5.78 4.69
LPS, 6IPD Learnable att.+all LSTM L2 reg. 3.31 6.59 8.03 8.17 6.92
LPS, 6IPD Fixed att.+all LSTM L2 reg. 3.51 6.52 7.79 8.37 6.93
LPS, 6IPD Fixed att.+1st LSTM L2 reg. 3.82 7.14 8.09 8.34 7.22
LPS, 6IPD, DPR+DSNR (2-tgt) - 2.83 8.34 9.28 9.56 8.06
LPS, 6IPD, DPR+DSNR (2-tgt) Fixed att.+all LSTM L2 reg. 3.31 8.21 9.30 9.59 8.17
LPS, 6IPD, DPR+DSNR (2-tgt) Fixed att.+1st LSTM L2 reg. 3.99 8.77 9.54 9.73 8.51

4.3. Results and analysis

Target separation with directional features. Table 1 reports
the SI-SNRi and SDRi results for systems with three input se-
tups: 1) spectral feature only (LPS); 2) spectral and spatial fea-
tures (LPS, 6IPD); 3) spectral, spatial and directional features.

The single-channel 2-speaker separation network performs
poorly with only SI-SNRi of 5.18dB. Adding IPDs elevates the
overall performance to 6.88dB, especially under large AD. Di-
rectional features (AF, DPR and DSNR) of two target speakers
further improve the performance to 8.06dB. Furthermore, dif-
ferent directional features DPR, DSNR and AF are combined
and achieves 8.78dB.

We also trained a single target speaker network to separate
the speaker of interest. By running the single target separa-
tion network twice, each time selecting one speaker in mix-
ture signal as target, a better performance is achieved com-
pared to 2-speaker separation network (8.49dB v.s. 8.06dB for
DPR+DSNR and 8.78dB v.s. 9.14dB for DPR+DSNR+AF).
With only target directional features provided, the perfor-
mance drops 0.2dB compared to that when both speakers’
directional features are available (8.93dB v.s. 9.14dB for
DPR+DSNR+AF). However, this architecture does not nec-
essarily require interference speaker’s directional information,
which makes it more practical in reality.

Spatial overlap issue. All experiments in Table 1 used PIT
while training to avoid the speaker ambiguity when directional
features are less discriminative in small AD. Comparing to the
separation system with spectral feature only, the performance of
systems with spatial and directional features degrades when the
AD is smaller than 15°. The results of the proposed attention
methods are summarized in Table 2, and L2 regularization for
first LSTM layer and all LSTM layers are also evaluated.

To verify that the performance degradation for smaller AD
is not introduced by the small proportion of data in training set,
we increased the weight of small angle data in loss function
by four times and no improvement was achieved in small AD
(wLPIT ). For attention experiments, we firstly fixed the atten-
tion, empirically set w to 0.5 and b to 10. With LPS and 6IPD
as input feature, fixed attention and regularization can boost the
performance from 3.00dB to 3.82dB for small AD, adding reg-
ularization term only on the first LSTM layer is better than add
on all LSTM layers (3.82dB v.s. 3.51dB). As we expect, with
trainable attention, the network learned reasonable parameters
as w = 0.9, b = 9.6 and achieves comparable result with fixed
attention. For systems with directional features, the fixed atten-
tion methods also boost performances for all of AD ranges.

5. Conclusion
In this paper, directional information is used to separate the
target voice given its direction. Two directional features are
designed and incorporated with spatial and spectral features
to provide more complementary information for training our
separation network. Furthermore, an attention mechanism is
proposed to improve performance when multiple speakers are
closely located. Experimental results on WSJ0 2-mix validate
the effectiveness of our proposed neural spatial filter. In future,
we will generalize this work to more mixed speakers condition.

6. Acknowledgements
This paper was partially supported by Shenzhen Sci-
ence & Technology Fundamental Research Programs (No:
JCYJ20170817160058246 & JCYJ20180507182908274).

4293



7. References
[1] C. Cherry and J. A. Bowles, “Contribution to a study of the cock-

tail party problem,” Journal of the Acoustical Society of America,
vol. 32, no. 7, pp. 884–884, 1960.

[2] D. Wang and G. J. Brown, Computational Auditory Scene Anal-
ysis: Principles, Algorithms, and Applications. Wiley-IEEE
Press, 2006.

[3] A. Ozerov and C. Févotte, “Multichannel nonnegative matrix fac-
torization in convolutive mixtures for audio source separation,”
IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 3, pp. 550–563, 2010.

[4] H. Saruwatari, S. Kurita, K. Takeda, F. Itakura, T. Nishikawa,
and K. Shikano, “Blind source separation combining independent
component analysis and beamforming,” EURASIP Journal on Ad-
vances in Signal Processing, vol. 2003, no. 11, p. 569270, 2003.

[5] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep
clustering: Discriminative embeddings for segmentation and sep-
aration,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2016, pp. 31–35.

[6] Z. Chen, Y. Luo, and N. Mesgarani, “Deep attractor network
for single-microphone speaker separation,” in 2017 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2017, pp. 246–250.

[7] D. Yu, M. Kolbæk, Z.-H. Tan, and J. Jensen, “Permutation invari-
ant training of deep models for speaker-independent multi-talker
speech separation,” in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,
pp. 241–245.

[8] K. Zmolikova, M. Delcroix, K. Kinoshita, T. Higuchi, A. Ogawa,
and T. Nakatani, “Speaker-aware neural network based beam-
former for speaker extraction in speech mixtures.” in Interspeech,
2017, pp. 2655–2659.

[9] J. Xu, J. Shi, G. Liu, X. Chen, and B. Xu, “Modeling attention and
memory for auditory selection in a cocktail party environment,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[10] J. Wang, J. Chen, D. Su, L. Chen, M. Yu, Y. Qian, and D. Yu,
“Deep extractor network for target speaker recovery from sin-
gle channel speech mixtures,” arXiv preprint arXiv:1807.08974,
2018.

[11] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. Her-
shey, R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno, “Voice-
filter: Targeted voice separation by speaker-conditioned spectro-
gram masking,” arXiv preprint arXiv:1810.04826, 2018.

[12] Z. Chen, X. Xiao, T. Yoshioka, H. Erdogan, J. Li, and
Y. Gong, “Multi-channel overlapped speech recognition with lo-
cation guided speech extraction network,” in 2018 IEEE Spoken
Language Technology Workshop (SLT). IEEE, 2018, pp. 558–
565.

[13] S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhance-
ment using beamforming and nonstationarity with applications to
speech,” IEEE Transactions on Signal Processing, vol. 49, no. 8,
pp. 1614–1626, 2001.

[14] S. Markovich, S. Gannot, and I. Cohen, “Multichannel eigenspace
beamforming in a reverberant noisy environment with multiple
interfering speech signals,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 17, no. 6, pp. 1071–1086, 2009.

[15] Z. Wang and D. Wang, “Combining spectral and spatial features
for deep learning based blind speaker separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing,
vol. 27, no. 2, pp. 457–468, 2019.

[16] L. Chen, M. Yu, D. Su, and D. Yu, “Multi-band pit and model in-
tegration for improved multi-channel speech separation,” in 2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2019.

[17] J. Benesty, “Study and design of differential microphone arrays,”
Springer Topics in Signal Processing, vol. 6, 2013.

[18] M. Kolbæk, D. Yu, Z.-H. Tan, J. Jensen, M. Kolbaek, D. Yu, Z.-H.
Tan, and J. Jensen, “Multitalker speech separation with utterance-
level permutation invariant training of deep recurrent neural net-
works,” IEEE/ACM Transactions on Audio, Speech and Language
Processing (TASLP), vol. 25, no. 10, pp. 1901–1913, 2017.

[19] D. Wang and J. Chen, “Supervised speech separation based on
deep learning: An overview,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 26, no. 10, pp. 1702–
1726, 2018.

[20] Z.-Q. Wang, J. Le Roux, and J. R. Hershey, “Multi-channel deep
clustering: Discriminative spectral and spatial embeddings for
speaker-independent speech separation,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 1–5.

[21] Z. Chen, J. Li, X. Xiao, T. Yoshioka, H. Wang, Z. Wang, and
Y. Gong, “Cracking the cocktail party problem by multi-beam
deep attractor network,” in 2017 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU). IEEE, 2017, pp.
437–444.

[22] Z. Chen, T. Yoshioka, X. Xiao, L. Li, M. L. Seltzer, and Y. Gong,
“Efficient integration of fixed beamformers and speech separation
networks for multi-channel far-field speech separation,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2018, pp. 5384–5388.

[23] J. B. Allen and D. A. Berkley, “Image method for efficiently sim-
ulating small-room acoustics,” The Journal of the Acoustical So-
ciety of America, vol. 65, no. 4, pp. 943–950, 1979.

[24] Z.-Q. Wang and D. Wang, “Integrating spectral and spatial fea-
tures for multi-channel speaker separation,” in Proc. Interspeech,
vol. 2018, 2018, pp. 2718–2722.

[25] E. Vincent, R. Gribonval, and C. Févotte, “Performance measure-
ment in blind audio source separation,” IEEE transactions on au-
dio, speech, and language processing, vol. 14, no. 4, pp. 1462–
1469, 2006.

4294


