
entropy

Article

A Model for Tacit Communication in Collaborative
Human-UAV Search-and-Rescue

Vijeth Hebbar * and Cédric Langbort

����������
�������

Citation: Hebbar, V.; Langbort, C. A

Model for Tacit Communication in

Collaborative Human-UAV

Search-and-Rescue. Entropy 2021, 23,

1027. https://doi.org/10.3390/

e23081027

Academic Editor: Raúl Alcaraz

Received: 1 July 2021

Accepted: 6 August 2021

Published: 10 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA;
langbort@illinois.edu
* Correspondence: vhebbar2@illinois.edu

Abstract: Tacit communication can be exploited in human robot interaction (HRI) scenarios to achieve
desirable outcomes. This paper models a particular search and rescue (SAR) scenario as a modified
asymmetric rendezvous game, where limited signaling capabilities are present between the two
players—rescuer and rescuee. We model our situation as a co-operative Stackelberg signaling game,
where the rescuer acts as a leader in signaling its intent to the rescuee. We present an efficient game-
theoretic approach to obtain the optimal signaling policy to be employed by the rescuer. We then
robustify this approach to uncertainties in the rescue topology and deviations in rescuee behavior.
The paper thus introduces a game-theoretic framework to model an HRI scenario with implicit
communication capacity.

Keywords: signaling; human robot interaction; game theory

1. Introduction

As humans and autonomous systems increasingly interact in a host of physical settings
and contexts, there is a growing need for mechanisms and algorithms that facilitate their
engagement and understanding. One possible approach to do so, especially in situations
where both parties must actively collaborate (as opposed to just co-exist, share space,
or merely get out of each other’s way) is by establishing communication, as a way to share
information and intent.

Although it is often possible for an autonomous systems to rely on traditional commu-
nication devices and protocols (e.g., displaying messages on a screen), many robots also
offer the possibility of tacit communication, whereby motions and paths are themselves
used as means to encode a desired meaning. This kind of communication amounts to what
is known as “signaling” in the economics and decentralized control literature (Grover and
Sahai [1], Sobel [2]), since actions are not taken solely because of how they drive the robot
to move, but also because of the information contained in that motion. Examples of motion
planning specifically accounting for this effect include work by Baillieul and Özcimder [3]
and Santos and Egerstedt [4] and, more recently and more broadly, in the growing field of
motion legibility (Dragan et al. [5,6]). Indeed, such “legible” motion planning takes into
account the inferences an observer makes when viewing the trajectory taken by a robot.

Once one starts exploring the idea of using motion to communicate intent or informa-
tion, it seems natural to go one step further and consider planning an autonomous system’s
motion to specifically and strategically influence its human collaborator’s actions. Keeping
with our economics analogy, this amounts to going from “signaling” to “persuasion”,
where the latter is concerned with sending messages to actively shape a receiver’s posterior
about a state of the world of interest, with the goal of triggering a particular sender- or
group-beneficial action (Kamenica and Gentzkow [7]). This kind of problem is typically
formulated as a Stackelberg game between sender (in this case, the robot) and receiver (the
human agent), with the former acting as a leader, which chooses its messages to influence
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the receiver’s actions. In this paper, we consider such a Stackelberg tacit communication
design problem in the context of search-and-rescue missions.

Unmanned Aerial Vehicle (UAV) usage in search and rescue (SAR) applications has
been extensively studied in recent years. The primary challenge that is addressed by these
UAVs is to quickly sweep large swaths of area with the goal of finding the rescuees and,
in certain situations, providing relief in the form of air-drops. Traditionally, such SAR
scenarios have been considered in either the ‘full communication setup’, where the rescuee
and rescuer/UAV can agree on a meeting location and actively coordinate to rendezvous
there, or the more common, ‘no communication setup’, where they are oblivious to each
other’s actions (and locations) and try and meet (with high probability) in minimum
time. The latter case is akin to a “hide-and-seek” game of one player finding another in a
known environment in the minimum time possible. Alpern and Gal [8] discuss and study
various strategies for such co-operative rendezvous games between non-communicating
players. Keeping in line with the initial discussion we had in the previous paragraph
we are more interested in the intermediate (and, arguably, more realistic) scenario where
the rescuer/UAV has some limited ability to communicate with the rescuee. The rescuer
can transmit some information about its intentions or influence the rescuee to move in a
mutually beneficial way.

Recent work has shown that autonomous agents, in particular UAVs, have implicit
signaling capabilities allowing them to convey intent in the absence of more formal commu-
nication channels. Szafir et al. [9] use modified flying trajectories to signal intent while in
another work (Szafir et al. [10]) they show that lights on a quadrotor can be used to convey
directionality. Such signaling capabilities are closely tied to the idea of legible motion. Its
primary objective is to make the robot’s intent predictable to the human and, thus, increase
human comfort in HRI scenarios. In other words, legible motion is the answer to the
question: How can a robot use implicit signaling abilities to convey information about its
own subsequent motion? However, as indicated earlier in this section, we are interested in
taking a step further and answering a naturally arising question: How can a robot perform
persuasion, i.e., use such implicit signaling abilities to convey information to a human
with a goal of influencing her subsequent behavior?

1.1. Motivating Example

To motivate our ideas further we will consider a simple example, one that will be
revisited throughout the paper to illustrate key elements and ideas in our work. Consider
the simple terrain represented in Figure 1, with two plains (located at the red circles) to
the east and west of the rescuee’s initial location (blue circle). The rescuee’s initial location
is assumed inaccessible to the rescuer/UAV, initially located at the position in the south
marked by a green circle.

If the existence and (approximate) location of the plains is known to both the rescuee
and the rescuer, and there are means for the latter to produce a boolean signal, an option
to introduce coordination between the two is for the UAV to issue a message signifying
its intentions. Consider a message that may be interpreted as, “I am going to the eastern
plain”, as a way to indicate the rescuer’s intention to head in that direction. Assuming
that the signal motivates the rescuee to move towards the ‘eastern plain’, such a signal
holds value even if the rescuer does not actually plan on meeting the rescuee at the plain
(but, instead, picks some other accessible point along the path taken by the rescuee to
rendezvous). This strategic effect of the transmitted signal is precisely what we wish to
capture in our modeling. Note that such signaling is only feasible if the number of salient
“landmarks” (here, the plains), each of which corresponds to a message, is small enough
for the rescuee to reliably interpret the different messages and for the UAV to be able to
produce them.

As evidenced by works of Szafir et al. [9,10] and Dragan et al. [5,6] there exist intrinsic
signaling abilities in UAVs. In our work, we merely assume that such capabilities exists
(along with the ability to produce a message set of appropriate cardinality) but do not
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concern ourselves with its physical implementation or specific characteristics, i.e., with
how the message manifests physically. In the context of our example from Figure 1, this
assumption means that there exist two messages which are interpreted by the rescuee as
the rescuer’s intent to go to either of the two ‘target’ plains. With this as the background,
our aim is to derive efficient algorithms to determine which message the rescuer should
send to minimize its and the rescuee’s effort.

Figure 1. Rescue area topology . Rescuee takes optimal path (blue) to the indicated target. The rescuer
picks an optimal rendezvous point (red cross) to meet the rescuee. Clouds (blue shading) act as
obstacles to the UAV and hills (green shading) act as obstacles to the rescuee.

Our problem is naturally formulated as a Stackleberg game between the rescuer
(acting as the leader) and the rescuee (acting as the follower), as a way to account for the
fact that each message prompts the rescuee to move towards the corresponding landmark.
The notion of legibility based signaling fits consistently in the asymmetric structure of the
rescuer–rescuee interaction we are considering in which the rescuer’s message initiates
the moves.

To give our problem additional structure and to make it amenable to further analysis
we make some preliminary assumptions. Both the rescuer and the rescuee are assumed
to have constant velocities over the terrain. In moving across obstacles (such as hills and
clouds) the players incur an increased path cost and, thus, take more time to traverse.
The constant velocity assumption allows us to work with the path cost and the travel time
interchangeably. The rescuee will seek to reach the target in minimum time, or equivalently,
minimize its path cost to the goal. The rescuer will try to minimize both the path cost for
the rescuee and its own path cost to the point of rendezvous.

In other words, given a signal, the rescuee interprets the goal that the UAV is flying to
and plans the shortest path to that goal. The rescuer, modeled as a rational player, assumes
the human is going to behave as expected (i.e., takes the shortest path to the perceived
goal) and plans out its path to intercept the human’s path. There are multiple implicit
assumptions we have made in the game as presented above.

Assumption 1. The ability of the rescuee to compute the shortest path relies on her knowledge of
the precise terrain in the region under consideration. We make this assumption on her knowledge of
the topology around her.
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Assumption 2. The formulation presented above also relies on the rescuee’s ability to precisely
compute these shortest paths given the region topology. We assume that the rescuee possesses such
abilities.

Assumption 3. We assume that the topology surrounding the rescuee is common knowledge.

Assumption 4. Finally, the rescuer is assumed to have complete knowledge of the velocities of both
the human and itself.

1.2. Roadmap Ahead

Having established our framework, we are specifically interested in answering the
following questions

1. How can we arrive at the signaling policy that the rescuer should employ to minimize
its cost?;

2. How sensitive is our approach of finding the optimal signaling policy to changes in
the velocities of the players? Such situations mean that our Assumption 4 is violated;

3. How sensitive is our approach to uncertainties in the rescuer’s knowledge of the
environment topology? This translates to relaxing our Assumption 3;

4. How sensitive is our approach of finding the optimal signaling policy to changes
in the rescuee’s path planning model? Such a situation means our Assumption 2 is
contradicted;

5. How do we account for such uncertainties in designing a robust approach to find the
optimal signaling policy?

In Section 2, we formalize our problem statement and arrive at a signaling approach
to be employed by the rescuer when Assumptions 1–4 hold. In other words, this section
seeks to answer the first question posed above.

In Section 3, we analyze the sensitivity of the approach developed in Section 2 to
uncertainties in the rescuer’s knowledge of the velocities of agents and travel costs over the
terrain topology. This part of the work effectively answers the second and third question
posed above. In this section, we also look to answer the fourth question by looking at some
alternative models of human path planning.

Jan et al. [11] were among the first to empirically show that humans often deviated
significantly from shortest paths. Zhu and Levinson [12] went a step further and showed
that although humans deviate from shortest path very often, travel time on the path picked
by the human is not too far from the least travel time over the network. This suggests that
ε-shortest path planning, i.e., picking a path which has at most (1+ ε) times the path length
of the shortest path, is a viable alternative model for human motion planning. The study
observed that 80% of all non-commute and 70% of commute trips had a travel time that
exceeded the least travel time by no more than 20%. Zhu and Levinson [12] also provide a
more exhaustive literature review of human path-planning models.

Motivated by evidence for vector based navigation in animals, Bongiorno et al. [13]
proposes an alternate theory of line-of-sight based human route planning. As the name
suggests, under such a model the human seeks to stay close to the line-of-sight path between
her origin and the destination. It is worth noting that all the studies (Jan et al. [11], Zhu
and Levinson [12], Bongiorno et al. [13]) presented above look at human route planning in
urban environments. An individual may choose to deviate from the optimal path for many
reasons in such an environment. For instance, a individual might take a detour to avoid a
toll or a particular traffic signal. In a rescue scenario such as ours, it is only more likely that
the human chooses the least travel time/shortest path.

In Section 3.3, we will analyze the performance of the approach developed in Section 2
when rescuer plans her path using either of the alternate models presented above.

In Sections 4 and 5, we seek to answer the final question posed above. In Section 4 we
develop a robust counterpart to the signaling policy obtained in Section 2 that accounts
for bounded uncertainties in both the travel costs over the graph and the agent velocities.
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In developing the robust approach, we also present a novel and efficient algorithm to find
feasible points for the rescuer to rendezvous with the rescuee, despite the uncertainty in
knowing the rescuee’s path.

In Section 5, we will seek to reduce the conservativeness of the fully robust approach
developed in Section 4 by exploiting some distributional information we may have about
travel-costs over the rescue environment. We will also present an additional modification
to our approach in this section that accounts for alternate models of human path planning.

2. Optimal Signaling Policy

In line with the illustrative example provided in Section 1 we will consider a dis-
cretized terrain (e.g., grid) for the rendezvous problem in this work. Equivalently, we
can study the problem as being defined over a directed finite graph G = (V , E). The cost
of traversing the edge between nodes i and j for the rescuee and the rescuer are defined
as edge weights wr

ij and wR
ij , respectively. Nodes vr and vR denote the initial position of

the rescuee and rescuer, respectively. For the purpose of this section, we assume that the
edge-weights, the initial positions of the players and the locations of the target goals are all
common knowledge.

Let P denote the set of all paths on the graph. Pi→j denotes the set of all paths starting
from node i and terminating at node j. φr and φR are real-valued functions defined on P
that give the path cost for any path, for the rescuee and rescuer, respectively.

2.1. Rescuee Policy

The rescuer, acting as the leader in the Stackelberg game, sends out a message m ∈ M
to the rescuee, indicating the goal node vm ∈ V . The setM is assumed to have much lower
cardinality than V . The rescuee then acting as the follower, observes this message and
seeks to minimize

Ur(m, P) = φr(P) (1)

over paths P ∈ Pvr→vm . In other words, the rescuee chooses a shortest path connecting
its starting position to the landmark vm. Dantzig [14] gives a natural linear program
formulation for the shortest path problem. Minimizing (1) is equivalent to solving the
linear program,

min
xij≥0

∑
ij∈E

wr
ijxij (2)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vr

−1 i = vm

0 otherwise.

(3)

xij here can be intuitively seen as an indicator variable for whether the directed edge
(ij) is a part of the shortest path. The constraints in (3) are node-wise constraints and
balance the inflow and outflow at every node. At the source node (vr) the net outflow is 1,
indicating that there is no edge of the shortest path going into the source. Similarly, the −1
at terminal node (vm) indicates that no edge in the shortest path exits this node.

When the edge weights are known with certainty the linear program in (2) can be
solved using the simplex method. The same problem may also be solved using the Dijkstra’s
algorithm. The latter approach with its polynomial time complexity is preferred for
computation of the shortest path. However, the LP formulation is presented here as it
lends itself more conveniently to analysis and we will revisit it in Section 4. Note that the
minimizer to (2) need not be unique. In general, the solution to the shortest path problem
between two nodes is a directed sub-graph with every path in the sub-graph between those
two nodes being a shortest path in the original graph (Hebbar [15]).
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Definition 1. Let Gm = (Vm, Em) denote the directed sub-graph obtained as the minimizer to
(2) and let Pm

vr→vm be the set of path between vr and vm in Gm. We can define the candidate
rendezvous points set Xm as

Xm = {v ∈ Vm|v ∈ P ∀P ∈ Pm
vr→vm}.

By definition, vm, vr ∈ Xm and Xm is finite as it is a subset of a finite set V . We
distinguish vm as the terminal rendezvous point.Note that the rescuee is guaranteed to visit
each node in Xm regardless of the path she actually uses to reach vm. As a result, Xm can
be considered by the rescuer as the set it is creating for itself by sending message m.

By definition, irrespective of the actual shortest path taken by the rescuee, she will
necessarily pass through every point in the candidate rendezvous points set. Figure 2
provides an example graph and highlights the candidate rendezvous set for this graph. As
the name suggests, this is the set of points that the rescuer will consider as potential points
to rendezvous with the rescuee at. We make an additional assumption on the behavior of
the rescuee.

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

1

3

1

1

(a) An example graph

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

1

3

1

1
vr v2

v4

vm

(b) The candidate rendezvous points set for
this graph.

Figure 2. Illustration of candidate rendezvous set. As an illustrative example on obtaining the
candidate rendezvous set, consider the graph in (a). For the given edge-weights, we have two
shortest paths from vr to vm, one along vr − v1 − v2 − v4 − vm and one along vr − v3 − v2 − v4 − vm.
The set of points that lie on every shortest path is highlighted in red in (b). Thus for this graph
Xm = {vr, v2, v4, vm}.

Assumption 5. The rescuee chooses one path at random, with uniform probability over all the
paths in Gm to move towards the indicated target vm. Unless intercepted by the rescuer at any
point in the path, the rescuee stops only once she reaches the indicated target vm and continues to
wait there.

2.2. Rescuer Optimal Policy

When deciding which message m to send and which node vx ∈ Xm to use as the
rendezvous point, the rescuer must take its action keeping the best interests of the rescuee
in mind. At the same time, it must also ensure it is passing through regions with low
path cost (e.g., ensuring flight path in a relatively safe environment). Accordingly, given a
message m and meeting point vx the rescuer’s cost is defined as

k1φR(Px
R) + k2φr(Px

r ), (4)

where k1, k2 are weights and Px
R ∈ PvR→vx (respectively, Px

r ∈ Pvr→vx ) is the splice of path
PR to vm joining vR to vx (respectively, of Pr joining vr to vx). Note here that although the
message sent by the rescuer indicates the rescuee to move to either target goals, it is in
essence planning to meet the rescuee at one of the candidate rendezvous points (which,
in general, may not be the target goal itself). Accordingly, the cost to rescue is evaluated as
the cost to reach this point. The chosen vx and the corresponding paths Px

r and Px
R must

satisfy the constraint (
φR(Px

R)

VR
− φr(Px

r )

Vr

)
1vx 6=vm ≤ 0, (5)
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where VR and Vr are the constant velocities of the rescuer and rescuee, respectively. The first
two terms in the left hand side of (5) can be interpreted as the time taken by the rescuer
and rescuee to reach the chosen rendezvous node vx, respectively. The third term in the
constraint is an indicator variable that takes the value 1 if the chosen rendezvous node
is not terminal, and 0 if it is. This constraint indicates that the rescuer must reach the
rendezvous point before the rescuee for any non-terminal rendezvous point. It can be
observed that this constraint is in line with our Assumption 5 in allowing for a successful
rendezvous. We will call any node vx satisfying (5) as a feasible rendezvous point.

Defining the ratio of velocities VR
Vr
, kv we can re-write the optimization problem to

be solved by the rescuer as

min
m∈M

min
vx∈Xm

k1φ∗R(vx) + k2φ∗r (vx) (6)

S.T. (φ∗R(vx)− kvφ∗r (vx))1vx 6=vm ≤ 0 (7)

where, φ∗R(vx) , min
P∈PvR→vx

φR(P) (8)

φ∗r (vx) , min
P∈Pvr→vx

φr(P). (9)

It is important to note that Equation (6) arises out of the Stackelberg framework we
laid out for our problem. Equation (9) is a result of the best response of the follower
(rescuee) to the signal sent by the leader (rescuer); it arises from our assumption that the
rescuee takes shortest paths to the indicated goal and, thus, by principle of optimality, also
takes the shortest path to any vx ∈ Xm. So Equation (6) is the optimization to be solved by
the leader (rescuer) assuming that the follower (rescuee) is playing her best response.

Both (8) and (9) are once again the shortest path problems on a graph and we can solve
their equivalent linear problem formulations instead. For any rendezvous point vx ∈ Xm
we can re-write (9) as the equivalent linear program (LP),

min
xij≥0

∑
ij∈E

wr
ijxij (10)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vr

−1 i = vx

0 otherwise.

(11)

A similar form can be obtained for (8) by replacing the superscript r in (10) with R.
As indicated in Section 2.1 we can solve the linear programs described above using either
simplex methods or by implementing the Dijkstra’s algorithm (DA). Having presented
the approach to solve this optimization problem for any node in Xm, the constrained
optimization problem in (6) can be solved by a search over the finite non-empty setsM
and Xm.

3. Sensitivity of Optimal Policy to Uncertainty

In the preceding section, we assumed that the topology over the rescue terrain was
precisely known to the rescuer. Specifically, the edge weights wr

ij and wR
ij were assumed

to be constant and known to the rescuer. Although it may be reasonable to have some
estimate on the nature of the rescue environment (say, from maps and weather forecasts)
this estimate is typically uncertain. Another assumption made in the preceding section was
that the velocities of the rescuee and the rescuer were known constants. We will see below
in Section 3.1 that small changes in the velocity ratio (kv) can alter the optimal signaling
policy strongly.

Another important assumption we made was related to the human path planning
model for the rescuee. Specifically, we assumed that the rescuee is taking shortest paths
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over the rescue topology faced by her. However, there can be two reasons why such an
assumption might be violated.

1. It may be the case that the rescuee may have some uncertainty about the terrain
topology surrounding her and thus, may be planning for a path over an incorrect set
of edge-weights wr

ij;

2. Or it is possible that the rescuee simply does not compute shortest paths even with
complete knowledge of edge-weights. This may arise either because the rescuee does
not have the computational capability to compute shortest paths, or because human
path planning is not sufficiently captured by path cost minimization the way we
model it.

To arrive at a solution to this problem it is useful to take a step back and look at some
empirical studies on human path planning. We postpone further discussion on this to
Section 3.3 and begin instead by looking at the other two issues we highlighted above.

3.1. Uncertainty in kv

Consider the rescue topology as pictured in Figure 3. The illustration assumes the
existence of just two messagesM = {L, R}. Table 1 presents the optimal signal mopt and
the cost to rescuer UR in sending that signal (and performing the subsequent rendezvous)
for various values of the velocity ratio kv.

Table 1. Variation of mopt, UR and the rendezvous point vx with increasing kv. vx denotes the position
of a grid square using the coordinates of its bottom left corner.

kv mopt UR vx

1.3 R 16 (5, 11)
1.6 L 15 (5, 3)
1.9 R 14 (5, 10)
2.5 L 10 (5, 5)
3.1 R 8 (5, 7)

Figure 3. Optimal signal switching with velocity change. Rendezvous trajectories when kv = 1.6 and
kv = 1.9.

We see that the optimal signal to be sent switches multiple times with an increase
in kv. This sensitivity can be explained as follows. Without loss of generality we assume
that rescuee velocity (Vr) is constant and rescuer velocity (VR) is increasing with kv. Hills
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(green shading) take a longer time for rescuee to traverse, and, thus, give more time for
the rescuer to rendezvous with her here. However, once the rescuee has traversed the hill
and is moving through a region of low cost in between the ‘hill ranges’, she quickly passes
through it, getting out of range of the rescuer quickly. Therefore, in the carefully designed
scenario presented in Figure 3, the rescuer prefers to send the rescuee towards the ‘left’
plain if the feasible rendezvous point is among these ‘hills’. As the velocity of the rescuer
increases, it can reach any point on the path of the rescuee quicker and reduce the cost UR
by performing an earlier rendezvous.

For a small grid size like that in Figure 3 we obtained 4 switches in the optimal
message to be sent. It can be shown that for every M ∈ N, there exists some minimum
dimension N for the grid (N × N) and some topology over the grid, such that the number
of switches is greater than M (Hebbar [15]).

We showed that small changes in the velocity of the players can strongly affect the
outcome of the optimal signaling policy. In our scenario, it might not always be possible for
the rescuer to know the exact velocity of the rescuee. Thus, there is a need for a signaling
policy that is robust to uncertainty in velocity of players. Section 4.5 presents the robust
counter part to (6) and (7) when the velocities of the rescuer and the rescuee are uncertain.

3.2. Uncertainty in Edge-Weights {wr
ij} and {wR

ij}
Several difficulties arise if the rescuee’s edge weights wr

ij are not known to the rescuer
with certainty. First, the rescuer cannot determine the rescuee’s exact set of shortest paths
and, a fortiori, the candidate rendezvous points sets Xm’s. This, in turn, affects the rescuer’s
ability to determine if and where a rendezvous can occur. In addition, even if it knew for
sure that a given node is visited by the rescuee, the rescuer would be uncertain as to the
cost of the path taken by the rescuee, thus making it challenging to evaluate its own actions
according to (6) and (7).

In order to address these issues, we first introduce the notion of robust candidate
rendezvous set in Section 4, which contains nodes that the rescuee will always traverse
and, as we prove, can be computed efficiently by the rescuer. Next, we introduce robust
counterparts to (6) and (7) which allow the rescuer to compute the optimal message in the
presence of uncertainty in the rescuee’s weights.

3.3. Uncertainty in Rescuee’s Path Planning

In Section 2 above, we assumed that the rescuee was taking shortest paths over the
rescue topology. However we are now interested in the performance of our signaling
approach when the rescuee is planning her path using either ε-shortest path (ESP) or vector
based navigation (VBN).

3.3.1. Vector Based Navigation (VBN)

In a VBN model, the cost of traversing a path segment depends on the angle made by
the path segment with the the line-of-sight (LOS) vector to the destination (See Figure 4).
Motivated by Weber–Fechner Law of Just Noticeable Difference, Bongiorno et al. [13] picks
a log-normal distribution model for the costs associated with a path segment. Inspired by
this approach we will model the the cost-to-traverse a path segment between nodes i and j
with cost wij and making angle θ ∈ [−π, π] with LOS as

cij(θ) = wij × (1 + exp (Klos|θ|)).
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O

D

I1

C

I2

LOS Vector

θ

Figure 4. Illustration of LOS (Line-of-Sight) vector from a path segment. In VBN, the cost of traversing
the path segment I1 I2 depends not just on the edge-weight along this edge, but also the angle θ made
by the segment with the LOS vector from the mid-point C of the segment to the destination.

For a given origin-destination pair, the cost of any path segment is a fixed constant
and the rescuee tries to minimize the path cost of going from the origin to the destination.
In other words, the rescuee is simply finding shortest paths over a graph with augmented
edge-weights cij instead of wij.

Figure 5 shows a particular topology layout for our rescue scenario. The rescuee takes
an LOS path to the goal, while the rescuer plans for a rendezvous assuming the rescuee is
taking shortest paths over the topology. If the rescuee had indeed taken shortest path to the
signaled goal, she would have passed through the rendezvous point picked by the rescuer.

Figure 5. Strips layout Klos = 1. For the rescuee, the green shaded cells have a cost-to-traverse ran-
domly sampled from [2.5, 3] and all other cells have a cost-to-traverse picked from [1, 1.5]. The topol-
ogy faced by the rescuee in going left resembles a parallel range of hills with valleys between them
and we will name this general layout ‘strips’ for convenience in referring to. The rescuer planned to
meet in the grid-square (6, 3). Here a grid square is denoted by co-ordinates of bottom left corner.

3.3.2. ε-Shortest Paths (ESP)

Relaxing Assumption 5, we will assume now that the rescuee computes the set of
ε-shortest paths between any origin-destination pair and picks one at random from this
set. Naturally, ε-shortest path set is a superset of shortest paths set. It is easy to create
scenarios where the rescuer, assuming human takes shortest path, fails to rendezvous with
the rescuee taking an ε-shortest path. One such situation is illustrated in Figure 6b where ε
is taken to be 0.2. The path taken by the rescuee here has a path length less than 1.2 times
the shortest paths length from her initial position to the right target goal.
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As expected, our algorithm performs well when the rescuee is indeed path-planning
using the shortest path (SP) approach but fails to rendezvous with the her when she takes
the ε−shortest path shown in Figure 6b.

Having highlighted the issues that may arise when Assumptions 1–5 are invalidated
we will now seek to arrive at signaling policies that are robust to the issues discussed in
this section. In Section 4 we present an approach that accounts for both travel cost and
rescuer velocity uncertainty. Such an approach is then robust to the issues underscored
in Sections 3.1 and 3.2. In Section 5, we present an alternate approach that exploits the
distributional information we may have over the edge-costs in the rescue topology graph
to reduce the conservativeness of the robust approach. This approach, as we will see, is
computationally expensive but can also be modified to account for the alternate models of
human path planning discussed in Section 3.3.

(a) Successful rescue when rescuee takes SP. (b) Failed rescue when rescuee takes ESP.

Figure 6. Scatter Layout. For the rescuee, the green shaded cells have a cost-to-traverse randomly
sampled from [2.5, 3] and all other cells have a cost-to-traverse picked from [1, 1.5]. We label this
terrain topology as ‘scatter’ layout as the ‘hills’ are scattered around. The rescuer planned to
rendezvous at (9, 5).

4. Robust Signaling Approach

From now on, we assume that the edge weights wr
ij and wR

ij are unknown but bounded:

wr
ij ≤ wr

ij ≤ wr
ij and wR

ij ≤ wR
ij ≤ wR

ij ∀ ij ∈ E . We designate the Cartesian product

Πij∈E [wr
ij, wr

ij] as Ωr and Πij∈E [wR
ij , wR

ij ] as ΩR and any arbitrary element from this set is

denoted by wr and wR, respectively. The rescuee has complete knowledge of the realized
edge-weights. The rescuer has knowledge about the supports Ωr and ΩR but does not
know the true realization of these edge-weights. Effectively, in this section we are doing
away with Assumption 3.

We make an observation that in the analysis presented in Section 2 the edge weights
only show up when we seek to find the shortest paths over the graph. There can be multiple
approaches in arriving at the shortest path in a graph with uncertain weights. Treating this
uncertainty as stochastic, Dantzig [14] replaced the edge weights of an uncertain graph
with their expected values and solved the resulting shortest path problem with certain
weights. The problem with this approach is that there exists a non-zero, and often large
probability that the resulting shortest path is strongly sub-optimal. Sigal et al. [16] and
Frank [17] proposed methods to maximize the probability that a certain path realizes
the least weight. Such probabilistic approaches are reasonable when we are running the
uncertain scenario over multiple iterations and seek only to minimize the expected cost
over the runs. However, in success critical problems such as our rescue scenario, we may
wish to be completely risk-averse. A natural step forward is then to consider a robust
optimal approach in designing our signaling policy.

We presented the linear program formulation of the shortest path problem in Section 2.
The same problem can also be presented as an integer programming problem, with each
xr

ij, xR
ij ∈ {0, 1} (Dantzig [14]). Efficient ways to compute the robust optimal solution for
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this formulation were presented by Bertsimas and Sim [18] assuming an upper bound
on the number of edge-weights that are uncertain. We will work with the more general
(and simpler) scenario where we assume all edge-weights are uncertain. In our work,
we use the notions of a robust counterpart to an optimization problem as presented
by Ben-Tal et al. [19].

4.1. Robust Optimal Candidate Rendezvous Set

Before the rescuer can determine which message to send in presence of uncertainty
(i.e., the message m such that the worst-case value of cost (4) is minimized when wr and
wR belongs to Ωr and ΩR), it is necessary to evaluate the set of possible rendezvous points
(if, for nothing else, to appropriately compute that worst-case value). This naturally leads
us to introduce the following

Definition 2. Let X wr
m be the candidate rendezvous points set as defined in Definition 1 for the

rescuee’s edge weights wr. The robust candidate rendezvous set is defined as

X̂m =
⋂

wr∈Ωr

X wr

m . (12)

In words, the robust candidate rendezvous set is the set of nodes that lie on the shortest
path for every possible set of edge-weights. Figure 7 gives an illustrative example where
this set is computed explicitly. Clearly, X̂m cannot be readily computed from (12) because
it involves a countable intersection of sets (each of which is tractable, as explained in
Section 2). Fortunately, it is possible to state the following,

Proposition 1. Algorithm 1 presented below terminates, computes the set X̂m and runs in O(|V|3).

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

{1, 4}

3

1

3
1

(a) Edge weight over the edge (v2, v4) can
be either 1 or 4.

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

3

1

3
1

wr

1

(b) Shortest paths for the realized edge-
weights wr.

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

3

1

3
1

w′r
4

(c) Shortest path for the realized edge-
weights w′r.

vr

v1

v2

v3

v4

vm

v5

1 1

1 1

3

1

3
1

w′r
4

vr

v4

vm

(d) Robust candidate rendezvous points
are highlighted.

Figure 7. Illustration of robust candidate rendezvous set. (a) shows the graph in consideration. We
see that the edge weights over all edges except one are constants. (b,c) show the shortest paths over
the graph for two different realizations of edge-weights. (d) highlights the set of robust candidate
rendezvous points. So we have X̂m = {vr, v4, vm}.

A proof of correctness for this algorithm is provided in Appendix A. In a graph with
positive edge-weights, all equivalent shortest paths P∗ can be obtained using a minor
modification of the Dijkstra’s algorithm. If the implementation of Dijkstra’s algorithm
runs in O(|V|2), then Algorithm 1 presented above runs in O(|V|3). This polynomial
time-complexity for Algorithm 1 preserves the efficiency of our approach in finding the
robust optimal signaling policy.
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Algorithm 1: Algorithm to find the robust candidate rendezvous points

Result: Obtain X̂m
Set edge weights {wr1

ij } = {wr
ij} ;

Find the graph of shortest path G∗1m = (V∗1m , E∗1m ) and the corresponding set of
paths {P∗}1;

Initialize X̂ 1
m = {v : v ∈ P ∀P ∈ {P∗}1 ;

Set F 1 = {ij : wr1
ij = wr

ij, ij ∈ G∗1m };
Set k = 1 ;
while F k 6= ∅ AND X̂ k

m 6= {vr, vm} do
Set wrk

ij = wr
ij ∀ (ij) ∈ F k and wrk

ij = wr(k−1)
ij ∀ (ij) ∈ E/F k ;

Find the graph of shortest path G∗k+1
m and paths {P∗}k+1 with new weights ;

X̂ k+1
m = X̂ k

m
⋂{v : v ∈ P ∀P ∈ {P∗}k+1} ;

Update F k+1 = {ij : wr
ij(k + 1) = wr

ij, ij ∈ E∗k+1
m } ;

k = k + 1
end
return X̂ k

m

4.2. Robust Optimal Signal Computation

We make an assumption on the ratio of velocities kv for the remainder of our work.

Assumption 6. Let

wR
max , max

ij
wR

ij

and wr
min , min

ij
wr

ij.

Then, we assume a lower bound on the ratio of velocities,

kv ,
VR
Vr
≥ wR

max
wr

min
. (13)

This assumption formalizes the notion that the rescuer can move faster on any part
of the terrain than the rescuee. It is worth noting that this assumption alone does not
guarantee the existence of non-terminal rendezvous point. It merely implies that on any
given path on G, the rescuer takes less time than the rescuee. Thus, if the rescuee was
substantially closer to the target goal than the rescuer, the larger speed of the rescuer may
still not help it reach some intermediate node on the rescuee’s path.

Definition 3. For any two nodes vm, vn in the graph G we define a partial ordering ‘≤’ as

vm ≤ vn if φ∗r (vm) ≤ φ∗r (vn),

with φ∗r defined in (9).

Without loss of generality, we can list all the nodes in X̂m in increasing order as,
vr = vx,1 ≤ vx,2 ≤ · · · ≤ vx,L = vm, where L = |X̂m|. Assumption 6 leads us to,

Proposition 2. For any m, n, such that 1 ≤ m < n ≤ L and for any realization wr ∈ Ωr, wR ∈
ΩR we have

φ∗R(vx,m)− kvφ∗r (vx,m) ≤ 0 =⇒ φ∗R(vx,n)− kvφ∗r (vx,n) ≤ 0,
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with φ∗R and φ∗r are given by (8) and (9), respectively.

Proof for this proposition can be found in Appendix B. We basically showed that if
a node is a robust feasible rendezvous point then all nodes in X̂m succeeding (ordered by
Definition 3) this point are also robust feasible rendezvous points. From this, it is easy to see

Corollary 1. If there exists at least one robust feasible rendezvous point then necessarily vm is also
a robust feasible rendezvous point.

We are now equipped to analyze the problem of finding the optimal signaling policy
when faced with uncertain path costs. To do so, we can first break our problem into
two cases.

I. There always exists at least one robust feasible rendezvous point for all possible
edge-weights;

II. No robust feasible rendezvous point for some wR, wr.

By Corollary 1 it suffices to check whether vm is a robust feasible rendezvous point to
verify which of the two cases is at hand.

4.3. Case I: At-Least One Robust Feasible Rendezvous Point

In this case, for any wr ∈ Ωr and wR ∈ ΩR the constraint in (7) for a feasible ren-
dezvous point vx simplifies to the form,

φ∗R(vx)− kvφ∗r (vx) ≤ 0. (14)

For any candidate rendezvous point vx ∈ X̂m we define φ∗R,max(vx) and φ∗r,min(vx) as,

φ∗R,max(vx) , min
xij≥0

∑
ij∈E

wR
ij xij (15)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vR

−1 i = vx

0 otherwise.

Therefore, φ∗r,min(vx) , min
xij≥0

∑
ij∈E

wr
ijxij (16)

S.T. ∀i ∑
j

xij −∑
j

xji =


1 i = vr

−1 i = vx

0 otherwise.

With these definitions in hand, we can state the following

Proposition 3. Under the conditions on this subsection, the message minimizing worst-case cost
for the rescuer when wr varies in Ωr and wR varies in ΩR is a solution to the program

min
m∈M

min
vx∈Xm

k1φ∗R,max(vx) + k2φ∗r,max(vx) (17)

subject to the constraint
φ∗R,max(vx)− kvφ∗r,min(vx) ≤ 0, (18)

where φ∗r,max(vx) can be obtained by replacing wr
ij in (16) with wr

ij.
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4.4. Case II: No Robust Feasible Rendezvous Point

In the scenario where we have no robust feasible rendezvous point, the only way to
guarantee a successful rendezvous is by meeting the rescuee at the target goal node vm
corresponding to the message m. Thus, the robust counterpart to (6) in this case is simply

min
m∈M

k1φ∗R,max(vm) + k2φ∗r,max(vm), (19)

where φ∗R,max(vm) and φ∗r,max(vm) is obtained as we did for case I.

4.5. Robustness to Velocity Variation

In this section, we briefly discuss the robustification of our signaling policy from
Section 2 to uncertainties in the velocities of our agents (or equivalently, violation of
Assumption 4). We will encompass the variation in velocity of the rescuer and the rescuee
in variations of the parameter kv. We assume that kv can take on arbitrary values in the
interval [kv, kv].

The objective function in (6) is unaffected by the value of kv. The constraint (5) is affine
in kv. From the results of Ben-Tal et al. [19], the robust counterpart to the optimization in
(6) subject to (5) is obtained as

min
m∈M

min
vx∈Xm

k1φ∗R(vx) + k2φ∗r (vx) (20)

S.T. (φ∗R(vx)− kvφ∗r (vx))1vx 6=vm ≤ 0, (21)

with φ∗R and φ∗r given by (8) and (9), respectively. The edge weights wr and wR are assumed
fixed and known above. The robustification of the optimization in Section 2 with respect to
the edge weights and the parameter kv can be performed independently. For the subsequent
robustification of the constraint in (21) with respect to edge-weight uncertainty, we only
need kv to satisfy the constraint in Assumption 6.

4.6. Simulation Example

We now present the results of a simple simulation on a carefully designed rescue
topology to highlight some features of the approach designed in above. The parameters
chosen are k1 = 1, k2 = 1 and kv = 3.1. All edge weights wr

ij and wR
ij are unknown to the

rescuer and can be of two types. ‘High edge weight’, where each edge weight is a random
variable is supported over [2.5, 3] and ‘low edge weight’, each supported over [1, 1.5]. It
can be verified that Assumption 6 holds for these set of edge weights and the velocity ratio
kv. The topology over the rescue terrain, as well as the path’s travelled by the rescuee and
the rescuer are presented in Figure 8.

It can be observed that although the left target goal was spatially closer to both the
rescuee and the rescuer, the rescuer signals the rescuee to go towards the right goal. In going
right the set Xm consists of grid squares (7, 6), (8, 5), (9, 5) (We denote the position of a grid
square using the coordinates of its bottom left corner.). In going left there exist no such
non-terminal points in the set Xm. This availability of robust candidate rendezvous points
encourages the rescuer to signal going right.
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Figure 8. Robust optimal signaling policy in a simulated run. Clouds (blue shading) act as ‘high
edge weight’ regions to the UAV and hills (green shading) act as ‘high edge weight’ regions to the
rescuee. The optimal signal sent out was indicating the right target goal.

5. Stochastic Signaling Approach

In the preceding section, we considered a robust approach in finding an optimal
signaling policy for our rescue scenario. Such an approach trades optimality for robustness
by designing a policy that only maximizes the rewards in the worst-case scenario. It may
often be the case that the probability of the worst cases scenario being realized is very
small. It may also be the case that optimal action in the worst cases scenario is strongly
sub-optimal in many of the other scenario. It is not difficult to construct a scenario that
achieves such sub-optimality in our framework.

Figure 9 shows two realizations of the ‘scatter’ layout introduced in Section 3. We
will introduce ‘stochasticity’ in our layout by assuming that the cost-to-traverse over green
grid squares in Figure 6b is uniformly distributed over [2.5, 3] and over white squares it is
uniformly distributed over [1, 1.5].

(a) One of the shortest paths for this real-
ization.

(b) Two of the shortest paths for this real-
ization.

Figure 9. Conservativeness of the robust policy. The dark green hilly regions have a cost-to-traverse
of 3 for the rescuee. Each white grid square has a cost to traverse of 1, while in the second figure the
light green shaded grid squares have a cost to traverse of 1.5.



Entropy 2021, 23, 1027 17 of 29

When signaled to go ‘right’, the rescuee will traverse through grid-squares (7, 5), (8, 5),
and (9, 5) (squares denoted by coordinate of their bottom-left corner) with probability 1
(Hebbar [15]). So these form the candidate rendezvous set with a high probability. However,
the robust signaling policy developed in Section 4 also accounts for the zero probability
scenario shown in Figure 9b, where a shortest path (solid blue line) does not pass through
these three points. So the robust optimal signaling policy will plan to meet the rescuee at the
‘right’ target goal, when instead, with a probability 1 the rescuer could have rendezvoused
with the rescuee at (9, 5), as shown in Figure 6a.

This illustration highlights the conservativeness of the signaling policy we designed
in the previous section. Additionally, we may often have some distributional information
over the edge-weights and the robust optimal signaling policy makes no use of this avail-
able information. So with the aim of addressing both these issues and motivated by the
discussion above we ask a naturally arising question—‘What is the set of nodes that will lie
on all shortest paths with a high probability, when the edge-weights vary stochastically?’

The problem of finding distributional information over path lengths in graphs with
stochastic edge-weights is NP-hard (Valiant [20]) and the traditional approach to solving
problems from this family is using Monte Carlo methods. Frank [17] proposes the following
condition for path optimality: For a specified k, consider the path that maximizes the
probability of realizing a weight less than k as the optimal path. Another approach taken
by Sigal et al. [16] is to find the path with the greatest probability of realizing the least
weight. Their work then assigns ‘path optimality indices’ to each path being considered.
Formally, these paths are solutions to

P∗ = arg max
P∈PS→ G

∏
P′ ∈PS→ G/{P}

P{L(P) ≤ L(P′)}.

Motivated by this idea we will design a similar approach to find the candidate ren-
dezvous points set is a stochastic setting. We will define the notion of ‘node candidacy
index’ much like ‘path optimality indices’ and use Monte-Carlo methods to obtain it.

5.1. Stochastic Candidate Rendezvous Set

Going forward, we assume that the edge weights wr
ij and wR

ij are stochastic bounded

random variables: wr
ij ≤ wr

ij ≤ wr
ij and wR

ij ≤ wR
ij ≤ wR

ij ∀ ij ∈ E . As before, we designate

the Cartesian product Πij∈E [wr
ij, wr

ij] as Ωr and Πij∈E [wR
ij , wR

ij ] as ΩR. We can then consider

the random vectors wr = {wr
ij}ij∈S and wR = {wR

ij}ij∈S over the supports Ωr and ΩR,
respectively. We will refer to probabilities using notation P and P will be reserved to denote
paths as before.

Definition 4. Let P∗m(wr) denote the shortest path taken by the rescuee to the target goal vm when
the realised edge-weights are wr. We then define a candidacy index for each node as a real-valued
map J : V → R with

J(v) = P(v ∈ P∗m(w
r)).

Definition 4 captures the essence of the answer to the question we posed earlier in this
section. Any node with a ‘high’ candidacy index will lie on a shortest path between the
rescuee’s initial location and the target goal with a high probability. Then, in this ‘stochastic
approach’, a natural way to define some form of ‘candidate rendezvous set’ would be to
consider all nodes with candidacy index above a certain threshold. Mathematically, we
want to define a set of the form {

v : J(v) > 1− γ
}

(22)

for some 1 > γ > 0. However, computing such a set is challenging as there is no easy way
for us to compute the node candidacy index. Therefore, we turn to Monte Carlo methods.
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However, before we do so, it must be noted that the ‘shortest path’ as stated in
the Definition 4 above may not be unique. In Assumption 5, we noted that when there
are multiple equivalent shortest paths the rescuee picks one at random with a uniform
probability over all paths. To capture this additional stochasticity in the choice of shortest
path, we will treat P∗m(wr) as a random vector in itself. Recall that in the LP formulation for
the shortest path problem we represent any path as an m-dimensional vector with boolean
elements. So it is meaningful to talk about a path as a random vector. We then rewrite the
candidacy index as an expectation as

J(v) = P(v ∈ P∗m(w
r)) = Ewr ,P∗m [1v∈P∗m(wr)],

where the expectation is taken with respect to both the distribution over the edge-weights
wr and the uniform distribution over the choice of shortest path P∗m. We then present
the following

Definition 5. Let P∗m(wr) be the set of all shortest paths from vr to vm when the edge-weight
vector is wr. We define the candidacy index estimator

g(v, wr) =
|P : v ∈ P, P ∈ P∗m(wr)|

|P∗m(wr)| .

We can then state the following proposition,

Proposition 4.

Ewr [g(v, wr)] = J(v).

Proof for this proposition is presented in Appendix B. We are now fully equipped to
apply Monte-Carlo methods to our problem to approximate the candidacy index as,

J(v) ≈ J̃(v) ,
1
K

K

∑
i=1

g(v, wr
i )

where K is a free parameter determining the number of samples we take to approximate
J(v) and wr

i is the ith sampled edge-weight vector. Motivated by (22), we introduce
the following

Definition 6. For some 1 > γ̄ > 0, we define the stochastic candidate rendezvous points set as

X̃m = {v ∈ V : J̃(v) > 1− γ̄}.

Now to find this stochastic candidate rendezvous set we need to compute the can-
didacy indices for all nodes. We know that the shortest paths can be computed using
Dijkstra’s algorithm in O(|E | + |V| log |V|). The primary computational complexity in
obtaining the candidacy index then arises from the need for a large number of samples. So
the question now remains: “What is the minimum number of samples K to be picked such
that the candidacy index estimate J̃(v) is a ‘good’ approximation of the true candidacy
index J(v)?” Requiring a small number of samples here is key in our ability to compute
the final optimal signaling policy on board the UAV. It can be shown that, for a given ε and
δ, the minimum number of samples K required in computation of J̃(v) to achieve

P(| J̃(v)− J(v)| ≥ ε) ≤ δ
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is of the order of O
(
− log δ

ε2

)
(Hebbar [15]). We see that it is much more computationally

expensive to desire a smaller ε than a smaller δ.
We are interested in obtaining nodes with true candidacy index, J(v), above threshold

1− γ. To ensure this we can pick nodes with estimated candidacy index, J̃(v) above threshold
1− γ̄ where γ̄ < γ− ε. For such a choice of γ̄, it is easy to show that

∀v ∈ X̃m P(J(v) < 1− γ) < δ.

So we see that we have some degree of freedom in our choice of ε through the choice
in γ̄, although choosing a smaller γ̄ will lead to more conservativeness. However this
also means that we are free to choose a slightly larger ε and reduce the computational
complexity of the Monte Carlo method.

5.2. Stochastic Optimal Signaling Policy

In the preceding section we computed the stochastic candidate rendezvous set, i.e., ‘the
set of points that lie on some shortest path with a high probability when the edge-weights
are varied stochastically.’ We now present a modified version of the robust approach
developed in Section 4 where we use the stochastic candidate rendezvous set in lieu of the
robust candidate rendezvous set. We propose the following optimization to be solved by the
rescuer to arrive at the optimal signal to be sent when non-terminal feasible points exist
among our candidate set.

Proposition 5. Any stochastic feasible rendezvous point vx ∈ X̃m for (14) satisfies

φ∗R,max(vx)− kvφ∗r,min(vx) ≤ 0, (23)

where φ∗R,max(vx) and φ∗r,min(vx) are obtained as (15) and (16), respectively. The stochastic robust
counterpart to the optimization problem presented in (6) is then given by

min
m∈M

min
vx∈X̃m

k1φ∗R,max(vx) + k2φ∗r,max(vx) (24)

subject to (23), where φ∗r,max(vx) can be obtained by replacing wr
ij in (16) with wr

ij. �

Once again in the case where there are no feasible rendezvous points the optimal
signal to be sent can be arrived at by comparing the cost to rendezvous at the terminal goals.

Note here that (23) is not evaluated in a probabilistic manner. We only use the knowl-
edge of distribution over edge-weights in evaluating the stochastic candidate rendezvous set.
However, we then evaluate feasibility using the robust method developed in Section 4.
Assessing the feasibility of a particular candidate rendezvous point requires us to compute
the shortest path to this point for both the rescuer and the rescuee. The number of candi-
date rendezvous points is of the order O(|V|) and evaluating this feasibility for every point,
for each sampled edge-weight vector, would require us to run the shortest paths algorithm
O(|V|) times. In comparison, obtaining the candidate rendezvous set for each sampled
edge-weight vector requires only one run of the shortest paths algorithm. So with the
aim of keeping our computational complexity low, we employ the Monte-Carlo inspired
approach only to arrive at the candidate rendezvous points set and stick to the robust method
to evaluate feasibility.

5.3. Stochastic ε-Optimal Signaling Policy

In Section 3.3 we showed that if the rescuee does not pick shortest paths in its path
planning model, the optimal signaling policy developed in Section 2 performs poorly. We also
discussed two alternate models of human path planning—ESP and VBN—that may better
model rescuee behavior. However, there is vast evidence (Bongiorno et al. [13], Zhu and
Levinson [12], and Malleson et al. [21] among others) that irrespective of the true model of
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human path planning behavior, the final path picked is not far from optimal, i.e., the path
picked by humans is usually an ε-shortest path. Although the value of ε to be picked is a
point of contention, accounting for all ε-shortest paths in the signaling policy seems like a
step in the right direction.

The number of ε-shortest simple paths grows exponentially with the number of nodes
|V| in a network when ε is increased. Of course, in the extreme case where ε is large enough
that all simple paths over the graph are admissible as ε−shortest, the number of simple
paths between any two nodes in a the graph can be of the order of O((|V| − 2)!). So it is
clear that we cannot achieve a general polynomial (in graph parameters) time algorithm to
find all ε−shortest paths for any arbitrary ε.

Byers and Waterman [22] and Naor and Brutlag [23] suggest approaches to compute
such ε-shortest paths with time complexity scaling linearly with the number of ε-shortest
paths. An alternate strategy to compute ε-shortest paths is to instead compute the k
shortest paths over the graph. The number k is increased until we find the k corresponding
to the length limit. Eppstein [24] runs a length limited k shortest path algorithm to find
k simple paths with length at most (1 + ε) times the shortest path. Yen [25] presents an
efficient polynomial time

(
O
(
k|V|(|E | + |V| log |V|)

))
algorithm to compute k loopless

shortest paths. Eppstein [24] provides an alternate heap-implementation which can obtain
the k shortest paths in time O(|V|+ |E |+ k) after a spanning graph has been computed.
However, this implementation returns paths with loops. So we would have to compute a
lot more than k-shortest paths using this method to actually obtain k-shortest loopless paths.
Our implementation runs the Yen’s algorithm.

Definition 7. Let Pε
m(wr) be the set of all ε-shortest paths from vr to vm when the edge-weight

vector is wr. We define the ε-candidacy index estimator

gε(v, wr) =
|P : v ∈ P, P ∈ Pε

m(wr)|
|Pε

m(wr)| .

Proceeding as before we assume that ε-shortest path picked by the rescuee (Pε
m(wr)) is

a random variable with uniform distribution over the set of all ε−shortest paths. We can
then define the ε-candidacy index as

Jε(v) , P(v ∈ Pε
m(w

r)) = Ewr ,Pε
m [1v∈Pε

m(wr)].

Next, we approximate this ε-candidacy index using Monte-Carlo methods as

Jε(v) ≈ J̃ε(v) ,
1
K

K

∑
i=1

gε(v, wr
i ).

For some 1 > γ̃ > 0, we can then define the ε-candidate rendezvous set as

X̃ ε
m = {v ∈ V : J̃ε(v) > 1− γ̃}.

We simply use this ε-candidate rendezvous set( X̃ ε
m) in lieu of the stochastic candidate

rendezvous set (X̃m) in Proposition 5 to obtain a signaling policy that is relatively more
robust to uncertainty in rescuee’s path planning model.

6. Results

We will now present some simulation results on the approaches designed in
Sections 4 and 5. Figure 10 shows the result of both—robust optimal and stochastic
optimal—signaling policies over the ‘scatter layout’ similar to the one in Figure 6. For the
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rescuee, the green shaded cells have a cost-to-traverse uniformly distributed over [2.5, 3] and
all other cells have a cost-to-traverse uniformly distributed over [1, 1.5].

It can be observed that in using the stochastic optimal signaling policy (Figure 10b) the
rescuer was able to exploit the distributional knowledge over the edge-weights to achieve
a more optimal (in terms of cost-to-rescue) outcome. However, this comes with a penalty
in terms of higher computational costs compared to the robust optimal signaling policy
(Figure 10a).

In Figure 10, we assumed that the rescuee was indeed taking shortest paths. However,
we saw earlier in Section 3.3 that when this assumption fails, our signaling policy from
Section 2 performs very poorly. Table 2 gives the results of simulation runs showing the
performance of the approach developed in Section 5.2 when the rescuee plans her path
using ε-shortest paths (ESP), true shortest paths (SP), or vector based navigation (VBN)
path planning models. We will call these the ‘True human model’. Two metrics are defined
to measure performance: frequency of successful rescue and average cost of successful
rescue. A rescue attempt is deemed successful if the rescue happens at the point planned
for by the rescuer. The cost of rescue is computed as the sum of path costs of the rescuer
and the rescuee to the rendezvous point in case of a successful rescue.

Table 2. Results from simulation runs when human takes shortest paths. The results below are taken
using 20 sampled runs over the topologies described in Figure 5 (strips layout) and Figure 6b (scatter
layout) assuming uniform distribution of edge-weights over their supports.

Topological
Layout

True Human
Model

Rescuer’s
Human Model

Frequency of
Success

Avg. Cost of
Rescue

strips ESP SP 8 20.46
strips SP SP 20 18.99
strips VBN SP 0 NA
scatter ESP SP 9 19.01
scatter SP SP 20 18.92
scatter VBN SP 20 18.92

(a) Robust optimal signaling policy (b) Stochastic optimal signaling policy

Figure 10. Comparative run of the robust and stochastic signaling policies. Over the same topo-
graphical layout we observe that the optimal signal to be sent changes with the robustness criteria
we choose. In (a), the rescuer employs the completely robust signaling policy and incurs a worst
case cost-of-rescue of 19.5. In (b) the rescuer incurs a worst case cost-of-rescue of 13. Here, we take
K = 50 samples and 1− γ = 0.9 as the threshold for admitting a node into the stochastic candidate
rendezvous set.

As expected, our algorithm performs very well when the rescuee is indeed taking
a shortest path (SP). However, we see a sharp drop in number of successful rendezvous
when the she plans her path using ESP or VBN approaches. Whether or not our approach is
successful when the rescuee employs the VBN planning approach is strongly dependent on
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the topological layout of the rescue region. Table 3 then shows the result of the simulations
runs using the approach presented in Section 5.3, i.e., when the rescuer assumes that the
human takes an ESP instead of a SP.

Table 3. Results from simulation runs when human takes ε-shortest paths. The results below are
taken using 20 sampled runs over two topological layout. Again we assume uniform distribution of
edge-weights over their supports.

Topological
Layout

True Human
Model

Rescuer’s
Human Model

Frequency of
Success

Avg. Cost of
Rescue

strips ESP ESP 18 21.05
strips SP ESP 18 21.20
strips VBN ESP 16 21.22
scatter ESP ESP 20 23.35
scatter SP ESP 20 22.56
scatter VBN ESP 20 22.57

We observe that the frequency of success is starkly higher in Table 3. Naturally,
when the rescuer models the rescuee as taking ESP, the approach is more conservative as
the search for candidate rendezvous points happens over larger number of paths. This
conservativeness can be seen above, where the cost of rescue is higher when the rescuer
considers an ESP model for the rescuee. This approach also comes with a penalty of added
time complexity. Shortest paths can be computed in O(|E | + |V| log |V|) using a heap
implementation Dijkstra’s algorithm. However, Yen’s algorithm we are using here has a
time complexity of O(k|V|(|E |+ |V| log |V|)).

7. Discussion and Conclusions

We began our work with a motivation to design a game theoretic framework for
exploiting signaling capabilities in autonomous agents. We considered a particular SAR
scenario and designed a optimal signaling policy that the rescuer can implement to achieve
a desirable outcome. We then considered some scenarios where we were either missing
information about the rescue environment or had incorrect assumptions about the nature
of the rescuee’s behavior in Section 3. This study motivated the need for robustification of
our approach and in Section 4 we developed a signaling approach that was robust to both
velocity and path cost uncertainty. In doing so, we also presented a novel and efficient
algorithm to obtain robust candidate rendezvous points, that is, the set of points that lie on
all shortest paths irrespective of the edge-weights over the graph.

However, naturally, such a robust approach can lead to over-conservativeness in
some scenarios. With the aim of exploiting additional distributional information we may
have about the edge-weights over our rescue topology, we designed a stochastic optimal
counterpart to the robust signaling policy in Section 5. Such a stochastic approach naturally
relied on Monte Carlo methods and was computationally expensive. So the choice between
using either the completely robust approach and the stochastic approach boils down to a
trade-off between conservativeness and computational expense.

Finally, in a bid to better capture human behavior we looked at some additional path
planning models for human agents. Supported by evidence that humans general take
some ε-shortest path between two nodes, we designed a modification to the stochastic
optimal signaling policy accounting for such path planning behavior. Once again, such
a modification makes our approach more conservative, but if we are relatively certain
that the rescuee is indeed not perfect in her ability to compute shortest paths, then such
robustification is crucial in a success critical scenario such as ours.

In the work we presented thus far, we only considered a single signal being sent by
the rescuer. Specifically, we did not attempt to re-communicate our intent in the event of
a failed rescue. Although this possibility is non-existent when there is no uncertainty in
edge-weights or when there is uncertainty and the rescuer implements the robust optimal
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signaling policy, there is always a small probability of failure when the rescuer implements
the stochastic optimal signaling policy. We can then consider a multi-stage Stackelberg
game, wherein the rescuer signals its intent to the rescuee multiple times. Additionally,
the ability to signal multiple times in the rescue scenario might open up a richer set of
strategies that the rescuer can choose from to achieve a successful rescue. Such strategies
might plan for earlier messages keeping in mind the ability of the latter messages to further
influence human motion. Finally, we always assumed that the human would interpret the
message sent by the rescuer as intended and never considered the failure of this assumption.
Although failure in rescue due to signal misinterpretation is subtly different from a failure
due to uncertainty in assumed knowledge (such as the ones we addressed in our work),
repeated signaling can act as a ‘corrective’ measure in both kinds of circumstances. All
these avenues can be explored by considering a repeated game setting and form interesting
directions for future work.
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Abbreviations
The following abbreviations are used in this manuscript:

HRI Human robot interaction
SAR Search and rescue
UAV Unmanned aerial vehicle
ESP ε-shortest path
VBN Vector based navigation
LOS Line-of-sight
SP Shortest path

Appendix A. Proof of Correctness for the Algorithm to Find the Robust Candidate
Rendezvous Points

Before we get into the proof of correctness for this algorithm it is useful to place this
algorithm in a more general context. The algorithm returns the set of nodes which will
always lie on shortest paths when the edge-weights are unknown but bounded. Such a
problem is more ubiquitous and the algorithm has applications beyond the rescue scenario
we consider. For instance, in a supply chain, when one agent is taking shortest paths
over a network with travel time uncertainty and a second agent wishes to rendezvous
with the first agent to exchange flow, the latter would wish to pick a point from the set
of robust optimal rendezvous points. Our algorithm then computes this set efficiently in
polynomial time.

It is useful to revisit some definitions of interest from graph theory before we delve
into the proof.

Definition A1 (Graph Union). For two graphs G1 = (V1, E1) and G2 = (V2, E2), the graph
union is obtained as the new graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2).

Definition A2 (Graph Compliment). Let H = (VH , EH) be a sub-graph of G = (V , E), then
we will define the graph compliment ofH with respect to G as,
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G/H = (V , E/EH).

We begin by re-introducing some of the notations used in presenting the algorithm.
In doing so, we will drop the subscripts m and superscript r for increased readability.
Let G = (V , E) denote our graph. Then, sub-graph G∗k = (V∗k, E∗k) denotes the acyclic
digraph containing the shortest paths in the kth iteration of the algorithm. We can make the
claim of acyclicity since all edge-weights in our graph G are assumed positive. We define a
new digraph Gk = (V k, E k) obtained as a graph union in each iteration as,

Gk =
k⋃

i=1

G∗k. (A1)

{wk
ij} denotes the set of edge weights at the kth iteration of the algorithm. Each edge-weight

in {wk
ij} can be obtained as,

wk
ij =

{
wij if (ij) ∈ E k−1

wij if (ij) ∈ E/E k−1.
(A2)

Proposition A1. Algorithm 1 return a set of nodes X̂ ⊆ V such that every shortest path in the
graph G for any set of edge-weights {wij} passes through every node in X̂ .

In proving Proposition A1, we first present two lemmas.

Lemma A1. Consider the graph Gk and let wk′
ij be any set of edge-weights on Gk satisfying

the property

wk′
ij =

{
w′ij if (ij) ∈ E k−1 and wij ≤ w′ij ≤ wij

wij if (ij) ∈ E k/E k−1

for some set of w′ijs. Then, every shortest path on such a graph Gk passes through every node in X̂ k.

We defer the proof of this Lemma to later.

Lemma A2. If G∗k+1 is a subgraph of Gk, then edges in G/Gk are never a part of the shortest path
over G. In particular, change in edge-weights over edges in G/Gk has no effect on the shortest path
in G.

Proof of Lemma A2. Recall that G∗k+1 is obtained as the set of shortest paths when the
edge-weights are {wk+1

ij }. In this scenario, all edges in Gk have maximum edge weight

and all edges in G/Gk have minimum edge weight. Since, the shortest path lies entirely
in G∗k+1, and, thus, in Gk, any path that exits the graph Gk is necessarily longer than the
shortest path. Further, any changes in edge-weights in G/Gk will only increase the weight
of such a path. Effectively the edges in G/Gk play no role in determining the shortest
path for any value of edge-weights. Thus, all shortest paths in G are restricted to the
subgraph Gk.

Proof of Proposition A1. We defined the set F k as,

F k = {ij : wk
ij = wij, ij ∈ E∗k}.

If the termination criteria F k = ∅ is satisfied then all edges in G∗k are present in Gk−1.
By Proposition A2 all shortest paths lie in Gk−1 for any edge-weights over edges in G/Gk−1.



Entropy 2021, 23, 1027 25 of 29

Additionally, since G∗k is a subgraph of Gk−1, we have Gk−1 = Gk. Thus, all shortest paths
lie in Gk for any edge-weights over edges in G/Gk.

By Proposition A1 we saw that all shortest paths in Gk pass through all nodes in X̂ k

for any value of edge weight in Gk−1. We saw above that at termination Gk−1 = Gk, so
equivalently all shortest paths in Gk pass through all nodes in X̂ k for any value of edge
weight in Gk. Since at termination, all shortest paths in G lie entirely in Gk we have our
result.

Before we prove Lemma A1 we present an additional Lemma we will use in its
proof. vr is the initial node of the rescuee and vm is the target node indicated by the
rescuer’s signal.

Lemma A3. Any node v ∈ X̂ k divides the graph Gk into two subgraphs Gk
1 and Gk

2 with vr ∈ V k
1

and vm ∈ V k
2 , such that v is the only common node, i.e., V k

1 ∩ V k
2 = {v}.

Proof of Lemma A3. Let v′ be another node that is common to both sub-graphs Gk
1 and

Gk
2 . Recall that every path in the graph G∗k is a shortest path from vr to vm in G with

edge-weights {wk
ij}. Since Gk =

⋃k
i=1 G∗k, every node in Gk must be a part of a shortest

path for some set of edge-weights. Thus, we can find at least one path ξ ′vr→vm that passes
through v′, such that it forms the shortest path for some set of edge-weight {wl

ij} for some
l ≤ k.

Since, Gk is an acyclic digraph with all paths originating from vr and terminating at
vm, we cannot have any path that travels from Gk

2 to Gk
1 . Thus, the path ξ ′vr→vm containing

node v′ cannot also contain v.
We showed that ξ ′vr→vm is a shortest path on the graph G for some value of edge-

weights {wl
ij} and that does not pass through v. However, such a v cannot lie in X̂ by

definition. Thus, by contradiction we have shown we cannot have another node v′ common
to both graphs Gk

1 and Gk
2 .

An example of a node in X̂ k dividing the Gk into two subgraphs is shown in Figure A1.
As a direct result from Lemma A3 we have,

Corollary A1. Any path between nodes vr and vm lying completely in graph Gk passes through
every node in X̂ k.

vr

v1

v2

v3

v4

vm

v5

Figure A1. A possible representation of G1. All edge weights are minimum. X̂ 1 would contain
{vr, v2, vm}. v2 here connects the two sub-graphs red and green.

Proof for Lemma A1. From the algorithm we see that any shortest paths over the graph
Gk with edge-weights {wk

ij} necessarily passes through every points in X̂ k. We wish to

show the same holds true for edge-weights {wk′
ij }. For these edge-weights let us assume

there exists a shortest path ξ ′vr→vm that does not lie entirely in Gk. By Corollary A1, if we
show that such a shortest path exiting Gk cannot exist then we have completed the proof.
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Let s and t denote the node where the path ξ ′ leaves and rejoins the graph Gk. One
such a path is illustrated in Figure A2. We know that it must leave and rejoin as both the
start (vr) and the end (vm) are a part of the graph. It may leave and return to the sub-graph
Gk multiple times but for the purpose of this proof we can without loss of generality assume
it does so just once each. This assumption is justified at the end of this proof. Now, let ξ ′s→t
denote the slice of the path that is outside Gk−1. We can find a path between s and t entirely
in the graph Gk−1 as well and denote such a path as ξ∗s→t. Since, ξ ′ is the shortest path with
edge-weights {wk′

ij } we have,

φw′(ξ
′
s→t) ≤ φw′(ξ

∗
s→t). (A3)

where φw′(ξ) gives the path cost of path ξ with weights {wk′
ij }. Now, increasing the weights

in the graph Gk−1 to go from the set {wk′
ij } to {wk

ij} will still maintain the inequality (A3),

as the left hand side is not affected by the change in costs of edges in the Gk−1 and the right
hand side is increasing with {wij}.

=⇒ φwk (ξ ′s→t) ≤ φwk (ξ∗s→t) (A4)

where φwk (ξ) gives the path cost of path ξ with weights {wk
ij}. However, (A4) implies that

there exists a shorter path outside graph Gk (and thus outside G∗k) which is not possible.
Thus, any shortest path over edge-weights {wk′

ij } must lie in the graph Gk. Specifically,

by Corollary A1 it must pass through all nodes v ∈ X̂ k.

vr

v1

v2

v3

v4

vm

v5

v6
v7

ξ ′17

Figure A2. A possible representation of Gk. All thick edge weights are maximum and all thin edges
are minimum weight. X̂ k would contain {vr, v2, vm}. v2 here connects the two sub-graphs red and
green. The dashed lines indicate edges in G∗k sub-graph. We want to show that ξ ′17 cannot exist for
any edge-weights {wk′

ij }

In closing this proof we make a comment on the assumption made on ξ ′ above, that it
exits the graph Gk−1 at-most once. If it does exit and enter multiple times we can define
ξ ′s→t as a collection of splices {ξ ′si→ti

: i ∈ [K]} where K denotes the number of splices of
ξ outside Gk−1. We can consider a corresponding collection ξ∗s→t = {ξ∗si→ti

: i ∈ [K]} of
splices within the graph Gk−1 and the same proof holds with minor changes in vocabulary
used.
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Appendix B. Proof for Some Results

Proof for Proposition 2. Let ξ∗R(va, vb) = arg minP∈Pva→vb
φR(P) denote the shortest path

on the graph between any two nodes va and vb for the rescuer. Likewise ξ∗r (va, vb) denotes
the shortest path for the rescuee over the graph between the two nodes. Then,

φ∗R(vx,n)

φ∗r (vx,n)
=

φR(ξ
∗
R(vR, vx,n))

φr(ξ∗r (vr, vx,n))

≤
φR(ξ

∗
R(vR, vx,m)) + φR(ξ

∗
R(vx,m, vx,n))

φr(ξ∗r (vr, vx,m)) + φr(ξ∗r (vx,m, vx,n))
.

Since vx,m also lies on the shortest path for the rescuee we have φr(ξ∗r (vr, vx,n)) =
φr(ξ∗r (vr, vx,m)) + φr(ξ∗r (vx,m, vx,n)). Since ξ∗R(vR, vx,n) is the shortest path for the rescuer to
vx,n we have the triangle inequality φR(ξ

∗
R(vR, vx,n)) ≤ φR(ξ

∗
R(vR, vx,m))+φR(ξ

∗
R(vx,m, vx,n)).

Hence we get

φ∗R(vx,n)

φ∗r (vx,n)
≤

φR(ξ
∗
R(vR, vx,m)) + φR(ξ

∗
r (vx,m, vx,n))

φr(ξ∗r (vr, vx,m)) + φr(ξ∗r (vx,m, vx,n))
(∵ ξ∗R is the shortest path)

≤
φR(ξ

∗
R(vR, vx,m)) + wR

max(m− n)
φr(ξ∗r (vr, vx,m)) + wr

min(m− n)
(∵ wR

ij ≤ wR
max, wr

ij ≥ wr
min)

≤
kvφr(ξ∗(vr, vx,m)) + kvwr

min(n−m)

φr(ξ∗(vr, vx,m)) + wr
min(n−m)

(Assumption 6)

= kv.

Proof of Proposition 3. It is easy to see that this proposition is a direct consequence of the
definitions of robust counterpart to an optimization problem as provided by Ben-Tal et al. [19].
The robust counterpart to the uncertain optimization problem presented in (6) is given by,

min
m∈M

min
vx∈Xm

max
wR

ij ,w
R
ij

k1φ∗R(vx) + k2φ∗r (vx) (A5)

S.T. max
wR

ij ,w
R
ij

φ∗R(vx)− kvφ∗r (vx) ≤ 0. (A6)

We can make the following observations.

φ∗R(vx)− kvφ∗r (vx) ≤ φ∗R,max(vx)− kvφ∗r,min(vx).

The equality holds when each wr
ij = wr

ij and wR
ij = wr

ij. Thus, if a solution satisfies
(18) then it satisfies (A6) for all values of wr

ij and wr
ij. In other words, such a solution is

robust feasible.
By similar reasoning we can see that maxwR

ij ,w
R
ij

k1φ∗R(vx) + k2φ∗r (vx) is attained for

wr
ij = wr

ij and wR
ij = wr

ij. Thus, the robust counterpart to (A5) subject to (A6) is given by
(17) subject to (18).

Proof of Proposition 4. We wish to show that Ewr [g(v, wr)] = J(v). We will drop the wr

arguments for shortest path taken by the rescuee P∗m(wr) for the sake of brevity. By the
definition of candidacy index we have,
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J(v) = Ewr ,P∗m
[
1v∈P∗m

]
= Ewr ,P∗m

[
∑

P∈P∗m(wr)

1v∈P · 1P=P∗m

]

where P∗m(wr) denotes the set of shortest paths from vr to vm for edge-weight wr. Then by
tower property of conditional expectation we have,

J(v) = Ewr

[
∑

P∈P∗m(wr)

1v∈P ·EP∗m [1P=P∗m |wr]

]
.

We made the assumption that when there are multiple shortest paths, one is chosen at
random with a uniform probability over the set of all shortest paths. Given wr, the set of
shortest paths is a deterministic set. So we have,

J(v) = Ewr

[
∑

P∈P∗m(wr)

1v∈P
1

|P∗m(wr)|

]
= Ewr [g(v, wr)].
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