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Zusammenfassung

Die Videospielebranche ist seit vielen Jahrzehnten einer der größten Unterhaltungsmärkte und

wächst stetig mit der Einführung neuer Technologien wie Hardware-Videokodierung und der neuen

Generation von Breitband-Mobilfunknetzen, 5G. Mit diesen Fortschritten ist ein neues Spielparadigma

namens Cloud Gaming entstanden, das das Spielen jederzeit, auf jedem Gerät und an jedem

Ort ermöglicht. Cloud Gaming verlagern die umfangreichen Rechenaufgaben wie das Rendern

auf die Cloud-Ressourcen und streamt ein komprimiertes Video der Spielszenen von Spielern in

Echtzeit an den Client zurück. Ähnlich wie bei anderen Telekommunikationsdiensten ist Cloud

Gaming anfällig für Verschlechterungen wie Blockbildung, Unschärfe und Netzwerklatenz, die durch

Übertragungsnetzwerke und Komprimierungen entstehen. Diese Verschlechterungen können sich

negativ auf das Nutzungserleben (Quality of Experience, QoE) der Benutzer auswirken. Daher ist es für

Dienst- und Netzwerkanbieter von großem Interesse, die QoE von Cloud-Gaming-Diensten zu messen

und zu überwachen, um möglicherweise die Zufriedenheit ihrer Kunden zu verbessern.

Die vorliegende Arbeit zielt auf die Entwicklung eines Gaming-Qualitätsmodells zur Vorhersage der

Gaming-QoE von Spielern ab, das zur Planung des Netzwerkdienstes oder zur Qualitätsüberwachung

von Cloud-Gaming-Diensten verwendet werden kann. Das Modell wurde nach einem modularen Struk-

turansatz entwickelt, bei dem die verschiedenen Arten von Beeinträchtigungen getrennt voneinander

behandelt werden. Eine solche modulare Struktur ermöglicht die Entwicklung eines nachhaltigen

Modells, da jede Komponente durch Fortschritte in diesem spezifischen Forschungsbereich oder

dieser Technologie aktualisiert werden kann. Das Qualitätsmodell berücksichtigt zwei Module für die

Videoqualität und Eingabequalität. Letzteres berücksichtigt die Interaktivitätsaspekte des Spielens. Das

Videoqualitätsmodul bietet eine Reihe von Modellen, die sich je nach Zugriff auf die Videostream-

Informationen unterscheiden. Dies ermöglicht Dienstanbietern eine hohe Flexibilität hinsichtlich der

Positionen der Messpunkte in ihrem System.

Vor der Entwicklung des Videoqualitätsmoduls wurden mehrere moderne Bild- und Videoqua-

litätsmodelle mit Spielinhalten untersucht. Die Ergebnisse zeigten eine schlechte Leistung von No-

Reference-Modellen. Ein besonderer Schwerpunkt lag daher auf der Entwicklung solcher Modelle für

Spielinhalte. Insgesamt wurden zwei Planungsmodelle, ein Bitstream-Modell und drei No-Reference-

Modelle entwickelt. Die Modelle decken typische Videokomprimierungs- sowie Übertragungsfehler ab.

Für ihre Entwicklung wurde entweder ein direkter Modellierungsansatz oder ein mehrdimensionaler

Ansatz verwendet. Der letztere Ansatz ermöglicht es, Einblicke in diagnostische Informationen über

Ursachen für eine beeinträchtigte Videoqualität zu erhalten. Unter den No-Reference-Modellen werden

zwei auf Deep-Learning basierende Modelle vorgeschlagen, die die bekannten traditionellen Full-

Referenz- und No-Reference-Metriken für Bild- / Videoqualität bei Spielinhalten übertreffen. Um die

Interaktivitätsaspekte des Spielens zu berücksichtigen, werden zusätzlich zu den videobezogenen Be-



einträchtigungsfaktoren die Auswirkungen von Netzwerkparametern wie Verzögerung und Paketverlust

untersucht.

Um die Genauigkeit des vorgeschlagenen Spielqualitätsmodells weiter zu erhöhen, wird eine

Klassifizierung von Videospielen nach ihrer Empfindlichkeit gegenüber Verzögerung und Frame-

Verlusten sowie nach ihrer Videokomplexität vorgeschlagen. Teile des Kernmodells führten zur ITU-T

Rec. G.1072, das ein Planungmodell darstellt, das die QoE für Cloud Gaming-Dienste vorhersagt.

Zusammenfassend sind die Hauptbeiträge der Arbeit (1) die Erstellung mehrerer Datensätze

der Messung von Video- und Cloud Gaming-Qualität, (2) die Entwicklung einer Klassifikation von

Videospielen, und (3) die Entwicklung einer Reihe von Gaming-QoE-Modellen zur Vorhersage der

Gaming-QoE in Abhängigkeit vom Zugriff auf Videostream-Informationen.
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Abstract

The gaming industry is one of the largest in the entertainment markets for the past several decades and

is steadily growing with the introduction of emerging technologies such as hardware video encoding

and the new generation of broadband cellular networks, 5G. With these advancements, a new gaming

paradigm called cloud gaming has emerged that makes gaming possible at any time, on any device,

and at any place. Cloud gaming shifts the heavy computational tasks such as rendering to the cloud

resources and streams a compressed video of players’ gameplay back to the client in real-time. Similar

to other telecommunication services, cloud gaming is prone to network and compression degradations

such as blockiness, blurring, and network latency. These degradations could negatively affect the

Quality of Experience (QoE) of users. Therefore, it is of high interest for service and network providers

to measure and monitor the QoE of cloud gaming services to potentially improve the satisfaction of

their customers.

The present thesis aims at the development of a gaming quality model to predict the gaming QoE

of players that could be used for planning the network service or quality monitoring of cloud gaming

services. The model is developed following a modular structure approach that keeps the different

types of impairment separately. Such a modular structure allows developing a sustainable model as

each component can be updated by advances in that specific research area or technology. The gaming

quality model takes into account two modules of video quality and input quality. The latter considers

the interactivity aspects of gaming. The video quality module offers a series of models that differ

depending on the level of access to the video stream information, allowing high flexibility for service

providers regarding the positions of measuring points within their system. Before the development

of the video quality module, multiple state-of-the-art image and video quality models are evaluated

with gaming content. Results revealed a poor performance of No-Reference (NR) models. Thus, a

special focus was given to the development of NR models for gaming content. In sum, two planning

models, one bitstream model, and three NR models were developed. The models cover typical video

compression as well as transmission errors. For their development, either a direct modeling approach

or a multidimensional approach was used. The latter approach allows getting insight into diagnostic

information of causes for impaired video quality. Among the NR models, two deep learning-based

models are proposed that outperform the well-known traditional Full-Reference and NR image/video

quality metrics on gaming content.

In order to consider the interactivity aspects of gaming, in addition to the video related impairment

factors, the impact of network parameters such as delay and packet loss was assessed. To further

increase the accuracy of the proposed gaming quality model, a classification of video games according

to their sensitivity towards delay and frameloss, as well as video complexity, was proposed. Parts of the

core model resulted in the ITU-T Rec. G.1072 that represents a planning model predicting the QoE of

cloud gaming services.



In summary, the main contributions of the thesis are (1) creation of multiple image/video and cloud

gaming quality datasets, (2) development of a gaming video classification, and (3) development of a

series of gaming QoE models to predict the gaming QoE depending on the level of access to the video

stream information.
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1
Introduction

1.1 Motivation

In 1952, Sandy Douglas gave birth to the first know video game named OXO, also known as tic-tac-

toe. However, only in 1967, Brown Box allowed customers to enjoy virtual worlds in their home

environments. Over 40 years later, the US video gaming market reached $60.4 billion1 in 2020. On the

contrary to other businesses, the COVID-19 pandemic had no negative influence on the growth of the

gaming industry as potential consumers were even more likely to engage in gaming.

The first form of commercial video games ran on a game console. Nowadays, video games are

played on multiple types of devices such as Personal Computer (PC), and mobile devices connected

to various input devices (e.g., mouse, gamepads, and keyboards), as well as output devices (e.g.,

4K monitors, and Head-Mounted Displays). Over time, with the advancement of technology, video

games became more and more complex both in terms of design and processing power. This growth

in complexity requires players to update their end devices every few years to play the latest released

version of video games. One solution for this is to move the heavy processes such as the rendering to

the cloud and cut the needs for having high-end hardware devices for customers. This is the initial idea

behind a Cloud Gaming service.

Cloud Gaming is characterized by game content delivered from a server to a client as a video stream

with game controls sent from the client to the server. The execution of the game logic, rendering of the

virtual scene, and video encoding are performed at the server, while the client is responsible for video

decoding and capturing of client input [1].

Cloud gaming is proposed to offer more flexibility to users by allowing them to play any game

anywhere and on any type of device. Apart from processing power, cloud gaming benefits users by

offering platform independence, i.e. that every game can be played on any device regardless of the

operating system. For game developers, it offers security to their products against piracy and promises

a new market to increase their revenue.

OnLive was one of the early cloud gaming services which received lots of attention between

2012 to 2015. While the service seemed to be very promising, it failed to attract users due to high

1https://www.statista.com/topics/868/video-games/
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1. Introduction

latency and low video quality which was finally shut down in 2015 after being sold to Sony. With the

advancement of network and compression technologies, new cloud gaming services have emerged

recently. Among others, the following services of high-tech companies joined the market: Google

Stadia, Sony’s PlayStation Now, NVIDIA GeForce Now, Microsoft’s Project xCloud, Amazon’s Luna,

and Telekom’s MagentaGaming etc. Yet, the biggest challenge of all cloud gaming services is to

provide a satisfying quality to their end-users.

Cloud gaming as a real-time application suffers strongly from the additional delay due to video

encoding and decoding, end-to-end transmission latency, as well as other network constraints such as

limited bandwidth and packet loss. The Quality of Experience (QoE) of customers, which is described

by the degree of delight or annoyance of the user [2], can be negatively affected by these limitations.

In order to optimize user satisfaction despite these challenges, strategies for resource and network

management are highly necessary. As a ground truth for these strategies, subjective user ratings for

various system configurations are required. As these subjective tests are very time-consuming and

costly, there is a high interest from network and service providers to create QoE prediction models.

The aim of the present thesis is to provide quality models for cloud gaming services based on the

impact of impairments introduced by typical Internet Protocol (IP) networks on the quality experienced

by players. Based on the use case and available information about the network and service parameters,

providers will be able to select a suitable model from a series of models that are developed to be used

for network planning and quality monitoring of cloud gaming services.

The proposed models are composed of two modules, video quality, and input quality, affected by

three different impairment types: transmission error, lossy compression, and latency on the control

stream. Each model predicts a Mean Opinion Score (MOS) of overall gaming QoE on a five-point

Absolute Category Rating (ACR) scale (cf. ITU-T Rec. P.910 [3]). In addition to the overall gaming

quality score, separated predictions of the video quality and input quality are available as diagnostic

information that could be used to determine the cause of impairment.

All models follow the same structure, while three different types are proposed for the prediction of

video quality that is impaired by video compression. Three types of video quality models are developed

with different levels of access to the video stream information:

• Network Planning models which can be used by various stakeholders for purposes such as

resource allocation and configuration of IP-network transmission settings such as the selection of

resolution, framerate, and bitrate under the assumption that the network is prone to packet loss

and delay.

• Bitstream-based models which can be used by cloud gaming and network providers to monitor

the quality based on the extraction of packet header information and network parameters, i.e.,

end-to-end latency and packet loss rate.

• No-Reference Signal-based models that can be used by cloud gaming providers to predict the

gaming QoE based on the access to the compressed video signal, and network parameters.

1.2 Scope of the Thesis

In this section, the scope of models targeted in this thesis is presented, and more importantly, the aspects

that are not considered in the scope are listed. The developed models target cloud gaming services that
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1.2 Scope of the Thesis

perform video streaming over Real-time Transport Protocol (RTP) (over Datagram Protocol (UDP))

and which select various video encoding parameters to adapt to the network throughput, packet loss,

and end-to-end delay. The impact of network and encoding distortions on various quality features

perceived by a player depends strongly on the sensitivity of a game towards these degradations. In

this thesis, three types of game classifications are described based on the game characteristics that

can be used for cloud gaming quality prediction. If no information on the game class of sensitivity is

available to the user of the model, the "default" mode of operation should be used that assumed the

highest (sensitivity) game class. The "default" mode of operation will result in a pessimistic quality

prediction for games that are not of high complexity and sensitivity.

Considering the limitations, such as limited resources and time frame for the development of models

predicting gaming QoE, the scope of the work is limited to a number of important aspects relevant to

the current state of the cloud gaming services. The reasons behind the selection of parameters, range

of parameters, technology, participants, input and output modalities are presented in the following

chapters of the thesis. The developed models only work in the scope and range of the parameters that

the models have been developed for (cf. Chapter 3). Therefore, the following aspects are out of the

scope of the proposed models:

• Predicting the influence of the game design or the motivation of users to play them.

• The gaming QoE under the influence of social factors, especially for multiplayer games where

players can communicate with each other.

• Virtual reality games requiring 3D rendering devices or displayed on Head-Mounted-Displays.

• Display sizes lower or higher than 24". The display size of 24" is selected as a typical PC gaming

monitor at the time of the research.

• Input devices other than keyboard and mouse, e.g., gamepad and touch displays.

• Traditional online gaming services requiring the execution of a game on the client device.

• Core-gamers, as they are not assumed to be the main target of cloud gaming services.

• Online gaming that no video stream is transmitting over the broadband network.

With respect to the encoding technologies considered, the models are trained based on hardware

accelerator engines for video compression and H.264/MPEG-4 AVC as the choice of video compression

standard. The models are trained and evaluated at video resolution up to Full High Definition (FHD),

framerates up to 60 fps, and end-to-end delay up to 400 milliseconds.

However, the No-Reference signal-based models may be considered to measure the gaming QoE

for other types of video codecs and encoding settings as this mode relies on the signal information and

not encoding parameters.

While the focus of the described model is on cloud gaming, the video quality module might be

relevant for passive gaming video streaming applications such as Twitch.tv where only the video content

is streamed to passive viewers.
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1. Introduction

1.3 Structure of the Thesis

Chapter 2 gives an introduction to Quality and Quality of Experience in the context of cloud gaming

services. In addition, it provides a short overview of QoE influencing factors of cloud gaming service,

subjective test procedures, and existing gaming quality models in the literature.

Chapter 3 presents the model framework structure and describes the necessary steps before the

development of gaming QoE models, including training data, data processing, and classification of

video games according to their sensitivity to network and compression impairment.

In Chapter 4, the proposed video quality models that predict the quality of compressed sequences are

described. Multiple models are proposed according to the level of access to streamed video information

or video encoding parameters. In total, two planning models, a bitstream model, and three signal-based

models are proposed in this chapter. These models can be used as standalone models to predict the

video quality of the encoded video or with the gaming QoE model to predict the impairment due to

compression.

Chapter 5 provides information about the development of models to predict the impairment

due to transmission errors and errors on control streamflow. In addition, the core gaming QoE

model is described in this section. The section ends with a short description of Telecommunication

Standardization Sector of the International Telecommunication Union (ITU-T) Recommendation (Rec.)

G.1072 model that author strongly contributed to, and discusses the differences as compared to the

proposed framework of the thesis.

The performance of the proposed impairment factor models is evaluated in Chapter 6. The

performance is analyzed based on multiple gaming video quality datasets as well as an interactive

quality dataset. In addition, the performance evaluation of the final gaming QoE model and ITU-T Rec.

G.1072 models are presented in separate sections.

Finally, in Chapter 7, a summary of the key contributions of the thesis and limitations in the

development of the models are provided. Next, the possible extensions of the model are described to

give an outlook for future work.

1.4 Contribution by the Author

In this section, an overview of the author’s contribution to the work presented in this thesis is given. The

author published several scientific publications in multiple conferences and journals. In the following,

a list of contributions relevant to the present thesis is given.

One of the early works that the author contributed to was done in collaboration with Steven Schmidt.

The paper investigates the importance of specific game scenarios with respect to the influence of

network delay on QoE. Steven Schmidt was responsible for all necessary processes including the study

design, implementation of rating tools and setups, analysis of the results, paper writing as well as

conduction of subjective user studies. The author supported in writing and data analysis of the paper.

The paper is discussed as a part of the literature review in Section 2.6.

• S. Schmidt, S. Zadtootaghaj, and S. Möller, “Towards The Delay Sensitivity of Games: There Is More Than Genres”,
in Ninth International Workshop on Quality of Multimedia Experience (QoMEX), IEEE, 2017.
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1.4 Contribution by the Author

The author contributed to another paper investigating gaming quality influencing factors that impact

the visual attention of players. The work is discussed briefly in Section 2.4. The paper is written in

collaboration with other authors but was mainly a result of the efforts by the author of the present thesis.

• S. Zadtootaghaj, S. Schmidt, H. Ahmadi, et al., “Towards Improving Visual Attention Models Using Influencing
Factors in a Video Gaming Context”, in 2017 15th Annual Workshop on Network and Systems Support for Games
(NetGames), IEEE, 2017, pp. 1–3.

Multiple scientific papers are published as an output of a collaboration during the visit of Nabajeet

Barman at the Telekom Innovation Laboratories, Deutsche Telekom, between Ph.D. students/researchers

of the three groups of Deutsche Telekom, Kingston University, and TU Berlin in 2018. As an

outcome, two publications are majorly contributed by the author, one towards the development of video

complexity classification of games which is discussed in Section 3.6, and one about the development of

a light-weight no-reference gaming video quality model that is presented in Section 4.3.1.

• S. Zadtootaghaj, S. Schmidt, N. Barman, et al., “A Classification of Video Games based on Game Characteristics
Linked to Video Coding Complexity”, in 2018 16th Annual Workshop on Network and Systems Support for Games
(NetGames), IEEE, 2018, pp. 1–6 Best Paper Award.

• S. Zadtootaghaj, N. Barman, S. Schmidt, et al., “NR-GVQM: A No Reference Gaming Video Quality Metric”, in

2018 IEEE International Symposium on Multimedia (ISM), IEEE, 2018, pp. 131–134.

In addition, the main contributions to the following four other publications were made by Nabajeet

Barman. The author contributed to the first publication by conducting the subjective test to develop

a gaming video quality dataset, GamingVideoSET, and helped in the analysis of the results for other

publications. The dataset is presented in 3.4 and other publications are mostly discussed as a part of the

literature review in Section 2.6.

• N. Barman, S. Zadtootaghaj, S. Schmidt, et al., “GamingVideoSET: A Dataset for Gaming Video Streaming
Applications”, in 2018 16th Annual Workshop on Network and Systems Support for Games (NetGames), IEEE, 2018,
pp. 1–6.

• N. Barman, M. G. Martini, S. Zadtootaghaj, et al., “A Comparative Quality Assessment Study for Gaming and
Non-Gaming Videos”, in 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), IEEE,
2018, pp. 1–6.

• N. Barman, S. Schmidt, S. Zadtootaghaj, et al., “An Evaluation of Video Quality Assessment Metrics for Passive
Gaming Video Streaming”, in Proceedings of the 23rd Packet Video Workshop, ACM, 2018, pp. 7–12.

• N. Barman, S. Zadtootaghaj, S. Schmidt, et al., “An Objective and Subjective Quality Assessment Study of Passive

Gaming Video Streaming”, International Journal of Network Management, e2054, 2018.

The author contributed in a publication that compares two different test paradigms of passive

listening-viewing tests and interactive tests. While Steven Schmidt was the main contributor, the study

design and conduction of subjective tests were supported by Saman Zadtootaghaj. The paper is briefly

discussed in Section 2.5.4 of the thesis.

• S. Schmidt, S. Möller, and S. Zadtootaghaj, “A Comparison of Interactive and Passive Quality Assessment for Gaming
Research”, in 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), IEEE, 2018,
pp. 1–6.
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The author contributed to a study to develop a classification for delay sensitivity of video games.
The author contributed to the study design and analysis of the experiment based on his knowledge and
experience in the first game classification proposed in [6].

• S. S. Sabet, S. Schmidt, S. Zadtootaghaj, et al., “Delay Sensitivity Classification of Cloud Gaming Content”,
in Proceedings of the 12th ACM International Workshop on Immersive Mixed and Virtual Environment Systems,
ser. MMVE ’20, Istanbul, Turkey, pp. 25–30.

In addition, the author majorly contributed to multiple publications to develop different types of

gaming video quality metrics that are listed below. The first publication is briefly described in Section

2.6, while the rest are described in detail in Chapter 4.

• S. Zadtootaghaj, S. Schmidt, and S. Möller, “Modeling Gaming QoE: Towards the Impact of Frame Rate and Bit Rate
on Cloud Gaming”, in 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), IEEE,
2018, pp. 1–6.

• S. Zadtootaghaj, S. Schmidt, S. S. Sabet, et al., “Quality Estimation Models for Gaming Video Streaming Services
Using Perceptual Video Quality Dimensions”, in Proceedings of the 11th ACM Multimedia Systems Conference, 2020,
pp. 213–224.

• M. Utke, S. Zadtootaghaj, S. Schmidt, et al., “NDNetGaming-Development of a No-Reference Deep CNN for Gaming
Video Quality Prediction”, Multimedia Tools and Applications, pp. 1–23, 2020.

• S. Zadtootaghaj, N. Barman, R. R. Ramachandra Rao, et al., “DEMI: Deep Video Quality Estimation Model Using
Perceptual Video Quality Dimensions”, in 2020 IEEE 22nd International Workshop on Multimedia Signal Processing
(MMSP), IEEE, 2020, pp. 1–6.

In addition to the publications that are contributed by the author, he has been strongly involved in

activities at the standardization body, ITU-T Study Group 12, and Video Quality Expert Group (VQEG)

especially for the three ITU-T work items described below:

• G.QoE-gaming: Influence factors on gaming quality of experience (result in ITU-T Rec. G.1032)

• P.GAME: Subjective evaluation methods for gaming quality (result in ITU-T Rec. P.809)

• G.OMG: Opinion model predicting gaming quality of experience for cloud gaming services

(resulted in ITU-T Rec. G.1072)

Rec. G.1032 is covered in Section 2.4. Rec. P.809 is presented in Section 2.5, and Rec. G.1072 is

discussed in Chapters 5, 6, and 7. The list of contributions to these work items are presented below:
ITU-T Contributions related to the work item G.QoE-gaming (ITU-T Rec. G.1032):

• S. Zadtootaghaj, S. Schmidt, and S. Möller, “Influence Factors on Gaming Quality of Experience (QoE)”, ITU-T
Study Group 12, Geneva, ITU-T Contribution C.104, 2017.

• S. Schmidt, S. Zadtootaghaj, and S. Möller, “Updates on the first draft of Influence Factors in Gaming Quality of
Experience (QoE)”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.41, 2017.

ITU-T Contributions related to the work item P.GAME (ITU-T Rec. P.809):

• S. Schmidt, S. Zadtootaghaj, and S. Möller, “Update on the Proposal for a Draft New Recommendation on Subjective
Evaluation Methods for Gaming Quality (P.GAME)”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.17,
2017.

• S. Schmidt, S. Zadtootaghaj, S. Möller, et al., “Update on the Proposal for a Draft New Recommendation on Subjective
Evaluation Methods for Gaming Quality (P.GAME)”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.98,
2017.

• S. Zadtootaghaj, S. Schmidt, A.-F. Perin, et al., “Towards subjective evaluation methods for virtual reality gaming
quality assessment”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.103, 2017
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1.4 Contribution by the Author

• S. Schmidt, S. Zadtootaghaj, S. Möller, et al., “Subjective Evaluation Methods for Gaming Quality (P.GAME)”,
ITU-T Study Group 12, Geneva, ITU-T Contribution C.205, 2018.

ITU-T Contributions related to the work item G.OMG (ITU-T Rec. G.1072):

• S. Schmidt, S. Zadtootaghaj, S. Möller, et al., “Requirement Specification and Possible Structure for an Opinion
Model Predicting Gaming QoE (G.OMG)”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.200, 2018.

• S. Schmidt, S. Zadtootaghaj, F. Schiffner, et al., “Data Assessment for an Opinion Model Predicting Gaming QoE
(G.OMG)”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.293, 2018.

• S. Schmidt, S. Zadtootaghaj, M. Utke, et al., “First Draft for an Opinion Model Predicting Gaming QoE (G.OMG)”,
ITU-T Study Group 12, Geneva, ITU-T Contribution C.387, 2019.

• S. Schmidt, S. Zadtootaghaj, S. Möller, et al., “Proposal for an Opinion Model Predicting Gaming QoE for Mobile
Online Gaming”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.441, 2019.

• S. Schmidt, S. Shafiee Sabet, S. Zadtootaghaj, et al., “Proposal of a Content Classification for Cloud Gaming Services”,
ITU-T Study Group 12, Geneva, ITU-T Contribution C.444, 2019.

• S. Schmidt, S. Zadtootaghaj, S. Möller, et al., “Performance Evaluation of the Opinion Model Predicting Gaming
QoE (G.OMG)”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.445, 2019.

• S. Schmidt, S. Zadtootaghaj, S. Möller, et al., “Opinion Model Predicting Gaming QoE (G.OMG)”, ITU-T Study
Group 12, Geneva, ITU-T Contribution C.446, 2019.

• S. Schmidt, S. Zadtootaghaj, and S. Möller, “Corrigendum for ITU-T Recommendation G.1072: Opinion Model
Predicting Gaming QoE ”, ITU-T Study Group 12, Geneva, ITU-T Contribution C.511, 2020.
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2
Gaming Quality of Experience

The goal of this thesis is to develop a QoE model in the context of cloud gaming services. In this

chapter, the background information that is necessary to understand the decisions that are made in each

step of the model development is provided. Thus, this chapter starts with an introduction about the

cloud gaming technology. Next, the concepts of quality and Quality of Experience are defined. The

chapter continues with a short introduction to a gaming QoE taxonomy and relevant influencing factors

on cloud gaming quality. Later, the methodology to conduct subjective experiments to assess gaming

QoE is described. Finally, the section ends with a short overview of efforts towards the development of

gaming quality models in the literature.

2.1 Cloud Gaming System

Cloud gaming technology is evolving rapidly with the advancement of compression and network

technologies employed in the system to improve the players’ QoE. Regardless of the differences in

technologies employed in different cloud gaming systems, the system itself can be depicted at an

abstract level, as shown in Figure 2.1. In a cloud gaming service, the server, also called a cloud,

is responsible for executing the game, including running the game logic and rendering the scenes

according to the player’s commands. While the end user’s device, also named thin-client, is responsible

for receiving the streamed audio and video signals and display them on the thin-client device. In

addition, the client device captures the user commands and transmits them to the cloud gaming server.

Two data flow streams are required in the system, one to transmit the control commands to the server,

which is called “control flow”, and another to send the audiovisual signal to the client-side. All these

processes are constrained by the performance of the network between the client and the server. Several

constraints, such as propagation and transmission latency, lossy channel, and limited bandwidth would

influence the experience of players. Due to the limited bandwidth, the audiovisual stream must be

compressed before transmission over the broadband networks. Thus, on the server side, the audiovisual

content is encoded and then decoded on the client-side.

For a real-time cloud gaming service, typically, the cloud gaming service providers use hardware-

accelerated engines to encode the videos under presets and settings appropriate for real-time encoding.
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2. Gaming Quality of Experience
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Figure 2.1: Abstract framework of a cloud gaming system.

In this thesis, the hardware-accelerated solution provided by NVIDIA, NVIDIA Encoder (NVEnc) for

the H.264/MPEG-4 AVC codec is followed.

In addition to limited bandwidth, a cloud gaming service runs over UDP that is prone to packet

loss due to network congestion and forward error correction. Due to the packet loss, re-transmission

might be an option that introduces additional latency, which might not be desirable for an interactive

cloud gaming service. Thus, in cloud gaming services, packet loss typically results in frame losses.

As a choice of network control protocol, the Real Time Streaming Protocol (RTSP) is considered in

this thesis. However, this might change over the years with the advancement of web browser-based

multimedia transmission technologies, as Google uses Web Real Time Communication (WebRTC) for

its cloud gaming service, Stadia.

All processes between the client and the server introduce latency to the service. The delay typically

is due to multiple processes between client and server such as packet transmission and propagation,

video encoding/decoding, (de)packetization. Thus, an additional delay is introduced in the cloud

gaming service compared to a traditional gaming system, e.g., game console. This additional delay

could severely impact players’ interaction with the system, which will be discussed in the following

chapters.

2.2 Concept of Quality

The term “quality” is widely used in academia, while there is no general consent over the definition.

Depending on the service, product, or circumstance, the definition of quality is adjusted and redefined

in literature. A widely used definition of quality was introduced by Juran [32] as “fitness for use”.

In this definition, the term “quality” is associated with user requirements, and implicitly customer

satisfaction is foreseen. However, this definition neglected the product and service cost, which led to
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2.2 Concept of Quality

a revision of the definition by Ishikawa and Lu as “fitness for use at an acceptable price” [33]. The

definition of “quality” has changed over the years in different domains, while typically the customer is

the central point of the definition.

The term “quality” in multimedia and telecommunication domains has a historical path from

a technology-centric approach to a human-centric approach. In classical quality assessment in

telecommunication systems, quality was related to the characteristics of a product (service, application,

or device) to evaluate if the technical product fulfills the requirement that is expected without considering

the satisfaction of users. This perspective led to a commonly agreed definition of quality given by the

International Organization for Standardization (ISO) in 2005.

Quality

Degree to which a set of inherent characteristics fulfills requirements [34].

With the rise of new multimedia services and their diversity, more human-centric measurement of

the quality is considered, leading to the adoption of newer concepts and methods for quality assessment

of telecommunication services, which take into account the effect of human perception.

2.2.1 KPIs, QoS, and QoE

Nowadays, quality assessment has become a necessary step of not only Internet Service Providers

(ISPs) but also service and application providers such as cloud gaming providers to ensure that their

costumers are delighted with the provided service. In the early generation of quality assessment

of telecommunication service, Key Performance Indicators (KPIs), such as delay, packet loss, and

throughput, were measured by network and service providers. These KPIs are monitored continuously

to ensure that the service or network provider commits to a certain level of quality for a given service

which might be agreed upon in a Service Level Agreement (SLA). This technology-centric approach

focuses on measuring the performance, and reliability of protocols and services that operate on top

of the IP layer [35]. Thus, several efforts have been made to standardize these methods at the ITU-T,

such as ITU-T Rec. Y.1540 and ITU-T Rec. Y.1541 define methods to assess the speed, accuracy,

dependability, performance, and availability of IP packet transfer services [36], [37]. These KPIs are

the essential backbone of Quality of Service (QoS) models. QoS in the telecommunications domain is

defined at ITU-R Rec. P800 [38] as:

Quality of Service

The totality of characteristics of a telecommunications service that bear on its ability to satisfy

stated and implied needs of the user of the service.

QoS exclusively relies on the technical characteristics of telecommunication services for the user’s

satisfaction. The QoS models can help to create a better experience for users of a service, but these

models fail to measure the quality from the user perspective. Therefore, a more human-centric approach

to measure quality, termed as QoE is introduced to take in the perspective of human users perceiving and

interacting with the multimedia systems and services. Quality of Experience is defined in a Whitepaper

of the Qualinet group [2] as:
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2. Gaming Quality of Experience

Quality of Experience

The degree of delight or annoyance of the user of an application or service. It results from

the fulfillment of his or her expectations with respect to the utility and/or enjoyment of the

application or service in the light of the user’s personality and current state.

The QoE definition introduces new factors that are neglected in the QoS definition. QoE does

not only take into account the technical factors but also the contextual factors as well as user related

factors. In the classical QoS approach, user-related factors such as the customer’s mood, personality,

and environment are considered confounding and unwanted factors. Therefore, it was widely accepted

that by averaging individual ratings into a MOS for a particular stimulus, the individual’s influence

would be eliminated, and it leads to a "typical" rating. The contextual factors are also controlled by

strict requirements for the experimental environment, such as illumination, display size etc.

The new era of QoE led to efforts in developing quality prediction models that are much closer to

human judgment than exclusively taking into account the technical characteristic of a system or service.

This is now possible with a high-performance probing system that allows ISPs to monitor thousands of

connections simultaneously and provide diagnostic analyses as well as QoE estimations [35]. However,

peeking into all media streams transmitted over a network, capturing user-specific information touches

the critical subject of customer privacy [35]. Therefore, many challenges still remain to develop a

holistic QoE model for multimedia applications and services.

2.3 Taxonomy of Gaming Quality Aspects

With a general introduction to QoE in the previous section, QoE specific to the gaming domain is

discussed in this section. QoE in gaming is different compared to traditional multimedia services, such

as video streaming, as players are emotionally attached to their activities, and the players’ actions

significantly impact the Quality of Experience. Therefore, for a better understanding of the gaming

QoE, a taxonomy of QoS and QoE aspects related to computer gaming has been proposed in [39], as

illustrated in Figure 2.2.

The taxonomy differentiates and categorizes influencing factors, interaction performance metrics,

and quality features, in three layers. In any multimedia services, a series of influencing factors can be

defined which impact the user’s subjective QoE. The term Influencing Factor in the context of QoE has

been defined in [2] as:

Influencing Factor

Any characteristic of a user, system, service, application, or context whose actual state or setting

may have an influence on the Quality of Experience for the user.

QoE as a multi-dimensional construct has many features specific to the service under scrutiny. The

term QoE feature has been introduced in [2] as:

QoE Feature

A perceivable, recognized, and nameable characteristic of the individual’s experience of a

service that contributes to its quality.
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2.3 Taxonomy of Gaming Quality Aspects
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Figure 2.2: Taxonomy of gaming QoE factors and aspects redesigned based on [39].

The top layer of the taxonomy identifies the influencing factors categorized into three groups,

user-specific factors, system-related factors, and context of usage. In the middle layer, the interaction

between the user and the system, including any technical systems involved, are represented. The

bottom layer includes the perceptual quality features of gaming QoE that may be affected by various

influencing factors. Due to the importance of factors influencing gaming QoE modeling, they are listed

and discussed in detail in Section 2.4. The relation of gaming quality features presented in the bottom

layer is inspired by the Game Experience Questionnaire (GEQ) [40] as well as a range of quality

features from the hedonic aspects, the joy of use, to pragmatic aspects such as ease of use.

Regarding the latter (pragmatic aspects) it must be noted that for a gaming application, the traditional

view of usability is not suitable as there have to be some challenges and obstacles for a player to create

a joyful experience. Thus, the concepts of efficiency and effectiveness do not apply here, as they would

lead to boredom. Instead, the pragmatic aspects are summarized under the umbrella term playing

quality, which takes into account the game usability including the learnability and intuitivity of the

game. This is in line with the definition of game usability by Pinelle et al. [41] which is described

as "the degree to which a player is able to learn, intuitively control, and understand a game". In the

following, a short overview of the quality features affecting gaming QoE is given.

Aesthetics and Appeal are considered as the sensory experience that the system elicits and the

extent to which this experience fits an individual’s goals and spirit [42].

A core feature of the gaming QoE is the Interaction quality which refers to "the playability of the

game in terms of the degree to which all functional and structural elements of the game (Hardware

and Software) provide a positive player experience [42]". Interaction quality includes input quality

(player to the system), output quality (system to the player, e.g., video quality and audio quality) under

interaction behavior of players. The two quality features of input quality and output quality form the

backbone of the gaming QoE model developed under this thesis. In fact, the potential degradation
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introduced by a cloud gaming service, e.g., delay or low video quality, would severely affect the

interaction of players with the game, which points to the importance of these two quality features in the

development of any gaming QoE model.

In the lower layer of quality features, the player experience is covered. Player experience is defined

according to the QoE definition by ITU-T as "the degree of delight or annoyance perceived by the

player after the gaming experience" and includes popular concepts such as immersion and flow.

There is still no agreement on a clear definition of the term immersion. Witmer et al. [43] define

immersion as "a psychological state characterized by perceiving oneself to be enveloped by, included

in, and interacting with an environment that provides a continuous stream of stimuli and experiences".

In the gaming context, immersion often describes the degree of involvement with the game, which

Brown and Cairns categorized into the three phases of engagement, engrossment, and total immersion

[44]. The first phase of involvement requires the player to overcome the barrier of preference and learn

how to play the game. To reach the engrossment state, the player needs to combine game features and

master the control of the game in order to become emotionally attached. These two steps are necessary

to reach the total immersion where the players are barely aware of their surroundings and themselves

and emotionally attached to the game.

Flow is described by Hassenzahl as "a positive experience caused by an optimal balance of

challenges and skills in a goal-oriented environment. In other words, flow is the positive user experience

derived from fulfilling the need for competence (i.e., mastery); it is a particular experience stemming

from the fulfillment of a particular be-goal." [45]. Flow depends strongly on the game design (e.g.,

difficulty adjustment) as well as user experience.

Fun as one of the main positive affect of playing games is typically the main goal of the gamers

to play which could be associated with other positive affect such as delight, enjoyment, and so forth.

Fun has been defined as "The positive feelings that occur before, during, and after a compelling flow

experience" [46]. On the contrary, the negative affect such as frustration and boredom could negatively

influence the experience of the player.

Finally, these aspects can affect the acceptability describing how readily a user uses a system or a

service, which is influenced not only by player experience but also by other economic measures such as

costs and service conditions.

For quality assessment of video games, it is required to select means to measure these features.

Several measurement tools exist that can be used for the measurement of each feature, e.g., physiological

measurements such as electroencephalography (EEG). The most widely used assessment tools are

questionnaires. ITU-T Rec. P.809 [42] gives a long list of questionnaires that can be used in subjective

tests to measure gaming quality features. Since it is not possible to cover all quality features affecting

the gaming QoE with a single questionnaire, it typically depends on the aim of the study as to which

questionnaire is selected and used in the experiment.

Since this thesis aims at the development of gaming QoE prediction models, as an essential step,

it must be decided what features should be taken into consideration in the prediction of gaming QoE.

Based on the gaming taxonomy, all presented features might be affected by the distortions in cloud

gaming services. However, some of the features depend strongly on the game design, such as aesthetics,

which is out of the scope of a cloud gaming QoE prediction model. In addition, some other features

strongly rely on the information of the user that is not available to cloud gaming or network providers

as two potential stakeholders of cloud gaming QoE prediction models.
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As an example, because of the possible distortion due to end-to-end latency, limited bandwidth, and

packet loss in cloud gaming services, the degree of involvement, consequently the immersion, could

be negatively affected. However, it has to be noted that immersion (or state of involvement) requires

knowledge about the player preference, state of the game, and experience with the game which is

typically not accessible from the eyes of service and network providers. Similar to the immersion state,

monitoring the flow state of players is not practically possible by network and service providers unless

having access to the mastery level of participants, game state, and many other information that leads

to a very complex and game/player dependent gaming QoE prediction model. This does not imply

that these features have no impact on gaming QoE. However, the selection of features considered for

the gaming QoE prediction model depends on several limitations such as availability of information

to the stakeholders, the impact of each feature to overall QoE, and limitations in data collection and

subjective testing. After the theoretical basis of the research is summarized in this chapter, the concrete

decision made regarding the feature selection of the model is presented in Chapter 3.

2.4 Gaming QoE Influencing Factors

In the previous section, the taxonomy of gaming QoE was described that includes gaming QoE

influencing factors as one of the main components influencing a player’s perceived quality. In this

section, the factors of the cloud gaming service that are influencing the gaming QoE are presented

based on the ITU-T Rec. G.1032 [1]. This section is majorly written based on this Recommendation

which the author of the present thesis contributed to between 2016 to 2017 [18], [19]. ITU-T Rec.

G.1032 categorizes the gaming influencing factors into three groups of human, system, and context

influencing factors that this section is structured accordingly.

2.4.1 Human Factors

A human influencing factor is “any variant or invariant property or characteristic of a human user.

The characteristic can describe the demographic and socio-economic background, the physical and

mental constitution, or the user’s emotional state” [2]. In the following, some of the identified human

influencing factors in the context of cloud gaming are summarized.

General Gaming Experience: In the literature, a classification of “hardcore gamer” and “casual

gamer” is widely used, distinguishing the classes based on the average playing time in a certain period.

Despite the division’s broad adoption, there exists no generally agreed threshold to delimit the two

groups.

Experience with a Specific Game or Genre: Each service is best evaluated by users who are

familiar with how it should function. "Digital games" is a very broad term, and the complexity of the

game under test can vary. For simple games, the knowledge of the player about the game under test

may not matter because the gameplay is simple and easy to understand. On the other hand, in more

complex games such as Massively Multiplayer Online Role-Playing games, it is intuitive that the users

who are using it usually should be the ones who can best evaluate its quality, because some aspects of

the system may not function properly and if the testing player does not know how it should function,

he/she may not notice the degradation.

Intrinsic and Extrinsic Motivation: Intrinsic and extrinsic motivation can have a strong influence

on the QoE of gaming since the high diversity of games offers different kinds of fun and motivation to
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play them. For example, players who want to prove themselves by beating other players may not be

satisfied when playing a purely artificial intelligence controlled game. It has to be noted that Extrinsic

motivation is categorized as context factors in literature [47].

Static and Dynamic human Factors: Static human factors are static characteristics of a player

such as demographic information (e.g., age, gender, and native language), while dynamic factors refer

to user state factors (e.g., emotional status include boredom, distraction, curiosity).

Human Vision and Audition: Visual perception varies depending on the characteristics of the

visual stimulus. The sensitivity of a user to video/network artifacts differs between users. As an

example, sensitivity to framerate as an encoding parameter depends on a user’s Critical Flicker Fusion

threshold [48]. Similarly, the human hearing capability varies in terms of pitch and loadness of the

sound.

2.4.2 Context Factors

Contextual influence factors “are factors that embrace any situational property to describe the user’s

environment in terms of physical, temporal, social, economic, task and technical characteristics” [49],

[50]. In the following, a summary of identified context influencing factors for cloud gaming is given.

Physical Environment Factors: Physical factors refer to room characteristics (acoustics, and

lighting) and usage situation (in-house, on the move, etc.).

Social Context: The Social Context factors refer to the relationships to other players who are

involved in the game, potential parallel activities of the player, privacy and security issues, which might

be particularly relevant in multiplayer games [47]. Social context is one of the influential QoE factors

that is difficult to measure objectively. Therefore, the influence of other factors (especially technical

factors) on gaming QoE is hard to measure in the presence of social context. Hence, it is recommended

to avoid this factor in gaming QoE studies, unless the main focus of the work is to study the influence

of such factors [42].

Service Factors: An influence of these factors (e.g., ease of access, availability, pricing) on

customer satisfaction has been shown for online game services [51] and is likely present especially in

the context of cloud gaming.

Novelty: Novelty, which means that the user experience is improved when a new technology is

introduced, has an impact on quality judgments, not because of any actual improvement in learning

or achievement, but in response to an increased interest in the new technology [52]. Thus, it can

be expected that the impact of quality factors on perceived quality will be different for any “new”

technologies and services. An example of such a new technology is Virtual Reality (VR) gaming using

HMDs.

2.4.3 System Factors

System influencing factors refer to “properties and characteristics that determine the technically

produced quality of an application or service” [50]. The factors in this section contain the game, which

is being played by the user, and also the whole setup and user-perceivable design of the hardware and

software. Below, an overview of identified system factors is provided.
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Game

Similar to other types of media, the content of a game (e.g., mechanics, dynamics, aesthetics [53])

decidedly influence a player’s gaming experience. However, differing from other types of media, the

content and the underlying technical implementation are strongly interwoven: even scenarios from the

same game often employ entirely different stacks of software to generate the gaming experience [4]. In

addition, several game design aspects have an impact on a game to be sensitive towards a certain type

of degradation in cloud gaming services. A comprehensive discussion about the game characteristics

that may have an impact on the player’s experience in a cloud gaming service is given in Section 3.6.

Game Mechanics and Rules: Djaouti et al. [54] introduced a rule-based game classification

called "gameplay bricks" splitting the games into several fundamental elements such as moving and

shooting. In total, ten gameplay bricks are classified into two categories: rules stating goals, including

avoid, match, and destroy, and rules defining the means to reach the goals consisting of create, manage,

move, random, select, shoot, and write. These largely influence and determine game outcomes and are

individual to each game.

Game Genre: Genre classification is a broad term and is not precise enough to characterize the

games. However, in the absence of appropriate game classification, game genres can be used as a basic

criterion of content selection in experimental design. It must be noted that several game interactions

(game bricks) could be a part of a single game (genre) while the impact of technical parameters such as

delay for each of these interactions most likely is not the same. Thus, the game genre alone will not be

sufficient to characterize the sensitivity of the game towards technical parameters.

Temporal and Spatial Video Complexity: Video complexity plays an important role in video

streaming services, especially when bitrate and other encoding factors are considered. In contrast to

traditional video content, gaming content has special characteristics such as an extremely high motion

for some games, special motion patterns, synthetic content, and repetitive content, which makes the

state-of-the-art video and image quality metrics perform weaker for this special computer-generated

content [6], [9]. Video games are usually created based on a pool of limited objects that appear in

different scenes of a game. Therefore, there is a high similarity of different scenes of a particular game

with respect to the spatial domain. In addition, for many video games, due to the same design style

across a certain game, the game shares similar visual features such as background scene, color diversity,

and pattern of motion. [6].

Temporal and Spatial Accuracy: Temporal accuracy is defined as the time required to complete

an action. Spatial accuracy is the degree of accuracy required to complete the interaction successfully

[4]. These two factors might determine the playability of a certain game under delay.

Pace: Pace is referring to the speed of gameplay. Although this factor seems to be similar to the

two previously mentioned factors (the temporal accuracy concept as well as temporal complexity of

games), there exists a small difference between pace and the two other factors. First, the pace has to be

seen as a speed in one game type (or one game genre in general) which means that there could be two

games with the same temporal complexity while their paces are not comparable (e.g., a racing game

and shooting game with same temporal complexity). Also, a game with a high-required reaction time

does not necessarily have a high pace (e.g., a static scene with some blinking points that have to be hit).

Visual Perspective of Player: Based on the perspective of the camera, games have been classified

into First-person Linear Perspective, Third-person Linear Perspective, and Third-person Isometric
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Perspective [55]. The perspectives of the game are very important in cloud gaming and an interplay

with video coding can be assumed.

Aesthetics and Design Characteristics: Aesthetics is the sensory experience the system elicits,

and the extent to which this experience fits individual goals and spirit [56]. Aesthetics and design

characteristics describe the design of a game, which can be experienced by the player, and is commonly

specified by design experts.

Learning difficulty: The required time to learn how to play a game is a critical criterion when

aiming at a short interactive test. Games such as racing games do not necessarily need a long time to

learn the game rules, actions, and game elements because of a limited number of control buttons and

game rules. On the contrary, there exist games that need a long time to achieve the game goals and to

learn the game elements. This factor should be considered in the design of subjective assessments.

Playing device

Portability, Size and Input modalities: The continued success of portable gaming devices suggests

that the benefit of mobility outweighs the limitations of a portable device for a group of players. The

success of smartphone gaming may also be attributed partly to the portability of the devices. The size

of a handheld device has been shown to exert an influence on playing test participants’ ratings [57].

Modalities used for game input differ vastly in terms of attributes like precision, speed, and feedback.

In the past, new forms of input (e.g., gesture control) have repeatedly enabled new playing paradigms.

Unless it is the object of investigation in a study, all three factors should therefore remain constant.

Output modalities: The availability of output modalities and their technical attributes confine the

perceivable experiences. A study showed that participants wearing a VR headset perceive higher levels

of immersion than players of the same simulation game using a conventional 2D screen [58].

Display: For video quality assessment, it was shown [59] that the perceived quality is strongly

influenced by the viewing distance, display size, brightness, contrast, sharpness, screen resolution,

refresh rate, and color. Not only the size of the display but also the refresh rate of the display can bring

higher quality if the framerate is high.

Network transmission

Given the highly interactive nature of cloud-based games, a network distortion can negatively influence

the user experience. Four main distortions that need to be taken into account are delay, jitter, bandwidth,

and packet loss.

Delay: The delay perceived by an end-user corresponds to the delay from user commands’ execution

to the visible game event shown on display. While most studies focus on the impact of networking

delays, often additional system components contributing to overall end-to-end delay are neglected due

to difficulty in measurement (e.g., system tick rate, processing, and rendering delay). The influence

of delay on the QoE strongly depends on the game characteristics, as discussed earlier. Therefore,

investigating delay as an influencing factor of QoE without considering the characteristics of the game

is not valid, and results are not comparable with other studies. In addition to game characteristics, the

perceived delay may differ considerably depending on the usage of input devices for playing.

Jitter: Jitter has a perceivable influence on online gaming and cloud gaming experience [60], [61].

Depending on the client implementation, jitter may also result in a less smooth visual appearance of the

game as frames are displayed at varying intervals.
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Bandwidth: The impact of bandwidth restrictions on gaming QoE has been proven in numerous

studies [62], [63] and has been shown to be a contributing influence factor to gaming QoE. Depending

on the employed mechanism to deal with limited bandwidth, it could result in packet loss, delay (due to

buffering mechanism), and video artifact due to video compression.

Packet Loss: Network packet loss has a significant impact on gaming QoE while playing intensive

games such as FPS, with packet loss smaller than 1% causing serious degradation of user experience

[64]. Increased packet loss causes severe degradation of graphics quality of the games, culminating

with a lower framerate and an unplayable gaming experience.

Compression

Given bandwidth limitations, different QoE-driven codec configuration strategies may be specified for

various types of games. There are differences in terms of performance of different codecs for gaming

streaming application; some discussion can be found in [65]. In this section, a few important encoding

parameters that need to be considered for cloud gaming quality assessment are presented.

Framerate: The framerate has a significant impact on a user’s performance and consequently

influences the QoE. However, perceiving the difference between very high framerates strongly depends

on human vision abilities, a player’s commonly used gaming setup, and game characteristics (especially

the game temporal complexity).

Encoding Resolution: The encoding resolution is an important parameter, which affects the video

quality in all streaming applications while it has little impact on user performance [66]. It should be

noted that display specifications such as refresh rate and display resolution would be substantial when

investigating the impact of framerate and resolution on the gaming QoE.

Rate Controller Modes: There exist some strategies to control the video streaming rates in

order to reach a certain target quality for a given bandwidth. Three different rate controller modes

were implemented in the software implementation of H.264/MPEG-4 AVC, x264, including Constant

Quantization Parameter (CQP), Constant Rate Factor (CRF), and Constant Bitrate (CBR); all of them

result in a different quality level. It has to be noted that Variable Bitrate (VBR) is excluded since

it is out of the scope of cloud gaming services. CQP is a straightforward strategy that encodes the

video based on constant Quantization Parameters (QP) and leads to variable bitrate and quality. CRF

attempts to keep the quality at a certain level by adjusting QP in a video sequence. Finally, CBR tries to

encode the video by keeping the bitrate constant. Rate control strategies do not only affect the QoE, but

they also have an impact on the overall delay of a gaming service. For real-time application, NVIDIA

introduced a hardware implementation of H.264/MPEG-4 AVC using GPU accelerator engines, named

NVENC, which offers CBR in a low latency high quality (llhq) preset controller mode for fast encoding.

The llhq preset uses multiple passes for encoding, which leads to more efficient bit allocation while

using accelerator engines for real-time encoding.

GoP: Group of Picture (GoP) is a structure that specifies the order of inter and intra frames (I, B,

and P frames) in a video sequence. The llhq preset that is discussed earlier uses no Bidirectional-Frames

(B-frames) to avoid introducing latency and uses an infinite GoP for real-time coding.

With the introduction to QoE influencing factors in the context of cloud gaming, in the next section,

the design of subjective experiments for assessing cloud gaming services is presented.
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2.5 Subjective Assessment

Subjective tests assessing multimedia services are typically conducted in a controlled environment, i.e.

a neutral laboratory setting, using pre-defined game scenarios and test participants. For gaming quality

assessment, ITU-T Rec. P.809 provides information that needs to be considered when conducting an

experiment for gaming QoE assessment. In this section, a short overview of the ITU-T Rec. P.809 is

given. ITU-T Rec. P.809 defines two test paradigms to assess gaming quality:

• Passive viewing-and-listening tests with pre-defined audio-visual stimuli passively observed by a

participant.

• Interactive tests with game scenarios interactively played by a participant.

The passive paradigm can be used for gaming quality assessment when the impairment does not

influence the interaction of players with the game as well as when the study targets the passive video

streaming services such Twitch.tv. For example, the output quality feature (cf. Section 2.3), when only

spatial video quality is triggered, can be assessed using the passive viewing-and-listening test which

allows the researchers to collect more subjective data due to the short stimulus (cf. Section 2.5.2). In

addition, the experimenter would have more control over the scene content as the same content with

the same temporal and spatial video complexity will be shown to all participants. The interactive test

must be used when other quality features are under investigation, such as input quality, playing quality,

immersion, and flow.

2.5.1 Experimental Setup

In general, the assessment methods of ITU-T Rec. P.910 [3] and ITU-T Rec. P.911 [67] are

recommended to be followed to set up the experiment environment. Thus, a neutral environment, e.g.,

sound-shielded rooms with daylight imitation, is recommended except in the cases that a real-life

gaming situation is the purpose of the test. As a choice of the display, a 24 inches monitor and a viewing

distance of three-times the video height are recommended.

Participants are required to be screened and selected based on their game experience, and dependent

on the purpose of the test, the target group should be selected. Prior to the test, participants are required

to be screened for normal visual acuity and normal color vision. In case audible stimuli are presented,

pre-screening procedures such as audiometric tests need to be considered.

The quality perception of stimuli is influenced strongly by their content due to several types of

games with differences in design, game mechanics, and game characteristics as well as the diversity of

players’ preferences. The selection of games and scenario of a game in interactive tests requires very

careful consideration to meet the following criteria:

• A scenario of a game should be chosen in which participants are able to experience the game in

similar ways repeatedly. Thus, the participant should not have too much freedom, causing the

scenario to be too difficult for one while too easy for another participant just because of their

gameplay decisions.

• When encoding parameters are under investigation, it is recommended to select a scene of a

game that is representative in terms of video complexity. For example, in an action game, a scene

in which the player is only looking at a map is not recommended to be selected.
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• It is recommended to avoid horror games or overly violate games, not only for ethical reasons

but especially when physiological measurements are used to capture the user’s state.

ITU-T Rec. P.809 recommends to use experimental designs for the randomization of the stimuli,

such as complete randomized design, Latin, Graeco-Latin, and Youden square designs, replicated block

designs.

2.5.2 Passive Viewing-and-listening Tests

ITU-T Rec. P.809 recommends a passive viewing-and-listening paradigm for assessing the output

quality to ensure that every participant is rating exactly the same content in an experiment that is easy

to conduct on a large scale. In addition, the playing abilities of the participants will not influence the

outcome of the study. In case that video compression is under investigation, it is recommended to

select scenarios of the games that cover an appropriate range of spatial and temporal video complexity.

Spatial and temporal indexes are provided in ITU-T Rec. P.910 [3] that can be used for screening the

video complexity.

The stimulus duration, as denoted by ITU-T Rec. P.809, depends on the test purpose and game

content. It is recommended to select the stimulus duration that covers different game mechanics that

would be visible in an interactive scenario. Thus, a duration of 10 seconds which is typically used

in video quality tests [3] may not be enough to meet this requirement. Schmidt et al. [12] as well as

Claypool [68] have shown that there is a significant difference in video quality ratings for different

stimulus durations. Thus, ITU-T Rec. P.809 recommends a minimum of 30 seconds stimulus duration

for passive tests to ensure that the recorded scene represents the game in terms of video complexity

while allowing participants to detect degradations similarly as during interactive tests.

For passive viewing-and-listening tests, it is recommended to give instruction about the game rules

and game objectives to allow participants to have similar knowledge of the game. In addition, this will

prevent the participants from asking about the game during the test session. One of the very common

mistakes of participants in video quality assessment of gaming content is understanding the difference

between video quality and graphic quality (e.g., graphical details such as abstract and realistic graphics).

Participants should be instructed to not rate the graphic quality which relates to the game design but

rather the video quality, which may be degraded due to compression artifacts such as blockiness. This

is especially important when an abstract game (e.g., the game Cuphead) or a game with a blocky

design (e.g., the game Minecraft) is used in the experiment. Finally, the participants need to know the

general information about the experiment, such as details about the questionnaire and test structure. To

summarize, the following information should be provided prior to the passive test:

• Information about the experimental details such as assessment methods (e.g., questionnaire) and

session duration.

• Information about the objective of the games, e.g., enemies and obstacles. It is also recommended

to provide it in a written text or recorded video to ensure that the same information is given to all

participants.

• The experimenter should not suggest that there is a correct rating or provide any feedback as to

the "correctness" of any response.
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2.5.3 Interactive Tests

In the interactive paradigm, participants play a game scenario within a limited period of time, which

varies depending on the purpose of the test and rate their experience a posteriori. ITU-T Rec. P.809

defines two types of long and short interactive tests, which can be chosen depending on the aim of the

subjective experiment.

• Short interactive is recommended for assessment of interaction quality (e.g., the impact of delay

on the control). ITU-T Rec. P.809 suggests a duration of 90 to 120 seconds.

• Long interactive is recommended when aiming for assessment of all QoE features described

in Section 2.3 such as immersion and flow. The recommendation states that the duration of a

stimulus depends strongly on the game and player experience. However, 10 to 15 minutes could

be considered a reasonable stimulus duration.

One common problem in interactive experiments is the learning effect, which happens when a

player is new to the game and learns how to play the game during the experiment. In addition, due to

differences in participants’ gaming experience level with the test games (or the genre of the test games),

their experience could vary strongly. Therefore, before starting the subjective experiment, to ensure

that the participants have similar knowledge of the game and reduce learning effects, the rules and

control of the game should be given to the participants. Moreover, participants should know about the

experimental details before the start of the experiment. Therefore, the following information should be

provided prior to the test:

• Information about the experimental details such as assessment methods (e.g., questionnaire), and

session duration.

• Information about how to control the game via the input device(s), describe the games’ objective,

e.g., enemies and obstacles. It is also recommended to provide a short training session.

• The experimenter should not suggest that there is a correct rating or provide any feedback as to

the "correctness" of any response.

2.5.4 Interactive vs Passive Paradigm

ITU-T Rec. P.809 suggests using passive viewing-and-listening tests instead of interactive tests when

only spatial video quality (as part of output quality feature) is under investigation. However, it raises

the question if the participants rate the video quality of an impaired video signal similarly when they

play a game compared to the case that they watch the gameplay.

Schmidt et al. [12] conducted a study that compares the result of video quality for a passive

viewing-and-listening test and an interactive test. In this study, two games were selected, GTA 5 and

Project Cars, under a controlled scenario that the players are limited to a concrete and repetitive task to

ensure that a very similar audiovisual content will be experienced in both interactive and passive tests.

The passive test was conducted with two stimulus durations of 10 seconds and 90 seconds, while the

interactive test was conducted only with 90 seconds stimulus duration. Figure 2.3 illustrates the bar

plots of video quality ratings for the three tested conditions. Based on the barplot, it can be concluded

that the ratings of video quality during the interactive test and the long passive test (90 s) are very
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Figure 2.3: Bar plots for Mean Opinion Scores of video quality and 95 % confidence interval (labels (1-5):
bad, poor, fair, good, excellent), taken from [12].

similar. Post-hoc tests showed no significant differences for video quality ratings between long passive

and interactive tests, p > .05, except for the high bitrate condition of Project Cars. It has to be noted that

"Project Cars" is a car simulation racing game in which the car in the game has slight inertia towards

a change of direction compared to most of the popular racing games in the market. This was also

mentioned in a short interview conducted after the experiment by participants that the inertia of the car

in the "Project Cars" might negatively influence their ratings. This could potentially explain the slightly

lower ratings of participants in the interactive test compared to the passive test for the game, "Project

Cars."

While the study was conducted with a limited number of games and tested stimuli, the result

confirms that if the stimulus duration of passive test is long enough, the video quality would not

significantly differ between interactive and passive tests. It has to be noted that the interactive study

was conducted under a very strict scenario plan, in which participants did not have too much freedom,

which could potentially have resulted in a diverse gameplay scene in terms of video complexity. The

video quality in an interactive test could be significantly influenced by the change of video complexity

based on the gameplay of participants, which was avoided in this study by the strict scenario provided

to participants.

2.5.5 Scaling for Gaming QoE Assessment

The application of summative subjective methods like the determination of the “overall quality” of

audio-visual content has been used and standardized for quality assessment of speech and audio-visual

material. These methods allow test participants to express their opinions about the quality aspects of

multimedia stimuli by rating one or a limited number of perceptual aspects on predetermined scales.

One of the widely used scale in quality assessment of speech, video, or audio-visual services is a

five-point ACR scale ranging from “bad” to “excellent”. The collected judgments of a certain stimulus

on the ACR scale are then combined to the arithmetic mean, which is commonly referred to as the

MOS [69]. ITU-T Rec P.809 recommends a 7-point Extended Continuous scale (EC scale) instead of

an ACR scale for quality assessment of gaming applications. The scale for assessing the overall gaming

QoE is shown in Figure 2.4.
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How do you rate the overall quality of your gaming experience?
1 / 31

❮ ❯

bad poor fair good excellentextremely bad ideal

Figure 2.4: The scale and question to assess the overall gaming quality following the EC scale [42].

In ITU-T Rec P.809, a list of questionnaires that can be considered for quality assessment of

gaming application is compiled. While for a specific quality feature such as immersion, dedicated

questionnaires are available, to cover most quality features of the gaming QoE taxonomy (cf. Section

2.3), the In-game GEQ (iGEQ) [40] could be considered to be used.

In addition, Schmidt [70] developed a questionnaire named Gaming Input Quality Scale (GIPS),

measuring the input quality during the development of ITU-T Rec. P.809, which turned out to be a

valuable instrument to quantify the impact of network-related influence factors on players’ experience.

Moreover, ITU-T Rec. P.918 [71], provides a questionnaire and a methodology to measure the

sub-dimensions of the video quality. These two questionnaires are described in the following sections.

Gaming Input Quality Scale (GIPS)

Exploratory studies have shown that the participants strongly value the interaction quality, also referred

to as playability, for their judgment of overall gaming QoE. Interaction quality includes input quality

(player to the system), output quality (system to the player) under the interaction behavior of players.

Contrary to output quality, which can be assessed using questionnaires developed to assess the different

dimensions of audio or video quality, e.g., ITU-T Rec. P.918 [71], there has been no validated

questionnaire available to assess the input quality in the literature until recent years. A questionnaire

assessing the input quality was developed by Schmidt in [70] using the sub-aspects of controllability,

responsiveness, and immediate feedback. Responsiveness and immediate feedback describe the

temporal aspects of the feedback a player receives after performing an action, e.g., a mouse click

or a keystroke. The response of the game (system) should be available immediately after the player

performs an action (input event) [70]. In other words, responsiveness can be defined as reacting quickly

in the way that is needed and suitable for a gameplay situation, while immediate feedback describes the

instantaneous reaction of the game that a player receives after performing an action.

The perceived controllability is the degree to which a player is able to control a game using the

given input device and available interaction possibilities. It describes whether the performed input

action resulted in the desired outcome. The controllability does not relate to the learnability of the

controls nor to autonomy (freedom or power over something).

Table 2.1 contains the list of the items of the GIPS questionnaire. The rating scale is based on an

agreement Likert scale using five labels ranging from strongly disagree to strongly agree on a 7-point

continuous scale, known as extended continuous ACR (EC-ACR) scale. An example of the scale is

provided in Figure 2.5.

Dimension-based Video Quality Evaluation

The output quality could be assessed through viewing-and-listening (or audiovisual quality) tests as

discussed earlier. To get detailed insights about the influence of encoding parameters on the perceived
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2.5 Subjective Assessment

Table 2.1: List of GIPS items [70]

Code Label

Controllability
CN1 I felt that I had control over my interaction with the system.
CN2 I felt a sense of control over the game interface and input devices.
CN3 I felt in control of my game actions.

Responsiveness
RE1 I noticed delay between my actions and the outcomes.
RE2 The responsiveness of my inputs was as I expected.
RE3 My inputs were applied smoothly.

Immediate Feedback
IF1 I received immediate feedback on my actions.
IF2 I was notified about my actions immediately.

The responsiveness of my inputs was as I expected.

strongly disagree disagree undecided agree strongly agree

Figure 2.5: Example of item and scale used for the GIPS [70].

video quality, ITU-T Rec. P.918 proposes a dimension-based subjective quality evaluation for video

content, describing the identification of relevant perceptual video quality dimensions. The dimension-

based subjective quality evaluation method (DBSQE-V) was developed using a pairwise similarity

experiment with a subsequent multidimensional scaling (MDS) and a semantic differential experiment

followed by a principal component analysis (PCA). Table 2.2 summarizes the identified dimensions,

which later can be assessed using a direct scaling method.

Table 2.2: Perceptual video quality dimensions introduced in ITU-T Rec. P.918 [71]
.

Name Description Example Impairment

Fragmentation Fallen apart, torn and blockiness Low Coding Bitrate

Unclearness Unclear and blurry image Upscaling effect using bicubic function

Discontinuity Interruptions in the flow of the video Low framerate

Noisiness Random change in brightness and colour Circuit noise

Suboptimal luminosity Too high or low brightness Over- and under-exposure

Each dimension is explained to the participant in an introduction in written form using describing

adjectives and in form of example videos. The rating scales are based on bipolar scales, using the

dimension name as an item label and antonym pairs to describe the range of the scales. An example of

the scale for the video fragmentation dimension is given in Figure 2.6. For more information about the

method, the reader is referred to ITU Rec. P.918 [71], where insights about the usage of the different

rating scales as well as the test procedure are given. The dimension video discontinuity is considered as

temporal video quality, whereas the remaining dimensions form the spatial video quality. Video noise

(e.g. pepper and salt noise or flickering) is not a common artifact in subjective tests of cloud gaming

services and luminosity is a game design aspect and is not seen as an artifact. Therefore, for cloud
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Fragmentation
12 / 31
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fragmented unfragmented

Figure 2.6: Item and scale for Video Fragmentation according to ITU-T Rec. P.918 [71].

gaming quality assessment these two items are removed in the conducted studies using the DBSQE-V

approach [15], [72] to avoid fatigue due to a lengthy questionnaire.

Video fragmentation is defined by synonyms such as fallen apart, torn, and blocky which could be

triggered by a low bitrate or slicing effect of packet loss (cf. Section 5.1). Video unclearness is defined

by synonyms such as unclear, blur, and smeared images which can be triggered by image or video

upscaling methods such as bilinear interpolation. Video discontinuity is defined by synonyms such as

jerky, stuttering, and wobbly, which can be triggered due to low framerate or frame loss due to packet

loss.

2.6 Overview of Gaming Quality Prediction Models

In the past few years, several attempts have been made to develop quality models that predict gaming

QoE. In this section, a short overview of these models is given.

While several quality features construct the gaming QoE as discussed in Section 2.3, two important

quality features for gaming QoE are considered in the recently published standardized quality model for

cloud gaming services, ITU-T Rec. G.1072 [72], input quality and output quality (only video quality is

considered as output quality in G.1072). Input quality takes into account mostly the network influencing

factors that may affect the interaction of players with the game. In addition to the input quality, the

output quality feature is important which refers to the audio-visual aspect of the video stream. It has to

be noted that gaming QoE is a multidimensional construct consisting of several dimensions such as

immersion, flow, and presence. Some of these dimensions are mainly influenced by the game content

itself, e.g., due to the game design, challenges, and rules, or by preferences of the player. However,

from the perspective of a cloud gaming provider, who is not per se a content creator, these dimensions

are not feasible to be measured or tracked. Therefore, most of the state-of-the-art (SoA) researches

model the gaming QoE based on the input and output quality that form the interaction quality.

The prediction models for gaming QoE in literature can be categorized into three different groups,

depending on the targeted quality feature. While some models target only the relevant parameters that

affect input quality, e.g., by delay and packet loss, other models predict the gaming video (or audiovisual)

quality based on information such as network/compression parameters and signal information. Finally,

there is a limited number of models that consider both output and input quality.

The first group is mostly designed to measure the impact of delay and packet loss on user experience

in cloud gaming and online gaming applications. One of the pioneer works on modeling the user

interaction with the computer is Fitts’ law [73], which describes the time to select a target as a function

of the distance and the size of the target item. Later, Claypool [74] used the concept and introduced

two characteristics called precision and deadline to define the sensitivity of a game to delay. Deadline

is defined as the time required to complete an action that is the length of time it takes to achieve the
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final outcome of the action. Precision is the degree of accuracy required to complete the interaction

successfully. More recently, Claypool [74], [75] modeled the influence of delay on user performance

by considering velocity and angle in addition to the distance and size from Fitts’ law. Claypool et al.

[75] attempted a more fundamental approach to develop a model that can predict the user experience of

a task that requires selecting a moving target with a mouse under different levels of delay. Selecting

a moving object is a fundamental action for many computer-based multimedia applications such as

computer games. The paper presents a user study that investigates the effects of delay and target’s

speed on the time to select the target and develops a model of target selection time with exponential

relationships based on two parameters of delay and target speed. Claypool [74] complements the

research by extending the study and using a game controller with a thumbstick instead of a mouse as

an input device. The results revealed a very similar trend of exponential relation of target selecting

time with the increase of delay and target speed. Comparing the results of the two papers, Claypool

concludes that "the model’s relationship between selection time, delay, and target speed holds more

broadly, providing a foundation for a potential law explaining moving target selection with delay

encountered in cloud-hosted games" .

Another study was conducted by Long and Gutwin [76], where they modeled the influence of

latency on gamers’ performance by using the game speed. However, the work was limited to a constant

game speed. Schmidt et al. [4] built a model based on three quality features for three different games

under different levels of delay. Although the model only took into account delay as an influencing

factor, the results showed that not only games have different levels of sensitivity towards delay, but also

within the same game, the delay sensitivity might vary for different game levels. In fact, changing the

pace within the same game can lead to stronger differences in respect to the delay sensitivity than using

another game type.

In addition, Claypool et al. [77] conducted two studies to measure the impact of latency on

a commercial cloud gaming service, OnLive 1, as well as an academic cloud gaming service,

GamingAnywhere [78]. The results revealed that latency linearly affects the user experience and

gaming QoE for two third-person avatar games.

The second group of models targets the effect of video compression on output quality or overall

gaming QoE. The transmission bandwidth is a major factor in cloud gaming, where the entire visual

and audible output of a game is streamed over the network to the player. In this situation, the

video compression needs to be adapted to the available end-to-end network bandwidth. The lossy

compression causes degradations on the audiovisual scene. The early models in this group concentrate

on the development of models that rely only on the encoding parameters, while the recent works do not

only use encoding parameters for quality prediction but also the signal and bitstream information.

Slivar et al. [79] developed a gaming QoE prediction model that takes into account multiple

parameters, including bitrate, framerate, game type, and player skill. The model was developed based

on a large subjective laboratory study involving 52 players. Based on the data analysis of the subjective

test, Slivar et al. [79] concluded that the game type is an important influencing factor that should be

taken into account when evaluating the QoE of cloud games. In addition, the result revealed that there

is no linear relationship between framerate and QoE and this relation depends on video bitrate. This

result is in line with the finding in a subjective test conducted by Zadtootaghaj et al. [14]. Zadtootaghaj

et al. [14] conducted a subjective experiment in a laboratory environment investigating the framerate

1OnLive was one of the most the popular cloud gaming service between 2012 to 2015 when it was shut down and most of
the assets were sold to Sony Computer Entertainment.
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and bitrate on gaming QoE. A QoE model is developed based on the quality features of video quality,

positive affect, and game responsiveness. Then, each quality feature was predicted based on encoding

parameters and signal information.

With respect to video quality models of gaming streaming services, as discussed earlier, recently,

there has been a shift from parametric-based models, that only take the compression/network parameters

into account, to signal-based models in order to predict gaming video quality. This shift is mostly

due to the rising popularity of passive gaming video streaming services (e.g., E-sport), thus requiring

accurate video quality metrics designed for gaming content. Barman et al. [9]–[11] evaluated multiple

well-known signal-based image/video quality models on a gaming video quality dataset. The results

revealed a medium to high performance of Full-Reference (FR) quality models, while No-Reference

(NR) models perform poorly on gaming quality datasets. A short overview of the two research works

that Barman conducted in collaboration with the author of this thesis in 2018 is described in Section

2.7.

Göring et al. [80] proposed an NR metric named No f u, which is a pixel-based video quality model

for gaming content. No f u uses 12 different frame-based values and a center crop approach for the fast

computation of frame-level features. It further uses frame-level features pooling at video-level and

feeds the features to a machine learning-based model for quality prediction. No f u takes into account

the gaming-specific features by handcrafting low-level features that are common for gaming content,

such as static areas (e.g., heads-up display in games). Barman et al. [81] proposed two NR signal-based

video quality models for gaming content, NR−GV SQI, and NR−GV SQE. The two proposed models

are designed using supervised learning algorithms based on the values of MOS and a video quality

metric named Video Multimethod Assessment Fusion (VMAF). NR−GV SQE is trained based on

frame-level features as input and VMAF values as a target, whereas NR−GV SQI is trained based on

MOS values. Damme [82] proposed a Reduced-Reference (RR) model that predicts the quality of

streaming game videos based on a low-complexity psychometric curve-fitting approach. This is the

first RR model in the literature proposed for gaming video streaming applications.

One of the early works that take into account both output quality and input quality is the parametric-

based quality model named Mobile Gaming User Experience (MGUE) [83]. MGUE uses system

parameters to predict MOS using three different video games in mobile cloud gaming scenarios. The

model’s input parameters can be grouped into four categories: source video factors, cloud server factors,

wireless network factors, and client factors. The model follows the structure of the core equation of

ITU-T G.107, known as the E-model (Equation 7-1 in [84]), and proposes a set of impairment factors,

which degrade the experience of players. To accommodate the varying susceptibility of different game

genres towards degradations such as latency or packet loss, the authors introduced a set of tuning

variables for the three specific games in their experiment. As a consequence, the model is limited to the

three games tested in their study, without proposing a general prediction model. Furthermore, the model

has been criticized for unmotivated and undescribed fitting factors in the equations and has not been

developed using actual mobile games but streamed PC games, which are designed for different display

sizes, input devices, and different usage contexts. The structure of the model is also not built around

perceptual dimensions; instead, it uses direct links between technical parameters and overall quality.

These limitations of the MGUE model permit only a restricted use (i.e. for the games and use-cases it

was developed for) and unfortunately support no conclusions about the perceptual influences caused by

the involved technical parameters.
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Arguably the most comprehensive work has been done in ITU-T Study Group 12, resulting in an

opinion model that predicts gaming QoE based on several influencing factors ranging from encoding

parameters and game types to network degradations. The result is published as a recommendation

named ITU-T Rec. G.1072 [72], and will be further discussed in the following sections. Table 2.3 gives

an overview of studies that aim at the development of quality prediction models for cloud gaming or

video streaming services.

Table 2.3: Overview of studies addressing (cloud) gaming quality prediction models following the structure
overview provided in [79].

Author
Tested Influencing Factors

Scaling
Method

Description of Model / FindingsNetwork and
Encoding

User and
Context

Lee et al
(2012) [85]

latency game genre fEMG
Model to predict real-time
strictness of a game based on user
input rate and game dynamics

Wang et al
(2012) [83]

latency,
packet loss
framerate,
resolution

game genre
GMOS (Game
Mean Opinion
score)

Proposed a model for mobile cloud
gaming user experience based on
manipulated factors in the study

Claypool et al
(2014) [77]

latency
game genre,
user device

7-pt. ACR
(OnLive); and
5-pt. ACR
(GamingAny)

Cloud-based games (regardless of
the genre) are as sensitive to latency
as highly sensitive shooting games
in traditional online gaming

Slivar et al
(2014) [86]

latency,
packet loss

Player skill 5-pt. ACR
Modelled QoE as a linear function
of network delay and packet loss

Hong et al
(2015) [87]

framerate,
bitrate

game genre 7-pt. ACR

Proposed gaming quality model
as a quadratic function of two video
encoding parameters (framerate,
video bitrate)

Slivar et al
(2015) [88]

framerate,
bitrate

game type,
player skill

5-pt. ACR
Modelled QoE as a linear function
of video framerate and bitrate

Slivar et al
(2016) [79]

framerate,
bitrate

game type,
player skill

5-pt. ACR
Proposed a gaming quality
model including graphics quality
and fluidity of gameplay

Schmidt et al
(2017) [4]

delay game type
7-pt EC-ACR
(ITU-T P.809)

QoE model based on perception of
delay, perceived difficulty, control

Claypool et al
(2018, 2017)
[74], [75]

delay game characteristics 5-pt ACR
Proposed a model to estimate target
selection time based on
responsiveness feature

Long et al
(2018) [76]

delay game speed 5-pt ACR
proposed a model to predict the
time to react of participants

Zadtootaghaj
et al (2018) [14]

resolution,
framerate,
bitrate

-
7-pt EC-ACR
(ITU-T P.809)

Gaming QoE model, based on the
positive affect, reactiveness and
coding quality

Barman et al
(2019)[81]

resolution,
bitrate

game scene
complexity

5-pt, ACR,
video quality

No-reference signal-based video
quality model

Göring et al
(2019) [80]

resolution,
bitrate

game characteristics
(e.g. static areas)

5-pt, ACR,
video quality

Light weighted no-reference
signal-based video quality model

Damme et al
(2020) [82]

resolution,
bitrate

game characteristics
(e.g. static areas)

5-pt, ACR,
video quality

RR signal-based video quality
model based on curve-fitting
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2.7 Gaming Video Quality Model

In the previous section, the efforts to develop a video quality model for gaming content was discussed.

Before the development of any new video quality model for gaming content, it is necessary to investigate

how the SoA image/video quality models perform on gaming video datasets. This section investigates

the performance of well-known signal-based image/video quality metrics on the gaming video quality

dataset. First, a short overview of different types of video quality models is presented. Next, a

comparative study of non-gaming and gaming videos using objective and subjective measurements is

presented. Finally, the result and outcome of a comprehensive study evaluating multiple image/video

quality metrics on a gaming video quality dataset is briefly discussed.

2.7.1 Classification of Video Quality Models

The objective quality prediction models can be classified into multiple groups according to the level

of information that is available. Figure 2.7 illustrates the classification of objective quality metrics

according to different levels of access to information. As the first group, planning models are meant

to predict the quality of video streaming services based on the assumption of the network, client, and

encoding parameters. These models are typically used by network planners to estimate the quality of

the targeted service before establishing the service. The second category is parametric-based models

that are similar to planning models but can be used while the service is running and by extraction of the

network, client, and encoding parameters using network probes that are located in the network. If the

bitstream information is accessible, typically, bitstream-based quality models are employed for quality

assessment. Bitstream-based models are meant to be used for monitoring the quality of video streaming

services. Bitstream information can be extracted from the payload or from the transmitted packet header.

Finally, signal-based models are video quality models that process the video signal for the prediction of

video quality. Depending on the knowledge about the reference signal, they can be categorized into

NR models, RR models, and FR models. NR metrics require no knowledge from the original signal

but only distorted/compressed signal. RR methods use some extracted features of the source signal

and require full access to the encoded output signal to predict the video/image quality. FR methods

are used when there is full access to both original and degraded signals, which typically have higher

performance compared to RR and NR models. Figure 2.8 illustrates the classification of signal-based

quality prediction models according to information available from the source. In addition to signal

based models, hybrid models take advantage of the bitstream-based and signal-based information for

video quality prediction.

2.7.2 Comparative Quality Assessment of Gaming and Non-Gaming Videos

In 2018, Barman et al. [9] in a collaboration with the author of the present thesis conducted a study

to compare the gaming content and non-gaming content for a video quality assessment task. To

conduct such a comparison study, 30 pristine video sequences at 1080p resolution and framerate of

30 fps were recorded or collected from different datasets. As the first part of the analysis, the spatial

information index (SI) and temporal information index (TI) for all pristine videos were measured. In

the measurement of SI and TI values, only the frame-level prediction was calculated which is slightly

different compared to the SI and TI measurement presented in ITU-T Rec. P.910 [3]. SI of a frame is

measured by the standard division of each Sobel filtered frame in both vertical and horizontal direction
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Figure 2.7: Classification of objective quality assessment models according to different levels of information
extracted from the media stream according to [89].
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Figure 2.8: Classification of the signal-based quality assessment techniques according to information
available from the source.

as shown in Equation 2.1.

SIFramei = stdspace[Sobel(Framei)]. (2.1)

The TI for a frame is measured by the standard deviation over space of the difference

(D(Framei,Framei−1)) between corresponding pixel values in two adjacent frames (luminance

component) as presented in Equation 2.2

T IFramei = stdspace[D(Framei,Framei−1)]. (2.2)

Figure 2.9 illustrates the boxplot of SI and TI values for different gaming and non-gaming video

sequences. It can be observed that, in general, SI for gaming videos has less variance compared to
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Figure 2.9: Box Plot for SI and TI values of the 30 reference videos (Videos 1-15, Green: non-gaming
videos; Videos 16-30, Cyan: gaming videos) based on [9].

non-gaming videos. This might be due to the game’s design, in which a game is created with a pool of

predestined objects for which by the change of the scene over time, a large spatial similarity in terms of

gaming objects can still be observed. In addition, each game has a certain level of abstraction, which is

defined in the design process. These two particular characteristics of video games lead to less variation

of SI values for video games compared to non-gaming content. In contrast to SI, considering TI values,

gaming videos show slightly higher variance when compared to non-gaming videos, but no significant

difference is observed.

As the next step, a total of 12 video sequences (six from each gaming and non-gaming groups)

encoded using H.265/High Efficiency Video Coding (HEVC) at the native resolution of 1080p at five

different CRF values (CRF = 26, 30, 34, 38 and 42, with lower CRF values implying better quality

videos). Out of the six videos from each category, two videos each correspond approximately to low,

medium, and high content complexity according to the SI and TI values. The video sequences are then

used in a subjective experiment using Single Stimulus (SS) ACR on a 5-point scale, five corresponding

to the best quality, according to ITU-T Rec. P.910 [3]. A total of 15 subjects participated in the test

who rated the video quality of presented stimuli in the test. The ratings of all participants for each

stimulus (each single encoded video sequence) is averaged to measure MOS values. The details about

the subjective test and participants’ demographic information are presented in [9], which for the sake of

brevity are excluded from this section. In order to compare the performance of objective quality metrics

on gaming and non-gaming content, four FR signal-based models are used for the encoded videos, Peak

Signal to Noise Ratio (PSNR), Structural Similarity (SSIM) [90], Visual Information Fidelity - Pixel

Domain (VIFP) [91] and VMAF [92].

To quantify the performance of the four objective metrics in relation to the subjective scores, the

Pearson Linear Correlation Coefficient (PLCC) and Spearman’s Rank Correlation Coefficient (SRCC)

among the four objective metrics and the MOS values are measured, separately for the gaming and

non-gaming videos. Table 2.4 presents the PLCC and SRCC values for all the four objective metrics.

Based on the results presented in Table 2.4, the following observations can be drawn:

• As a general trend for both non-gaming and gaming videos, VMAF outperforms traditional

objective metrics.

• All four objective metrics perform higher on non-gaming content compared to gaming content.

• Among the four evaluated metrics, SSIM performs the worst on gaming videos compared to

non-gaming videos.
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Table 2.4: PLCC and SRCC values of four objective metrics with respect to MOS scores.

PLCC SRCC
Normal
Videos

Gaming
Videos

Normal
Videos

Gaming
Videos

PSNR 0.7499 0.6672 0.7496 0.7023
SSIM 0.7453 0.5781 0.8383 0.5991
VIFP 0.8085 0.7124 0.828 0.689

VMAF 0.9386 0.8954 0.942 0.8868

• While SSIM performs slightly better than PSNR for non-gaming content, this does not hold true

for gaming content.

The results of this study showed that while the performance of FR quality models is found to be

lower on gaming videos compared to non-gaming content, the difference is not too high to conclude that

SoA FR metrics do not perform well on gaming content. In addition, it does not reveal the performance

of other classes of quality metrics (e.g, NR metrics) on gaming content. Moreover, the videos are only

encoded using a single resolution and CRF mode that does not represent the current encoding trends of

gaming video streaming services such as cloud gaming and passive videos streaming, e.g., twitch.tv.

In the next section, another study is discussed in which the performance of 8 well-known FR, RR,

and NR metrics on a gaming video quality dataset is evaluated under common encoding settings of

passive gaming video streaming services.

2.7.3 Performance of Standard Image/Video Quality Models

The second study was designed and presented by Barman et al. [10], [11] in collaboration with

the author of the thesis. The study aimed at the investigation of SoA image/video quality metrics’

performance on a larger scale subjective test conducted solely with gaming video content. In the

second study, a video quality dataset of gaming content was developed, called GamingVideoSet, that is

described in detail in Section 3.4. The main differences between the two studies can be summarized as

follows:

• A longer duration of 30-second stimulus (as suggested by ITU-T Rec. P.809) is selected instead

of 10-second duration.

• As a choice of rate controller mode, CBR is selected following recommendations by various

OTT service providers (e.g., twitch.tv).

• The videos are encoded under three widely-used resolutions, 480p, 720p, and 1080p, and rescaled

to 1080p resolution for the subjective test.

• In addition to FR metrics, five well-known NR and RR models are also investigated in the study.

The performance of each image/video quality metric with respect to the subjective ratings is

evaluated in terms of PLCC and SRCC in Table 2.5. Based on the results presented in Table 2.5, the

following observations can be drawn:

• FR metrics generally follow a similar trend compared to the previous study, with one contradiction

that SSIM performs significantly higher compared to the previous study.
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Table 2.5: Comparison of the performance of the VQA metric scores with MOS ratings in terms of PLCC
and SRCC values. All Data refers to the combined data of all three resolution-bitrate pairs. The best
performing metric is shown in bold.

Metrics 480p 720p 1080p All Data
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

FR Metrics
PSNR 0.67 0.64 0.80 0.78 0.86 0.87 0.74 0.74
SSIM 0.57 0.43 0.81 0.78 0.86 0.90 0.80 0.80

VMAF 0.81 0.74 0.95 0.94 0.97 0.96 0.87 0.87

RR Metrics ST-RREDOpt -0.61 -0.51 -0.82 -0.85 -0.79 -0.92 -0.71 -0.74
SpEEDQA -0.63 -0.52 -0.83 -0.87 -0.77 -0.93 -0.71 -0.75

NR Metrics
BRISQUE -0.57 -0.48 -0.83 -0.89 -0.88 -0.91 -0.49 -0.51

BIQI -0.53 -0.51 -0.73 -0.72 -0.81 -0.80 -0.43 -0.46
NIQE -0.73 -0.74 -0.85 -0.81 -0.89 -0.90 -0.77 -0.76

• The performance of all eight metrics goes down at a low resolution of 480p.

• As expected, the FR metrics generally perform higher than RR metrics and RR metrics achieved

higher performance compared to NR metrics.

• While the NR metrics performed reasonably on 1080p resolution, the performance of these

metrics at a lower resolution is significantly decreased.

One of the main findings is the very low performance of existing NR quality metrics on gaming

content. A possible reason behind such behavior could be due to the nature of the selected NR metrics.

The NR metrics that were evaluated in the study were trained based on natural scene statistics. Thus,

they might not be able to capture the combined effect of quality loss due to compression and quality

loss due to rescaling. More recent studies confirmed the low performance of NR metrics on other

gaming video quality datasets [15], [81], [93].

Based on the findings of the two studies that are described in this section, it can be concluded that

while FR metrics perform reasonably on gaming content, there is a need for improvement of NR quality

models to reach a satisfying performance on gaming videos.

2.8 Summary

In this chapter, an overview of the necessary steps in the quality assessment of the cloud gaming

service is given. This includes primary knowledge about the gaming QoE and relevant quality features,

identification of gaming-related influencing factors, information about the conduction of a subjective

experiment for cloud gaming services, and an overview of related works with respect to the development

of gaming quality models.

First, the concept of quality is described in the first section. Next, the QoE in the context of gaming

is discussed based on the gaming QoE taxonomy. The taxonomy provides information about the quality

features, influencing factors, and the relation between QoS and QoE aspects. While several features

might influence the gaming QoE, for the development of a gaming QoE prediction model, it must be

investigated based on the scope of the model and limitation of resources for subjective tests, timely and

costly, which quality features could remain in the final prediction model.

In the third section, a detailed list of gaming QoE influencing factors that are grouped into human,

system, and context factors is presented. The QoE influencing factors must be taken into account for the
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development of a prediction model. However, it is not possible to measure the effect of all mentioned

influencing factors in this thesis due to a limited number of subjective tests that could be conducted.

Thus, only the relevant factors that might be of interest to cloud gaming and network providers must be

taken into consideration, and the remaining features must stay constant for all subjective tests.

Subjective testing in the context of cloud gaming services is described in the fourth section of the

chapter with the necessary information that must be considered for planning and conducting the tests

according to ITU-T Rec. P.809. Two paradigms of interactive and passive tests are introduced in this

section, together with a brief description of a few questionnaires that could be used for assessing some

of the gaming quality features. Based on the described procedure of subjective tests, it is decided to

develop the gaming QoE model based on datasets created in both passive and interactive paradigms.

The passive paradigm allows collecting a large number of ratings to assess video quality and test more

encoding parameters and a higher range of parameters, which is not possible in the interactive test

paradigm due to a longer test duration. However, parameters that could influence the interaction of

players to the system (e.g., delay) are evaluated in the interactive test.

Finally, the chapter ended with an overview of related works that focus on development of quality

prediction models for gaming streaming applications. Based on this section, it can be concluded that,

up to now, the research works that have been done with respect to the development of gaming quality

models in the literature are limited to small scale subjective tests and a limited number of influencing

factors with a lack of any comprehensive model that could be used for quality prediction of cloud

gaming services. In addition, even the SoA video quality metrics with many years of research, are still

not capable of reaching a reasonable performance for gaming video content, especially for NR metrics.

In this thesis, multiple subjective tests in both interactive and passive paradigms are conducted on a

large scale, according to ITU-T Rec. P.809 based on a large number of influencing factors. A gaming

QoE model is developed that can be used for different purposes such as network planning, resource

allocation, and monitoring of quality for cloud gaming service. Details about the model structure are

presented in the next chapter.
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3
Process for Model Development

The main objective of this thesis is to develop a quality model for cloud gaming services that can be

used for network planning and quality monitoring purposes. In order to build a quality model predicting

gaming QoE, a framework is developed that keeps the different types of impairment separately. This

separation of impairments, which is inspired by the E-Model [84], helps to be flexible in the replacement

of impairment models with a new model without change of the core model structure. Figure 3.1

illustrates the proposed structure of the framework. The framework is developed based on two quality

features of Video Quality (sub-feature of output quality, see Section 2.3) and Input Quality. The

structure of the model is discussed in the next section.
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Figure 3.1: Proposed structure of the model to predict the gaming QoE.
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3.1 Structure of the Framework

Gaming QoE is a multidimensional construct in which many quality features have an impact on the

overall QoE. However, in order to develop a quality model that can be used by network providers or

service providers, it is not realistic and practical to measure all the quality features such as immersion,

presence, and flow, since the estimation of these quality features requires having access to user

experience, user preference, and information about the game design which are not always available

to network or service providers as discussed in Section 2.3. Therefore, to develop the gaming QoE

model, two important quality features, video quality and input quality are considered to predict the

cloud gaming QoE. It has to be noted that the decision to take into account the video and input quality

features is not only based on the level of access to the information but also based on the structural

equation modeling, i.e. a kind of regression analysis, that has been conducted by Schmidt [70] on

a large interactive dataset using the ratings of multiple gaming quality features as the independent

variable and overall gaming QoE ratings as the dependent variable. The result presented by Schmidt

showed that 62 percent of the variability in the gaming QoE ratings could be explained only by the

subjective ratings of GIPS items, i.e., represent input quality, video quality, and video discontinuity.

While this result is based on the individual ratings of players, if the MOS values are used, the regression

achieves an R-squared of 0.92. If other quality features related to player experience are taken into

account, only 9 percent higher variability in the gaming QoE ratings (71 percent) can be explained by

the model. The details of this analysis can be found in [70].

The framework to predict cloud gaming quality is illustrated in Figure 3.1. The model framework

consists of two modules of input quality and video quality. Video compression and network transmission

error impact the video quality, while end-to-end delay, as well as transmission error, affect the input

quality.

The video quality can be predicted with different types of models depending on the level of access

to the information, computation requirement, and purpose of the quality assessment as discussed in

Section 2.7.1. Thus, different types of models are developed to predict the video quality that is degraded

by compression, e.g., bitstream-based and signal-based models.

The game classification is an essential component to obtain a precise prediction for video games

that is discussed in Section 3.6. The impact of transmission and encoding distortions on various quality

features perceived by a player depends strongly on the sensitivity of a game towards these degradations.

In order to reach a higher accuracy of the model, two modes of operation are defined depending on

whether a network planner or service provider can make any assumption on the type of game that is

targeted or not. If the network planner or cloud gaming provider has knowledge or assumption about

the type of the targeted game with respect to its encoding complexity and sensitivity towards delay and

frame losses, the gaming QoE can be predicted more accurately by considering the game classes. If the

user of the developed models has no knowledge or assumption on the game type, the highest content

class will be assumed as a default mode. Therefore, in the default mode, the model will result in a

pessimistic quality prediction for games that are not highly complex and sensitive. Considerations on

how to quantify game characteristics to derive the classes considered for the model are given in Section

3.6.

At the end of the building block, two layers of diagnostic information and integral MOS are placed.

Diagnostic information gives insight into the degradation type and can be measured separately without
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3.2 Model Development

testing the whole model. For example, the impairment due to video encoding is an important factor

that might be desired to be predicted for other services such as passive video gaming streaming, e.g.,

twitch.tv. Integral MOS (also named as core model in later chapters) is responsible for the integration

of all measured impairment factors to predict the final output quality (O.31).

Finally, the model returns multiple outputs, in a 100-point scale that is referred to as "R-scale" in

ITU-T Rec. G.107 [84], from the diagnostic layer and integral layer as listed below:

• O.31 is the estimated gaming QoE expressed on the R-scale, where 0 is the worst quality and

100 the best quality.

• O.21 is the estimated video quality, impaired due to video compression artifacts as well as

transmission error on the R-scale.

• O.22 is the estimated input quality, impaired due to control latency impairment and transmission

errors on the R-scale.

• O.11 is the estimated video coding (compression) impairment affecting the visual perception on

the R-scale.

• O.12 is the estimated transmission error impairment affecting the visual perception on the

R-scale.

• O.13 is the estimated control latency impairment affecting the input quality on the R-scale.

• O.14 is the estimated transmission error impairment affecting the input quality on the R-scale.

3.2 Model Development

For modeling, the impairment-factor based approach is followed according to the Allnatt [94] findings.

Generally, the proposed models follow the core structure of 3.1.

QX = QoX −
N

∑
k=1

IFX
k (3.1)

where QX is audio, video, audiovisual, or input quality. In this thesis, the audio is not considered in

the model development; thus, QX only represents video and input quality. QoX is the base video, or

input quality, and takes the maximum value of the modeling scale. N represents the total number of

Impairment Factors (IF), and IFX
k denotes an IF for modality X with indices k.

Three impairment factors are used for the video and input quality models. The first one relates to

the quality impact due to compression artifacts which is investigated in the video quality component of

the framework. The second impairment factor is the effect of network transmission errors on the input

quality and video quality. Finally, the quality of the control stream could be impaired due to network

latency. Control stream is referred to the uplink and downlink data transmission that the desired action

of players through capturing the players’ input (keystroke) is transmitted over a broadband network to

the cloud gaming server until the result of the requested action is displayed on the player’s screen. The

core structure can be extended according to the different types of impairment following Equation 3.2.

QX = QoX − IcodX − ItransX − IcntrX (3.2)
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3. Process for Model Development

The impairment factor IcodX impacts the video quality solely, while ItransX can affect both input

and video quality features. Transmission errors due to packet loss are typically concealed by dropping

frames (named as freezing effect, which is discussed in Chapter 5) in cloud gaming services. Low

displayed framerate (either due to encoding or packet loss) does not only impact the visual perception

(video quality) but also the interaction of the player with the game (input quality), e.g., the controllability

and responsiveness aspects (cf. Section 2.5.5). The control stream can be impaired due to the latency of

multiple processes between client and server such as data propagation, packet transmission delay, and

encoding processing. This latency affects strongly the interaction of the players with the game which is

reflected in the input quality.

The core model can be further extended based on the input quality and video quality modules

according to Equation 3.3.

QGaming = QoGaming−a · IcodV −b · ItransV − c · ItransI −d · IcntrI (3.3)

In addition, if the multidimensional approach for impairment factor IcodX is followed, the core

model can be extended upon the sub-dimensions of video quality, video fragmentation (VF), video

unclearness (VU), and video discontinuity (VD) as shown in the Equation 3.4.

QGaming = QoGaming−a · ItransV −b · ItransI − c · IcntrI −d · IVU − e · IV F − f · IV D (3.4)

The impairment-factor-based video quality and input quality models are described in Chapter 4 and

Chapter 5 accordingly.

3.3 Model Training

The gaming QoE prediction models are developed based on the datasets described in Section 3.4. In

total, four gaming quality datasets, including two video quality datasets, an interactive dataset, and an

image quality dataset, are created during the research of the present thesis in collaboration with other

researchers.

For all video quality datasets, a typical 5-point scale ACR with hidden reference (ACR-HR) is

targeted, but for one of the video quality datasets, a 7-point EC scale is used (according to ITU-T

Rec. P.809 [42]), which latter the MOS values are transformed back to the 5-point ACR scale to be

in-line with other datasets. Based on Allnatt’s approach [94], the models are trained either based on

a 100-point scale, or 5-point MOS scale. This 100-point scale is referred to as "R-scale" in ITU-T

Rec. G.107 [84]. The process of transforming the EC scale to the ACR scale and finally to the R-scale

together with the data cleansing process is discussed in detail in Section 3.5.

In the training process, the passive video quality datasets are used to develop models that can

predict the impairment of video coding, IcodV , while other impairment factors are trained based on

the collected data in the interactive dataset. However, a few encoding conditions are also tested in

the interactive test in order to merge the result of passive and interactive datasets. This separation of

development is done based on a number of reasons. First, this separation allows collecting more data to

predict the impairment of video coding due to reduction of questionnaire items in the passive viewing-

and-listening tests as well as shorter duration of each stimulus, 30 seconds, compared to 90 seconds in

the interactive test. Collecting video quality ratings through a large passive viewing-and-listening test
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Table 3.1: Comparison of existing gaming video quality datasets. *Acp stands for acceptance of the service

GVSET [8] KUGVD [81] CGVDS [15]

Influencing Factors Resolution, Bitrate
Resolution,
Bitrate

Resolution, Bitrate,
Framerate

Framerate 30 fps 30 fps 60, 30, 20 fps
Preset Veryfast Veryfast llhq
Number of Stimuli 90 90 380
Encoder FFmpeg, x264 FFmpeg, x264 NVENC (H.264)
Encoding Mode CBR CBR CBR
Resolution 480p, 720p, 1080p 480p, 720p, 1080p 480p, 720p, 1080p
Questionnaire Items VQ, Acp* VQ, Acp VQ, VF, VU, VD, Acp

allows developing more accurate video quality models, which were not possible through the interactive

studies with the same available resources. Second, the passive viewing-and-listening tests ensure that

all participants are exposed to the same audiovisual content, whereas in the interactive test, players

have different experiences depending on their gameplay.

3.4 Database Overview

During the research of the present thesis, multiple datasets are developed in collaboration with other

researchers, which allow the development of QoE prediction models for gaming streaming services. In

this section, an overview of five quality datasets is given. Among them, three datasets are developed

based on passive viewing-and-listening quality assessment tests, which the author majorly contributed

to two of them, the Gaming Video Dataset (GVSET) and the Cloud Gaming Video Quality DataSet

(CGVDS). GVSET and Kingston University Gaming Video Dataset (KUGVD) are built by encoding

videos using a software implementation of H.264/MPEG-AVC. However, for delay-sensitive cloud

gaming services, currently, most of the providers (e.g., Geforce Now and Parsec) use the hardware-

accelerated implementation of the H.264/MPEG-AVC standard. Due to the lack of available datasets

using such a fast encoding setting, CGVDS was created in which the videos are encoded using the

hardware-accelerated implementation of H.264/MPEG-AVC (NVENC), with also a wider spread of

video games and more encoding parameters. Table 3.1 gives a comparison of the three video quality

datasets.

In addition to the gaming video quality datasets, an image quality dataset was created using gaming

images. Finally, a large interactive quality assessment experiment was conducted to develop QoE

models for cloud gaming services. This dataset was initially developed under ITU-T work item G.OMG

which led to ITU-T Rec. G.1072.

3.4.1 GVSET

The GamingVideoSET, [8], which is referred to as GVSET in the remainder of the thesis, consists of

24 source video sequences, each 30 seconds duration. The videos are recorded losslessly at a framerate

of 30 fps from 12 different games where two sequences per game are recorded. The reference videos

are encoded using H.264/MPEG-AVC under 24 multiple resolution-bitrate pairs resulting in a total of

576 distorted sequences. In addition, a subjective test considering 90 impaired sequences of this dataset

has been conducted and released with the dataset. The subjective ratings are collected in a 5-point
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Figure 3.2: Barplots of the mean video quality scores and 95 % confidence interval for the six selected
games for the used bitrates at two different resolutions of 480p (left) and 1080p (right) of GVSET dataset.

Table 3.2: Resolution-Bitrate pairs used to obtain distorted (compressed) video sequences. The bitrates in
bold text refer to the bitrates used in the subjective quality assessment.

Resolution Bitrate (kbps)
1080p 600, 750, 1000, 1200, 1500, 2000, 3000, 4000
720p 500, 600, 750, 900, 1200, 1600, 2000, 2500, 4000
480p 300, 400, 600, 900, 1200, 2000, 4000

ACR scale for video quality as well as acceptance of the presented visual stimulus. For all encoded

videos, multiple objective metrics are reported, e.g., PSNR, VMAF. Table 3.1 presents a summary of

encoding settings chosen for GVSET and Table 3.2 describes the resolution-bitrate pairs considered in

the dataset. Figure 3.2 presents the MOS of the video quality ratings for the six selected gaming videos

of the subjective test at 480p and 1080p resolutions.

3.4.2 KUGVD

The Kingston University Gaming Video Dataset (KUGVD) consists of six high-quality raw gaming

videos of each 30 seconds duration similar to GVSET, at 1080p resolution, and a framerate of 30 fps

[81]. Subjective quality ratings are collected for 90 stimuli from encoded videos using the H.264/MPEG-

AVC codec standard in 15 different resolution-bitrate pairs similar to GVSET. Additionally, for all

encoded videos, VMAF ratings, as well as some other well-known objective metrics, are available. The

resolution-bitrate pairs and encoding settings follow the GVSET; thus, the reader can refer to Table 3.2

and Table 3.1 for detailed information about the resolution-bitrate pairs selected for the subjective test

and the encoding settings of KUGVD. In addition, two bar plots of participants’ ratings for resolutions

of 480p and 1080p are illustrated in Figure 3.3. It has to be noted that while five out of six selected

games of KUGVD are the same as GVSET, the recorded video sequences are different.

3.4.3 CGVDS

The Cloud Gaming Video DataSet (CGVDS) consists of 15 raw video sequences of recorded gameplays

of different games, each recorded losslessly in the RGB format at 1080p resolution, 30 seconds duration,

and framerate of 60 fps [15], using Fraps 1.

1https://www.fraps.com
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Figure 3.3: Barplots of the video quality scores and 95 % confidence interval for the six selected games for
the used bitrates at two different resolutions of 480p (left) and 1080p (right) of KUGVD dataset.

The raw videos are encoded by FFmpeg 2 under different resolution-bitrate pairs for three levels of

framerate, 20, 30, 60 fps. In order to follow the encoding settings of cloud gaming services, all videos

are encoded using the hardware-accelerated implementation of H.264/MPEG-AVC (NVENC) using

llhq preset. The llhq preset does not use B-frames and it uses an infinite GoP length. Due to a large

number of stimuli for subjective tests and to avoid fatigue during the test, the experiment was split into

three parts, and five different studies, using 72 stimuli per study (except one study that 92 stimuli were

used). The first part (Part-1) consists of two studies each with three raw video games, four different

bitrate levels, three resolution levels, and two levels of framerate. The second part (Part-2) is created

based on two studies, each with three raw video games encoded under four different bitrate levels, two

resolutions, and three levels of framerate. Finally, the third part (Part-3) of the dataset is created based

on one subjective test using three video games, three resolutions, three framerates, and four levels

of bitrate. Such a split was done in order to fit 15 games into five series of subjective tests using a

within-subject design for at least a block of three games in each study. Each study was conducted with

a minimum of 20 valid subjects. In order to merge the five conducted studies, three video sequences

as anchor conditions were added to the subjective test, one sequence with low bitrate triggering the

fragmentation dimension, one with low resolution triggering the unclearness dimension, and finally a

reference video sequence. Moreover, prior to the test, three training video sequences are shown to the

participants for training purposes and to ensure that the participants understand the used measurement

scales (cf. Section 2.5.2).

A large subjective experiment is conducted to assess the video quality of several stimuli, following

the ITU-T Rec. P.809 [42]. In total, 380 stimuli are used in the whole experiment in which over

150 participants rated the video quality and four other post-condition items. As the choice of the

post-condition questionnaire, five items are selected including overall video quality, three perceptual

sub-dimensions of video quality proposed in ITU-T Rec. P.918 (cf. Section 2.5.5), as well as an

acceptance of video quality, have been assessed. Following the ITU-T Rec. P.809, instead of the 5-point

ACR scale that is typically used for video quality assessment, the 7-points EC scale is used for the

experiment. At the end of the experiment, a few post-test questions about the importance of different

quality dimensions are asked in order to get an insight into the judgment process of participants. To get

more information about the dataset and experiment methodology, please refer to [15].

2https://ffmpeg.org
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Figure 3.4: Barplots of video quality ratings for the fifteen selected games for the three bitrates at 1080p
resolutions and framerate of 60 fps.
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Figure 3.5: Barplots of video unclearness and video discontinuity with 95 % confidence interval for
conditions with variable resolutions and framerates of CGVDS.

As a choice of video encoding technology, GPU hardware accelerator engines (NVENC) were used,

as current industry strategies apply this type of encoding to reduce the time for the encoding process and,

with that, the overall round-trip delay for players. Table 3.1 gives a summary of encoding parameters

used in the subjective test. In addition, Table 3.3 shows the selected bitrate per resolution-framerate

pairs. Figure 3.4 illustrates the video quality ratings for 15 video games of three bitrate levels, encoded

at 1080p resolution and framerate of 60 fps. Based on Figure 3.4 at 2000 kbps, it can be observed

that video sequences are carefully selected to cover a wide range of video complexity. In addition,

the barplots of unclearness and discontinuity ratings are presented in 3.5 for multiple resolutions, and

framerates, encoded at a bitrate of 2000 kbps. It can be observed that at the lowest tested framerate, 20

fps, the video discontinuity varies strongly depending on the game type, which is due to the differences

in terms of temporal video complexity among the selected video sequences.

3.4.4 GISET

Image quality datasets are useful data not only for the development of image quality metrics but also

for video quality metrics. While there exist several quality annotated image datasets, gaming content

is typically not included in existing datasets. The Gaming Image Dataset (GISET) is the first gaming
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Table 3.3: Resolution-Framerate pairs for different bitrates used to obtain distorted (compressed) video
sequences of CGVDS.

Resolution Framerate (fps) Bitrate (kbps)
1080p 30, 60 50000, 6000, 4000, 2000
720p 30, 60 50000, 4000, 2000, 1000
480p 30, 60 50000, 2000, 1000, 300
1080p, 720p, 480p 20 50000, 6000, 2000, 1000, 300

image quality dataset that is annotated with 20 valid subjects. For the assessment of the image quality,

a discrete 5-point scale, following single-stimulus method with hidden references, was used according

to ITU-R Rec. BT.500-13 [95].

Selection of Content:

With the aim to only keep the relevant distortions of H.264/AVC compression for gaming content, the

frames are extracted directly from an existing gaming video dataset, GVSET. Thus, a dataset was built

consisting of 164 frames chosen from GVSET in which, for each source image, three encoded images

were selected with different levels of quality. Among the three selected frames, one is extracted from a

video with a low bitrate level, aiming at the blockiness artifacts, and one with lower resolutions than

the source frame with the aim to trigger the blur in the frame and finally one with a mixture of both

artifacts. It has to be noted that in GVSET all encoded videos with resolution lower than 1080p are

upscaled to 1080p using a bicubic filter, which leads to blurring artifact. The source frames are selected

from multiple video games from different parts of each sequence. In addition, in order to appropriately

distribute the level of distortions, their VMAF quality levels are considered carefully. The level of

distortion for each frame was selected based on the VMAF values within a specific range from 20 to 80.

The upper bound of VMAF is chosen to be 80 based on the previous works, which found no significant

difference between reference condition and encoded videos with VMAF value above 85 [8]. Finally, it

was aimed to include all types of frames (I, B, P), since blockiness is typically not dominant in I-frames

compared to B and P-frames.

Test Methodology:

In order to get insights into the influence of encoding parameters on the perceived video quality, in

addition to overall image quality, and with inspiration from video quality dimensions (cf. Section 2.5.5),

two more questions are added in order to assess the fragmentation and unclearness. While this method

was proposed for a video quality assessment, it is found to be a suitable method to identify the types of

degradation for image content as well.

Each dimension is explained to the participants in an introduction session in a written form using

describing adjectives and in the form of example images. As described in Section 2.5.5, the rating scales

for DBSQE-V are designed based on a 7-point continuous scale, using the antonym pairs to describe

the range of the scales. However, the 5-point ACR scale for overall image quality, fragmentation, and

unclearness is used in order to be consistent with typical image quality tests as well as with the ratings

of GVSET.

Since this method is not validated for image content, the scatter plots of overall quality,

fragmentation and unclearness are drawn in Figure 3.6 to get more insight into the suitability of

the method. The scatter plot 3.6.c reveals a high difference between fragmentation and unclearness
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Figure 3.6: The scatter plot of ratings distribution for different quality dimensions as well as image quality
prediction.

ratings. This indicates that participants can clearly differentiate between fragmentation and unclearness

dimensions. To ensure that the difference between fragmentation and unclearness is meaningful and

not due to the vagueness of the added dimensions, a Multiple Linear Regression (MLR) model is fit

based on the predictors image fragmentation and image unclearness to predict the overall image quality.

The MLR model predicts the overall image quality with a PLCC of 0.98 and RMSE of 0.154, based on

Equation 3.5. These dimensions can be used as a diagnostic approach to spot the reasons behind the

low image quality. Figure 3.6 (d) shows how well the MLP model can predict the image quality based

on the fragmentation and unclearness ratings.

IQEstimated =−1.073+0.657 ·VF+0.573 ·VU (3.5)

Finally, the scatter plot reveals a proper distribution of ratings from both sides of the scale except

for the small area between 4 to 4.5 MOS. If the subjective rating distribution would be skewed to one

side of the scale then there might be a bias on the training process.
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3.4 Database Overview

3.4.5 Interactive Dataset

In order to develop a model that can predict cloud gaming quality, a dataset developed following the

interactive paradigm is required. Thus, an interactive dataset is developed using an actual cloud gaming

setup and following the ITU-T Rec. P.809 interactive test paradigm. The test setup requires four

essential elements as described below as well as in Figure 3.7:

1. A server PC that is powerful enough to run the selected games without any issues such as variable

framerate due to low processing power.

2. A client PC capable of playing the video stream smoothly.

3. A local network for controlled streaming conditions.

4. Peripheral components such as monitors, headset, and input devices.

To change the encoding or network conditions, a script was implemented that controlled all settings

on the client PC. As a test environment, lab rooms offering high control over lighting during a test

were selected, adhering to ITU-T Rec. P.910 [3]. In addition to the components listed above, a laptop

was used, which runs a digital questionnaire that participants filled out after each condition. The

test instructions, a pre-test, post-game, and post-test questionnaires are provided on this laptop. The

structure of a subjective study is shown in Figure 3.8. In each study, one game is tested under 17

different conditions in which the bitrate, delay, packet loss, and encoding framerate are changed.

Figure 3.7: Setup for interactive subjective tests.

17 Conditions

Figure 3.8: Structure of subjective test for interactive tests.

Three types of questionnaires are used in the interactive test. Prior to the experiment, the

demographic information is collected using a pre-test questionnaire which covers the information
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3. Process for Model Development

about age, gender, gaming experience, gaming preference, knowledge about the games used in the

study, and commonly used input device and monitor. The demographic information collected in the

experiment is given in Appendix A.

In addition, a 31-item post-condition questionnaire (used after each stimulus) is used to assess the

gaming QoE of the presented stimuli. Participants are asked to indicate their experience of their play for

multiple items on the 7-point EC scale. The post-condition questionnaire covers the following aspects:

• Overall gaming QoE

• Input quality based on the GIPS questionnaire (cf. Section 2.5.5)

• Output quality: Video quality, sub-dimensions of video quality (see Section 2.5.5), audio quality.

• Player experience (PX) based on the iGEQ questionnaire [40] covering seven dimensions of

Competence, Immersion, Flow, Tension, Challenge, Positive and Negative Affects.

• Player Performance and Service Acceptance.

In addition, a post-game questionnaire was used to get insight into the game-related aspects from

participants’ perspective, covering the following aspects: Performance Indication, Learnability, Appeal,

and Intuitive Controls. Finally, the post-test questionnaire was used to understand the judgment criteria

of the participant. The details about all questionnaires used to develop the interactive dataset are

provided in Appendix A.

For the subjective tests, the light conditions in the test room, its acoustical properties, as well as the

viewing distance and position of participants were set as consistent as possible during the experiments.

In general, ITU-T Recommendations P.809, P.910, and P.911 are considered. Participants are offered

an adjustable chair and table to sit in a proper position. The viewing distance D is set to equal to three

times the picture height H (the video window size, not the physical display size), D = 3*H. For both

test paradigms described in the previous section, different setups can be used. However, unless it is part

of the parameter under investigation, the following elements remained constant:

• Requirements for participants as described in Section 2.5.

• The test environment is setup according to ITU-T Rec. P.910 and P.809 (cf. Section 2.5).

• Video presentation: LCD monitor, 24” display for standard gaming, HD1080 resolution, no

G-Sync, no Free-Sync, (others see [b-ITU-T P.911]).

• Input device: only a mouse and keyboard are used.

• Play audio using a diotic presentation (both ears receive the same mono signal) or binaural

presentation (each ear receives one channel of a stereo signal).

In total, nine studies are conducted that for each subjective test, 30 participants were invited who

should fulfill some criteria, concerning gaming experience, normal color vision and visual acuity,

a fair language skill, and having no relevant neurological disease (e.g., epilepsy) or sensory-motor

dysfunctions.

An extensive subjective test following the interactive paradigm guideline described in Section 2.5.3

is conducted. The interactive dataset contains the subjective ratings of a total of 180 participants. The
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3.5 Data Post-Processing

data was collected from a total of 9 studies, each testing a single game. Each study lasts a maximum of

two hours using a total of 17 conditions. Four types of degradation are introduced, including round-trip

delay, encoding framerate, encoding bitrate, and packet loss that results in frame loss (cf. Chapter 5).

Table 3.4 illustrates the range of values for factors and parameters in the interactive dataset. For the

shooting game, Counter-Strike: Global Offensive (CSGO), an additional experiment was conducted to

investigate the relationship between spatial video quality and input quality.
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Figure 3.9: Bar plots of mean opinion scores of gaming QoE with 95 % confidence interval of two network
parameters, delay and frameloss rate, for interactive tests for three different games.
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Figure 3.10: Bar plots of mean opinion scores of gaming QoE with 95 % confidence interval of two
encoding parameters, bitrate and framerate rate, for interactive tests for three different games.

Figures 3.9 and 3.10 present the barplots for a few conditions and games tested in the interactive

dataset for variable framerate, bitrate, delay and frameloss rate. As it can be observed, the games are not

equally affected by introduced degradation. While some games are strongly impacted by degradation,

such as network delay, others seem to be less sensitive to delay. Such a difference in the effect of

degradation on participants’ ratings offers challenges in the development of gaming QoE models that

rely solely on parameters from network and compression. Therefore, in the following sections, three

different game classifications are proposed to group the games based on the characteristics that cause

them to be sensitive towards a certain type of degradation.

3.5 Data Post-Processing

Once the ratings are collected from each described experiment, the cleaning process is applied to fill

the missing values and remove the outliers. The outlier detection and removal process was applied to

the raw subjective scores according to the outlier labeling rule presented in [96] for each test condition

of the dataset. In addition, values with a higher distance than 2.2 interquartile range from the median of

ratings were marked as outliers. In addition to the typical outlier detection, in the interactive dataset, it

was observed that 24 participants rated the quality of the reference stimuli lower than 4 on a 7-point EC

scale. Thus, all ratings of these participants are removed from the dataset. It has to be noted that the low

ratings of participants for the reference condition might be due to their preference in a certain genre or

49



3. Process for Model Development

Table 3.4: Factors and parameters used in interactive tests.

Application information Value range, unit
Sequence duration 90 seconds
Screen size 24
Input devices Mouse and keyboard
Packetization RTSP (over RTP/UDP/IP)
Video codec h.264 using NVENC
Resolution 1080p (480p also tested only for CSGO)
Coded video bitrate (mbps) 2, 4 ,6, 50
Frame rate (fps) 10, 20, 30, 60
Group of Pictures (Note 1) Infinite
Pre-set llhq (low latency, high quality)
Encoding Mode CBR
Video Compression Standard H.264, Main 4.0
Audio codec AC3
Coded audio bitrate (kbps) 192 (stereo)
Audio sample rate (Hz) 48,000
Packet loss degradation uniform loss (0-5%)
Freezing ratio due to packet loss 0, 10, 20, 30, 40, 50 %
Delay Range 0, 25, 50, 100, 200, 400 ms
Note 1: The llhq preset does not use B frames and it uses an infinite GoP length by default.
In case of a corrupted frame, no spatial artifacts will be visible but instead the FEC will lead
to a replacement of the corrupted frame resulting in jerkiness of the video (freezing artifacts).

low performance in the played condition. However, for the modeling purpose, this might introduce

additional errors to the model since the model does not take into account the quality features that reflect

such a user preference or performance indication. After removing the outliers from the initial collected

2960 ratings, 2648 ratings remained for further analysis.

In order to derive suitable impairment factors for the model, the EC scale (7-points) ratings are

transformed to the 5-point ACR scale, then 5-point ratings are transformed to the R-scale (cf. ITU-T

Rec. G.107 [84]). This transformation was conducted for both CGVDS and the interactive dataset in

the following manner:

1. Transformation of extended continuous 7-point ratings (EC) to 5-point ACR ratings using the

transformation presented in [97].

ˆ︂MOSACR =−0.0262 · ˆ︂MOS3
EC +0.2368 · ˆ︂MOS2

EC +0.1907 · ˆ︂MOSEC.+1 (3.6)

2. Normalize MOS values based on Equation 3.7, where MOSmax is set to 4.64.

MOSnormal,i =
MOSi−1

MOSmax−1
·3.5+1 (3.7)

3. Calculation of R-value according to ITU-T Rec. 107.

4. Calculation of Impairment (differential R-values from reference):

I f actor(condition) = Rmax, f actor−R f actor(condition) (3.8)
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3.6 Gaming Classification

The drived I f actor(condition) for quality features used in the dataset such as video quality and

input quality (based on GIPS items) are used for training the model. For the sake of simplicity, the

I f actor(condition) is referred to as delta-R in the remainder of the thesis.

3.6 Gaming Classification

In several studies, it has been shown that video quality [6] as well as gaming QoE [4] are strongly

content dependent. The game has a strong impact on the perceived video quality and interaction of

players with the game. This can be seen from the bar plots of Figures 3.9 and 3.10 in which within the

same condition, the subjective ratings of the overall quality vary strongly depending on the game.

The commonly used game genre classification has been shown to be inaccurate in predicting the

game sensitivity towards different types of impairments. For example, Schmidt has shown in a study

that the games within the same genre might have different sensitivity towards delay [4]. Besides, due to

the overlapping of genres, this classification is not considered a reliable tool to classify the games upon

their sensitivities towards network and compression impairments.

Due to the strong influence of the game design on perceiving different types of degradation,

it is not possible to develop an accurate quality prediction model without considering the game

sensitivities/complexities. Therefore, three types of gaming classifications are taken into consideration

when assessing and predicting gaming QoE. First, a classification that estimates the video complexity

based on certain game characteristics. While the signal-based and bitstream-based video quality models

have enough information to estimate the video complexity, the planning models’ performance relies

strongly on such a video complexity classification due to a very low level of information that they have

access to. Second, a delay sensitivity classification is proposed to classify the games based on their

sensitivity towards delay degradation. Finally, the degradation due to a low encoding framerate and

frame loss due to packet loss does not influence the interaction of players similar to delay degradation,

and hence a frame loss sensitivity classification is required as well.

In the following, a short overview of the development process of these three classifications is given.

This section is mainly written based on two publications of [6] as well as [13].

3.6.1 Gaming Video Complexity Classifications

In contrast to traditional video content, gaming content has special characteristics such as an extremely

high motion for some games, special motion patterns, synthetic content, and repetitive content, which

makes the state-of-the-art video and image quality metrics perform poor for this special computer-

generated content [6], [9]. Video games are usually created based on a pool of limited pre-designed

objects that appear in different scenes of a game. Therefore, there is a high similarity of different scenes

of a particular game with respect to the spatial video complexity (e.g., level of texture). Besides, for

many video games, due to the same design style across the games, a game shares similar visual features

such as background scene, color diversity, and pattern of motion [6]. Moreover, for many games, the

game world is small, and the game scenes do not change much over time. Thus, these characteristics

of the games allow concluding that for most of the video games, a level of video complexity can be

assigned to the game. It has to be noted that such a class assignment would only target the representative

scene and action of a game that frequently happens in a certain game, and the video quality of the game

strongly depends on these scenes. For example, in a shooting game, a representative scene could be
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3. Process for Model Development

a scenario that the main character is in a shooting task and not when the main character stands in a

position and zooms his sniper on enemies.

In order to develop a gaming video complexity classification, two studies are conducted. The first

one was conducted in early 2018 when there was no large gaming quality dataset available. Thus,

instead of using subjective ratings, an objective video quality metric, VMAF, which has been shown to

correlate well with subjective ratings, was used for the classification. Another study was conducted in

late 2019, where the ratings from the interactive dataset were used as a ground truth [13].

In the first attempt [6], to derive a variety of game characteristics relevant to the video coding

complexity of gaming content, a two-step focus group interview with three experts was conducted.

Among the three experts, two of them are gaming experts and have a fair knowledge of video encoding.

One of them is an expert in the video domain with a reasonable knowledge of gaming. The three

experts were kept the same for all analyses. In the first step, various game video scenes (mostly from

GVSET) at 1080p resolution encoded with a bitrate of 1 Mbps were presented to the experts. The

bitrate of 1 Mbps was selected to have a comparative range of visible blockiness among the different

gaming videos, which can then be used to define the game characteristics with a possible influence on

the encoding complexity. The experts were instructed only to define characteristics that are visually

quantifiable by someone with reasonable domain knowledge. As an outcome of the first session, the

experts provided a list of nine game characteristics that could potentially be a reason for the difference

in the amount of blockiness among the games. Finally, the characteristics are grouped according to

their possible influence on the video scenes’ temporal and spatial complexity. In the second step of the

interview, the same experts are asked to describe the means to quantify the characteristics and assign

values for each characteristic of the game videos. During the second interview, the experts were asked

to quantify the different characteristics of the 30 videos of the database. Once the game characteristics

are quantified, they should be mapped to different levels of video complexity.

Therefore, in the next step, video game complexity is estimated based on Rate-Distortion (RD)

curves. In order to build the RD curves, the raw recorded gaming scenes at 1080p resolution and

framerate of 30 fps are encoded using the H.264/AVC codec using CBR rate controller model, in the

bitrate rang of 750 kbps to 4000 kbps. The RD curves are plotted according to bitrate level and VMAF

values. Next, a k-means clustering algorithm was performed to cluster the 30 video sequences into

different groups based on their RD curves. The optimum number of clusters was found to be three

based on a silhouette analysis (silhouette value = 0.84). After clustering the quality values into three

groups, in order to map the game characteristics to the clusters, a decision tree was achieved based on

the assigned game characteristic values as illustrated in Figure 3.11. The best possible decision tree

was achieved with an accuracy of 96 % using three characteristics described below.

a) Static Areas (SA): A static area is a part of the scene without any movement. This typically

applies to maps, background, and Heads-up display (HUD) showing skills or scores. To quantify this

characteristic, the size of the static areas in relation to the overall video size should be estimated as an

average over time.

b) Degrees of Freedom (DoF): Degreess of freedom is defined as the freedom of camera movement.

There can be up to six degrees of freedom due to three possible translations (back and forward, left and

right, or up and down) as well as three rotations (vertical axis and height) of the camera.

c) Amount of Camera Movement (ACM): How often the camera is moving plays an important

role in the temporal complexity of a video. Differences are to be expected when comparing turn-based,
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and real-time games [98]. Experts stated that they expect strong variations for this characteristic, even

for the same game, depending on the game scene selected. Due to the importance of scene selection,

scenes that do not cover the typical behavior in the game should be avoided for building a model or

classification. The amount of camera movement in this work is defined as the percentage of the total

duration of camera movement to the overall duration of the game scene. Depending on the percentage

of camera movement, four categories were assigned: 0 - 10 % (0), 10 - 49 % (1), 50 - 99 % (2) and 100 %

(3) camera movement.
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Figure 3.11: Decision tree determining the encoding complexity of a game scene (cf. [6]).

While the classification was promising and offering good performance for different tasks [6], it was

developed under two limitations. First, the focus group was relatively small, which raises the question

if there are more characteristics that are not considered. Second, the classification was developed

based on an objective metric of recorded scenes, which may introduce errors depending on the metric’s

performance. Therefore, the second study was conducted similarly with a larger 2-steps focus group of

11 participants to identify and quantify the relevant game characteristics and using the actual subjective

ratings instead of an objective metric. As a choice of the dataset, the video quality ratings of CGVDS

and interactive datasets are used. The detail about the study and focus group study can be found in

[28]. In the second study, five characteristics turned out to form the decision tree with an accuracy of

96 % due to one miss-prediction for the low class. The final set of characteristics contributing to the

decision tree is listed below. The decision tree obtained in the first attempt is illustrated in Figure 3.12.

Since the second study is conducted on a larger scale using the subjective ratings as ground truth, this

classification is used to assign the video complexity class to the video games used in this thesis.

Movement Type (MV): Movement type is defined as the total number of camera directions. When

considering a video as a 2D representation, this characteristic refers to the directions in which the video

is changing. The directions can be vertical or horizontal movements, as well as a mixture of movements

(e.g., diagonal).

Length of Shapes (LoF): The characteristic Length of Shapes describes the summed length of

contours (shapes) of moving objects averaged over the time of the game scene. Movements of objects

or within objects as well as in the background or environment should be considered.

Degrees of Freedom (DoF): Degrees of Freedom is defined as the freedom of camera movement.

There can be up to six degrees of freedom due to three possible translations (back and forward, left and

right, or up and down) as well as three rotations (vertical axis and height) of the camera.
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Frequency of Object Movements (FOM): The amount of object movements – this also includes

elements that are not controlled by the player such as background objects – is defined as the percentage

of the total duration of the time frame, in which game objects are moving, to the overall duration of the

game scene.

Texture Details (TD): Texture details refer to the graphical details in the game and depend on the

number of used quads (polygonal shapes made of triangles). The more polygons used, the higher are

the texture details. The game environment as well as other elements such as characters or obstacles

should be considered.
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Figure 3.12: Decision tree determining the encoding complexity of a game scene (cf. [28]).

3.6.2 Gaming Delay and Frameloss Sensitivity Classifications

Several studies showed that game design plays an important role in the sensitivity of games toward

delay. One of the early works on the sensitivity of games to delay was conducted by Claypool, where

the delay sensitivity was determined based on two factors, interaction and perspective [99]. Interaction

is characterized by the deadline and precision model, which is discussed in Section 2.6. The game

perspective specifies whether the game is based on an omnipresent model or an avatar model, in which

the first-person and third-person perspectives are available. Claypool showed that the first-person avatar

is significantly more sensitive to delay compared to the third-person avatar perspective in a shooting

game, while the selected omnipresent game turned out to be less sensitive than avatar games [100].

In order to derive the game characteristics that influence the delay sensitivity of video games,

similar to video complexity classification, a focus group methodology was conducted. In total, nine

participants in three focus groups (each with three participants) are interviewed, which derived nine

game characteristics that play a role in gaming QoE in the presence of delay. First, a short introduction

was given to the participants before the interview in order to provide knowledge about the cloud gaming

service and how delay affects gaming QoE. In addition, some well-known concepts of precision and

deadline (cf. Section 2.6) are explained to the participants. Next, participants played 12 different

scenarios picked from different game genres and game mechanics under different delays of 0ms, 150ms,

and 300ms. Participants played each selected scenario of games for 60 seconds, which are selected

as a representative scenario of the game. The games are selected carefully to cover a wide range

of game genres and game mechanics. After playing all selected scenarios, their observations on the

characteristics that make a game to be sensitive towards delay are collected in a written text. Next,

an open discussion led by a moderator took place in which participants in each focus group could

discuss their opinion about the factors and characteristics that make a game sensitive to delay. By
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analyzing the interviews and notes, nine characteristics are selected as candidates to classify the games

according to their sensitivity towards delay. The details of the study can be found in [13]. A very

similar study was conducted for the frameloss sensitivity to identify the relevant characteristics to

classify the video games using three framerate levels of 10, 20, and 60 fps, that for the sack of brevity,

it is not described here. Based on the input quality (GIPS items) ratings of a large dataset collected

through a crowdsourcing approach [101] and the presented interactive dataset, two separate decision

trees are built using the K-Means clustering algorithm to derive the frameloss and delay sensitivity

classes. It turned out that DoF, FOM, and PC (described below) are the most important characteristics

to classify the video games according to their sensitivity towards frameloss while, ToI, NID, TA, PR,

NRA would be the necessary characteristics to build a decision tree for delay sensitivity classification.

The description of the characteristics can found below (note that DoF and FOM are already described

in the previous section). The details of decision tree development and focus group study can be found

in [13], [28].

a) Temporal Accuracy (TA): Temporal Accuracy describes the available time interval for a player

to perform the desired interaction. The time interval is strongly dependent on the mechanics and pace

of a game scenario. In other words, this game characteristic describes the available reaction time of a

player.

b) Predictability (PR): Predictability describes if a player is able to estimate the upcoming events

in the game. This can, for example, relate to positions of objects (spatial) or time points of events

(temporal).

c) Pace (PC): The pace of the game is defined as how fast the visible game elements (e.g.,

environment, characters, or obstacles) in the video are changed.

d) Number of Input Directions (NID): The number of possible input directions in a game scenario

is known as Degree of Freedom (DoF). DoF consists of translations (back and forward, left and right,

up and down) as well as rotations (vertical axis and height) for one or multiple input devices/elements.

e) Number of Required Actions (NRA): The number of required actions and with that also the

number of inputs a player performs in a certain time frame may influence the perception of a network

delay. The characteristic could also be described as the minimum actions per minute (APM) to play the

game scenario. It is assumed that a higher number of required actions will lead to more user inputs and,

thus, more situations in which a player can perceive a delay. The number of objects to react to or the

pace of the game can also influence the number of required actions.

f) Type of Input (ToI): The type of input describes the temporal aspects of player inputs on a

spectrum of discrete to continuous. In some games, players are continuously giving input, for example,

in a shooting game where players are always moving their mouse. Some games have discrete inputs

meaning that players interact using pressing a button, for example, a jumping game where players must

jump using pressing a key. In games with Quasi–Continuous inputs, players interact with the game

using holding a key or constantly pressing a key.

According to the classification presented in this section, the games that are used to develop the

presented interactive dataset are annotated to a different class of complexity/sensitivities in Table 3.5.

Based on the table, it can be seen that a balanced distribution of games is selected for the interactive

test except for the frameloss sensitivity class.
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Figure 3.13: Decision tree determining the delay sensitivity of a game scenario (cf. [13]).
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Figure 3.14: Decision tree determining the frameloss sensitivity of a game scenario (cf. [28]).

3.7 Summary

In this chapter, the necessary steps that are required for the development of a quality model for cloud

gaming services are described. In a summary, the following items are described for the development of

gaming QoE models:

• The scope and structure of the model are described. The model follows a modular structure,

which allows the training of the model based on passive and interactive datasets separately. In

addition, this modular structure could ease the future extension of the model for possible updates

such as training for a new video codec by simply retraining the relevant impairment factor (e.g.,

IcodV ) without changing other factors.

Table 3.5: Assigned class of complexity to games used in the interactive dataset.

Game name Delay Sensitivity Frameloss Sensitivity Encoding Complexity
Bejeweled 3 Low Low Low
Counter Strike High High High
Dota II High High Medium
Hearthstone Low Low Low
Overwatch High High High
Project Cars Low High Medium
Rayman Legend High High Low
Tekken Low High High
Worms Low Low Low
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3.7 Summary

• Five image/video/interactive quality datasets are described in this chapter that can be used for

training the gaming QoE model. The image and video quality datasets will be used for training

the video coding impairment, while the interactive dataset allows training the core model and

other impairment factors.

• The data post-processing method, including the data cleansing and outlier detection that are

applied to each dataset, is explained. In addition, the transformation of scale from the assessed

7-point EC scale to a 100-point R-scale is described, which later will be used for training the

impairment prediction models.

• Three video gaming classifications are proposed to classify games according to their sensitivity

towards delay and frameloss, as well as video content complexity. The decision trees obtained a

very high accuracy on the training dataset, above 0.90 %. These classifications are great assets to

develop an accurate gaming quality model.

While this chapter forms the basis of the development of quality models, the following chapters

describe how to develop QoE models based on the model structure, different gaming quality datasets,

and gaming classification presented in this chapter. In the next chapter, the models that are developed

for the prediction of the video coding impairment are discussed.
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4
Video Coding Impairment Models

In this chapter, multiple video quality models that can be used to predict the video coding impairment

factor of the proposed framework are described. In general, two approaches are taken into account;

first a direct modeling approach, where the overall video coding impairment is directly predicted

based on the developed model. The second approach uses the multidimensional approach where the

sub-dimensions of video quality (cf. Section 2.5.5) are first predicted, then the overall video coding

impairement is predicted based on the predicted sub-dimensions of video quality. Figure 4.1 illustrates

the two approaches as well as a short overview of where each proposed quality model is placed within

the framework. The chapter is structured based on the type of video quality model according to the

level of access to the video information (cf. Section 2.6), planning, bitstream-based, and signal-based

video quality models.
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Figure 4.1: Overview of objective video quality assessment models discussed in the thesis according to
different levels of information extracted from the media stream.

In total, the author contributed to the development of six models presented in this chapter and

collaborate with other researchers to map ITU-T P.1204.3 predictions for gaming video datasets. Table

4.1 gives a short overview of the models discussed in this chapter and the datasets used for training and

validation of the model. The models are trained based on different datasets, mostly presented in Section
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4. Video Coding Impairment Models

Table 4.1: An overview of proposed video quality models, and datasets used for training and validating.

Model Model Type Training Dataset Validation Dataset Notes

ITU-T Rec. G.1072 Planning model
Training CGVDS,

ITU-T Dataset
Validation CGVDS,
KUGVD, GVSET

ITU-T Dataset is similar
to CGVDS with different

gaming content

GamingPara Planning model Training CGVDS
Validation CGVDS,
KUGVD, GVSET

-

BQGV Bitstream-based Model CGVDS CGVDS, KUGVD, GVSET
The model is trained and

validated following
one-leave-out cross validation

FHD P.1204.3 Bitstream-based Model KUGVD, GVSET CGVDS
The model is remapped
based on each dataset

NR-GVQM NR Signal-based Part of GVSET
CGVDS, KUGVD,

GVSET

For training the part of GVSET
that was not a part of subjective

test is used

NDNetGaming NR Signal-based
Extracted frames of

GVSET, GISET
CGVDS, KUGVD,

GVSET
-

DEMI NR Signal-based
Extracted frames of

GVSET & NFLX-SVQD,
GISET

CGVDS, KUGVD,
GVSET

NFLX-SVQD is non-gaming
dataset (cf. Section \ref{sec:DEMI})

3.4. The reason to use different training datasets for each model is either due to the time of model

development, when some of the datasets were not yet created, or decisions in the design of the model

that required to have access to diverse content or the high number of encoding parameters. "Training

CGVDS" (referred in the table) includes approx 66% of CGVDS split based on the source video, 10

out 15 source sequences (together with all encoded sequences), and "Validation CGVDS" consists of

the remaining video sequences.

It has to be noted that the author did not contribute to the ITU-T Rec. P.1203 [102] and P.1204.3

[103], but because of the high performance of these models on gaming datasets, as well as minor

correction to P.1204.3 for gaming videos, they are presented in this chapter.

Also, it has to be noted that in all calculations of this chapter, for simplicity of the results, the

prediction is reported on a 5-point MOS scale, thus, they are referred to as video quality models.

However, for the final gaming QoE prediction model, the predicted delta R-scale values are used.

This chapter is written based on the reference publications of video quality models that the author

contributed to, presented in [7], [15]–[17], [72].

4.1 Planning Models

In this section, three planning models, also known as opinion prediction models, for video quality

prediction, are presented. Planning models can be used by network planners that have assumptions

about the network, compression, and end-user characteristics. These characteristics could be network

parameters, e.g., expected end-to-end delay, encoding parameters, e.g., expected encoded video

bitrate, and device parameters, e.g., typical display size. Three models are presented, two ITU-

T Recommendations where the author contributed to one of them, and another model that the

author developed using the multidimensional approach. Firstly, ITU-T Rec. G.1072 and G.1071

are discussed. ITU-T G.1072 is an ITU-T Recommendation that predicts the gaming QoE based on

multiple impairment factors. Thus, in this section, only the video coding impairment of ITU-T G.1072

is discussed (for more information, please refer to Section 5.4). Finally, GamingPara is proposed, which

is developed following a multidimensional approach. Such a multidimensional approach benefits from

the flexibility of the model for future updates and provides diagnostic information about the reasons

behind the low-quality prediction. This section is written majorly based on the publication [15].
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4.1 Planning Models

4.1.1 ITU-T Rec G.1071 and G.1072

The ITU-T Rec. G.1071 describes a planning model that contains a series of models for estimating

the audio-visual quality of streaming services. The models are designed to be network planning tools.

Therefore, they only use properties of the network and encoding setting as input parameters. Since the

G.1071 models are not trained for gaming video streaming applications, the Annex A of the model

is retrained for cloud gaming service based on the latest cloud gaming encoding setting (e.g. using

hardware accelerator engines) in the development of ITU-T Rec. G.1072. Hence, both ITU-T Rec.

G.1071 and G.1072 use the same model structure to predict video coding impairment but with different

coefficients. The video impairment of G.1071 Annex A has six input parameters where three of them

are set to zero, packetloss = 0, slicesPerFrame = 0 and T SBurstiness = 0, since, the transmission

error in cloud gaming services is typically not introducing slicing effects but rather freezing artifacts

(cf. Chapter 5). The remaining parameters that are used for model prediction are bitrate, number of bits

per pixel (BitsperPixel), and framerate. The model predicts the impairments due to compression based

on an exponential function of BitsperPixel and linear relation of Content Complexity. BitsperPixel is

defined as the number of bits assigned to each pixel in average for a video sequence, which is calculated

based on the number of pixels in each frame (the product of the width and height of video), bitrate, and

framerate of the video. Content Complexity is a function of BitsperPixel. In order to predict the video

quality of G.1071 Annex A, the core model follows the E-model impairment structure. Equations 4.1

to 4.4 show the model structure. The coefficients of the equations are presented in Table 4.2 for the

G.1071 model and the refit G.1071 based on the gaming video dataset to drive coding impairment of

G.1072. The G.1072 coefficients are given per class of video complexity (cf. Section 3.6) as can be

seen in the table. As discussed earlier, the transmission impairment (ItraV ) is set to zero.

V Q = 100− IV Q−cod− ItraV (4.1)

where ItraV = 0 due to no transmission loss.

IV Qcod = a1V · exp(a2V ·BitsperPixel)+a3V ·ContentComplexity+a4V (4.2)

ContentCompelxity = a31 · exp(a32 ·BitsperPixel)+a33 (4.3)

BitsperPixel = (Bitrate ·106)/(NumPixelPerFrame ·Framerate) (4.4)

4.1.2 GamingPara

In this section, a proposed planning model is described that can predict the overall gaming video quality

based on the perceptual video quality dimensions, namely, fragmentation, unclearness, and discontinuity

which are presented in Section 2.5.5. Similar to ITU-T Rec. G.1071 and G.1072, the proposed planning

model predicts the video quality solely based on the encoding parameters, bitrate, frame rate, and

encoding resolution, but following a multidimensional-based approach. Such a structure-based model

development is beneficial for a service provider as it is easier to update the model in case of new

parameters or interest in a higher range of parameters. In addition, the multidimensional quality model

can act as a diagnostic model to explain which degradation causes a potentially low video quality.
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4. Video Coding Impairment Models

Table 4.2: Coefficients of G.1071, and G.1072 impairments for each encoding complexity in which class 1,
2 and 3 represent low, medium and high complexity classes respectively.

G.1071 G.1072
Coefficient - Class 1 Class 2 Class 3

a1V 51.28 52.51 37.99 47.75
a2V -22.00 -28.02 -13.72 -12.07
a3V 6.00 -2.68 8.57 9.05
a4V 6.21 5.47 3.27 3.42
a31 3.92 12.42 6.83 7.62
a32 -27.54 -28.019 -127.99 -167.84
a33 0.26 0.22 0.48 0.076

Table 4.3: Coefficients of IV D for each frame loss sensitivity class.

Coefficient Low sensitive High sensitive
d1 66.29 67.28
d2 10.23 3.23

The core model is developed based on impairment factors due to fragmentation, unclearness, and

discontinuity, as shown in Equation 4.5.

RQoE = R(max,QoE)−a · IV D−b · IV F − c · IVU (4.5)

Each impairment factor is predicted solely based on parameters relevant to the representative dimension,

which also offers a parameter reduction. The impairments and core model of the planning model are

developed based on the "Training CGVDS" dataset described in the previous section.

Impairment of Video Discontinuity (IV D): The video discontinuity impairment estimates the

video jerkiness due to low encoding framerate. The impairment of video discontinuity is modeled based

on an exponential function of frame rate as shown in Equation 4.6. Two classes of temporal complexity

are derived based on the video gaming classification presented in Section 3.6. If the network provider

does not have any assumption about the class, the high complexity class should be used as a default

mode.

IV D = exp(
d1

f ramerate
)+d2 (4.6)

Impairment of Video Fragmentation (IV F ): The video fragmentation dimension represents the

blockiness in the encoded video, which is mainly triggered by the encoding bitrate. The Impairment of

Video fragmentation is modeled based on the bitrate, resolution, and framerate. Similar to G.1071, the

variable BitsperPixel is defined which explains the number of bits that is spent on average for a pixel,

as shown in Equation 4.7, where bitrate is defined in kbps unit.

BitsperPixel =
bitrate

f ramerate ·hight ·width
(4.7)

Three encoding complexity classes are derived based on the gaming classification explained in

Section 3.6. If no information about the class is available, the high complexity class should be used as
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Table 4.4: Coefficients of IV F for each video complexity class.

Coefficient Low complex Medium
complex

High complex

e1 21.1 13.79 11.21
e2 -5.426 -8.017 -10.59
e2 0.0005258 0.0005442 0.0006314

Table 4.5: Coefficients of IVU for each video complexity class.

Coefficient Low complex Medium
complex

High complex

f1 4.299 18.58 17.13
f2 -2.016 -3.422 -4.494
f2 -17.99 -15.38 -7.844

a default mode. IV F is predicted based on Equation 4.8 using the coefficients per class presented in

Table 4.4.

IV F = e1 + e2 · log(bit perpixel ·bitrate)+ e3 ·bitrate (4.8)

Impairment of Video Unclearness (IVU ): The video unclearness dimension represents the

blurriness in the video caused due to upscaling the video resolution, e.g., if a bicubic or a bilinear

interpolation is applied. Therefore, the scale ratio plays an important role, which is measured by the

ratio of encoding resolution and display resolution, as shown in Equation 4.9.

scaleratio =
heightencoding ·widthencoding

heightdisplay ·widthdisplay
(4.9)

In addition to the scale ratio, the bitrate and amount of bits per pixel play an important role. Therefore,

the impairment of video unclearness is predicted based on the two logarithmic functions of BitsperPixel

and bitrate as well as scale ratio, as illustrated in Equation 4.10 using the coefficients presented in Table

4.5.

IVU = f1 + f2 · log(BitsperPixel ·bitrate)+ f3 · log(scaleratio) (4.10)

Core model: The core model of the proposed planning tool is based on the measured impairment

as shown in Equation 4.11.

RQoE = Rmax,QoE −0.259 · IV D−0.554 · IV F −0.341 · IVU (4.11)

The goodness of fit for the prediction of each dimension is reported in Table 4.6 in terms of RMSE

and adjusted R-squared. It has to be noted that the RMSE is reported on the R-scale (ranges from 0 to

100).
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Table 4.6: Goodness of fit for each perceptual dimension of GamingPara in terms of RMSE and Adjusted
R-squared.

Class1 Class2 Class3
RMSE Adj R2 RMSE Adj R2 RMSE Adj R2

Discontinuity model 10.43 0.41 6.96 0.60 - -
Unclearness model 6.59 0.63 9.18 0.75 7.88 0.86

Fragmentation model 6.90 0.83 10.23 0.73 6.90 0.83

Table 4.7: ITU-T Rec. P.1203 modes of operation.

Mode Encryption Input
0 Encrypted payload headers Meta-data
1 Encrypted media payload Meta-data and frame size/type
2 No encryption Meta-data and up-to 2% of the stream
3 No encryption Meta-data and any information from the video stream

4.2 Bitstream-based Models

In this section, three bitstream-based models are described. Two of these have been standardized as

ITU-T Recommendations P.1203 and P.1204.3, which were developed within ITU-T Study Group

12/Question 14 (SG12/Q14) work item titled "P.NATS". While the author did not contribute to the

development of the two ITU-T models, due to high performance pf P.1203.1, P.1204.3, and the FHD

adapted version of P.1204.3 for gaming content, they are presented in this section. The author proposed

a lightweight bitstream-based video quality model that is named BQGV. BQGV uses a multidimensional

approach, which is shown to be a reliable approach for video quality prediction. Bitstream-based

video quality models can be classified into the header-based and payload-based models, as explained

in Chapter 2. While header-based models are significantly lighter, payload-based models, in contrast,

are heavy in computation and typically are more accurate and less prone to the change of the coding

setting due to access to detailed encoding settings, e.g., quantization parameters. ITU-T Rec. P.1203

has multiple modes covering both payload and header-based models, while ITU-T Rec. P.1204.3 is a

payload-based model. The proposed BQGV uses only header information for quality prediction.

4.2.1 ITU-T P.1203

The ITU-T P.1203 is a series of models that are designed to predict the audio-visual quality for adaptive

and progressive-download-type media streaming that could be placed in end-point locations or at

mid-network monitoring points. ITU-T Rec. P.1203 has four modes depending on the level of access to

the information due to encryption as shown in Table 4.7. Mode 0 of ITU-T Rec. P.1203 is a simple

parametric-based model that predicts the video quality based on the encoding parameters. Equations

4.12 and 4.13 illustrate the functions that predict video quality (referred to as moscodV ) of Mode 0,

where the codingres stands for video encoding resolution.

quant = a1 +a2 · log(a3 + log(bitrate)+ log(bitrate · bitrate
codingres · f ramerate

)+a4)) (4.12)

moscodv = q1 +q2 · exp(q3 ·quant) (4.13)
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Due to change of coefficients for different modes, they are not provided in this section, please refer

to the reference paper in [104].

Mode 1 is a bitstream-based model that uses the packet header information for quality prediction.

For Mode 1, Equation 4.12 is used for measurement of the quant parameter. However, the coefficients

are updated, and the frame size was used instead of video bitrate. It must be noted that the content

complexity is taken into account based on the average size ratio of the I-frames and none-I-frames.

In addition, the moscodV is predicted using a sigmoid function. Mode 2 can have access to 2% of the

media stream. Therefore, the parameter quant is measured using Equation 4.14 with higher accuracy

using the quantization parameters of the bitstream:

quant =
QPPB

51
(4.14)

where QPPB is measured based on the quantization parameters in the bitstream for non-I-frames. The

moscodV can be predicted based on Equation 4.13 for the Mode 2 model. The Mode 3 model has access

to the full bitstream in which the QP values are parsed for all frames in the measurement window and

uses the same equations as Mode 2. The main difference between Mode 2 and Mode 3 is the amount of

information from the bitstream that can be accessed for training and predicting the video quality. In

Mode 2, due to limited access to the bitstream, some QP values are estimated based on the neighboring

frames, while in Mode 3 all QP values are used in training and prediction of the model. It has to be

noted that the Mode 2 has been removed from the model implementation due to the practicality of

usage.

4.2.2 ITU-T P.1204.3

ITU-T Rec. P.1204.3 describes a payload based bitstream-based video quality model developed

within the P.NATS phase 2 project, which was conducted in collaboration between ITU-T and VQEG.

The model targets two different devices, namely, TV/PC monitor and mobile/tablet (MO/TA) with

3840× 2160 and 2560× 1440, respectively as target resolutions, and multiple codecs (i.e., H.264,

HEVC and Video Payload type 9 (VP9)), resolutions up to 4K/Ultra-High Definition-1 (UHD-1) and

framerates up to 60 frames/s. The model aims at video streaming services over a reliable transport and

covers multiple types of degradation that are common in cloud gaming services, such as blurriness and

blockiness due to compression. The model defines three types of degradations that affect the video

quality in a reliable transport protocol:

• Quantization degradation relates to the coding degradations that are introduced in videos based

on the quantization settings which typically lead to blockiness artifacts. This degradation is

predicted based on the average none I-frames, QP−non−I− f rames and maximum QP (QPmax) which

is set according to the video codec (e.g, for H.264-8bit, set at 51, and for VP9 and VP8 set at

255) as follows:

quant =
QP−non−I− f rames

QPmax
(4.15)

Dq−raw = 100−R f romMOS(a+b · exp(c ·quant +d)) (4.16)
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• Upscaling degradation relates to the degradation introduced by upscaling a video sequence to

the higher display resolution which leads to blurriness artifacts.

Du−raw = x · log(y · codingres

displayres
) (4.17)

• Temporal degradation relates to low framerate due to encoding or playing out the distorted video

at a reduced framerate which leads to jerkiness artifact.

Du−raw = z · log(k ·
coding f ramerate

60
) (4.18)

For all raw determination models, the prediction is limited to the range of 0 to 100 (e.g., if Du−raw

predicts lower than 0, it will be reported as 0), to form to the final predictions as Dq,Du,Dt .

Finally, the video quality is predicted based on the parametric-based model similar to E-Model as:

Mparametric = 100−Dq−Du−Dt (4.19)

In order to improve the parametric-based prediction model, a Random Forest model is trained to

estimate the residual predictions, i.e., the difference between the real video quality score obtained from

subjective tests during model training and the prediction of the parametric part of the model. Thus, the

final prediction model is linearly fit based on the parametric prediction and added residual from the

Random Forest model as follow:

Q = w1 ·Mparametric +w2 ·Mrandom f orest (4.20)

For brevity, the coefficients of each model are not presented in the thesis (please refer to ITU-T Rec.

P.1204.3 [103]). Rao et al. [93] adapted the original model for the case of FHD as a display for gaming

evaluation since the gaming databases that were evaluated had the target device as the screen with FHD

resolution. As the P.1204.3 is trained based on TV/PC monitor with 3840× 2160 resolution, in the

prediction model for Upscaling degradation, the scale factor is slightly adjusted as follows:

Du−corr− f ac = a · log(b · codingres

1920 ·1080
) (4.21)

,where a =−0.1076 and b = 0.083.

This adjustment is expected to minimize the over-predicting the Upscaling degradation for an FHD

screen. Thus, the correction was added to the final prediction as follows:

predhd−mapped = predp1204−3 +Du−corr− f ac (4.22)

The model is then trained using the KUGVD and GVSET datasets and validated on the CGVDS

dataset and another internal dataset made from Twitch gameplay recording. The performance of the

adjusted model is reported in Chapter 6, where the FHD mapped version of P.1204.3 on gaming datasets

is named as FHD P.1204.3.
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4.2.3 Bitstream-based Quality Prediction of Gaming Video (BQGV)

BQGV is a monitoring quality model that is developed using the bitstream features extracted from the

packet header. Multiple bitstream features are extracted in a 5-second window duration which are listed

below. The model does not require to extract the complex features such as quantization parameters,

which allows the model to be categorized as a lightweight bitstream-based model, comparable to the

ITU-T Rec. P.1203 Mode 1. To develop BQGV, multiple parameters are extracted from the packet

header as listed below.

• f r: Encoding Framerate

• srvideo: scale ratio according to Equation 4.9

• bravg: Average bitrate of five second sequence

• numI f rame: Number of I f rames

• bravgI: Average of I-frames bitrate

• statP− f rame: Statistics of P-frames (average, standard deviation, etc)

• stdP− f rame: Standard deviation of P-frames bitrate

• CPvideo: Video content complexity is taken into account based on the ratio of the I-frames and

none-I-frames average size, Ibitrate
Pbitrate

, inspired by ITU-T Rec. P.1203.

Since the MOS ratings are post-memory judgments over the full duration – in the CGVDS 30

seconds - of a video stimulus, the quality of each 5-second clip of a video sequence is annotated based

on the distribution of frame-level quality estimation of a gaming video quality metric, NDNetGaming

(cf. Section 4.3), and final MOS values of each stimulus. The selection of NDNetGaming was due to

the high accuracy of this model compared to others which is shown and discussed in Chapter 6. In

order to annotate a 5-second interval of the video sequence according to MOS and NDNetGaming

values, two steps are required. First, the quality weight of each frame is measured by the frame-level

NDNetGaming score compared to the NDNetGaming prediction of the whole video sequence as shown

in Equation 4.23.

wi = NDGi,vs/NDGvs (4.23)

where, NDGi,vs is the NDNetGaming prediction of frame i in the video sequence of vs, while,

NDGvs is the predicted video quality of the video sequence vs, based on NDNetGaming prediction.

Finally, the MOS of an interval duration from frame i to frame j ( ˆ︂MOSi, j) of the video sequence vs is

estimated based on the weight of each frame contribution to overall video quality that can be measured

according to Equation 4.24.

ˆ︂MOSi, j = MOSvs×
j

∑
k=i

wk

j− i
(4.24)

where, MOSvs is the Mean Opinion Score of the video sequence vs. The MOS for video quality,

fragmentation, and unclearness is measured for the interval duration with the same approach.
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Table 4.8: The performance of each single model to predict the impairment factors if full CGVDS is used
as a training dataset in terms of RMSE, PLCC, and SRCC.

RMSE PLCC SRCC
IVU 4.42 0.91 0.90
IV F 5.21 0.92 0.89
IV D 6.34 0.78 0.77

Since all features are extracted over the 5-second duration, it is likely that an I-frame does not

appear in the 5-second duration. CPvideo estimates the spatio-temporal complexity of a video sequence

based on the ratio of averaged I-frame and P-frame size in the measured window. Thus, CPvideo is

estimated slightly different if no I-frame exists in the selected 5-second duration. In that case, the

I-frame from the previous window was used as a representative I-frame.

Similar to the proposed planning model, the BQGV follows the multidimensional approach that

each video impairment is separately modeled, and then the video quality is predicted based on a

prediction of impairments factors due to fragmentation, unclearness, and discontinuity. For training the

model, a Random Forest (RF) regression method is used to train each impairment model. To reduce

the model’s complexity, a Recursive Feature Elimination (RFE) method is conducted to select the

minimum number of features for each impairment factor.

Impairment of Video Discontinuity (IV D): Video discontinuity is the perception of jerkiness in

the video due to the reduction of framerate by low encoding framerate. Among extracted features, the

RFE analysis revealed the importance of three features that are also representative of temporal video

dimension as follows: f r, stdP− f rame, CPvideo.

Impairment of Video Fragmentation (IV F ): Video fragmentation is affected mainly by the chosen

bitrate but it can potentially be affected based on other extracted features. Therefore, the RFE method

is applied to eliminate those that do not significantly contribute to the model. After applying RFE, the

following relevant factors remained in the IV F model: f r, stdP− f rame, CPvideo, sr, srvideo, statP− f rame,

bravg.

Impairment of Video Unclearness (IVU ): Video unclearness is affected mainly by scaling ratio,

while fragmentation in a video sequence might also affect the Video Unclearness. Therefore, all features

are added to the model similar to the IVU . Next, the RFE method is applied to select the most relevant

features for the modeling. After applying RFE, six features remained in the model: f r, stdP− f rame,

CPvideo, sr, srvideo, statP− f rame.

The performance of regression models if all videos in CGVDS are used in training is presented in

Table 4.8 in terms of RMSE, PLCC, and SRCC. It has to be noted that the RMSE is reported on the

R-scale (ranges from 0 to 100). Based on the result, it can be concluded that the model could potentially

reach high accuracy for the prediction of video quality.

Core model: The core model follows the impairment factor approach (cf. Chapter 3) with three

impairments derived from the video quality dimensions. Equation 4.25 illustrates the core model

structure and coefficients to predict the video quality.

RQoE = R(max,QoE)−0.243 · IV D−0.412 · IV F −0.434 · IVU (4.25)

To train and test the model fairly, the CGVDS dataset is split into five bins where in each bin, three

games are randomly selected. The model is trained five times, each time one bin was held-out and
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the model is trained based on the remaining videos. In Chapter 6, the performance of the model on

CGVDS is reported.

4.3 Signal-based Models

In this section, the developed signal-based models for gaming content are presented. Previous research

has shown a very low performance of existing NR metrics to predict the gaming video quality, as

discussed in Chapter 2. NR methods require no knowledge from the original signal, which is challenging

to reach a high accuracy in the prediction of gaming video quality because of the diverse spatial and

temporal video characteristics of video games. Gaming content has special characteristics such as

repetitive content, the same design style across a game, and a small game world, making this type of

content a perfect target for training machine learning-based quality models as there is a high similarity

in both temporal and spatial domains within the same game. Thus, the main focus of this section is to

develop machine learning based NR models that learn the game features and characteristics in addition

to the compression distortion for the quality prediction task.

Three models are proposed and discussed in this section. First, a lightweight NR model is described

that uses the low-level image features (e.g., edges information) to predict the gaming video quality.

Next, two deep learning-based models are proposed that are developed similarly but with differences in

the model design and training process.

The models that are described in this section are written based on the text of three publications of

[7], [16], [17].

4.3.1 NR-GVQM

NR-GVQM is a no-reference video quality model targeting gaming content and uses VMAF as the

ground truth. NR-GVQM uses low-level image features for video quality prediction and reduces the

computation time by keeping the number of required features to a minimum. The NR-GVQM metric is

trained and validated based on the GVSET dataset (cf. Section 3.4).

Feature Extraction

NR-GVQM extracts a total of nine frame-level features from the videos. These include three image

naturalness indices: Blind Image Quality Index (BIQI) [105], Natural Image Quality Evaluator

(NIQE) [106] and Blind/referenceless Image Spatial Quality Evaluator (BRISQUE) [107]); two content

complexity indices (Spatial Index and Temporal Index [3]), and four distortion specific indicators

estimating levels of Noise, Blurriness, Blockiness, and Contrast based on the tool introduced in [108],

[109]. The features were selected primarily based on three criteria: content complexity (SI, TI), existing

NR metrics (BIQI, NIQE, and BRISQUE), which take into account distortions to the naturalness of

an image/video and NR features which take into account distortions specific to the dataset used for

training (measurement of Blockiness, Noise, Blurriness, and Contrast).

BIQI is a modular NR metric that tries to predict the image quality based on trained Natural

Scene Statistic (NSS) under different types of image distortion. BRISQUE is also another image

fidelity measurement metric that quantifies the possible loss of naturalness in an image by using the

locally normalized luminance coefficients. Similarly, NIQE is a machine learning based index for

evaluating the naturalness of an image. Although these three NR metrics are trained based on Natural
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Figure 4.2: Flowchart describing the NR-GVQM modeling approach.

Scene Statistics (NSS) features which might not be representative features for gaming content, they

were found to have a satisfactory performance on gaming content (in line with their performance on

non-gaming videos), especially at 1080p resolution (cf. Chapter 2). Alongside, measurements of Noise,

Blurriness, Blockiness, and Contrast are used, as these distortions are more specific for the dataset

under consideration. Additionally, per frame SI and TI values are used for training as they are often

used as an indirect indicator for video content complexity.

Framework

In order to develop the new metric, the low-level features and VMAF values are extracted/measured

for each frame of the training set, the GVSET. The GVSET dataset is divided into two parts. For the

training set, 408 distorted video sequences that are not assessed in the subjective test (18 out of 24

reference videos) were used. 900 frames per video sequence (30 frames per second, 30 seconds total

duration) and 408 distorted video sequences resulted in a total training sample size of 369000 frames

for which nine features were extracted. The second part consisting of the remaining six reference videos

with a total of 144 distorted sequences is used in the validation phase (the six considered reference

videos are the same six videos as used for subjective assessment that is presented in Section 3.4).

As a choice of the machine learning method, a Support Vector Regression (SVR) is trained using

linear and Gaussian Radial Basis Function (RBF) kernels. RBF is selected as the suitable kernel for

SVR, based on some observations in relation to the features in the training dataset as well as to minimize

RMSE values while maximizing R− squared. This procedure was carried out through trial and error.

As a first glimpse on the performance of the obtained model, 10-fold cross-validation is applied in

the training process, which gains an average RMSE of 3.56 for the training set. It needs to be noted

that since the cross-validation was applied at frame-level, there is a high possibility that the different

frames of the same video are used in training as well as in the validation process. Figure 4.2 shows the

machine learning framework that is used for training and evaluating the model.

Computation Reduction

In order to reduce the computation cost, two approaches are examined. First the number of features is

reduced by removing the features which do not significantly affect the performance. Additionally, the

number of frames that are required per video sequence is investigated to decrease the computational

cost while keeping the performance high.
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Feature Reduction

Typically, for regression and classification problems, feature selection is an essential step before training

any model in order to develop a better model for a given dataset. Feature selection can reduce the need

for storage as well as computation. Besides, it can avoid overfitting and help in the interpretability of the

model. Therefore, the features and their impact on the final model are analyzed. For feature selection,

two approaches are examined, using domain knowledge as well as a feature selection technique in the

machine learning domain. Based on the domain knowledge, it is expected to have a high correlation

between the NR metrics used as features in the model, since they are all basically based on the same

concept of NSS. Therefore, the model is trained multiple times with every possible combination of

the image naturalness metrics and the other features. Moreover, it is investigated if SI and TI values

have a significant impact on the final result. The second approach was using feature selection methods

to choose the best set of features. Thus, a feature reduction method, the Neighbourhood Components

Analysis (NCA) using Stochastic Gradient Descent (SGD) solver, was used. The result indicates the

low importance of Contrast measurement as well as Noise. It has to be noted that NCA assumes that

the relation between the features and labels is linear. This basis for feature reduction and it’s outcome

has to then be investigated if a model trained using all features except Contrast and Noise can still

predict the VMAF with high performance or not. The results show that without Contrast and Noise, the

model reaches a high performance of PLCC of 0.97 and RMSE of 5.48 w.r.t. VMAF on the training

dataset. Table 4.9 illustrates the performance of the model using a different combination of features. It

can be seen that using only four features (NIQE, TI, Blockiness, and Blur) can give a model with an

accuracy of 0.97, which has a low computation but a high correlation with the actual VMAF values.

Temporal Sampling

Consecutive frames are very similar in terms of temporal and spatial scene characteristics. Therefore,

to reduce the computation cost and time, the minimum number of frames that are required to reach

a reasonable prediction is examined. The NR-GVQM scores are measured for a video sequence

considering frames at specific intervals (e.g., every second or every third frame). Then, the performance

behavior of the model in terms of PLCC scores and RMSE values for each considered interval is

measured. Figure 4.3 shows the variation of RMSE value with an increase in the pooling interval. It

can be observed that even though the correlation scores in terms of PLCC did not change much with

the change in pooling interval, RMSE is very sensitive initially even for small changes in pooling (see

Figure 4.3). The scale for the PLCC curve is kept fine-grained to illustrate the drop in PLCC scores

(local minimum in the figure) when the frame interval size is a coefficient of Group of Picture.

4.3.2 NDNetGaming

NDNetGaming is a deep learning based quality model that has two layers, a layer that predicts the

image quality using a Convolutional Neural Network (CNN) and another layer to pool the frame-level

prediction to predict the overall video quality based on the temporal aspects. In order to build a deep

learning-based quality model, a large annotated quality dataset is required. Considering the fact that

having access to such a large quality annotated dataset is not very realistic for any image or video

quality task due to expensive subjective tests, it is even more crucial for gaming quality tasks due to a

limited number of available datasets. Therefore, as an alternative way to overcome this limitation, a
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Table 4.9: VMAF score prediction quality performance analysis in terms of PLCC and RMSE scores for
different feature sets. Features are denoted as F1 to F9 corresponding to BIQI, BRISQUE, NIQE, SI, TI,
Contrast, Blockiness, Blur and Noise respectively.

PLCC RMSE PLCC RMSE

F1+F2+F3+F4+F5+F6+F7+F8+F9 0.98 4.73 0.88 8.81

F2+F3+F4+F5+F6+F7+F8+F9 0.97 5.14 0.88 8.84

F1+F3+F4+F5+F6+F7+F8+F9 0.97 5.28 0.88 9.08

F1+F2+F4+F5+F6+F7+F8+F9 0.96 6.29 0.88 9.47

F3+F4+F5+F6+F7+F8+F9 0.95 6.79 0.87 9.78

F1+F4+F5+F6+F7+F8+F9 0.97 5.88 0.88 8.89

F2+F4+F5+F6+F7+F8+F9 0.96 5.77 0.87 9.20

F1+F2+F3+F5+F6+F7+F8+F9 0.98 5.23 0.88 8.72

F1+F2+F3+F4+F6+F7+F8+F9 0.97 5.18 0.88 8.94

F1+F2+F3+F6+F7+F8+F9 0.93 7.66 0.85 9.36

F6+F7+F8+F9 0.89 9.95 0.72 12.79

F1+F2+F3+F4+F5+F7+F8 0.97 5.48 0.90 8.29

F3+F5+F7+F8 0.97 5.19 0.88 8.89
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Figure 4.3: Effect of different interval size for temporal pooling in terms of RMSE and PLCC scores.

framework is designed in three phases. First, a CNN is trained based on an objective quality metric

to allow CNN to learn different types of image degradation, e.g., blurriness and blockiness. Next, the

model is fine-tuned based on a transfer learning method and by using a dataset of subjective image

quality ratings, GISET. Finally, the video complexity estimation was used to pool the frame-level

predictions to a video quality score. The three phases of the proposed framework are visualized in

Figure 4.4.

4.3.2.1 Fundamental Design Phase

To train the CNN, a frame-level prediction of the VMAF metric is used as ground truth for the image

quality of all frames involved in this phase. With the aim of training and validating the frame-level

model based on the VMAF values, the GVSET and KUVGD are used.
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Figure 4.4: Procedure of NDNetGaming metric development.

All frames and corresponding VMAF values for 18 source video sequences (and their encoded

sequences using 15 different resolution-bitrate pairs) from the GVSET were extracted and used in the

training process of the model, for which no subjective video quality ratings are available. Thus, a total

of 243.000 frames were used for the training of the CNN based on VMAF values.

Table 4.10: RMSE on the GamingVideoSET for four different network architectures retraining only 25 %,
50 % or 75 % of total trainable weights.

MobileNetV2 DenseNet-121 Xception ResNet50

25 % 9.59 7.58 7.33 7.60
50 % 7.98 6.84 7.25 7.34
75 % 7.34 6.74 7.29 6.71

Comparison of CNN Architectures

Using Keras [110], a high level neural network library, different model architectures are available

along with their pre-trained weights on the ImageNet database [111]. Four popular architectures,

DenseNet-121 [112], ResNet50 [113], Xception [114], and MobileNetV2 [115] are selected, and

their performances on the training dataset are compared using VMAF labels. Each architecture has a

different number of parameters and layers as well as different design styles to improve the information

flow in the network.

Since the content of the training database is artificial, the similarity to the ImageNet content can

vary a lot for different games. Therefore, it is difficult to decide how many layers of each CNN have to

be retrained. For a fair comparison, the total number of trainable parameters of each architecture is

reported and the results are compared when training only on the last 25 %, 50 % and 75 % of parameters.

The results are summarized in Table 4.10. Since the pre-trained networks are initially trained for a
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classification task, for each of these architectures the fully connected layer with multiple output neurons

at the end of the network was removed in order to allow the model to get trained for the regression

task. In addition, a dense layer consisting of only one output neuron with linear activation is added.

The output of the network was directly compared to the actual VMAF values of the validation set that

consists of different videos that were not used in the training session, and are encoded under various

bit-resolution pairs settings. Because of the large size of the frames (1920× 1080) in the dataset,

random patches of size 299×299 from the frames were cropped for training the model. This was done

in parallel to the training, such that in each epoch a new random patch of each image was chosen.

Based on the result presented in Table 4.10, it can be observed that ResNet50 and DenseNet-121

deliver the best results among the four architectures. Since DenseNet-121 has an advantage in terms

of numbers of parameters over ResNet50, DenseNet-121 was selected for all following investigations.

However, it should be noted that for an extensive evaluation, multiple hyperparameter settings should

have been compared for every architecture. Also, for this comparison, every training was only done

once per configuration, so the actual average numbers could vary slightly.

Required Number of Layers for Training

The pre-trained DenseNet-121 is trained based on a huge number of annotated images (over 14

million images) which is almost 100 times larger than our whole training dataset. In addition, in the

early layers of a CNN, mostly basic features are learned by the models such as edges, shapes, corners

and intensity which can be shared across different types of tasks. However, in the later layers of a CNN

mostly features related to the task/application would be extracted and learned. Therefore, depending on

the size of training data and diversity of content, there is an optimal point that the model is required to

be retrained up to that point. In other words, training the whole DenseNet-121 model based on our

dataset could lead the model to learn weaker in early layers due to lack of sufficient data or diversity of

content.

To further investigate how many layers should be retrained for DenseNet-121, CNN is trained with

differently sized parts of the network on the training dataset. The DenseNet-121 architecture consists of

four blocks, each containing between 12 and 48 convolutional layers. Table 4.11 shows a comparison

of the results after training of the model multiple times by increased step size of a half dense block

in each training iteration. The results in terms of RMSE get better when more layers are used in the

training process. However, this effect plateaus when it reaches 57 layers and even inverts when more

than 107 layers are trained. The result in terms of SRCC does not vary much, except for the case where

only the dense layer is trained.

Patch Selection for Training

Since most of the common architectures have a fixed input patch size which is typically much

smaller than the actual image size, it raises the question of how to select the patches in the training

and testing process of the model. Therefore, it was investigated if only cropping the center of images

would be a better choice for training the model compared to randomized cropping during the training

of the CNN, given the fact that users tend to look at the center of images [116]. The results revealed

that center crops cannot improve the performance of training compared to single random crops while

taking multiple random patches from each frame in the training phase achieves higher performance.
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Table 4.11: RMSE and SRCC for different choices of the number of convolutional layers.

Dense Blocks
Number of

layers
Number of

weights RMSE SRCC

4 120 7039 k 8.11 0.925
3 1

2 113 6878 k 7.02 0.942
3 107 6657 k 6.74 0.945
2 1

2 94 6268 k 6.77 0.946
2 82 5594 k 6.84 0.942
1 1

2 57 4461 k 6.82 0.946
1 33 2191 k 7.22 0.939
1
2 16 1233 k 7.39 0.936
0 0 1 k 10.60 0.870

Table 4.12: RMSE and R-squared for different interval size between two selected consecutive frames in the
dataset.

n-th frame interval RMSE R-squared

3 6.54 0.87
7 6.65 0.88

13 6.39 0.90
27 6.67 0.88
53 6.95 0.88

103 6.90 0.88
203 6.94 0.87
403 7.02 0.88

Furthermore, the model is trained based on a smaller number of frames. Since the training dataset

consists of over 300.000 frames and consecutive frames can be very similar, only every n-th frame from

every video is used for training. In order to find a suitable step size n, a very high number was chosen

(n = 400) and then lowered step by step to find the point, where the performance of the model stops

improving. The analysis showed that n = 13 is the ideal threshold for our dataset in which lowering

down the step size would not improve the result. The results are summarized in Table 4.12.

The Final Model for VMAF Prediction

To build the model that can predict the VMAF values on the image level, DenseNet-121 was trained

after replacing the fully connected layer with a dense layer, taking 57 layers for training while using

every 13th frame. The model reaches an RMSE of 6.19 with a PLCC of 0.954 on frame level and an

RMSE of 2.62 and PLCC of 0.96 on the video level, using average pooling. Figure 4.5 shows the scatter

plot of predicted and calculated VMAF values on the frame-level and averaged pooled video-level, for

the unknown part of GVSET and KUGVD datasets (validation dataset).

4.3.2.2 Fine-tuning Phase

As the last step to obtain an image quality model for gaming content transfer learning is used on the

model that was already trained on VMAF values to further fine-tune the model using the subjective

image quality ratings. Since the number of MOS-labeled images is limited, 13 patches are taken from
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Figure 4.5: Scatter plot of actual VMAF and predicted VMAF values on frame and video level of GVSET
(left) and KUGVD (right) datasets.

Figure 4.6: Five, nine and thirteen patches chosen with a pattern (above) and randomly (below).

each image, with a special pattern shown in Figure 4.6 top right side, in the training phase. It has to be

noted that the Differential MOS (DMOS) was used for the training which is measured according to

ITU-T Rec. P.913 [117]. Due to the limited number of frames for the fine-tuning step, multiple patches

from a frame are taken to improve the learning process. Specific patterns are designed for different

numbers of patches to be taken from a frame to get a better representation of the image than by just

taking patches randomly. Figure 4.6 shows some example patterns and compares them to a random

patch choice. Since there are often special elements like texts or maps in the corners of a gaming video

that are important for most of the games, the four corners are included in all patterns. Additionally, the

center patch will be used in all patterns since participants in image tests tend to look at the center of an

image [116].

Table 4.13 compares the results for different numbers of patches using the patterns that are designed.

The results for multiple patches are higher than with only one patch per frame. However, it is difficult
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Table 4.13: RMSE and SRCC for different numbers of patches used for testing the model.

Number of Patches RMSE SRCC

1 0.481 0.894
3 0.413 0.944
5 0.390 0.953
7 0.374 0.957
9 0.380 0.954

11 0.381 0.958
13 0.377 0.953

to conclude on the optimum number of patches because there is no clear trend. This is probably due to

the small size of the image data set, GISET.

Due to the small set of images in the training set, a leave-one-out cross-validation was employed

where for every iteration of training the network, one game is completely held out of the training process

(reference video together with all encoded videos of the holdout game) and the model is evaluated

based on the holdout game. This process repeats twelve times for every game in the GISET. Based on

the custom cross-validation we obtained an aggregated (after testing all games) RMSE of 0.354 and

PLCC of 0.959.

4.3.2.3 Video Quality Prediction Phase

Predicting video quality based on an image quality metric is typically done by average pooling of the

frame-level predictions. While several pooling methods have been studied for gaming content [11],

and non-gaming content [118], no significant improvement compared to the average pooling method

has been observed. However, it has been shown that participants tend to rate the image quality worse

than video quality due to cognitive load as well as temporal masking effect [11], [119]. Temporal

masking is one of the important aspects of the human visual system (HVS), which has proven to have

an impact on the perception of video artifacts. Choi et al [120] analyzed the influence of motion on the

performance of image level quality metrics after dividing a video quality dataset (LIVE VQA database)

into two subsets of low-level motion and high-level motion contents. Their results revealed that many

frame-based quality metrics such as PSNR, perform poorly in case of high-level motion content. A

similar trend was observed in the training process of NDNetGaming where there exists a trend that the

averaged pooled NDNetGaming prediction underestimates the quality of video with high-level motion

content while overestimating the quality of content with a low level of motion. The performance of

NDNetGaming using only average pooling is presented in Chapter 6.

Due to the temporal masking effect, the widely used average pooling method would not lead to

achieving the highest video quality prediction, especially for content with high temporal complexity.

Therefore, the image level predictions are pooled based on the temporal complexity of the video. Thus,

higher weights are assigned for the contents with lower temporal complexity considering the temporal

masking effect.

In order to measure the temporal complexity, the motion or optical flow pattern might be a good

choice. However, motion estimation could get affected significantly by compression distortion such as

blur and blockiness. Therefore, a simple measurement of temporal complexity (TC) is used based on

the difference between consequent frames, similar to TI [121] but with a minor modification.
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The per-frame TI values are calculated and the extreme values are ignored by using the exponentially

weighted moving average (EWMA). Then the Inverse Probability weighting (IP weighting) of EWMA

results is measured that gives a higher probability to small values compared to high values. The Inverse

Probability weighting will be used to give higher weights to the low motion part of the game compared

to high motion frames.

ewmaT I = smoothewma(stdspace[Mn(i, j)]) (4.26)

weights f rame = ewmaT I/sumtime[ewmaT I] (4.27)

inverseweights =
(1−P(F = 1))

1−P(F = 1|W = w)
(4.28)

where Mn(i, j) is the difference of pixel values between two adjacent frames considering only

the luminance plane, and smoothewma is the exponentially weighted moving average function. The

weighting average is useful to pool the quality with more weight on low temporal complex frames.

However, these weights are only considering the local temporal complexity of frames in a video and

not between video sequences. In order to take into account the difference between the temporal activity

of video games, the TC values for each video are measured to weight the quality ratings of complex

videos in terms of temporal activities over the low complex videos. Therefore, a polynomial model is

fitted to predict MOS values based on the average TC value of videos and frame-level NDNetGaming

Score. The selection of the polynomial model was based on the observation of the relation between TC

values and residual of NDNetGaming prediction and MOS values. Due to limited available data, the

model is fitted based on the GVSET and tested it on the KUGVD and vice versa, for which the results

are reported in Section 6.2. In addition to the two fitted models, a third model is built which is fitted on

both gaming datasets for future works. Equation 4.30 presents the structure of the temporal pooling

model, and Table 4.14 presents the coefficient of the model trained on different datasets.

TC = meantime[stdspace[Mn(i, j)]] (4.29)

NDNGTemporal = c1 + c2 ·NDNG+ c3 ·TC3 + c4 ·TC2 + c5 ·TC (4.30)

c1 c2 c3 c4 c5

eqGV SET −1.99 1.097 0.00069 −0.031 0.43
eqKUGV D −0.532 1.116 0.00011 −0.0043 0.084

eqGV SET−KUGV D −1.71 1.107 0.00053 −0.024 0.353

Table 4.14: Coefficients of temporal pooling methods, eqGV SET , eqKUGV D and eqGV SET−KUGV D are trained
on GVSET, KUGVD and datasets combined, respectively.

4.3.3 DEMI

DEMI is a deep learning based video quality model that is designed similar to NDNetGaming with a

few differences in the design phase. DEMI does target not only the gaming content but also non-gaming
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content to close the gap between metrics that only work for gaming content or non-gaming content.

Therefore, DEMI trained based on both gaming and non-gaming datasets. Similar to NDNetGaming,

DEMI uses DenseNet-121, and it has three phases of VMAF training, fine-tuning by subjective rating,

and pooling the frame-level prediction to predict the video quality. While NDNetGaming showed a high

performance with gaming datasets, it has a few drawbacks that DEMI aims to address, as summarized

below:

• NDNetGaming uses the frame-level quality as a representative quality label for each patch that is

taken from the corresponding frame. However, it is known that not every patch in an image has

the same level of quality.

• NDNetGaming predicts the quality for a fixed patch size that is projected only on 1080p resolution.

This leads to difficulties to pool multiple patch quality predictions of one image into a single

image quality score, where NDNetGaming simply uses the average pooling to predict the image

level quality.

• NDNetGaming is biased to gaming content, and while it provides a high-quality prediction for

gaming content, it does not perform similarly well for non-gaming content.

• NDNetGaming uses a very simple method to pool frame-level quality prediction to video quality

score based on the only framerate of 30 fps. This leads to the inaccurate prediction for videos

with a different level of framerate, which is discussed in Chapter 6.

The DEMI is proposed to address the drawback mentioned earlier, and also provides diagnostic

information about the level of blockiness and blurriness in a video.

DEMI Model Architecture

In this section, the architecture of the proposed model, DEMI, and the special model design are

described. DEMI is a CNN based metric that takes into account different types of artifacts such as

blockiness, blurriness, and jerkiness, to predict the overall gaming video quality. The structure of the

model is shown in Figure 4.7. DEMI has three components. The first component is a CNN which is

used to predict the frame-level fragmentation and unclearness. The second component is a temporal

complexity indices which are based on Block Motion estimation (BM) and TI. Finally, the predicted

fragmentation, unclearness, TI, and BM for multiple frames of a video are fused using a random forest

model to predict the video quality which is the third component of the proposed model.

Phase 1 – VMAF training

In order to train a CNN for the image quality estimation task, a major limitation is the availability

of a large scale image quality dataset with images and their subjective ratings. Mixing multiple

datasets could be one option but it suffers strongly from many shortcomings such as subjective bias,

the difference in viewing conditions, display used, etc., and hence, requires an anchor dataset to deal

with this bias which is missing in such cases. Similar to NDNetGaming, the frames are annotated using

VMAF values. As discussed in the previous section, training the CNN using the VMAF annotated

frames allows the network to learn different types of image compression degradation such as blurriness

and blockiness.
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Figure 4.7: Architecture of the proposed model (adapted based on [112]). Each transition block consists of
1x1 Conv and 2x2 Pool with stride 2. The regression layer has an average pool and a dense layer consisting
of only one output with linear activation. Temporal information consists of TI and BM features

As the underlying CNN architecture, DenseNET-121 architecture [112] is selected, as it was shown

in NDNetGaming development that it performs well for image quality estimation tasks [16].

In its entirety, over 200k frames and their respective VMAF scores are used for training the model.

The frames are extracted from multiple videos from several datasets. Nine patches are extracted per

frame which makes the total number of patches during the training phase over a million. For training

the model, two sizes of the image are used, full size (1080×1920), and half-size (540×960). This has

been done to take into account the multi-scaling attribute in the training phase.

One of the major problems of NDNetGaming was to assign the quality of a frame (in terms of

VMAF or MOS values) to the corresponding patches which distributes the error in the model since the

quality of a patch is not necessarily the same as the quality of the corresponding frame. Thus, DEMI

uses Partial PSNR to determine the quality and the weight of each patch that contributes to the overall

VMAF score. Thus, for the patch i of frame j, the weight of the patch is calculated as follows:

W(i, j) = PPSNR(i, j)/PSNR j (4.31)

The quality of patch i from frame j is measured based on the VMAF of frame j which is calculated as:

V MAF(i, j) =V MAFj ∗W(i, j) (4.32)

The selection of PSNR is due to the simplicity and nature of the metric as it only measures the

signal to noise ratio and avoids any content bias or scaling adjustment. Due to the high similarity

between neighboring frames, in the training process, only every 20th frame is used for training.

Phase 2- Fine-tuning

Once the model is trained based on VMAF, it is then fine-tuned two times based on a small image

quality dataset using fragmentation (represents blockiness) and unclearness (represents blurriness)

subjective ratings. 33 layers (i.e. last DenseNet Block) of the pretrained DenseNet-121, based on

VMAF, were retrained using transfer learning. Approximately 25% of the CNN was retrained once

based on the unclearness ratings and once based on the fragmentation ratings for the GISET dataset.

Since only 25 percent of the CNN was retrained two times, the overhead of double training (for

unclearness and fragmentation dimensions) does only result in computational overhead for testing the

model for one additional DenseNet block due to the forward propagation of the model prediction phase.

Phase 3: Video Level
Once the model is fine-tuned based on the unclearness and fragmentation ratings, the frame-level

prediction of the model is collected to be used in the training process at the video level. In addition to
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the frame level prediction, temporal features (temporal index and block motion estimation) are extracted

for better prediction of the video quality. Random Forest (RF) was used as the training algorithm to

fuse the features for the prediction of video quality.

Temporal Information (TI) between two consequence frames is defined similarly to ITU-T Rec.

P.910 [3] as:

T I = std[Mn
p] (4.33)

where Mn
p is the pixel intensity difference between Fn

p , current frame n and Fn−1
p , previous frame n−1,

calculated as

Mn
p = Fn

p −Fn−1
p (4.34)

Block Motion (BM) estimation with a block size of 8x8 is calculated based on Scikit-learn video library
1. The block motion is then averaged over a frame (between two frames) and a single value per frame

(second frame in each prediction) is stored for training. With consideration of the low computation

complexity during the test (considering real-time prediction requirement in real-world applications),

the frame-level features are extracted for every 20th frame.

Model Training

In this section, the training for each phase as well as the performance of each training phase in terms of

PLCC, SRCC and RMSE are reported. For the training, the scale of VMAF was from 1 to 100 and for

Phase-2 and 3, a 5-point ACR scale is used and RMSE is reported accordingly. For training phase, three

datasets of GVSET, KUGVD and LIVE-NFLX-II Subjective Video QoE Database (NFLX-SVQD)

are used. NFLX-SVQD [122] consists of 15 source videos and a total of 420 distorted sequences

obtained by encoding the source videos at different bitrates at native resolution. The dataset includes

both objective and subjective quality ratings, both continuous as well as retrospective prediction scores.

For validating the performance in each step of training, the CGVDS dataset and Netflix Public

Dataset (NFLX-PD) are used. NFLX-PD is a non-gaming video dataset provided by Netflix [123]

consisting of nine source video sequences of 1920×1080 resolution with framerates of 24, 25, and 30

fps. The videos are encoded in multiple resolution-bitrate pairs with bitrates ranging from 375 kbps to

5800 kbps and resolution ranging from 288p to 1080p.

Since for the subjective tests of the four datasets, the display resolution was set to 1080p, all videos

are rescaled to 1080p resolution before extracting the frames. In the following, the detail on the training

of each phase is given.

1. Phase-1 (VMAF Training): In the first phase, the model is trained using VMAF scores from three

datasets, GVSET, KUGVD, NFLX-PD. The DeneseNet-121 was trained based on the frames

extracted from these three datasets, using the VMAF scores as the target labels. The result on the

training set showed high performance with RMSE of 5.15 and PLCC score of 0.943 at frame

level and RMSE of 3.25 and PLCC of 0.954 at video level (using average pooling) across all

training datasets. The result of the two validation datasets is shown in Figure 4.8.

2. Phase-2 (Fine-tuning): Once the model is trained based on VMAF scores, it is then fine-tuned

based on MOS scores from GISET, as it includes scores for both fragmentation and unclearness.

The model is fine-tuned in two steps, once using the scores for fragmentation and once based on

1https://scikit-learn.org/stable
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(a) Predicted VMAF vs. Actual VMAF scores for NFLX-PD dataset.
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(b) Predicted VMAF vs. Actual VMAF scores for CGVDS dataset.

Figure 4.8: Scatter plots of predicted VMAF vs Actual VMAF scores for the two test datasets.

scores for unclearness. The same weighting method, based on partial PSNR, explained in Phase-1

was applied to the ratings of each patch. Since the number of images is quite less, a leave one out

cross-validation method was deployed where all video sequences from a game (reference video

together with all encoded videos of that video sequence) are left out. The process is repeated

twelve times for each game in the GISET. The result shows the high performance of the model

for both blockiness, with PLCC of 0.94 and RMSE of 0.39, and blurriness with PLCC of 0.92

and RMSE of 0.45. Due to the small size of the dataset, all possible non-overlapping patches for

fine-tuning the model are extracted.

3. Phase-3 (Video-Level): In Phase-3, the model is trained at video level using four datasets, GVSET,

KUGVD, NFLX-SVQD, and a subset of CGVDS consisting of videos of 60 fps (since the other

datasets were limited to videos of up to 30 fps). A random forest model is used for training

based on temporal features and the predicted fragmentation and unclearness predictions. The

features are extracted only from nine patches of a frame and only from every 20th frame. The

statistical information (average and standard deviation) of patch features over a video is also used

in training the random forest. The result for the training data showed a very high PLCC score of

0.941 and RMSE of 0.31. The performance on the validation datasets is presented in Chapter 6.

4.4 Summary

In this section, multiple video quality models are proposed to predict the video quality of gaming

content. The models can predict the quality in terms of the 5-point MOS scale or the R-scale that will

be used for integration of the coding impairment into the gaming QoE prediction model. The proposed

models are designed for different purposes as summarized below:

• Planning models can be used by network and service planners for better resource allocation.

They can also be used as simple parametric-based models to predict the video quality based on

simple encoding parameters. The author of the thesis developed the GamingPara model that

follows the multidimensional approach. In addition, the author contributed to the development of

ITU-T Rec. G.1072 that is presented in this chapter.

• A bitstream-based model is proposed for monitoring purposes, named BQGV. The model can

be employed in both end-point locations and at mid-network monitoring points, in order to

monitor the video quality of cloud gaming services. The bitstream information can be extracted
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using network probes if the bitstream is not fully encrypted. Some cloud gaming providers, e.g.,

NVIDIA Geforce Now, are already using this information to monitor the quality. The BQGV

is developed because of the low performance of existing bitstream-based models that only use

packet header information on gaming video quality datasets which is discussed in Chapter 6.

Also, two ITU-T Recommendation models are described as a candidate for quality assessment of

gaming video streaming applications.

• Three NR signal-based models are described in this section. The FR models are not considered

in this work since it has been shown in multiple publications [10], [11], [15], [81] that the

current SoA FR video quality models perform well with gaming content, while NR models fail

in high video quality prediction. While one of the proposed models is a lightweight video quality

model, the two other models are deep learning based models for accurate quality prediction.

These models can be used for multiple purposes. First, they can predict the quality of recorded

gameplays for passive video streaming platforms, such as Twitch, which the reference signal is

not available. Second, the NR metrics could be used for comparison of different cloud gaming

services and their encoding strategies. Finally, the NR metrics can be used for cloud gaming

service quality prediction without recording the reference signal to avoid heavy processes to

servers and waste storage.

In the next section, the integration of coding impairment models presented in this section with other

components of the gaming QoE model is described.
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Integration of Impairment Factors to Gaming QoE

Chapter 4 describes different video quality models that focus on the prediction of the video coding

impairment. While video coding is an important factor that could degrade the overall gaming experience,

it is not the only factor that plays a role for the gaming QoE. In addition to compression distortion,

the video quality could get affected by transmission errors. Additionally, as pointed out in Section

2.3, the input quality is a very important quality aspect of gaming QoE. Thus, in this chapter, the

development of prediction models for the remaining impairment factors is presented. These include

the video transmission error impairment impacting the video and input quality, as well as the control

latency impairment affecting the interaction quality. Finally, the integration of impairments factors to

build the gaming QoE prediction model is described.

5.1 Input Quality

Input quality is an important quality aspect that can directly impact the interaction of players with the

game. As discussed in Section 2.5.5, controllability and responsiveness are identified quality features

of the input quality aspect. Previous research showed that with respect to network and encoding

parameters, input quality in the context of cloud gaming services could be affected by delay, packet

loss, and low encoding framerates that occur during the gameplay.

Delay in a cloud gaming service is introduced by multiple processes such as the packet propagation

and transmission, game tick rate, scene rendering, video and control packet encoding/decoding, as

well as the refresh rate of the display and processing of the input device on the client-side. However,

in all calculations presented in this chapter, when referring to a delay or latency, the round-trip time

for transmitting a video and control command stream (sum of transmission and propagation delay) is

considered, excluding the above mentioned delays due to other processes between client and server.

Although all types of delay are important and play an important role in the interaction of players,

from a practical point of view, it is not possible to accurately measure them at network monitoring

points. In addition, with the advancement of encoding technologies, the largest proportion of delay in

a cloud gaming service results from network delay consisting of transmission and propagation delay.
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Propagation delay refers to the amount of time that a signal takes to traverse the medium, e.g., a metal

wire. Transmission delay refers to the transmission rate of an interface, e.g., a router in the network.

Furthermore, packet loss can affect the video stream either by the presence of slicing or freezing

artifacts. Slicing artifacts are introduced when packet losses are concealed through the use of a Packet

Loss Concealment (PLC) scheme to repair erroneous frames [124]. Freezing artifacts are introduced

when the PLC scheme of the receiver replaces the erroneous frames (either due to packet loss or error

propagation) with the previous error-free frame until a decoded image without errors has been received.

Since the erroneous frames are not displayed, this type of artifact is also referred to as freezing [124].

Typically, cloud gaming services conceal the effect of packet loss by a freezing method due to fast

concealment, which is more convenient for real-time streaming services. However, there is no common

packet loss concealment method shared among cloud gaming services. Depending on the cloud gaming

service, the packet loss concealment strategy might result in different levels of freezing received on the

client-side. For example, some cloud gaming services, e.g., Google’s Stadia, reduce the bitrate in case

of a high packet loss rate to lower the frequency of freezing artifacts. Therefore, in order to not develop

a model that is strongly service dependent, the effect of packet loss on the input quality is measured

based on a parameter named average frames per second (AV G f ps) that can be measured and updated

for any cloud gaming services by running multiple simulations.

AV G f ps is the average number of successfully recieved frames per second in a certain period of

time. AV G f ps can be affected based on packet loss, bitrate, framerate, and delay. If a high level of

bitrate is selected to encode a video sequence, more packets are required to stream the video, which

increases the chance that more frames are affected by packet loss compared to the case when a low

bitrate is selected. In addition, if the delay is very low, the missing packet can be re-transmitted, which

reduces the number of lost frames. However, re-transmission introduces an additional delay, which

might lead to lower gaming QoE. Therefore, depending on the latency of service, game content, and

level of packet loss, cloud gaming providers might adopt different strategies to conceal packet losses.

For the cloud gaming service that is used in the interactive dataset, the AV G f ps is measured by

recording several traces of simulated network and encoding settings (under different packet loss, bitrate,

framerate, and delay levels). Based on the collected data through several simulations, the AV G f ps is

measured for the selected cloud gaming service in the interactive dataset as shown in Equation 5.1.

Avg f ps = FRenc · exp((d1 +d2 ·FRenc +d3 ·Bitrate ·FRenc) · (d4 ·
Delay

25
−d5) ·PL) (5.1)

where, d1 = 0.08526 , d2 = 0.00073, d3 = 1.425e−04, d4 = 2.414, d5 = 1.5, and FRenc is the encoding

framerate.

For a new cloud gaming service, the AV G f ps should be modeled again similarly using several

simulations. Based on the measured AV G f ps, the FrameLossRate can be calculated according to the

AV G f ps and FRenc as shown in Equation 5.2.

FrameLossRate =
FRenc−Avg f ps

FRenc
(5.2)

Frame losses in the video stream caused by packet loss can influence the gaming QoE by affecting

the visual perception of players, which in consequence can also interrupt their interaction with the

game due to delayed visual feedback, explained by the impairment factor ItransI . The effect on the
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visual perception is measured based on the video discontinuity, whose effect is modeled as a part of the

video transmission error impairment factor, ItransV . This impairment factor is described in more detail

in Section 5.2.

In this section, the consequences of delayed visual feedback from the game are considered.

Therefore, the input quality is measured and modeled as a part of the (ItransI ). Additionally, the

control latency impairment factor, IcntrI , is introduced that describes the impact of delay on input quality.

The two impairment prediction models are trained based on the relevant conditions in the interactive

dataset that was introduced in Section 3.4.5. The performance of the fitted models for each impairment

is reported as “goodness of fit” and evaluated in terms of RMSE, PLCC, and R-squared measurements.

It has to be noted that in order to show the goodness of fit, all performance metrics are reported on the

R-scale and are not transformed back to MOS.

Figure 5.1 illustrates the gaming input quality module adapted from Figure 3.1 that is briefly

presented in Chapter 3. The figure also shows the input parameters of each impairment model. The

two impairment models are integrated into a single diagnostic output, O.22, to predict the input quality,

which is discussed at the end of the chapter. In the following sections, the developed model for each

impairment is described.
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Figure 5.1: Input quality module of the gaming QoE model, adapted from Figure 3.1.

5.1.1 Effect of Transmission Error Impairment on Input Quality

In order to model the impairment factor, ItranI , all input quality ratings (cf. Section 3.4.5) from the

interactive dataset for conditions with varying framerates and packet loss were used. For the impairment

factor ItranI , the model is developed based on the two parameters of FrameLossRate and encoding

framerate, FRenc. The Equation 5.3 is used for the prediction of ItranI . The values of the coefficients for

each frame loss sensitivity class are presented in Table 5.2. It has to be noted that while the encoding

framerate is not a transmission error, due to the similarity of the effect on the input quality, it is decided

to integrate it in the transmission impairment modeling. The lowest framerate level that is tested on

the interactive dataset was 10 fps. For training the model, approximately 60% of the games in the

interactive dataset, including six video games from different classes of delay sensitivity, are used.

ItranI = e1 + e2 ·FR2
enc− e3 ·FRenc + e4 · log(FrameLossRate+1) (5.3)
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Table 5.1: Coefficients of ItranI for each frame loss sensitivity class.

Coefficient Low sensitive High sensitive
e1 23.43 54.71
e2 0.0008574 0.02589
e3 -0.9253 -2.485
e4 5.855 9.306

Table 5.2: Performance of ItranI impairment factor fitted for each frame loss sensitivity class on the training
dataset.

Coefficient Low sensitive High sensitive
RMSE 4.23 4.98
PLCC 0.91 0.95

Ad justed−R2 0.79 0.89

The performance of the impairment factor ItranI on the training dataset is reported in Table 5.2 by

means of RMSE on R-scale level and PLCC as well as adjusted R-square. It can be observed from the

table that the prediction model correlates well with subjective ratings on the training set for both high

and low sensitive classes. However, the model fits better for the high sensitive class, which might be

due to higher variability of ratings in this sensitivity class.

5.1.2 Effect of Control Latency Impairment on Input Quality

For the calculation of the control latency impairment, IcntrI , the parameter network delay is used. The

coefficients are trained based on the training data collected in the interactive dataset and sensitivity of

games towards delay. In the development of the interactive dataset, the network delay was introduced

artificially by a Linux traffic control tool, NetEm 1. As discussed in the previous section, other types of

delay that might occur between client and server are not considered for the model with the assumption

that those additional delays are comparatively low and also constant in a laboratory setup. Equation 5.4

is derived to predict the impairment IcntrI . The coefficients obtained for each delay sensitivity class are

summarized in Table 5.3.

IcntrI =
f1

1+ exp( f2− f3 ·Delay)
+ f4 (5.4)

Table 5.3: Coefficients of IcntrI for each delay sensitivity class

Coefficient Low sensitive High sensitive
f1 47.97 90
f2 2.097 1.191
f3 0.01073 0.009775
f4 -4.567 -18.73

1http://manpages.ubuntu.com/manpages/trusty/man8/tc-netem.8.html
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5.2 Effect of Video Transmission Error Impairment on Video Quality

The performance of the impairment factor IcntrI on the training dataset is reported in Table 5.4 by

means of RMSE on R-scale and PLCC as well as adjusted R-square. While the performance is good for

both classes, it can be observed that the RMSE is noticeably lower for the low delay sensitivity class.

This might be due to a smaller spread of the input quality data among the corresponding games as the

effect of delay on the interaction quality is minor for the low complexity class within the range of delay

values (between 0 ms to 400 ms) tested in the interactive dataset.

Table 5.4: Performance of IcntrI impairment factor fitted for each delay sensitivity class on the training
dataset.

Coefficient Low sensitive High sensitive
RMSE 2.98 8.99
PLCC 0.98 0.96

Ad justed−R2 0.96 0.90

5.2 Effect of Video Transmission Error Impairment on Video Quality

In order to model the impairment factor, ITransV , all discontinuity ratings from the interactive dataset

for conditions with varying framerates and packet loss are used. It must be noted that the video

discontinuity does only represent the level of jerkiness that a participant perceives. It does not consider

its impact on the input quality. As an example of such a difference between these two quality aspects

in the interactive dataset, the input quality ratings (mean value of the GIPS items) and the video

discontinuity ratings for one game are compared. The selected game, Tekken 7, is a very fast-paced

game, controlled only by keyboard inputs. Therefore, due to a fast-paced scene, the freezing effect

due to packet loss and low encoding framerate is strongly visible to the participant which leads to low

discontinuity ratings. However, this does not strongly affect the interaction of participants with the

game, which might be due to the very frequent input events performed by a user resulting in a reduced

perception of the temporal feedback from the game. Figure 5.2 illustrates the barplots comparing the

discontinuity and input quality ratings for the game Tekken in the interactive dataset for different levels

of packet loss and framerate when all other influencing factors remained at the highest values, i.e.,

bitrate = 50 Mbps and resolution = 1080p.

It can be observed that video discontinuity is differently impacted by packet loss and low encoding

framerates than the input quality. Thus, depending on the scenario sensitivity, it appears to be reasonable

to distinguish between the effect packet losses have on the input quality and of their impact on the

video discontinuity for modeling gaming QoE.

Similar to ITranI , the impairment factor ITranV also uses the two parameters of FrameLossRate and

FRenc. The Equation 5.5 was derived for the prediction of ITranV according to the frameloss sensitivity

class. The coefficients with respective values for each frame loss sensitivity class are presented in Table

5.5.

ITranV = g1 +g2 ·FR2
enc−g3 ·FRenc +g4 · log(FrameLossRate+1) (5.5)

The goodness of fit for the impairment factor ITranV on the training dataset is reported in Table 5.6

by means of RMSE on R-scale and PLCC as well as adjusted R-squared. The result reveals a good fit
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(a) Framerate variation for the game Tekken.
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(b) Packet loss variation for the game Tekken.

Figure 5.2: Barplot of Input Quality and Video Discontinuity for the game Tekken in interactive dataset.
(c.f. Chapter 3).

Table 5.5: Coefficients of ITranV for each frame loss sensitivity class.

Coefficient Low sensitive High sensitive
g1 29.13 47.03
g2 0.01344 0.01747
g3 -1.283 -1.823
g4 6.724 10.7

for both low and high complexity classes where the performance is slightly higher for low complex

class.

5.3 Core Gaming QoE Model

The core model predicting gaming QoE based on the impairment factor approach was defined in

Chapter 3. Its structure can be described by Equation 5.6.

QGaming = QoGaming−a · IcodV −b · ItransV − c · ItransI −d · IcntrI (5.6)

The core model is trained based on the interactive dataset which is used to derive the coefficients

that are presented in Table 5.7. As it can be seen from the coefficients, the weight for the ItranV is much

Table 5.6: Performance of ITranV impairment factor fitted for each video complexity class on the training
dataset.

Coefficient Low complex High complex
RMSE 6.48 9.97
PLCC 0.85 0.81

Ad justed−R2 0.71 0.64
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5.3 Core Gaming QoE Model

Table 5.7: Weighting factors of the core gaming QoE model.

Coefficient a b c d
Value 0.68 0.15 0.23 0.66

lower than the remaining weights. A possible explanation is that most of the variance of ItranV on the

overall gaming QoE is already covered by ItranI .

Based on the collected data from the interactive dataset, MOSmax, the MOS value corresponding to

QoGaming, is 4.64, whereas the lowest possible MOS value, MOSmin, is 1.3. Thus, the MOSQoE can be

derived using MOS f romR transformation with the input of measured QGaming.

MOSQoE = MOS f romR(QGaming) (5.7)

The transformation of the R-scale to the MOS scale can be calculated according to the

transformation provided in ITU-T Rec. P.1201.2 [125] as described in Algorithm 1.

Algorithm 1 MOSfromR
1: procedure MOSFROMR(QGaming)
2: MOSmin← 1.3
3: MOSmax← 4.64
4: if QGaming > 0 and QGaming < 100 then
5: MOSQoE ← (1+ (MOSmax−MOSmin)/100 ·QGaming +QGaming · (QGaming− 60) · (100−

QGaming)×7.0e−6)
6: else
7: if QGaming ≥ 100 then
8: MOSQoE ←MOSmax

9: end if
10: if QGaming ≤ 0 then
11: MOSQoE ←MOSmin

12: end if
13: end if
14: end procedure

In addition to the core gaming QoE prediction, the proposed framework provides diagnostic

information predicting the input quality and video quality. In order to predict the diagnostic video

quality output, O21, and considering multiple video coding impairment models (cf. Chapter 4), the

following approach is considered. First, the ratings of two video quality dimensions, fragmentation,

and unclearness, are used to predict the impairment IcodV with a linear model for all conditions for

which the video discontinuity is not degraded. Next, the predicted IcodV and video discontinuity ratings

in the interactive dataset are used to predict the O22. Training the model following this approach allows

to avoid being biased to a certain type of model proposed for IcodV in Chapter 4. However, it has to

be noted that using only fragmentation and unclearness to predict IcodV might introduce small errors

due to neglecting the low encoding framerate affecting coding impairment. However, this effect is

counterbalanced by ItransV for prediction of O21.

O21 = QoVideo−0.93 · IcodV −0.43 · ItransV (5.8)
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5. Integration of Impairment Factors to Gaming QoE

The diagnostic input quality output, O22, can be predicted based on the estimation of two

impairments of ItransI and IcntrI following Equation 5.9. It has to be noted that O22 is predicted

based on the prediction values of ItransI and IcntrI discussed in the previous sections, and input quality

ratings as target value from the interactive dataset. The linear model is built after excluding irrelevant

conditions to input quality, e.g., if only the video coding impairment is present. In contrast, for the

core gaming QoE prediction model, all conditions are taken into account to predict the overall quality

ratings. This explains the difference between the coefficients of the two equations.

O22 = QoInput −0.83 · ItransI −0.94 · IcntrI (5.9)

5.4 ITU-T Rec. G.1072

In the following section, a short overview of the standardized opinion model predicting gaming QoE,

ITU-T Rec. G.1072 [72], is given, to which the author of this thesis contributed to between 2016 to

2020.

ITU-T Rec. G.1072 is a planning model predicting cloud gaming quality, which is developed in a

very similar approach that is described in this thesis. However, there are a few differences that will

be described in this section. To begin with, Figure 5.3 illustrates the model structure of ITU-T Rec.

G.1072.

Similar to the approach in the thesis, the model structure is composed of two main modules: input

quality (IPQ), and video quality (VQ). The VQ module is predicted based on the IV Q−cod , IV Q−trans,

and ITV Q. The first two build the spatial video quality, and the latter represents temporal video quality.

ITV Q represents the ItranV in the thesis that is measured by Equation 5.5, and IV Q−cod represents the Icod

in the thesis which is described in Section 4.1.1. However, one of the main difference between the

model in the present thesis and G.1072 is the IV Q−trans. IV Q−trans estimates the spatial video quality

impairment by video transmission error if the transmission error is concealed by a PLC mechanism that

introduces slicing artifacts. The packet loss concealment method that introduces the slicing artifacts

is not practically implemented in any of the well-known cloud gaming services, as discussed earlier

in this chapter. Thus, it was not considered in this thesis. For the calculation of the impairment

factor, IV Q−Trans, the parameters packet loss (PL) and results from IV Q−Cod are used, following multiple

equations presented below which are inherited from the ITU-T Rec. G.1071 [124] and ITU-T Rec.

P.1201.2 [125]. The impairment IV Q−Trans is measured based on the LossMagnitudeE that captures

the packet loss degradation when slicing is applied as packet loss concealment. It has to be noted the

burstiness of loss is not considered and set to zero in the ITU-T Rec. G.1072.

IV Q−Trans = c1V · log(c2V ·LossMagnitudeE +1) (5.10)

LossMagnitudeE = q1 · exp(q2 ·LossMagnitudeNP)−q1 (5.11)

LossMagnitudeNP =
(c21− Icodn) ·PL
c23 · Icodn +PL

(5.12)
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5.5 Summary

Table 5.8: Weighting factors of the ITU-T Rec. G.1072 core model

Coefficient a b c d e
Value 0.788 0.896 0.227 0.625 0.848

Icodn =

IV Qcod if IV Qcod ≤ 65

65 else
(5.13)
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Figure 5.3: Model structure of ITU-T Rec. G.1072 taken from [72], figure G.1072(20)_F01.

where PL represents the percentage of lost transport stream video packets in the measurement

window.

Finally, the input quality module is composed of two impairments of IIPQ f rames and IIPQdelay that are

corresponding to the ITranI and IcntrI in this thesis, respectively. The core model of G.1072 follows

a very similar structure but is taking into account one additional impairment factor. The core model

predicting gaming QoE based on G.1072 is defined as in Equation 5.14 and coefficients are presented

in Table 5.8

QGaming = QGaming−a · IV Q−cod−b · IV Q−Trans− c · ITV Q−d · IIPQ f rames− e · IIPQdelay (5.14)

In the development of ITU-T Rec. G.1072 the interactive dataset, as well as CGVDS together

with another dataset that covers the slicing effects are used. Therefore, while there are some minor

differences in the model development and impairment names, the core idea of the modular model

development is the same.

5.5 Summary

In this chapter, three prediction models are presented for three impairment factors in the gaming QoE

model:
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5. Integration of Impairment Factors to Gaming QoE

• IcntrI predicts the effect of control latency impairment on the input quality. The effect is modeled

based on the network parameter of delay.

• ItranI predicts the effect of transmission error impairment on the interaction quality. This

impairment is modeled based on the encoding framerate and FrameLossRate.

• ItranV predicts the effect of transmission error impairment on the video quality preception. This

impairment similar to ItranI and is modeled based on the encoding framerate and FrameLossRate.

Packet loss in cloud gaming services typically results in frameloss, called freezing effect. These

framelosses affect the visual perception as well as interaction of players. Thus, two impairment factors

are presented to model the impact of packet loss on the input and video quality separately.

In addition, the development of the core gaming QoE model is described. Furthermore, the structure

of the opinion model ITU-T Rec. G.1072 was presented that follows closely the structure of the core

model. However, the ITU-T Rec. G.1072 uses one more impairment factor to model the effect of packet

loss on (spatial) video quality when using a concealment approach which can result in slicing artifacts.

In the next chapter, the performance of the developed models for the prediction of gaming QoE is

presented for passive and interactive datasets in terms of PLCC, SRCC and RMSE.
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6
Performance Evaluation

In this chapter, the models proposed in this thesis models are evaluated for different datasets, and

the results are reported and discussed in detail. First, the performance of the proposed video quality

models, i.e., the coding impairment models, for datasets created using passive viewing-and-listening

tests are evaluated and compared with each other. Second, the gaming QoE model performance

based on the validation part of the interactive dataset is presented. In addition, the evaluation of other

models predicting the impairment factors affecting the gaming QoE (e.g., IcntrI ) are also discussed in

this chapter. Third, the performance of ITU-T Rec. G.1072 is reported in a separate section due to

differences in the validation dataset compared to the gaming QoE model proposed in this thesis. Finally,

the chapter is concluded with a discussion and summary of the findings.

6.1 Evaluation of Video Coding Impairment

In this section, the proposed video coding impairment prediction models are evaluated based on three

passive gaming datasets introduced in Section 3.4. In order to evaluate these models, the performance

is measured based on the video quality MOS for the sake of simplicity in comparison with other

existing video/image quality models. Thus in this chapter, these models are referred to as video quality

prediction models. However, as discussed in Chapter 4, the result of these model can be transformed to

the R-scale. For each type of model, detailed information about the performance of each model is given

using scatter plots followed by a discussion on their performance individually. The section is organized

by the type of model according to the video quality model classification presented in Section 2.6.

In order to get a deeper insight into the performance of each proposed model, they are compared to

a total of six well-known existing image/video quality prediction models as described below.

Peak Signal to Noise Ratio (PSNR) is a widely used video quality metric and relies on the

computation of the logarithmic difference between corresponding pixels in the original and impaired

frames.

Structural Similarity Index Metric (SSIM) measures the structural similarity between two

images and usually provides better video quality predictions compared to PSNR.
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6. Performance Evaluation

Video Multi-Method Assessment Fusion (VMAF) developed by Netflix, fuses three different

metrics together to obtain a single score as the estimation of the video quality [92].

Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) uses locally normalized

luminance coefficient and tries to quantify the possible loss of “naturalness” [107].

Natural Image Quality Evaluator (NIQE) is based on a space domain NSS model, and is a

learning-based quality estimation metric [106].

Perception based Image Quality Evaluator (PIQE) is an NR metric that uses cues from the

human visual system [126].

In addition to the mentioned metrics, the quality predictions of ITU-T P.1203 and P.1204.3, which

were described in Chapter 4, are also reported. For the computation of PSNR and SSIM, the VQMT

tool is used which is available in [127]. For VMAF calculation, the Linux based implementation

made available by the developers in [92] (version: V MAF−V F0.2.4b−0.6.1) is used. The built-in

MATLAB function is used to measure PIQE, NIQE, and BRISQUE (version: R2019a).

6.1.1 Planning Models

In this section, the performance of four planning models is evaluated based on three different gaming

video datasets. It has to be noted that the ITU-T Rec. P.1203 Mode 0 is considered as a planning model

and evaluated in this section as it uses the same level of information as other proposed models in this

section.

Table 6.1 shows the performance of the planning models in terms of PLCC, SRCC, and RMSE for

three gaming video datasets. In order to report the video quality of G.1071 and G.1072, the video quality

is measured only based on the coding impairment, Icod , of these two models, and after transforming

back the R-scale to a 5-point MOS scale. It has to be noted that GamingPara is trained based on the

CGVDS. Thus, the performance of GamingPara is only reported on the validation part of the CGVDS

but not on the whole dataset.

Based on the performance metrics reported in Table 6.1, it can be observed that GamingPara

outperforms the other models in terms of correlation considering the three gaming video quality

datasets. However, GamingPara results in high RMSE for the KUGVD and GVSET datasets, which

will be discussed in the next section. Surprisingly, ITU-T Rec. P.1203 Mode 0 performed poorly for

the KUGVD and GVSET datasets, while the performance is reasonable for the CGVDS. It needs to

be noted that the CGVDS has a higher diversity of encoding parameters compared to the other two

datasets which might play an important role in the improvement of the performance for P.1203 Mode 0.

As discussed in Chapter 4, ITU-T Rec. G.1072 uses the ITU-T Rec. G.1071 model structure to

predict the coding impairment. However, ITU-T Rec. G.1072 is fitted again based on the training data

of the CGVDS for each class of video complexity. This process considerably improves the performance

of G.1072 for the CGVDS test datasets compared to G.1071.

Insights into the Performance of Planning Models

The proposed GamingPara is a planning model that is trained based on a partial dataset of CGVDS.

In the development of CGVDS, the NVENC codec was used for encoding the videos using the llhq

preset. The llhq preset does not use B-frames which leads to higher requirements of bitrate compared

to the case that an encoder is allowed to use B-frames to reach a similar level of quality. Therefore,

when GamingPara is tested on videos encoded with a preset that uses B-frames, GamingPara might
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6.1 Evaluation of Video Coding Impairment

Table 6.1: Performance of planning models on three gaming video quality datasets of GVSET, KUGVD,
and CGVDS. (*the performance of GamingPara and G.1072 are only reported based on the validation
dataset of CGVDS (cf. Chapter 4)).

Planning Models
Dataset Metrics G.1071 G.1072* P.1203 Mode 0 GamingPara*

GVSET
Dataset

PLCC 0.68 0.77 0.30 0.83
SRCC 0.65 0.81 0.35 0.82
RMSE 1.10 1.09 1.19 0.69

KUGVD
Dataset

PLCC 073 0.78 0.19 0.87
SRCC 0.70 0.72 0.26 0.87
RMSE 0.99 0.68 1.24 1.08

CGVDS
Dataset

PLCC 0.60 0.73 0.66 0.78
SRCC 0.56 0.69 0.69 0.75
RMSE 0.68 0.48 0.88 0.39

underestimate the quality. Another interesting observation regarding the llhq preset is reported in [128]:

the llhq preset uses multiple passes for encoding, which leads to a significant improvement of bit

allocation for very low bitrate levels.

In the two gaming video datasets, KUGVD and GVSET, the software implementation of H.264

with the "veryfast" preset is used. Thus, the GamingPara generally underestimates the quality due to

the selection of the "veryfast" present compared to the bitrate demanding llhq preset. However, in

low bitrate ranges, the result shows that the model even overestimates the quality, which is expected

as discussed earlier. Although the correlation analysis shows a promising result of GamingPara for

GVSET and KUGVD according to Table 6.1, the scatter plot presented in Figure 6.1 shows how

GamingPara under/overestimate the quality for KUGVD and GVSET. Similarly, the video coding

impairment of ITU-T Rec G.1072 is trained based on a part of CGVDS as well as another passive video

quality dataset that are both using hardware implementation of H.264/MPEG AVC (using NVENC

and llhq preset). Thus, similar to the GamingPara result, as it can be seen from Table 6.1, the model

correlates well on GVSET and KUGVD but result in relatively high RMSE on these two datasets.

This is one of the main drawbacks of the planning models: they depend strongly on simple

parameters of encoding, which by changing the codec or encoding settings lead to the requirement of

retraining the models to yield valid results.

The scatter plot of GamingPara on both training and validation parts of CGVDS, illustrated in Figure

6.2, shows an auspicious result considering the fact that this model only uses very basic video encoding

parameters. However, it has to be noted that GamingPara relies on the gaming video complexity

classification. Thus, if the information about the classification is not available or the scene is not

representative of the complexity class, it is expected that the model performs worse.

6.1.2 Bitstream-based Models

In this section, the performance of the proposed BQGV model is compared to the ITU-T Recommen-

dation models, P.1203 and P.1204.3. The performance of the bitstream-based models is reported in

terms of PLCC, SRCC and RMSE in Table 6.2 on the CGVDS. The result reveals a high performance

of the BQGV, ITU-T Rec. P.1203 Mode3, and P.1204.3 models. As discussed in Section 4.2, BQGV

is trained based on the CGVDS. To train and test the model fairly, the CGVDS is split into five bins

which in each bin three games are randomly selected. The model was trained five times, each time one
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(a) Predicted GamingPara vs. MOS on GVSET dataset.
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(b) Predicted GamingPara vs. MOS on KUGVD dataset.

Figure 6.1: Scatter plots of predicted GamingPara and assessed video quality for the two test datasets of
GVSET and KUGVD.
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(a) Predicted GamingPara vs. MOS on training CGVDS dataset.
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(b) Predicted GamingPara vs. MOS on validation CGVDS dataset.

Figure 6.2: Scatter plots of predicted GamingPara and assessed video quality on CGVDS dataset.

bin was hold-out and the model was trained based on the remaining videos. Therefore, the performance

evaluation of BQGV presented in Table 6.2 is based on multiple iterations for the CGVDS dataset.

On the CGVDS, the BQGV performs similar to the ITU-T models P.1203 Mode 3 and P.1204.3.

However, it must be noted that BQGV might be biased to the encoding setting of CGVDS, whereas

the two other standardized models are trained on video quality datasets that did not use the encoding

setting following CGVDS dataset (e.g., llhq preset). The high performance of the two ITU-T models

on CGVDS dataset is because of using packet payload information that includes detailed information

such as assigned quantization parameters. In contrast, BQGV only uses the packet header information.

The proposed BQGV performs poorly compared to the two other ITU-T models on the GVSET, as

indicated by a PLCC of 0.62 compared to 0.87 and 0.89 for P.1203 and P.1204.3 FHD, respectively.

This poor performance is due to the training process of BQGV that has been done on CGVDS, which

uses llhq preset. Since there is an infinite GoP for the llhq preset, the bitstream pattern is different in

CGVDS compared to KUGVD and GVSET which leads to low performance of the BQGV model on
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6.1 Evaluation of Video Coding Impairment

Table 6.2: Performance of bitstream-based models on CGVDS. *BQGV is trained and evaluated following
a cross-validation with a split into five bins which in each bin three games are randomly selected.

Bitstream based Models
Metrics P.1203 m1 P.1203 m3 P.1204.3 FHD P.1204.3 BQGV*
PLCC 0.58 0.88 0.84 0.84 0.90
SRCC 0.62 0.88 0.85 0.84 0.89
RMSE 0.69 0.48 0.58 0.40 0.33

datasets that are created using closed GoP. Thus, the model does not perform well on KUGVD and

GVSET.

Finally, the ITU-T Rec. P.1203 Mode 1 turned out to perform poorly with all three gaming datasets.

ITU-T Rec. P.1203 Mode 1 is comparable to BQGV in terms of level of bitstream-based information

that it has access to. The reason behind the low performance of this model might be the difference of

encoding and type of content that the model is train on.

To conclude, bitstream-based models that only use information from the packet header are

susceptible to changing the encoding setting that they are being trained on. However, this type

of bitstream-based model is much simpler than payload-based models. Thus, they are better suitable

for monitoring purposes.

Insights into the Performance of Bitstream-based Models

Figure 6.3 (a) illustrates the scatter plot of the BQGV predictions compared to the assessed MOS of

video quality on the CGVDS. The BQGV is trained in five iterations based on the 5-second interval

duration that is extracted randomly from the CGVDS dataset. Thus, the scatter plot on the CGVDS

gives a big picture of how the model works for unknown gaming videos with encoding similar to

the CGVDS compression setting. It can be observed that the BQGV performs poorly for two low

complexity video games, Bejeweled3 and Worms, which might be due to a limited number of low

complexity video games in the training set. The performance result on the two other gaming video

datasets was poorly, PLCC of 0.62 for GVSET and 0.67 on KUGVD, which is due to differences in the

encoding setting CGVDS compared to KUGVD and GVSET.

Figure 6.3 (b) illustrates the scatter plot of P.1204.3 on CGVDS before FHD mapping. A small shift

for prediction values can be observed, which is due to the usage of different screen sizes in training

for the model compared to the CGVDS. Thus an FHD mapping is applied to fix this shift. It can be

observed in Table 6.2 that the RMSE improved by 0.18 points after the FHD mapping.

The ITU-T P.1203 Mode 3 performs very well on the CGVDS, while it performs poorly when the

resolution is 480p or framerate is set at 20fps. Figure 6.4 shows the performance of the ITU-T P.1203

Mode 3 once for only video sequences encoded at a framerate of 20 fps and once for those encoded

only at a resolution of 480p. This might be due to the used training dataset which may have a low

number of video sequences encoded at low resolution and low framerate.

6.1.3 Signal-based Models

In this section, the performance of the proposed signal-based models is evaluated and compared to the

SoA video quality models. Since most of the SoA signal-based models and the proposed NR-GVQM

do not predict the quality on a 5-point MOS scale, the prediction of those models are mapped to MOS
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(a) Predicted BQGV vs. Mean Opinion Scores on CGVDS dataset.
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(b) Predicted P.1204.3 vs. Mean Opinion Scores on CGVDS dataset.

Figure 6.3: Scatter plots of predicted BQGV and ITU-T Rec. P.1204.3 compared to Mean Opinion Scores
on the CGVDS test dataset.
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(a) Predicted P.1203 vs. MOS on CGVDS at framerate of 20 fps.
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(b) Predicted P.1203 vs. MOS on CGVDS at resolution of 1080p.

Figure 6.4: Scatter plots of predicted ITU-T Rec. P.1203 Mode 3 and assessed video quality on the CGVDS.

values using a monotonous mapping function, a linear function or the more sophisticated monotonous

part of a third order polynomial or a logistic function [129]. ITU-T Rec. P.1401 recommends such a

mapping function to "compensates for offsets, different biases, and other shifts between the scores,

without changing the rank order" [129]. The function is typically applied to the predicted scores before

measurement of RMSE. In this thesis, for all metrics that predict the quality on a scale different than

5-point MOS scale, this mapping is applied. The RMSE is reported based on the lowest achieved

RMSE among linear, third order polynomial and logistic mapping functions.

Table 6.3 and 6.4 show the performance of FR and NR models in terms of PLCC, SRCC and RMSE

for the CGVDS. Most of the SoA models are image-based quality metrics, and CGVDS is developed
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6.1 Evaluation of Video Coding Impairment

Table 6.3: Performance of Full-Reference signal-based models on CGVDS dataset.

Full Reference Metrics
Framerate Metric PSNR SSIM MS-SSIM VMAF

20, 30, 60
PLCC 0.66 0.64 0.71 0.87
SRCC 0.67 0.76 0.79 0.87
RMSE 0.58 0.54 0.51 0.39

60
PLCC 0.71 0.61 0.73 0.91
SRCC 0.71 0.72 0.80 0.90
RMSE 0.56 0.58 0.51 0.33

Table 6.4: Performance of No-Reference signal-based models on CGVDS. * Performance of DEMI is
reported based on validation CGVDS. ** NDG stands for NDNetGaming.

No Reference Metrics
Framerate Metric BRISQUE PIQE NIQE NR-GVQM DEMI* NDG**

20, 30, 60
PLCC -0.48 -0.41 -0.53 0.82 0.87 0.88
SRCC -0.46 -0.41 -0.55 0.81 0.87 0.88
RMSE 0.71 0.74 0.66 0.47 0.49 0.53

60
PLCC -0.45 -0.35 -0.51 0.85 0.86 0.89
SRCC -0.44 -0.36 -0.54 0.84 0.87 0.90
RMSE 0.73 0.78 0.67 0.43 0.47 0.50

using different framerate levels. Considering the possible video discontinuity effect reflected on the

subjective ratings due to variable framerate, the performance of metrics is evaluated once only at 60

fps for a fair comparison and once on all framerate levels. Surprisingly, for SSIM, the performance

improves if all framerates are considered. This might be due to the fact that considering all framerate

levels allows having more available data for the measurement of correlation, which in average results in

higher correlation. In addition, the lowest framerate in the dataset is set at 20fps, which may not impact

the video discontinuity significantly enough.

Based on the Table 6.4, it can be observed that the three NR metrics, PIQE, NIQE, and BRISQUE,

perform poorly on the CGVDS, which is in line with the findings of [9]. It can be observed that

NDNetGaming outperforms all NR metrics. It has to be noted that the performance of DEMI is

reported only based on the validation part of CGVDS (cf. Chapter 4). In addition, for the prediction of

NDNetGaming and DEMI in Table 6.4, the temporal pooling function is not applied, and frame-level

predictions are pooled by simply averaging over frames prediction of each video sequence. The

temporal pooling is not applied to have a fair comparison to other SoA models since SoA models do not

have a temporal pooling function but rather a simple average pooling over frames of a video sequence

(except VMAF). For NDNetGaming the frame-level quality is simply measured based on the output of

the final trained CNN for each frame before applying the temporal pooling. To measure the frame-level

quality for DEMI, the output of its second phase, i.e. the predicted unclearness and fragmentation after

fine-tuning, is used. Based on the predicted unclearness and fragmentation and according to the linear

regression fit presented in Section 3.4.4 (Equation 3.5), the image quality is predicted. In the following

section, the performance of NDNetGaming and DEMI using temporal pooling methods is discussed.

For two other gaming video datasets (KUGVD and GVSET), both NDNetGaming and DEMI

models result in a very high correlation above 0.90 (for both PLCC and SRCC) based on the average

pooling [16], [17]. The reader can refer to Section 2.7.3, Table 2.5, to find the performance of other

signal-based models on the GVSET dataset.
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VMAF Quality Prediction
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(a) Predicted NR-GVQM vs. VMAF on GVSET dataset.
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(b) Predicted NR-GVQM vs. MOS on GVSET dataset.

Figure 6.5: Scatter plots of predicted NR-GVQM vs. assessed video quality and VMAF for the GVSET
test dataset.

Insights into the Performance of Signal-based Models

No-Reference Gaming Video Quality Metric (NR-GVQM)
In order to get a deeper insight into the performance of NR-GVQM, the scatter plot of the predicted

VMAF values (output of proposed NR-GVQM) and actual VMAF scores on the validation part of the

GVSET dataset are presented in Figure 6.5 (a), which achieves a PLCC of 0.97 and RMSE of 4.73.

The RMSE is measured in the VMAF range of values vary from 20 to 95 on the GVSET. In addition,

Figure 6.5 (b) illustrates the scatter plot of NR-GVQM predictions and assessed video quality MOS

values, which follows a very similar trend to VMAF. It is important to note here that this analysis is

performed on an unknown set of videos (in GVSET) to the trained model, and hence the results can

be generalized for other gaming videos not considered in this dataset. A similar result is achieved for

the KUGVD dataset indicated by a PLCC of 0.89 using MOS values. This was expected since the

KUGVD and GVSET datasets are similar in content and encoding settings. However, NR-GVQM does

not perform similarly well on the CGVDS. The NR-GVQM is trained based on the GVSET dataset

that is created based on 30 fps encoding framerate, while the CGVDS is created using three encoding

framerates of 20, 30, and 60 fps. Thus, the NR-GVQM over-predicts the videos encoded with 20 fps

since it does not take into account the video discontinuity effect. Figure 6.6 illustrates the scatter plot

of NR-GVQM prediction and MOS prediction for CGVDS, once at a framerate of 20 fps and once

for the full dataset. Therefore, one of the main drawbacks of NR-GVQM is that it is only trained on

a framerate of 30 fps, which require retraining for a lower framerate. It has to be noted that since

NR-GVQM uses a temporal video feature, TI, as one of the input features, retraining the model could

significantly improve the result for datasets created with variable framerates. Another drawback of

the NR-GVQM is that it is trained based on VMAF values. That means at its best performance, it

is expected to perform as well as VMAF. However, it must be noted that the main idea behind the

development of NR-GVQM is to develop a model to close the gap between NR metrics and FR metrics

for gaming content at a time which only one gaming video quality dataset was publicly available. One

of the main advantages of NR-GVQM is that it does not require to have access to a subjective dataset.

Thus, it can be retrained for new content, encoding settings, or higher performing objective metrics

only by recording, encoding, and measuring the objective metric.
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(a) Predicted NR-GVQM vs. MOS on CGVDS at framerate of 20 fps.
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(b) Predicted NR-GVQM vs. MOS on CGVDS.

Figure 6.6: Scatter plots of predicted NR-GVQM and assessed video quality on the CGVDS, at framerate
of 20 fps, as well as full dataset.

NDNetGaming
The performance analysis of this section is two-fold: at first, the performance of NDNetGaming is

analyzed only based on the average pooling of frame-level predictions, and second, the performance of

the model is investigated when the proposed temporal pooling function is applied.

Figure 6.7 shows the scatter plot of NDNetGaming predictions using the average pooling method

and assessed video quality MOS ratings of GVSET and KUGVD. The model, using average pooling,

reaches an RMSE of 0.347 and 0.464 for GVSET and KUGVD, respectively. Based on Figure 6.7, a

clear trend can be observed for complex games, e.g., Overwatch in KUGVD, where the NDNetGaming

model underestimates the quality. However, for low complex video games, e.g., Hearthstone in GVSET,

it overestimates the quality. This might be due to a visual masking effect, i.e. in the presence of

temporal or spatiotemporal distortions, the visibility of distortions to a human could strongly be reduced

or completely removed [120]. Thus, even though the NDNetGaming might correctly detect the high

spatial distortion in the high complexity video games, the effect of distortion is reduced due to visual

masking by the human visual perception, reflected in the subjective ratings.

Next, the temporal pooling function was applied to the frame level prediction, and the result is

presented in the form of scatter plots for KUGVD and GVSET in Figure 6.8. It can be seen how the

temporal pooling fixes the under/over-predictions that were presented previously in Figure 6.7. After

applying the temporal pooling, the result shows a PLCC of 0.961 (RMSE = 0.27) for GVSET and 0.968

(RMSE = 0.30) for KUGVD. One must consider that to investigate the effect of the temporal pooling

method fairly, the GVSET is temporally pooled based on a linear fit that is obtained for KUGVD and

vice versa (cf. Section 4.3.2).

Figure 6.9 (a) presents the scatter plot of NDNetGaming predictions using average pooling and

assessed video quality MOS values in the CGVDS. For the CGVDS, similarly to GVSET and KUGVD,

NDNetGaming overestimates the quality for low complex games (e.g., Worms, Bejeweled3) and

underestimates the quality for games with higher temporal complexity (e.g., Fortnite, GTA5, and

Tekken). NDNetGaming obtains an RMSE of 0.53 across all framerates for CGVDS if average pooling
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(a) Predicted NDNetGaming vs. MOS on GVSET.
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(b) Predicted NDNetGaming vs. MOS on KUGVD.

Figure 6.7: Scatter plots of predicted NDNetGaming using average pooling and assessed video quality on
two datasets of GVSET and KUGVD.

is used. While using the temporal pooling proposed in Chapter 4, leading to a slightly higher correlation

(PLCC ≈ SRCC = 0.89) compared to the average pooling method, it increases the RMSE significantly

to 0.77. The temporal pooling that was proposed in Chapter 4 is fitted only on the framerate of 30 fps,

which fails to correctly map the videos with 20 fps and 60 fps framerates to MOS values of the CGVDS

dataset. Therefore, the temporal pooling function is fitted again for CGVDS with the same function

resulting in a slightly higher correlation (PLCC ≈ SRCC = 0.92) but a significantly lower RMSE of

0.33. Equation 6.1 presents the temporal pooling function fit on the CGVDS that can be used in case

the framerate is in the range of 20 to 60 fps.

NDNGTemporal = 0.2613+0.718 ·NDNG+1.719e−05 ·TC3−0.0021 ·TC2 +0.072 ·TC (6.1)

Figure 6.9 (b) illustrates the scatter plot of NDNetGaming before and after applying the temporal

pooling function.

One of the interesting observations is the accurate prediction of video quality for the game Minecraft.

Minecraft is a blocky designed video game that is considered as one of the most challenging scenes

for quality prediction of SoA NR metrics. Several NR quality metrics struggle to accurately predict

the quality of such a blocky video game, as the blocky design might be seen as an artifact. However,

NDNetGaming also performs well for this game.

In addition to analyzing the scatter plots, it is interesting to visualize the intermediate feature layers

of the NDNetGaming’s CNN. Therefore, the local predictions of the model are visualized to get deeper

insights into the function of intermediate feature layers and the operation of the CNN. To calculate the

local predictions, a new network is built with the full-frame as an input (size 1080×1920) but with

the same weights for the convolutional layers as the original model. Additionally, the global average

layer between the convolutional and dense layer of the architecture is skipped. Usually, the dense layer

expects a size of 1024 tensor as its input and calculates a single score as the output of the CNN. When

skipping the global averaging layer, it instead gets 1024 33×60 matrices from the convolutional part

of the network. The dense part of the model is applied element-wise to these matrices in order to get

the local prediction matrix.
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(a) Predicted NDNetGaming vs. MOS on GVSET.
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(b) Predicted NDNetGaming vs. MOS on KUGVD.

Figure 6.8: Scatter plots of predicted NDNetGaming using temporal pooling and assessed video quality on
two datasets of GVSET and KUGVD.
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(a) Predicted average pooled NDNetGaming vs. MOS on CGVDS.
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(b) Predicted temporal pooled NDNetGaming vs. MOS on CGVDS.

Figure 6.9: Scatter plots of predicted NDNetGaming and assessed video quality on the CGVDS.

Figure 6.10 shows the local quality predictions for two frames in the GISET dataset. The local

quality prediction is shown in a heat-map overlay layer that ranges from red color, which represents

high quality, to blue color, which represents low quality. In addition, another overlay layer is applied

to show the 13-patch quality prediction design (cf. Chapter 4) for fast prediction of the quality. The

quality labels in terms of MOS value, full-frame prediction, and 13-patch prediction are provided in the

Figure 6.10.

From the local quality predictions of many distorted images, it can be observed that the model

has trouble distinguishing between the edges from blockiness and actual texture edges of the images.

Therefore, when it deals with an image of high blockiness, the NDNetGaming model results in a high

variation of local quality prediction as it can be seen in Figure 6.10 for the game PlayerUnknown’s

Battlegrounds. However, on average, the image quality prediction does not deviate much from the
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6. Performance Evaluation

Figure 6.10: Local quality predictions for one frame of League of Legends (top side) and PlayerUnknown’s
Battlegrounds (bottom side).

subjective MOS score, considering the RMSE of 0.43 for images with blockiness degradation in the

GISET dataset (1080p resolution and bitrate lower than 2 Mbps).

While there is a high variation of local quality predictions for blockiness artifacts, the model

performs more consistently when dealing with blurriness artifacts, as it can be seen in Figure 6.10 for

the game League of Legends. As a general trend, it is observed that the developed model tends to

predict the quality higher for regions with high texture complexity, which could also be in-line with

human perception as image distortion can be masked in high texture regions of an image.

DEMI
DEMI gives both overall video quality as well as diagnostic predictions, which provide estimations

of fragmentation and unclearness levels. Similar to the NDNetGaming approach, in order to fairly
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(a) Predicted frame-level DEMI vs. MOS on CGVDS.
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(b) Predicted temporal pooled DEMI vs. MOS on CGVDS.

Figure 6.11: Scatter plots of predicted DEMI and assessed video quality on the test dataset of CGVDS.

compare the performance of DEMI with other SoA models, the performance evaluation presented in

Table 6.4 is reported only based on average pooling prediction. Since DEMI does not predict the image

quality but rather the level of fragmentation and unclearness, a linear function (Equation 3.5) that is

fitted on GISET in Section 3.4.4 is used to map the unclearness and fragmentation prediction to image

quality prediction. Using average pooling for prediction of DEMI result in a PLCC of 0.87 and RMSE

of 0.49 for the CGVDS dataset as presented in Table 6.4.

Next, the temporal pooling is applied, which results in a significant improvement of prediction

indicated by a PLCC, SRCC, and RMSE of 0.92, 0.93, 0.31, respectively. Figure 6.11 presents the

scatter plot of DEMI predictions using average pooling as well as using temporal pooling methods. It

can be seen that the over/underestimations of the model are mapped closer to the subjective ratings for

most cases. For the games Fifa and League of Legends, a few significant deviations from the subjective

ratings can be seen, which could be due to the fact that the temporal pooling method is applied on every

20th frame.

Based on the NDNetGaming performance, it can be concluded that NDNetGaming performs

slightly higher than DEMI for the CGVDS dataset. This could be due to the fact that NDNetGaming is

trained only based on the gaming content and also uses the predictions of all frames of a video sequence

compared to DEMI that predicts the quality based on every 20th frame.

Discussion

The performance of signal-based models was compared to a few well-known video/image quality

metrics. Among the proposed NR models, NR-GVQM is a lightweight model that fuses the low-level

image features to predict the gaming video quality. While a high performance of NR-GVQM has been

seen for KUGVD and GVSET, the performance on the CGVDS is not similarly good. This might be

due to the fact that this model does not take into account the temporal pooling aspect. However, the

two proposed deep learning models, DEMI and NDNetGaming, perform similarly well if the temporal

pooling is applied.
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Since two of the proposed NR models are deep learning-based, it is interesting to compare their

performance with SoA deep learning-based models. However, this comparison was not made due to

the following practical and theoretical reasons. First, the source code of those models is not always

available. Second, most of the deep learning models are trained based on datasets with different types

of artifacts, which result in low correlation with the selected validation datasets, and it is not fair to

make such a comparison. For example, the Neural Image Assessment (NIMA) [130] model was tested

on the GVSET, which resulted in a low PLCC of 0.54 between subjective video quality ratings and

model predictions, which apparently is due to the training process. Retraining the model would not

be an option due to the limited number of data for gaming content. The only way to fairly compare

the proposed models with other deep learning-based models would be retraining other models in a

similar framework as it was proposed in this thesis. However, retraining the model in a similar approach

as proposed for DEMI or NDNetGaming would rather result in a comparison between the two CNN

architectures, which is out of the scope of this work.

In this section, the performance of the SoA signal-based models was compared to proposed gaming

video quality metrics on the gaming video dataset. Such a comparison might not be fair since the

SoA models are not designed/trained for gaming content. In addition, it is not clear how good the

performance of SoA gaming quality metrics is compared to the proposed models. In the following, the

performance of FR and NR models are evaluated on a non-gaming video quality dataset. In addition,

the performance of the proposed gaming NR models will be compared to a few existing gaming video

quality metrics in the literature.

Performance of existing NR Gaming Video Quality Models

In this section, a short discussion on the performance of a few gaming video quality metrics in the

literature is given. To the best of the author’s knowledge, only three NR metrics are developed for/based

on gaming content, as described in the following.

• Lightweight NR Pixel Based Model for Gaming Content (nofu) is a pixel-based video quality

model for gaming content [80]. Nofu uses 12 different per frame features and a center crop

approach for the fast computation of frame-level features.

• NR-GVSQE follows a similar approach as NR-GVQM, which is trained based on the multiple

frame-level features as input features and VMAF values as target values.

• NR-GVSQI is an NR metric designed for gaming content trained based on a Neural Network [81].

It uses 15 low-level signal features, including the score of NR metrics such as BRISQUE and

NIQE, for training the model.

All three models are lightweight machine learning-based models that are trained based on GVSET

or KUGVD. Interestingly, nofu takes into account some game-related features such as static area (e.g.,

head-up display in video games) as a feature to develop the model. At the time of nofu’s development,

there was no public gaming video dataset other than GVSET to validate the model. Thus, a leave-one-

out cross-validation was employed to evaluate the performance of the model. NR-GVSQI is trained two

times, training based on GVSET then evaluating the model on KUGVD and vice versa. NR-GVSQE is

only trained on GVSET and evaluated on KUGVD. Thus, the performance of nofu on KUGVD and

NR-GVSQE on GVSET is not available.
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6.1 Evaluation of Video Coding Impairment

Table 6.5 presents the performance of all NR gaming video quality models on KUGVD and GVSET

based on the results reported in the reference papers. Based on the PLCC and SRCC values, it can

be concluded that the two proposed deep learning-based models outperform the existing NR gaming

quality models. Nofu performs higher than other lightweight gaming quality metrics on GVSET.

However, it has to be noted that nofu uses leave-one-out cross-validation, whereas NR-GVQM and

NR-GVSQI leave the whole part of GVSET that has subjective ratings out of the training. Also, it is

not clear how these three gaming quality models work on a dataset with different encoding settings,

e.g., on the CGVDS.

Table 6.5: Performance of NR gaming quality metrics on GVSET and KUGVD datasets, in terms of PLCC
and SRCC.

Metrics Nofu NR-GVSQE NR-GVSQI NR-GVQM NDNetGaming DEMI

GVSET PLCC 0.91 - 0.87 0.89 0.93 0.91
SRCC 0.91 - 0.86 0.87 0.93 0.91

KUGVD PLCC - 0.90 0.89 0.89 0.93 0.92
SRCC - 0.91 0.88 0.89 0.93 0.91

Performance on Non-Gaming Video Datasets

While the three proposed NR models are designed for gaming content, it is interesting to see how well

they perform on non-gaming content. This allows drawing a conclusion about the potential performance

of the proposed models on other types of content, e.g., a new gaming dataset. For this comparison,

the NFLX-PD is selected that is described in Section 4.3.3. The selection of NFLX-PD is due to the

similarity of encoding settings to typical gaming video streaming compression settings, e.g., encoding

recommendation by Twitch 1. Table 6.6 presents the result for the proposed NR model compared to the

SoA image/video quality metrics.

The results revealed a high performance of DEMI and NDNetGaming with MOS values on the

NFLX-PD, while VMAF outperforms all metrics. However, it must be noted that VMAF is trained

based on a similar dataset to NFLX-PD, and the result could be biased for VMAF on this dataset. The

performance of DEMI and NDNetGaming summarized in Table 6.6 is measured based on the average

pooling method. If the temporal pooling is applied, DEMI performs with PLCC = 0.91, SRCC = 0.90,

and RMSE = 0.43 whereas NDNetGaming does perform slightly worse with PLCC ≈ SRCC = 0.87

and RMSE = 0.52. This might be due to the fact that DEMI is trained based on both gaming and

non-gaming datasets, while NDNetGaming is biased to gaming content. NR-GVQM performs quite

well, considering the fact that it is trained based on VMAF.

Table 6.6: Performance of FR and NR quality metrics on NFLX-PD dataset, in terms of PLCC, SRCC, and
RMSE. *GVQM stands for NR-GVQM and NDG stands for NDNetGaming

Full-Reference Models No-Reference Models
Metrics PSNR SSIM VMAF BRISQUE NIQE PIQE GVQM* DEMI NDG*
PLCC 0.64 0.69 0.93 -0.77 -0.83 -0.78 0.82 0.89 0.89
SRCC 0.66 0.76 0.91 -0.76 -0.81 -0.80 0.80 0.89 0.89
RMSE 0.86 0.76 0.42 0.67 0.59 0.59 0.61 0.48 0.49

1https://stream.twitch.tv/encoding/
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6. Performance Evaluation

Table 6.7: The performance of input quality and video discontinuity prediction models on the interactive
dataset.

RMSE
(R-Scale)

RMSE
(MOS-Scale) PLCC SRCC

Input Quality 6.07 0.25 0.92 0.93
Video Discontinuity 9.63 0.39 0.85 0.86

6.2 Performance of Gaming QoE Model

In the previous section, the performance of the proposed coding impairment prediction models was

presented. In this section, the performance of the remaining components of the gaming QoE model is

evaluated, and, finally, the gaming QoE model is evaluated based on the interactive dataset.

While multiple gaming video quality datasets are developed for evaluation of video coding

impairment, only one interactive dataset is created that follows the standardized quality assessment

methodologies presented in ITU-T Rec. P.809. Therefore, the interactive dataset is divided into two

parts of training and validation. The validation part of the model consists of ratings from four video

games collected from four subjective studies. In the interactive dataset, for one game, CSGO, more

video encoding parameters, e.g., more resolution levels and bitrates, are tested in the development of

the interactive dataset.

6.2.1 Input Quality and Video Discontinuity

The input quality can be predicted based on the control latency impairment (IcntrI ) and video

transmission error impairment (ItransI ). Since these two impairment prediction models (ItransI and

IcntrI ) are predicting the same assessed scale (input quality) in the subjective test, instead of separately

evaluating them, the Equation 5.9 that is presented in Chapter 5 is used to predict the input quality

(O22).

The performance of the input quality prediction model is evaluated based on the GIPS ratings,

represent input quality as ground truth from the validation part of the interactive dataset. Figure 6.12

(a) presents the scatter plot of predicted input quality and assessed input quality for the validation part

of the interactive dataset. It can be seen that the model performs well in the prediction of input quality

with a very low RMSE and high correlation as presented in Table 6.7

The scatter plot shows that the model performs well on the validation dataset. Generally, the number

of video games in the interactive dataset is lower compared to the passive dataset due to lengthy and

expensive subjective experiments, which is one of the main limitations of this work. Thus, the model is

only validated with four video games selected from different delay and frame loss sensitivity classes.

The impairment of video discontinuity can be predicted based on the Equation 5.5 presented in

Chapter 5. Based on the video discontinuity ratings collected in the interactive dataset and predicted

video discontinuity, RMSE, PLCC, and SRCC are reported in Table 6.7 which show a high prediction

performance for video discontinuity impairment. Figure 6.12.(b) illustrates the scatter plot of the

predicted video discontinuity and assessed video discontinuity in the validation dataset.
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(a) Predicted Input Quality vs. Input Quality MOS on validation
interactive dataset.
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(b) Predicted Video Discontinuity vs. Video Discontinuity MOS on
validation interactive dataset.

Figure 6.12: Scatter plots of predicted and assessed Input Quality and Video Discontinuity.

6.2.2 Core Model

In this section the performance of the core model that takes into account all impairments, proposed

in Equation 5.6, is evaluated. As discussed in Chapter 4, multiple models are proposed to predict the

impairment due to video coding (IcodV ) based on the level of access to the video stream information.

To estimate the IcodV using signal-based and bitstream-based models, the access to the degraded video

and bitstream information of each gameplay of participants is required. However, the gameplays of

participants were not recorded when developing the interactive dataset in order to avoid any unwanted

distortion, such as lag due to system overload, that may influence the performance of the client PC

during the experiment. With this limitation, it was decided to use the video sequences from the passive

dataset corresponding to the same game and encoding condition in the interactive dataset to measure

the signal-based and bitstream-based models’ prediction. Five video sequences are taken from CGVDS

that cover five games in the interactive dataset, Bejeweled, Overwatch, Tekken, Rayman, and Worms.

For the remaining four games, the video sequences are taken from the ITU-T Rec. G.1072 passive

dataset. The ITU-T Rec. G.1072 passive dataset includes the CGVDS as well as another dataset named

CGVDS Part2 (CGVDS-P2), which is built similar to CGVDS, including not only compression artifacts

but also the effect of packet loss distortion.

Since the video quality of a single recorded gameplay is not equal to multiple gameplays of

participants in the interactive dataset, the difference between the video quality MOS in the interactive

and passive datasets for the corresponding stimulus is used for an adjustment. This difference, which

describes the biases between the assessed video quality in passive and interactive test for a certain

condition, named as Scenebias, is predicted according to Equation 6.2. Next, the Scenebias is added to

the signal-based and bitstream-based model predictions to avoid errors due to the difference between

the single recorded scene and played scenes. Thus, the video quality prediction (e.g., DEMI prediction)

of a video sequence of the passive dataset, ˆ︂V Qpassive, is corrected according to Scenebias, shown in

Equation 6.3.

Scenebias =V Qinteractive−V Qpassive (6.2)
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(a) Predicted Gaming QoE (based on GamingPara) vs. Gaming QoE
MOS.
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(b) Predicted Gaming QoE (based on NDNetGaming) vs. Gaming
QoE MOS.

Figure 6.13: Scatter plots of predicted Gaming QoE vs assessed Mean Opinion. Score of Gaming QoE for
validation part of interactive dataset.

Table 6.8: Performance of the gaming QoE model according to the selection of the video coding impairment
prediction model.

NDNetGaming DEMI BQGV GamingPara G.1072
PLCC 0.91 0.89 0.87 0.85 0.81
SRCC 0.92 0.91 0.89 0.89 0.86
RMSE 0.31 0.38 0.40 0.42 0.47

ˆ︂V Qinteractive = ˆ︂V Qpassive +Scenebias (6.3)

Table 6.8 presents the performance of the gaming QoE model, considering different models

predicting video coding impairment. The performance of the core model is not reported for NR-GVQM.

NR-GVQM predicts the video quality in the VMAF range of score, and converting it back might add

errors to the model. Thus, it is removed from the analysis of this section. Based on the table, the

proposed gaming QoE model performs decently regardless of the selection of the model predicting video

coding impairment. However, if the model has access to more information, e.g., signal information of

streamed video, it performs higher, as it can be seen for NDNetGaming.

It has to be noted that the validation dataset consists of video games from different classes of video

complexity, as well as delay and frameloss sensitivity. In addition, an almost balanced number of

distortion types, e.g., network and compression distortion, exist in the validation dataset. Therefore,

even though the number of data points is not large, due to coverage of different distortion types and

content classes, it gives an overall impression of how the model performs if employed in a cloud gaming

service.

The model relies strongly on the classification of video games, and if the user of the model does

not have knowledge about the game class, it has a significant impact reducing the performance down to

RMSE.= 0.78 and PLCC = 0.71, if NDNetGaming is used as a choice of video coding impairment

prediction model. Figure 6.13 presents the scatter plot of the predicted and assessed gaming QoE based

on the validation interactive dataset based on GamingPara and NDNetGaming.
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Table 6.9: Scatter plot of the G.1072 predicted and assessed MOS ratings on the test dataset without using
content classification (default mode) on the left, and using the content classification (extended mode) on the
right.

Without considering classification

(default mode)

Considering classification

(extended mode)
R-scale MOS-scale R-scale MOS-scale

RMSE 12.19 0.47 8.03 0.33
PLCC 0.80 0.82 0.89 0.90

6.3 ITU-T Rec. G.1072

ITU-T Rec. G.1072 is developed based on large interactive and passive datasets. The interactive dataset

and CGVDS are used partly in training and validation of the final model. While the model is in general

developed similarly to the presented gaming QoE model, a few differences in the model design are

discussed in Chapter 5. In addition to the differences in the model design, a few differences in training

and validation of the model can be mentioned. First, as discussed earlier, a large passive dataset was

used which include the CGVDS but also another similar dataset, CGVDS-P2 with more parameters

such a packet loss. Next, due to the small number of ratings in an interactive test, it was decided to

use a part of passive dataset in the validation of the model. Since the passive dataset has no ratings

for overall gaming QoE, the overall gaming QoE was predicted based on the ratings from the video

discontinuity and video quality that is fitted based on the interactive dataset after excluding conditions

with the delay and packet loss, using a linear regression model as follows:

IQoE = 1.6878+0.64218 · IV Q +0.38857 · IV D (6.4)

The IQoE representing the delta-R of the overall gaming QoE was accurately fit with an RMSE of

3.56 on R-scale (delta R-Scale), Pearson correlation of 0.967, and adjusted r-squared of 0.932. The

model is used to assign IQoE for the passive dataset to be used as ground truth.

The model provides two modes: the extended mode that takes into account the video classification,

and if the classification is not available to the model, the highest game class is assumed as a default mode.

The performance of the core model is predicted according to the validation part of both interactive

and passive datasets. The model reaches a high PLCC of 0.90 if the video classification is taken into

account. If the default mode is considered, the model performance goes down to 0.82 in terms of PLCC.

The scatter plot of the G.1072 prediction and assessed MOS values are presented in Figure 6.14. It can

be seen from the figure, if the default mode is considered, the prediction values clearly deviate from the

subjective ratings. This deviation from the subjective score could be stronger if more games from the

low and medium classes are considered.

6.4 Summary

In this chapter, the performance of the proposed impairment prediction models is reported on validation

dataset(s). The first section is dedicated to the performance evaluation of video coding impairment

prediction models. These models that are known as video quality models are compared to the SoA

video quality models. The important findings of this section are summarized as follows:
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Assessed Mean Opinion Score of Gaming QoE
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Figure 6.14: Scatter plot of the predicted and assessed MOS ratings on the test dataset without using content
classification (default mode) on the left, and using the content classification (extended mode) on the right,
based on ITU-T Rec. G.1072, Figure G.1072(20)_F02 in [72]

• Among evaluated planning models, the proposed GamingPara performs best in terms of PLCC

and SRCC. The coding impairment of ITU-T Rec. G.1072 also performed very well on all three

datasets. It has to be noted that both mentioned models rely on having access to the classification

of video games. Therefore, the performance is expected to decrease if no knowledge about the

game video complexity is available or the classification fails in correct assignment of the classes.

• With respect to the performance of evaluated bitstream-based models, two ITU-T Recommenda-

tions, P.1203 Mode 3 and P.1204.3 (FHD mapped) correlate very well with the assessed video

quality, considering the fact that they were initially not developed for gaming video streaming

applications. The proposed BQGV as a lightweight model performs best among the evaluated

bitstream-based models on CGVDS. However, it has to be noted that this model is validated using

leave-one-out cross-validation (one refers to one bin consisting of 3 source video sequences),

and it might be biased to gaming content as well as the special encoding setting used in CGVDS.

• The evaluation of FR signal-based models on CGVDS revealed the reliable performance of

VMAF for gaming content, which was previously shown on KUGVD and GVSET. Other

traditional FR signal-based models perform satisfactorily on CGVDS. However, these models

are image quality metrics, and they do not take into account the temporal complexity of videos.

Therefore, for gaming content with scenes that have a range of very low complexity, e.g., Tetris,

to a very high spatial and temporal complexity, e.g., Nier Automata, these models might not be

recommended to use.

• Three NR signal-based models are proposed in this thesis. Among them, two deep learning

models, NDNetGaming and DEMI, showing a remarkable performance on gaming content.

NDNetGaming outperforms all evaluated image/video quality metrics, including FR signal-based

models, even if only the frame-level prediction is taken into account (the frame-level prediction

is almost equal to VMAF). The performance of DEMI and NDNetGaming increase significantly
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if the temporal pooling is used. DEMI performs slightly poorer compared to NDNetGaming

on the gaming dataset, whereas it outperforms NDNetGaming on a non-gaming dataset. The

proposed lightweight NR model, NR-GQVM, shows a satisfactory result on all three gaming

video quality datasets. Considering the model’s simple training process, it can be easily extended

for new types of content, video codec, or type of distortion.

Next, the performance of other impairment prediction models of the gaming QoE model is evaluated.

Two impairments of control latency (icntrI ) and video transmission error (itransI ) are evaluated together

as they are assessed using the same scale in the interactive test, input quality (GIPS scale). The result

on the validation part of the interactive dataset shows a high PLCC of 0.92 to predict the input quality.

This promising result is achieved if the gaming classification towards delay and frameloss sensitivity is

considered. Therefore, the performance could decrease significantly if the model does not take into

account the gaming classification. The effect of video transmission error on video quality is modeled

based on the video discontinuity item. The model obtains a satisfactory result with a PLCC of 0.85.

Finally, the proposed gaming QoE model is evaluated based on the selection of different video

coding impairment models. The result suggests a high performance of the model regardless of the video

coding impairment model’s choice. However, if the model has access to more video stream information,

e.g., bitstream or signal information, the prediction performance increases considerably. It has to be

noted that, for the evaluation of signal-based and bitstream-based models, the representative video

sequences of each game are used, taken from the passive datasets.

In addition, the performance evaluation of ITU-T Rec. G.1072 is presented in the last section

based on reported PLCC and RMSE in the recommendation. The performance of ITU-T Rec. G.1072

is evaluated based on the interactive and passive dataset. The result revealed the importance of

gaming classification in the improvement of final prediction, from PLCC of 0.82 if the default mode is

considered to 0.90 if the extended mode (gaming classification) is considered.
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7
Conclusion and Outlook

7.1 Summary

The present dissertation aims at the development of gaming QoE model that can be used for different

purposes, including, but not limited to, network planning, quality monitoring, resource allocation, and

benchmarking cloud gaming services. The scope of the model is presented in Chapter 1 that defines

the considered influencing factors, range of parameters, participants characteristics, end-user devices,

targeted types of models, and modes of operation.

Chapter 2 starts with an introduction to Quality and Quality of Experience as fundamental concepts.

A cloud gaming taxonomy developed in 2013 is described in this chapter, which overviews the

important gaming QoE influencing factors and quality features that could potentially be considered for

developing a gaming QoE model. In collaborative work with other researchers, the author contributed

to the development of ITU-T Rec. G.1032 [1] that identifies a long list of gaming QoE influencing

factors in the context of cloud gaming services that is summarized in the second chapter of the thesis.

As an imperative prerequisite before the development of a QoE model, a standardized subjective test

methodology is required. Therefore, in this thesis, ITU-T Rec. P.809 is followed. This Recommendation

defines two types of paradigms for quality assessment of cloud gaming services; first, passive viewing-

and-listening tests targeting the output quality of the service, and, second, interactive tests that aim to

assess other quality features influencing the gaming QoE of cloud gaming services. In addition, two

questionnaires are described to assess the interaction quality and video quality sub-dimensions. These

two questionnaires are later used in the development of gaming quality datasets. Next, an overview

of efforts towards the development of gaming quality models is given. While several studies can

be found in the literature, they are all limited to a small number of parameters and targeting only a

specific quality features. The studies were conducted in different laboratories under different subjective

test methodologies that cannot be generalized. Finally, the chapter ends with a discussion on the

performance of existing video quality models on gaming video content. Two studies are described

that the author contributed to, which evaluate the performance of multiple well-known signal-based

video/image quality metrics on gaming video content. Studies suggest that there is a need for the

development of NR video quality models for gaming content.
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Chapter 3 describes the necessary steps to develop a gaming QoE model. First, the information

about the structure of the model framework is provided. The model follows a modular structure that is

based on separated impairment-factors that influence the gaming QoE. Three impairment factors of

video coding, transmission error, and control latency impairment are defined. Such a modular structure

offers flexibility in the development of separate models for each impairment factor. In addition, the

model could get updated easier and faster for potential extensions. For the development of the model,

it is decided to develop multiple models for video coding impairment factors based on the viewing-

and-listening tests. This allows the use of the model in different monitoring points of the network

depending on the level of access to the video stream. Also, multiple datasets are created to train

different gaming QoE models, including two gaming video quality datasets, an image quality dataset,

and a large interactive dataset following test methodology recommended by ITU-T Rec. P.809. The

chapter ends with the development of three video classifications that are necessary for gaming QoE

model development. The proposed game classifications provide information to label the games based

on their sensitivity towards delay and frameloss as well as video coding complexity. The developed

classifications are used later on for the development of the quality models for cloud gaming services.

Chapter 4 presents the models that are developed to predict the coding impairment factor. The

models are developed based on gaming video quality datasets for different purposes. First, three

planning models are described that can predict the gaming video quality according to simple encoding

parameters. Among them, GamingPara is developed by the author, which follows the multidimensional

approach (DBSQE-V) to predict the video quality according to its sub-dimensions of fragmentation,

unclearness, and discontinuity. Such a multidimensional approach allows a more in-depth insight

into the causes of low video quality, known as diagnostics information. Next, three bitstream-based

video quality models are described. This type of model is a useful tool to monitor the video quality at

different network monitoring points. Depending on the level of access to the bitstream information,

they can be divided into payload-based and header-based models. While the payload-based models

are typically more accurate, the latter is lightweight and much simpler to deploy in the network. The

author developed the BQGV model that extracts the packet header information to predict video quality

and its sub-dimensions. In addition, two well-known bitstream-based models developed under ITU-T

SG12 are described in this chapter. Finally, three NR signal-based video quality models are proposed

for gaming content. As discussed earlier, based on the previous studies, it has been shown that FR

metrics perform well on gaming content. However, the SoA NR metrics fail to predict the video quality

of gaming content accurately. Thus, the main focus is devoted to the development of NR metrics for

gaming videos. First, a lightweight model, NR-GVQM, is developed based on low-level image features

and targeting an objective metric, VMAF, as ground truth. The idea was to develop a model to fill the

gap between FR and NR models’ performance without having access to a large subjective dataset. The

model can be easily extended with a larger dataset of recorded gameplay, a new type of codec, and

trained based on other high-performance video quality models. Besides, two deep learning based video

quality models are developed. NDNetGaming and DEMI are both trained based on three phases of

VMAF training, fine-tuning based on subjective ratings, and temporal pooling. However, there are

some fundamental differences in the design and training of the models. In the development of the

NDNetGaming, it is carefully investigated which well-known CNN architecture is a good candidate for

the image quality estimation task based on the two criteria of high performance and a small number

of trainable parameters. Also, the NDNetGaming uses a simple temporal pooling method that does
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not add too much complexity to the model. DEMI is proposed to improve the limitations that are

not considered in NDNetGaming, including considering both gaming and non-gaming content in the

training phase, multi-scaling feature extraction, and usage of a more complex but accurate temporal

pooling method. In addition, DEMI provides two diagnostic frame-level scores for fragmentation and

unclearness.

Chapter 5 provides three models to predict the remaining impairment factors, impairments due to

transmission error, and control latency impairment. The earlier does impact both video quality and

input quality, while the latter only affects the input quality. The impairments due to transmission error

are modeled based on the frameloss rate and encoding framerate, once using discontinuity ratings as

target labels, and once using averaged GIPS items indicating the input quality. The control latency

impairment is modeled based on the network delay as input and ratings for GIPS items as ground

truth. All three impairment models are trained based on the interactive dataset presented in Section

3.4. Finally, the core gaming QoE model is presented, which is developed upon the model framework

structure presented in Chapter 3. In addition, the ITU-T Rec. G.1072 model is described in detail and

the differences compared to the model framework of the thesis are explained.

Chapter 6 evaluates the performance of proposed models in terms of PLCC, SRCC and RMSE. First

the performance of the video coding impairment models are presented. The performance is evaluated

on the 5-point MOS scale to compare it with existing video/image quality models. In general the main

findings can be summarized as follows:

• The proposed GamingPara outperforms the ITU-T planning models in terms of PLCC and SRCC.

However, it underestimates the quality for datasets created with software encoders, GVSET, and

KUGVD, leading to higher RMSE than other models.

• Among bitstream-based models, the proposed BQGV as a packet header-based model performs

similarly to existing payload-based ITU-T models, P.1203 mode 3 and P.1204.3 on CGVDS

dataset. However, it performs poorly on datasets that are created with different encoding presets.

• The proposed NR model, NDNetGaming, outperforms all well-known video/image quality

metrics, including FR and NR metrics, across all three gaming video datasets. However, it does

not perform similarly well on non-gaming content.

• DEMI frame-level prediction performs similar to NDNetGaming on gaming content while

performing quite well on non-gaming content.

• If the temporal pooling of NDNetGaming and DEMI is applied, they both perform significantly

better compared to all video/image quality models across all gaming dataset, and similarly as

well as VMAF on non-gaming datasets.

In addition to the coding impairment, the performance of other impairment models is investigated

in Chapter 6. The results show a high performance of impairments models that predict the interaction

quality, based on ItransI and IcntrI , with PLCC over 0.90 on both training and validating datasets. The

performance of the proposed model to predict video discontinuity due to transmission errors (ItransV ) is

reasonable, PLCC of 0.85 on full dataset, considering the small number of conditions in the dataset

triggered by transmission errors.

Finally, the core model performance is evaluated on the validation part of the interactive dataset.

Depending on the selection of the coding impairment prediction model, the performance could vary, in
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terms of PLCC, from 0.80 to 0.90. The best performance is achieved if signal information is available

and if the NDNetGaming is selected as a coding impairment prediction model. It has to be noted

that for an accurate prediction, the model relies strongly on the information about the game class. If

the model does not have access to the information about the game classification, the high class of

complexity would be selected, which significantly decreases the performance, from PLCC of 0.90 to

0.71 if NDNetGaming is used for IcodV .

7.2 Contributions of Thesis

The thesis’s main contribution is the development of a gaming QoE model based on relevant impairment

factors to estimate the quality experienced by players of cloud gaming services. The model uses a series

of video coding impairment prediction models that allow using the framework for different purposes,

e.g., monitoring the quality, and based on the different levels of access to video stream. In addition, the

following contributions of thesis can be mentioned:

• Identifying quality factors influencing the quality of cloud gaming services.

• Creation of subjective test databases of video quality and gaming QoE using the passive and

interactive test paradigm, which allow the development of QoE models

• Development of a video game classification that classifies games according to their sensitivity

towards delay, frameloss, and video complexity.

• Development of multiple models for predicting the video quality of gaming content based on the

level of access to information about the degraded video, e.g., bitstream information and signal

information.

• Contribution to the three ITU-T Recommendations that are described in the present thesis, P.809,

G.1032, and G.1072.

• Contribute to open-source projects by providing the source codes for multiple developed models,

NDNetGaming, GamingPara, DEMI, and ITU-T Rec. G.1072, as well as making the video and

image quality datasets publicly available. This allows other researchers to develop and improve

the gaming QoE model for cloud gaming services in the future.

7.3 Limitation

Cloud gaming is one of the most challenging multimedia services that run on top of IP-based networks.

The development of a holistic quality model for cloud gaming services is very challenging and required

the author to limit the scope of the thesis to more realistic development of models that considers the

interest of stakeholders, cloud gaming and network providers, as well as a limited number of quality

factors and influencing factors. In the following, the limitation of the thesis will be discussed.

Users: Within the scope of the thesis, it is decided to target casual players who have a fair experience

and interest in playing games. Core gamers are not considered for multiple reasons. Core gamers are

very sensitive towards degradations, even small degradations, e.g., 100 ms delay, could be blamed

for the bad experience such as loss in a game and cause the departure of players of the service. This
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can be seen from statistical reports [131] suggesting that most of the cloud gaming service users are

casual gamers and not core gamers. Also, unlike the other services, several core gamers typically

play games with high-end technologies such as 144 Hz and High-Dynamic-Range (HDR) displays.

Thus, they may rate the reference condition in a subjective test much lower compared to other players,

just because of having different expectation. This was also observed in the interactive test, which

results in labeling some of the participants as experienced players. However, with the advancement

of network and multimedia technologies, it is expected that more experienced gamers join the cloud

gaming service; thus, they should not be neglected from the development of gaming QoE models.

Social Context Factor: It has been shown that players do not only play the games to have fun but

also to communicate with other players in the context of multiplayer gaming. However, measuring the

influence of social context on gaming QoE is a challenging task. Hence, following ITU-T Rec. P.809,

this factor is not considered in the subjective test, while the impact of this factor remains unclear.

Quality Features: In this work, only input quality and output quality are considered as the most

important quality features. The structural equation modeling conducted by Schmidt [70] on the

interactive dataset shows that 62 percent of the variability in the gaming QoE ratings can be explained

only by the individual ratings of input quality and output quality. If other quality features related to

player experience are taken into account, only 9 percent higher variability in the gaming QoE ratings (71

percent) can be explained by the model. However, games with certain design flaws might influence the

importance of aspects such as appeal and flow. Besides, if the study is conducted in a longer stimulus

duration, this may influence the importance of aspects such as immersion.

Subjective Test: Within the scope of this thesis, the studies are designed following ITU-T Rec. P.809.

As a choice of the questionnaire, a total of 31 items are selected as the post-condition questionnaire.

Such a long post-condition questionnaire might introduce fatigue during the subjective test, which

influences the ratings of participants, especially for the latter items. For the future subjective test, the

iGEQ items could be removed to reduce the number of items if only output quality and interaction

quality are considered for the development of the model. All studies are conducted in short stimulus

duration, as a consequence long-term effects are not considered in this work.

Video Games: The video games and the scenarios for the subjective test were selected according

to some criteria to ensure that different players perceive a very similar experience and to reduce

the influence of player performance or strategy in the game. Therefore, video games with multiple

mechanics or requiring participants to be involved to the story of the game are not offered to players. In

addition, this work is limited to the number of video games that are selected for the test, which might

not include the full spectrum of genres and game mechanics.

Game Classification: The game classification presented in Section 3.6 is a great help to develop

accurate gaming QoE models. However, the performance of gaming QoE models depends strongly on

the performance of these classification methods, which still rely on human judgment to identify the

game characteristics.

System Technology: The cloud gaming service is still on the rise, and new technologies rapidly

evolve the experience of the players. For example, recently advanced video codecs, such as

H.266/MPEG-I Part 3 (known as VVC) and AV1, offer better quality at the same bitrate level compared

the H.264/MPEG-4 AVC that is used in this thesis. However, due to additional latency that might add

to the service, they are not offered by any well-known cloud gaming service. While it could be assumed

that the proposed signal based models might be still valid, this needs to be investigated. In addition,
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the video enhancement techniques become popular not only in the development of the recent video

codecs, e.g., CDEF technique in AV1 [132], but also for gaming videos [133]. Such an example of

enhancement techniques could be image sharpening or histogram equalization, which introduces new

types of video degradation that are not considered within the scope of the thesis. In addition to the

advancement of video coding techniques, the advancement of output modalities such as VR HMD and

HDR displays (which require HDR content) are also new challenges that are required to be addressed

in the near future.

System Parameters and Range of Parameters: In this thesis, the parameters and range of parameters

are limited to allow training the model within a reasonable number of subjective tests. In the following,

a short list of essential parameters and the range of parameters that might be of interest for future work

is provided.

• Jitter is one of the important parameters that is neglected in this work. Delay and Jitter are

innately linked, and for selecting the range of Jitter, it must be considered in association with

delay.

• Network packet loss in this thesis is only applied following a uniform pattern, while for more

realistic modeling, complex patterns could be considered as well.

• Video Coding Setting follows a typical setting considered according to the NVIDIA cloud gaming

service. However, this setting might not be the same for other cloud gaming services.

• Audio Coding parameters are not considered since the audio signal is relatively smaller compared

to the video signal and probably will be less affected by the network and encoding degradation.

However, transmission error on audio signal and audio coding might influence the player

experience, which is out of the scope of this work.

• Short range delay might be of interest if core gamers are considered in the scope of the model.

Based on the collected data through the interactive test, it can be observed for many games that

participants cannot distinguish the quality between a reference condition and a condition with a

delay under 100 ms. This might not hold true if the core gamers are the target group. Thus, the

selection of more delay values below 100 ms might be of interest for accurate quality prediction.

Data Collection: Conducting a subjective test is an expensive process, especially considering the

lengthy interactive paradigm. This limitation does not only affect the number of testing parameters

and a selected range of parameters but also affects the size of the dataset for training and validating the

models. Consequently, the training and validation datasets are split according to the game class labels

to ensure a balanced number of each game class in both training and validation datasets. However,

this human biased splitting of the dataset to validation and training sets might positively influence the

performance of the models. Also, the validation dataset might not be large enough to draw a confident

conclusion about the performance of the developed gaming QoE model.

Performance Evaluation: The MOS values always have a statistical uncertainty, which is commonly

explained by the confidence interval. This uncertainty potentially affects the correctness of the results

reported using ranking order metrics and error measurement metrics. ITU-T Rec. P.1401 [129]

recommends using a statistical metric called epsilon insensitive RMSE (known as RMSE*), when the

uncertainty of the subjective scores is taken into account. This RMSE considers the 95 % confidence
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interval of the individual MOS scores. Similarly, Naderi et al. [134] suggest a transformation to MOS

values before measurement of ranking-based correlation, e.g., SRCC. However, Naderi showed that the

effect of uncertainty to SRCC measurement approaches to zero when the number of conditions in the

dataset increases. In addition, if the number of ratings per condition is high, typically the confidence

interval becomes smaller. A smaller confidence interval causes RMSE* gets closer to the absolute

RMSE. Therefore, due to the high number of conditions as well as a sufficient number of ratings per

condition in all datasets used in the performance analysis of the models, such a MOS transformation

and RMSE* are not applied in this thesis. However, the effect of subjective uncertainty remained

unclear in this work.

Considering these limitations, this work is the most extensive work conducted in the research

community to predict gaming QoE. However, cloud gaming is rapidly integrating new technologies

into the system, which requires extending the model for upcoming changes. In the next section, the

important aspects that must be considered for extending the current work are discussed.

7.4 Model Extensions

The proposed model framework in the presented thesis offers flexibility to extend the model for

recent technologies adapted to the cloud gaming service, such as recent video codecs, HDR, and VR

technologies. This is possible with the modular structure that allows updating each impairment factor

independent from others. For example, in a possible extension of the model for a new encoding setting

or codec, only IcodV requires to be retrained, and the prediction of other impairment factors should still

hold valid.

In the following, a short list of possible extensions of models is listed, which at this point of the

time can be foreseen as valuable and necessary steps towards developing a holistic gaming QoE model.

• Advanced Codecs: It is expected that new codecs soon be integrated into cloud gaming services.

As an example, Google announced that they are working on using the AV1 codec in their cloud

gaming Stadia service 1. To extend the developed model for a new codec, the IcodV must be

considered to be retrained. While it is expected that the proposed signal-based models still

perform decently, the bitstream-based and planning are required to be adapted.

• Bitstream-based Video Quality Models: In this thesis, a bitstream-based model is proposed that

uses the packet header information to predict the video quality. This type of model is considered

to be lightweight, accurate, and easy to be employed on network monitoring points. Thus,

bitstream-based models are suitable for cloud gaming providers as well as network providers

to monitor the quality of cloud gaming service. Due to the importance of this type of model

for quality monitoring, it is expected to see more efforts in the development of an accurate

bitstream-based model for cloud gaming services under different encoding settings. As an

example of such efforts, a new work item is established within ITU-T Study Group 12 to develop

a bitstream-based model for cloud gaming service, named ITU-T P.BBQCG [135].

• HDR, 4k, and 144Hz: Some cloud gaming service providers already offer 4k and HDR content,

e.g., Stadia. It is expected with the fifth generation technology standard for broadband cellular

networks (known as 5G), more bandwidth and lower end-to-end latency are available to the user

1https://chromeunboxed.com/stadia-av1-compression-codec
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of the cloud gaming service, allowing them to have an immersive experience with high bitrate

demanding technologies. This requires developing a video quality dataset based on the 4K and

HDR content and updating the coding impairment accordingly.

• User Profiling: One of the significant steps towards a holistic gaming QoE model is to integrate

user-related information into the model. Profiling the users of the service according to the level of

sensitivity towards certain types of degradation could help in the development of a user-dependent

model. Such a profiling method could be done based on demographic information, service usage,

and user preferences.
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A
Additional Material Related to Subjective

Experiments

In this Appendix, a short overview of the questionnaire, items, and collected demographic information

of the interactive dataset are described. The interactive test was conducted with 180 participants. The

demographic information collected in the experiment is given in Table A.1. In the following, the items

for pre-test, post-game, post-test, and post-condition questionnaire are listed.

Table A.1: Demographic statistics of test participants in interactive dataset.

Gender female male transgender others
73 107 0 0

Age 18-25 26-30 30-35 35-41
32% 31% 35% 2%

General gaming expertise (beginner – intermediate - expert) [%]
15.6 11.1 41.7 23.9 7.8

Experience with used game (beginner – intermediate - expert) [%]
32.8 27.8 26.7 8.3 4.4

Hours per week spend on playing video games
0 0-1 1-5 5-10 10-20 >20

21.7 24.4 27.8 18.9 5.6 1.7
Likes playing (strongly disagree – undecided - strongly Agree) [%]

1.7 2.2 15.6 52.2 28.3
Device PC console smartphone others

52.2 24.4 22.8 0.6

Pre-test Questionnaire:

1. What is your Year of Birth?

2. What is your gender?

a. Female
b. Male
c. Transgender
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d. Prefer not to say

3. Roughly how many hours per week do you spent on playing video games?

a. Between 0 to 1 hours
b. Between 1 to 5 hours
c. Between 5 to 10 hours
d. Between 10 to 20 hours
e. More than 20 hours

4. Roughly how often do you play video games in a week?

a. Never
b. Between 1 to 3 times a week
c. Between 3 to 7 times a week
d. Between 7 to 14 times a week
e. More than 14 times week

5. How would you describe your gaming experience (expertise)?

a. 1 – Beginner
b. 2
c. 3 – Intermediate
d. 4
e. 5 – Expert

6. I like playing video games.

a. 1 - Strongly Disagree
b. 2 – Disagree
c. 3 – Undecided
d. 4 – Agree
e. 5 - Strongly Agree

7. On which kind of device do you usually play games?

a. PC (Desktop)
b. Smartphone / Tablet
c. Console (PlayStation, XBox, ...)
d. Others

8. What kind of monitor are you typically using when playing?

a. Television (> 30”)
b. Desktop Monitor (> 20”)
c. Laptop (> 12”)
d. Tablet (> 8”)
e. Large Smartphone (> 5”)
f. Small Smartphone (< 5”)
g. Other

9. How experienced are you in playing the game "[game name]"?

a. 1 – Unexperienced
b. 2
c. 3 – Intermediate
d. 4
e. 5 - Expert
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Post-game Questionnaire:

The post-game questionnaire covers the following aspects: performance indication (PI), learnability

(LE), appeal (AP), and intuitive controls (IC). Component scores are computed as the average value

of its items. The used items are summarized in Table A.2 whereas an example of the used 7-point

EC-ACR scale for all items is shown in Figure A.1.

Table A.2: Overview of items used in the post-game questionnaire

Order Item Text Item ID

1 I could easily assess how I was performing in the game. PI1
2 Learning to operate the game is easy for me. LE1
3 I liked the graphics and images used in the game. AP1
4 Learning the game controls was easy. IC1
5 It was clear to me how my performance was going. PI2
6 It is easy for me to become skillful at using the game. LE2
7 The game appealed to my visual senses. AP2
8 The game controls are intuitive. IC2
9 I was informed about my progress in the game. PI3
10 I find the game easy to use. LE3
11 The game was aesthetically appealing. AP3
12 It was easy to remember the corresponding control. IC3

Post-game Questionnaire

I could easily assess how I was performing in the game.
1 / 12

❮ ❯

strongly disagree disagree undecided agree strongly agree

Figure A.1: Example of item and scales used in the post-game questionnaire.

Post-test Questionnaire:

For the post-test questionnaire, the following instructions are given to participants: “In the following,

we would like you to tell us about your judgement criteria. Please indicate on the scales below, how

important in general (not just for this study) the listed aspects are for your rating of the overall quality

of your gaming experience.”

An example of the used 7-point EC-ACR scale for all items is shown in Figure A.2. The bold written

aspect (in the example controllability) was exchanged with: video quality, audio quality, controllability,

responsiveness, immediate feedback, video fragmentation, video unclearness, video discontinuity,

suboptimal video luminosity, and playing performance. The order of items was randomized and an

open question about potential other aspects was added.
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Post-test Questionnaire

How important is the aspect Controllability for you?
1 / 11

❮ ❯

not important slightly moderately important very important

Figure A.2: Example of item and scales used in the post-test questionnaire.

Post-condition Questionnaire:

Participants are asked to indicate how they felt while playing the game for each of the following items

by clicking on the 7-point scale below as explained in the introduction. The questionnaire covers the

following aspects:

• Input Quality: Controllability (CN), Responsiveness (RE), Immediate Feedback (IF)

• Output Quality: Audio Quality (AQ), Video Quality (VQ), Video Fragmentation (VF), Video

Unclearness (VU), Video Discontinuity (VD), Suboptimal Video Luminosity (VL)

• Player Experience: Immersion (IM), Competency (CO), Negative Affect (NA), Flow (FL), Tension

(TE), Positive Affect (PA), Challenge (CH)

• Self-judgement of Playing Performance (PR), and Service Acceptance (AC)

The component scores of each aspect is computed as the average value of its items. The full list of

items is summarized in Table A.3 whereas the corresponding rating scales are shown in Figure A.3,

A.4, and A.5.
Post-condition Questionnaire

How do you rate the overall quality of your gaming experience?
1 / 31

❮ ❯

bad poor fair good excellentextremely bad ideal

Figure A.3: Example of the first rating scale type used in the post-condition questionnaire.

Post-condition Questionnaire

The responsiveness of my inputs was as I expected.
5 / 31

❮ ❯

strongly disagree disagree undecided agree strongly agree

Figure A.4: Example of the second rating scale type used in the post-condition questionnaire.
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Table A.3: Overview of items used in the post-game questionnaire

Order Item Text Item ID Scale

1 How do you rate the overall quality of your gaming experience? QOE 1
2 I felt that I had control over my interaction with the system. CN1 2
3 I noticed a delay between my actions and the outcomes. RE1 2
4 I felt a sense of control over the game interface and input devices. CN2 2
5 The responsiveness of my inputs was as I expected. RE2 2
6 I felt in control of my game actions. CN3 2
7 I received immediate feedback on my actions. IF1 2
8 My inputs were applied smoothly. RE3 2
9 I was notified about my actions immediately. IF2 2

10 How do you rate the overall audio quality? AQ 1
11 How do you rate the overall video quality? VQ 1
12 Fragmentation VF 3
13 Unclearness VU 3
14 Discontinuity VD 3
15 Suboptimal Luminosity VL 3
16 I found it impressive. IM1 2
17 I felt successful. CO1 2

18 I felt bored. NE1 2
19 It felt like a rich experience. IM2 2
20 I forgot everything around me. FL1 2
21 I felt frustrated. TE1 2
22 I found it tiresome. NE2 2
23 I felt irritable. TE2 2
24 I felt skillful. CO2 2
25 I felt completely absorbed. FL2 2
26 I felt content. PO1 2
27 I felt challenged. CH1 2
28 I had to put a lot of effort into it. CH2 2
29 I felt good. PO2 2
30 How do you rate your own playing performance? PR 1
31 Would you accept using a service under these conditions? AC 3

Post-condition Questionnaire

Fragmentation
12 / 31

❮ ❯

fragmented unfragmented

Figure A.5: Example of the third rating scale type used in the post-condition questionnaire. The 7-point
continuous bipolar scale was used which was attached with the following antonym pairs: fragmented and
unfragmented (VF), unclear and clear (VU), discontinuous and continuous (VD), suboptimal and optimal
(VL), no and yes (AC).
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