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Abstract: Sea-ice contamination in the antenna field of view constitutes a large error source in re-
trieving sea-surface salinity (SSS) with the spaceborne Soil Moisture Active Passive (SMAP) L-band 
radiometer. This is a major obstacle in the current NASA/Remote Sensing Systems (RSS) SMAP SSS 
retrieval algorithm in regards to obtaining accurate SSS measurements in the polar oceans. Our 
analysis finds a strong correlation between 8-day averaged SMAP L-band brightness temperature 
(TB) bias and TB measurements from the Advanced Microwave Scanning Radiometer (AMSR2) in 
the C-through Ka-band frequency range for sea-ice contaminated ocean scenes. We show how this 
correlation can be employed to develop: (1) a discriminant analysis that is able to reliably flag the 
SMAP observations for sea-ice contamination and (2) subsequently remove the sea-ice contamina-
tion from the SMAP observations, which results in significantly more accurate SMAP SSS retrievals 
near the sea-ice edge. We provide a case study that evaluates the performance of the proposed sea-
ice flagging and correction algorithm. Our method is also able to detect drifting icebergs, which go 
often undetected in many available standard sea-ice products and thus result in spurious SMAP SSS 
retrievals. 
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1. Introduction 
Three spaceborne L-band radiometers have been employed to measure sea-surface 

salinity (SSS) over the global ocean: (1) ESA’s Soil Moisture and Ocean Salinity (SMOS) 
mission, which has been operating since 2009; (2) NASA’s Aquarius mission, which oper-
ated between 2011 and 2015; and (3) NASA’s Soil Moisture Active Passive (SMAP) mis-
sion, which has been operating since 2015. These instruments measure the electromag-
netic passive microwave emission from the Earth’s surface and atmosphere at a frequency 
of 1.41 GHz or wavelength of 21 cm. Retrieval algorithms for these sensors, which turn 
brightness temperature (TB) measurements into SSS, have been developed and succes-
sively refined [1]. Over open ocean scenes, it has been possible to achieve an average 
global accuracy of 0.2 psu or better for the retrieved SSS on monthly time scales and for 
100-km spatial averages [2]. 

The retrieval accuracies of the L-band sensors strongly degrade in polar oceans. A 
major factor in this degradation is the decreased sensitivity of the L-band surface emission 
to SSS measurements at low sea-surface temperatures (SST). This results in a decreased 
signal-to-noise ratio in cold water (SST < 10 °C). To be specific, at colder SSTs, an error of 
+1 K in the TB measurement translates into an error of about –4 psu in the SSS retrieval. 
As such, improving SSS retrievals in or near polar regions has been identified as a major 
future science goal in ocean microwave remote sensing [3–6]. 

In this context, SSS retrievals close to the sea-ice edge have turned out to be particu-
larly challenging. Even very small sea-ice fractions in the antenna field of view result in 
large spurious salinity biases. The degree of sea-ice contamination in the antenna field of 
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view can be characterized by the quantity gice, which is defined as the sea-ice concentration 
weighted by the antenna gain pattern [7]: 

ice iceg = dA G f⋅∫  (1) 

here, G is the normalized antenna gain pattern projected on the Earth’s surface. The dA 
denotes the differential surface area, and fice is the sea-ice concentration (SIC) at the Earth’s 
surface. The integration in Equation (1) stretches over the whole Earth field of view. The 
measured emitted surface TB from the sea-ice contaminated Earth cell is given by: 

( )B,meas ice B,ocean ice B,ice B,ocean B,cT dA G 1 f T f T T T= ⋅ − ⋅ + ⋅ + ∆=  ∫  (2) 

with 

B,c ice B,ice B,oceanT g T T∆ ⋅ −≈     (3) 

in Equation (3), we have assumed constant average values for ocean and sea-ice TB within 
the field of view that contributes to the integral. The term ΔTB,c in Equation (3) can be 
regarded as a measure of sea-ice contamination in the measured TB. The TB of typical 
thicker sea-ice and ocean scenes differ by about 125 K for vertical polarization (V-pol). For 
horizontal polarization (H-pol) the sea-ice–ocean TB difference is even larger. We realize 
that an antenna gain weighted sea-ice fraction gice of only 1% will result in a positive TB 
bias error of about +1.25 K, which, in turn, translates into a fresh bias error of about –5 psu 
in the SSS retrieval. At L-band frequencies, the sea-ice TB depends on ice-thickness, which 
can vary over location and season, in particular in the N hemisphere [8]. It introduces 
further variability into the problem, which can be an additional source of error. All of this 
demonstrates the challenge of measuring SSS if even small sea-ice contamination occurs 
within the field of view. We also note that sea-ice contamination can occur through the 
antenna sidelobes, and, thus, the value for gice in Equation (3) can be sizeable, even if the 
SIC fice at the Earth boresight or within the main beam is zero. For both the Aquarius and 
the SMAP sensors, a sizeable portion of the antenna gain pattern G falls onto the sidelobes. 

This discussion demonstrates the necessity for (1) developing a reliable procedure to 
detect small sea-ice concentrations in the field of view of the L-band sensor antenna; and 
(2) developing a correction for it. The second task amounts to estimating the contamina-
tion ΔTB,c in Equation (3) as accurately as possible and, in turn, removing it from the TB 
measurement in Equation (2). One major obstacle in this methodology is the fact that avail-
able ancillary SIC products are generally not accurate enough to be used for detecting and 
removing sea-ice contamination in the SMAP salinity observations. Most of these stand-
ard SIC products, for example [9] or [10], apply a weather filter in their retrievals to screen 
out weather systems (clouds, rain, high winds), which also removes most but not all of 
the observations whose SIC is below 15%. To avoid sea-ice contamination in the SSS re-
trievals, the current NASA/RSS Version 4 SMAP Salinity release [11] employs a conserva-
tive ice mask, which results in a notable loss of data in the polar oceans [12]. 

The purpose of our study is to develop, train, and test sea-ice flagging and sea-ice 
correction algorithms for the SMAP SSS retrievals that can be implemented in future ver-
sion updates. Our methods will not use external ancillary SIC fields due to their afore-
mentioned insufficient accuracy in regards to low SIC near the sea-ice edge. Instead, both 
the SMAP sea-ice flagging and the sea-ice correction algorithms will use TB measurements 
from the JAXA Advanced Microwave Scanning Radiometer (AMSR2), which takes meas-
urements at frequencies between C-band and W-band and both vertical (V-pol) and hori-
zontal (H-pol) polarizations. This idea was inspired by Figures 1 and 2, which compare 
the eight-day averaged TB biases of the SMAP vertical polarization (V-pol) channel and 
the AMSR2 C-band (6.93 GHz) near the Antarctic sea-ice edge for two different periods 
during winter and summer seasons. The TB biases are determined as the difference be-
tween the measured TB at the ocean surface and the TB value computed from a radiative 
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transfer model (RTM). We will give a more detailed account of the TB calculation in the 
next section. Visually, there is a strong correlation between these two TB biases near the 
ice edge. This suggests that there is the potential for the AMSR2 TBs to be directly inte-
grated into the SMAP SSS retrieval algorithms for sea-ice flagging and correction. This is 
further supported by two key facts: 
(1) The spatial resolution of the SMAP footprint (≈40 km) and the lowest frequency 

AMSR2 frequency channel at C-band (≈50 km) are close. When multi-day aggregates 
are considered, in which several footprints are averaged together, then both sensors, 
SMAP and AMSR2, see approximately the same Earth scenes. Observations at the 
higher AMSR2 frequencies can be spatially resampled to the coarser C-band 
resolution. 

(2) Compared to the SMAP L-band channels, the AMSR2 channels are insensitive or only 
very weakly sensitive to SSS. The AMSR2 ocean measurements are affected by sea-
ice contamination but not by signals such as freshwater river plumes or melt run-off. 
This enables us to separate the spurious sea-ice signal from the real freshwater signals. 

 
Figure 1. 8-day average TB biases near the Antarctic sea-ice edge for a scene during the Austral winter (13 August 2019) 
(a) SMAP V-pol; (b) AMSR2 6.93 GHz V-pol channel. The TB bias is defined as the difference between measured and 
expected (computed) specular surface TB. The sea-ice contamination results in a positive TB bias for both SMAP and 
AMSR2 near the ice edge, which results in a fresh (negative) bias in the retrieved SSS. 

The proposed sea-ice flagging algorithm is designed to detect sea-ice concentrations 
gice in the SMAP 40-km footprint of about 1.5% or more. This is a much lower detection 
threshold than the sea-ice edge, which is commonly defined as the location where the SIC 
is 15%. The low detection threshold is mandated by the aforementioned high sensitivity 
of the SSS retrieval to sea-ice contamination. On the other hand, it is also essential to keep 
the false alarm rate as low as possible. False alarms will either result in unnecessary data 
loss or overcorrection. It is quite evident in Figures 1 and 2 that the good correlation be-
tween SMAP and AMSR2 TB biases really only applies near the sea-ice edge and breaks 
down over the open ocean. Thus, applying a correction to observations that are not con-
taminated by sea-ice would introduce an unnecessary error in the SMAP SSS retrievals. 
The sea-ice detection algorithm is based on a discriminant analysis technique adapted 
from pattern recognition theory, which is designed to discriminate two different classes 
of data: uncontaminated open ocean scenes and sea-ice contaminated scenes. The discrim-
inator analysis flag is then followed by additionally flagging the nearest neighbor (NN) to 
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a given observation, which will extend the area of flagged observations. The NN flagging 
is necessary to catch SMAP observations that contain sea-ice contamination in the antenna 
sidelobes. The sea-ice correction algorithm is a statistical regression designed to recover 
as many of the flagged SMAP SSS observations as possible. Both, the sea-ice flagging and 
the sea-ice correction algorithm input AMSR2 TB together with several external ancillary 
geophysical fields. The use of these ancillary fields will increase the performance of the 
algorithm. 

 
Figure 2. 8-day average TB biases near the Antarctic sea-ice edge for a scene during the Austral summer (4 January 2019) 
(a) SMAP V-pol; (b) AMSR2 6.93 GHz V-pol channel. The TB bias is defined as the difference between measured and 
expected (computed) specular surface TB. The sea-ice contamination results in a positive TB bias for both SMAP and 
AMSR2 near the ice edge, which results in a fresh (negative) bias in the retrieved SSS. The black arrows indicate possible 
candidates of very large floating icebergs (Section 3.5.). 

The vast majority of the scientific data users of the NASA/RSS SMAP SSS data utilize 
the eight-day or monthly time-averaged product from the Level 3 files. The Level 2 data 
are too noisy for most science applications. We have therefore decided to optimize our 
sea-ice flagging and sea-ice correction algorithms to perform best for the eight-day time-
averaged SSS products. Thus, the analysis presented herein will focus on eight-day aggre-
gate SMAP and AMSR2 TB observations. 

In our study, we will present results for the SMAP observations at the 40-km sensor 
resolution. The standard NASA/RSS SMAP SSS product has been smoothed to a spatial 
resolution of 70 km, which results in a noise reduction over open ocean scenes that makes 
the product more useful for most scientific applications [13]. In regards to the evaluation 
of biases due to sea-ice contamination and the bias mitigation after the sea-ice correction, 
there is, unfortunately, little error reduction gained when spatially smoothing the product 
from 40 km to 70 km. Thus, it is appropriate to perform the analysis at the 40-km spatial 
scale. 
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2. Materials and Methods 
2.1. Study Data Sets 
2.1.1. SMAP Brightness Temperatures 

The source for the SMAP TB are the L2C files from the NASA/RSS SMAP SSS V4.0 
Release [11], which have been sampled onto a 0.25° fixed Earth grid. For our study, we 
use the TB at the specular surface, labeled TB0(SMAP). It is calculated from the SMAP an-
tenna temperature (TA) measurement after removing (1) antenna effects (antenna emis-
sivity and cross-polarization contamination); (2) celestial radiation coming from the cos-
mic microwave background, galaxy, sun, and moon; (3) Faraday rotation in the Earth’s 
ionosphere; (4) atmospheric attenuation by oxygen, water vapor, and clouds; and (5) the 
wind induced rough surface emission [13–15]. We screen the observations for degrading 
conditions and discard data containing land contamination (land fraction > 1%), sun glint, 
large galactic radiation, rain, and very high wind speeds (>15 m/s). The L2C maps are then 
time-averaged into 8-day aggregate 0.25° SMAP TB0 maps. 

2.1.2. AMSR2 Brightness Temperatures 
The source for the AMSR2 TB are the L1A AMSR2 TA measurements. Our study uses 

observations from the 6.93, 10.65, 18.7, 23.8, and 36.5 GHz V-pol and H-pol AMSR2 chan-
nels. We do not use the 2nd C-band channels (7.3 GHz) in our study as they contain no 
additional information to the 6.93 GHz channels in regard to developing our sea-ice flag-
ging and correction algorithms. We also do not use the 89 GHz channels, as they are heav-
ily affected by clouds and rain, which could introduce errors in our analysis. The obser-
vations of all channels are spatially resampled onto the largest footprint, which is one of 
the C-band (6.93 GHz) channels (62 km × 35 km) [16]. The spatial resampling is based on 
the Backus-Gilbert optimum interpolation technique [17]. 

The AMSR2 TA are first transformed into the top of the atmosphere (TOA) TB, la-
beled TB,TOA(AMSR2), using the calibration procedure outlined in [18]. We employ the 
RTM to calculate the atmospheric attenuation [19] and the wind induced rough surface 
emission [20] for the AMSR2 channels to compute the specular surface TB for each chan-
nel, labeled TB0(AMSR2). In the calculation of the atmospheric attenuation, we use the 
simplified bulk expressions derived in [21] that depend on total columnar water vapor 
and total columnar cloud liquid water. The ancillary input fields to the RTM calculation 
will be discussed in Section 2.1.4. The specular surface emissivities E0(AMSR2) of the 
AMSR2 channels are determined by: 

( ) ( )B0 0 ST AMSR2 E AMSR2 T= ⋅  (4) 

where TS is the SST in Kelvin. 
The AMSR2 observations are screened for degraded conditions by removing meas-

urements that are contaminated by land, sun-glint, known sources of radio frequency in-
terference (RFI), and rain. When removing land contaminated measurements, we require 
that the land fraction within the AMSR2 6.93 GHz footprint is less than 1%. 

Finally, the resampled AMSR2 TB are averaged in space and time into 8-day aggre-
gate 0.25° maps, which comprise the same time periods as the SMAP TB map. When grid-
ding the AMSR2 swath observations into regular 0.25° maps, we use a simple straight 
average (drop in the bucket). We will create and use separate sets of maps for the TOA 
TB,TOA(AMSR2), and the specular surface E0(AMSR2). 

We note that the value of 1% for the land fraction threshold is the maximal land frac-
tion that is allowed within a single AMSR2 C-band footprint. In each 0.25° cell several of 
these footprints are averaged together, so the actual land contamination is in general con-
siderably less than 1% in the 0.25° cells, even at locations closest to the coast or near is-
lands. The land fraction does not change over time, so by careful inspection of the cases 
used in this study we can check that land contamination is not a major error source in our 
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analysis. We refer to the Supplementary Material for maps that zoom into coastal areas 
and small islands. 

2.1.3. Expected Specular Surface Brightness Temperatures and Emissivities 
The expected specular surface TB, labeled TB0,exp, is the result of the RTM calculation 

of the expected specular surface emissivity E0,exp multiplied by TS. The expected surface 
emissivity E0,exp is obtained from the Meissner–Wentz model of the dielectric constant 
(permittivity) of sea-water [15,20,22]. Our study calculates and uses expected TB0,exp for 
SMAP, and expected E0,exp for AMSR2. 

The SMAP TB0,exp are the basic metric for training and testing our proposed SMAP 
sea-ice flagging and sea-ice correction algorithms. At L-band frequencies, both TB0,exp and 
E0,exp depend on SST and SSS and, thus, their calculation requires an ancillary reference 
SSS field (see Section 2.1.4.). The SMAP TB0,exp are not an input for running the sea-ice flag-
ging and sea-ice correction algorithms, but we use them only for developing the algo-
rithms and evaluating their performances. Assuming that sea-ice contamination is the 
only uncertainty source in the SMAP SSS retrievals, then the difference between measured 
and expected SMAP specular surface TB is a proxy for the sea-ice contamination term 
ΔTB,c in Equations (1) + (2): 

( ) ( ) ( )B,c B,0 B0,meas B0,expT T SMAP T SMAP T SMAP∆ = ∆ = −  (5) 

we have performed our analysis for both SMAP V-pol and H-pol measured–expected TB. 
All of the results turned out to be very close for both polarizations. Therefore, we will only 
present results for the SMAP V-pol channel for the remainder of the manuscript. 

The AMSR2 E0,exp will serve as actual input to the sea-ice flagging and sea-ice correc-
tion algorithms. In the C- through Ka-band frequency range of AMSR2, the E0,exp do not 
depend or only depend very weakly on SSS. Thus, no external SSS input is required for 
their computation, and we can set the SSS in the dielectric constant model to a typical 
value of 35 psu without penalty. That is a crucial point for our proposed method. 

As we did for the measured SMAP and AMSR2 TB, we also create time averaged 8-
day aggregate 0.25° maps for the expected SMAP TB0,exp and the AMSR2 E0,exp. 

2.1.4. External Ancillary Data 
As noted earlier, our study requires various external ancillary fields. Specifically, we 

use the: 
(1) HYCOM SSS field [23] as the reference SSS. We are using the output from the 

operational ocean analysis that is run by the U.S. Navy [24]. In our study, this 
reference SSS is used in the computation of the SMAP TB0,exp, which serve as the basic 
metric for algorithm development and evaluation. The reference SSS field is not an 
input to the proposed sea-ice flagging or sea-ice correction algorithms or to the 
NASA/RSS SMAP SSS retrieval algorithm. 

(2) SST from the Canadian Meteorological Center (CMC) [25] as ancillary SST in the RTM 
computations for both SMAP and AMSR2. 

(3) Cross Calibrated Multi-Platform (CCMP) V2.0 wind speeds and directions [26–28] 
for the calculation of the wind induced rough surface emission for both SMAP and 
AMSR2. The CCMP winds are created by a variational analysis method that 
assimilates various microwave satellite wind measurements together with a 
background field from a numerical weather prediction model. 

(4) Atmospheric profiles for pressure, temperature, relative humidity, and cloud water 
density as well as total columnar water vapor and total columnar cloud water from 
the General Forecast System (GFS) of the National Centers for Environmental 
Prediction (NCEP) [29]. These fields are used for computing the atmospheric 
attenuation for both SMAP and AMSR2. 
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(5) Precipitation rates from the Integrated Multi-satellitE Retrievals for the Global 
Precipitation Mission (IMERG) Version 6 [30] for rain-flagging of both SMAP and 
AMSR2 observations. 
We note that these ancillary fields are the same that are already being used in the 

V4.0 NASA/RSS SMAP salinity retrieval algorithm for the purpose of turning measured 
SMAP TOA TB into surface emissivity. Extensive analysis has been conducted and shown 
that they are well suited for that purpose [14,31]. 

2.1.5. Training and Test Sets 
Our study is based on several training and test sets of SMAP and AMSR2 data, which 

are summarized in Table 1. For each of the two different years, 2018 and 2019, we have 
chosen one set during each of the 4 seasons (winter, spring, summer, fall) to accommodate 
a wide range of possible geophysical conditions near the ocean -sea-ice interface. Sets 1–4 
from the year 2018 are used for training, and Sets 5–8 from the year 2019 are used for 
testing. That guarantees that training and testing data are independent. We use Data Set 
9 from early 2021 for testing our algorithms for observations near floating icebergs. 

Table 1. Date and orbit ranges for the 8-day SMAP and AMSR2 TB data sets that are used for training and testing the sea-
ice flagging and sea-ice correction algorithms. 

Set Date Range 
SMAP  

Orbit Range 
AMSR2  

Orbit Range 
Pole Used for 

1 21–28 January 2018 15,875–15,991 30,209–30,325 
N training discriminant flagging 
S training regressions for sea-ice correction 

2 14–21 April 2018 17,089–17,205 31,418–31,533 
N training discriminant flagging 
S training regressions for sea-ice correction 

3 16–23 July 2018 18,448–18,565 32,772–32,888 
N training discriminant flagging 
S training regressions for sea-ice correction 

4 9–16 October 2018 19,692–19,808  34,010–34,125 
N training discriminant flagging 
S training regressions for sea-ice correction 

5 1–08 January 2019 20,920–21,037 35,233–35,349 S 
testing discriminant flagging 

testing regressions for sea-ice correction 
6 24–31 March 2019 22,120–22,236 36,427–36,543 S 
7 10–17 August 2019 24,153–24,269 38,452–38,567 S 

8 21–28 September 2019 24,767–24,883 39,063–39,179 
S 
N Arctic example (Section 3.4.) 

9 
27 February–6 March 

2021 
32,445–32,561 46,708–46,824 S iceberg A-68 (Section 3.5.) 

As discussed in Section 2.1.4., we use the HYCOM SSS from the U.S. Navy opera-
tional ocean analysis as a reference field. The reference SSS is generally more reliable near 
the Antarctic sea-ice edge than near the Arctic sea-ice edge. In the Southern polar oceans, 
there exist reliable in-situ measurements from ARGO drifters, which serve as an im-
portant input to the operational ocean analysis data assimilation, whereas in the Northern 
polar oceans those in-situ measurements are sparse. Moreover, there are many freshwater 
river outflows into the Northern polar oceans, particularly around Northern Russia. In 
those instances, the reference SSS is often a poor representation of the true SSS field, which 
can result in a significant mismatch between measured and expected TB that is not caused 
by any sea-ice contamination. Last but not least, the L-band TB variability due to varying 
sea-ice thickness is much less prevalent in the Antarctic oceans than in the Arctic oceans, 
where large areas of thin sea-ice form near the sea-ice edge during fall. To avoid tainting 
the performance statistics, we will use only scenes in the Southern hemisphere for algo-
rithm testing. We will show results for a case in the Arctic Ocean (Section 3.4.) to 
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demonstrate that the algorithm works there as well, but the observations from this case 
will not be included in the performance statistics. 

The training of the algorithms turns out to be very robust and using scenes from the 
Northern hemisphere is not harmful. For training the sea-ice detection and flagging algo-
rithm, we have found that it is actually slightly beneficial to use Arctic scenes, but only if 
the observations in known areas of freshwater river outflows are discarded. 

2.1.6. A-Priori Sea-Ice Flagging 
We impose a climatological monthly sea-ice mask as a-priori condition for the sea-

ice detection and correction algorithms. This climatological sea-ice mask was compiled 
from many years of historical SIC data before the launch of SMAP and AMSR2. Its sole 
purpose is to provide a simple indicator for locations in the ocean where sea-ice can form. 
The mask also includes areas where drifting icebergs have been detected. Figure 3 shows 
the extent of the sea-ice mask for the example scenes from Figures 1 and 2. In addition, we 
also require the value of the ancillary SST to be lower than 10 °C. If either one of these two 
a-priori conditions are not met, the sea-ice detection algorithm is not run, the observation 
is not flagged as sea-ice, and no sea-ice correction is performed. The reason for applying 
these a-priori constraints is to avoid over-flagging and over-correcting observations that 
are very unlikely contaminated by sea-ice. 

 
Figure 3. Climatological sea-ice masks near Antarctica for two sample days: (a) 13 August 2019 (Set 7-S); (b) 4 January 
2019 (Set 5-S). 

2.2. Sea-Ice Detection and Flagging 
2.2.1. Discriminant Analysis 

The first and biggest step of the sea-ice detection and flagging algorithm employs the 
Fisher Discriminant Analysis, which is a well-established method in pattern classification 
for distinguishing two different classes of data points in a higher-dimensional space. Ap-
pendix A gives a summary and outline of this methodology. 
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When training the discriminant analysis, we draw data from two classes both of 
which are subsets of the 4 training sets listed in Table 1. These classes are defined as: 

( )
( )

B0 1V pol

2 B0 3V pol

T SMAP e Class 1

e T SMAP e Class 2
−

−

∆ < ⇒

< ∆ < ⇒
 (6) 

we have threshold values of e1 = 0.4 K, e2 = 2.0 K, e3 = 4.5 K. The RMS difference for 8-day 
aggregate ΔTB0(SMAP)V-pol over open ocean scenes is found to be about 0.2 K, so any ob-
servation that falls within Class 2 is very likely contaminated by sea-ice. The sea-ice de-
tection threshold e2 of 2.0 K corresponds to an approximate sea-ice concentration gice of 
1.5%. If the discriminant analysis determines that an observation falls into this class, then 
it is flagged as sea-ice. Observations that fall within Class 1 might still contain some sea-
ice contamination, and we address them in the second step of the sea-ice flagging algo-
rithm. It is necessary to leave a large enough separation between the upper threshold e1 
of Class 1 and the lower threshold e2 of Class 2. If the values for these thresholds are too 
close together, the discriminant analysis is less effectively able to distinguish between the 
two classes, which would result in an increased number of missed detections, false alarms, 
or both. The reason for imposing an upper threshold e3 in the definition of Class 2 will be 
discussed shortly. 

The inputs to the discriminant analysis are the measurements X of the 10 AMSR2 TB 
channels, each of which represents a point in a 10-dimensional data space. We consider 
two cases for the AMSR2 data points X: Case 1 uses the TOA AMSR2 TB. Case 2 uses the 
measured–expected AMSR2 surface emissivities: 

( )
( ) ( )

k B,TOA k

k 0,meas 0,exp effk

Case 1 : T AMSR2

Case 2 : E AMSR2 E AMSR2 T

=

 = − ⋅ 

X

X
 (7) 

where the typical SST of Teff = 273.15 K serves to convert the dimensionless emissivity 
values into quantities with dimension K. The index k in Equation (6) runs over the 10 
AMSR2 channels. 

The Fisher Linear Discriminant Analysis determines an optimal direction W within 
this 10-dimensional space, which results in the best separation between the two classes 
after the data are projected on it. The elements of the projection vector W can be regarded 
as optimal weighting coefficients of the 10 AMSR2 channels. Table 2 lists the results for 
the components of W that were determined from the training Sets 1–4 from Table 1 for 
both Case 1 and Case 2. We notice very low weights in the high-frequency channels, 23.8 
and 36.5 GHz for Case 2, in which the atmospheric attenuation is explicitly removed. 
These higher frequency channels are more sensitive to the atmosphere and thus more im-
pacted by uncertainties in the ancillary fields which are used for removing the atmos-
pheric effects, in particular cloud liquid water and water vapor. The emissivity difference 
of the lower frequency AMSR2 channels, in particular C-band, correlates better with the 
observed SMAP ΔTB0. The discriminant is given by the projection of the data vector X onto 
the projection direction W, which is the scalar product WT·X of the two vectors. For the 
determination of the criterion to distinguish between the two classes, we plot the proba-
bility density functions (PDFs) or histograms of the discriminant WT·X for each class (Fig-
ure 4). The intersection point of the two PDFs defines the value d of the decision boundary 
and the decision criterion (A10) in Appendix A. The values for d for the two cases are also 
listed in Table 2. The values of W and d are determined from the training data sets and 
these values are subsequently used in the test runs. 



Remote Sens. 2021, 13, 5120 10 of 23 
 

 

 
Figure 4. Probability density functions (pdf) of the two classes defined in Equation (5). The two pdf 
curves were computed for the training data sets (Table 1) and refer to case 2, which uses the AMSR2 
measured minus expected specular surface emissivities as input. The x-axis values are the discrimi-
nant WT · X. The decision boundary d is at the intersection between the two pdf, which in this ex-
ample is d = 0.85. 

Table 2. Values of the components of the Fisher Linear Discriminant Analysis projection vector W (Appendix A) within 
the 10-dimensional space spanned by the AMSR2 TB channels in the training data set (Table 1). The length of the vector 
W has been normalized to 1. Case 1 refers to the algorithm using the AMSR2 TOA as input. Case 2 refers to the algorithm 
using the AMSR2 measured minus expected specular surface emissivities as input. The last column contains the values 
for the decision boundary d for each case. 

Channel i 6.93 V 6.93 H 10.65 V 10.65 H 18.7 V 18.7 H 23.8 V 23.8 H 36.5 V 36.5 H d 
Wi (case 1) 0.140082 −0.46514     0.254423 −0.08172 −0.62169 0.486014 0.168304 −0.12771 −0.15391 0.03985 52.05 
Wi (case 2) 0.01366 −0.50493 0.43747 −0.10526 −0.70372 0.20662 −0.00025 0.06365 −0.00406 0.02058 0.85 

Including an upper threshold value e3 in the condition for Class 2 in Equation (5) 
might look surprising at first. The reason for including this upper threshold is merely 
technical. For the numerical calculation of the optimal projection vector W from Equation 
(A9), it is desirable that the scatter matrices Si in (A7) for both classes i = 1,2 have the same 
order of magnitude. This can be achieved by introducing an upper threshold in the defi-
nition of Class 2, as we have done. One strength of the Fisher Linear Discriminant Analysis 
is that it is robust when adding additional data points to Class 2. The detection algorithm 
has no difficulty placing any event for which ΔTB0(SMAP) exceeds the value e3 into Class 
2, thus classifying it correctly as a sea-ice contaminated observation. 

Table 3 lists the basic characteristics of this first step in the sea-ice detection algo-
rithm, i.e., the missed detection and the false alarm rate. When calculating these values, 
we have only included observations that fall within the a-priori sea-ice mask (Section 
2.1.6.). That means that a rate of x% refers to x% from all observations that have been a-
priori masked. We see that Case 2, which inputs AMSR2 specular surface emissivity, has 
better skill than Case 1, which inputs AMSR2 TB TOA, particularly in regard to false 
alarms. The calculation of the AMSR2 specular emissivity from the TOA TB requires ex-
ternal ancillary input fields for atmosphere, wind speed, wind direction, and SST followed 
by an RTM calculation of the atmospheric attenuation and the wind induced rough sur-
face emission, which are then both removed from the TOA TB. The ancillary fields contain 
valuable information and removing the atmospheric and roughness effects helps to im-
prove the skill of the detection algorithm. The benefit of removing atmospheric and wind 
roughness effects on sea-ice detection and SIC retrievals has been demonstrated in several 
studies [32–34]. 
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Table 3. Missed detection and false alarm rate for the discriminant sea-ice flag in the test data set 
(Table 1). Only observations within the a-priori sea-ice flagging (Section 2.1.6.) are considered for 
calculating the rates. Case 1 refers to the algorithm using the AMSR2 TOA as input. Case 2 refers to 
the algorithm using the AMSR2 measured minus expected specular surface emissivities as input. A 
missed detection is defined as an observation, which the detection algorithm places into Class 1 but 
for which ΔTB,0(SMAP) > e2 =2.0 K. A false alarm is defined as an observation, which the detection 
algorithm places into Class 2 but for which ΔTB,0(SMAP) < e1 = 0.4 K. 

 Case 1 Case 2 
missed detection rate 0.15% 0.12% 

false alarm rate 0.39% 0.06% 

2.2.2. Nearest Neighbor Flagging 
The discriminant analysis used in the 1st step of the sea-ice detection algorithm is 

designed to safely detect sea-ice contaminations of 1.5% or more as part of Class 2. How-
ever, observations that the discriminant analysis does not put into Class 2 can still be con-
taminated by sea-ice and thus might need to be flagged as well. Lowering the threshold 
value e2 in the class definition (5) would achieve that, but it would also result in an in-
creased number of false alarms, which is not desirable. In order to catch the majority of 
these low SIC cases, we add a NN flagging as a 2nd step of the sea-ice detection algorithm. 
The basic assumption is that most of the sea-ice contaminated observations that went un-
detected in the 1st step are in close spatial proximity to at least one of the events that have 
already been flagged. Our sea-ice detection flags both the nearest neighbors and the next 
to nearest neighbors of any cell that the discriminant analysis has put into Class 2. This 
amounts to flagging the 24 surrounding cells of the 0.25° grid together with any cell from 
Class 2. 

2.3. Sea-Ice Zones 
The combined discriminant and NN sea-ice flagging scheme allow us to define sea-

ice zones, which classify the severity of sea-ice contamination for each observation. This 
will become helpful for developing and evaluating the sea-ice correction algorithm. Fig-
ure 5 shows the schematic flow and decision tree for sea-ice zone classification. An obser-
vation is placed into Zone 3 if it is flagged by the discriminant detection algorithm and at 
least one of its NN is not flagged. An observation that is flagged by the discriminant de-
tection algorithm and at least one of its NN has been classified to be within Zone 3 is 
placed into Zone 4. The same decision is repeated for Zone 5 classification. An observation 
that has not been flagged by the discriminant algorithm but has at least one flagged NN, 
is placed within Zone 2. That decision is again repeated twice for classifying observations 
within Zone 1 and Zone 0. Observations that lie within Zone 0 are regarded as open ocean 
scenes. Figure 6a illustrates the five sea-ice zones for a sample scene near the Antarctic. It 
is evident that the distance to the denser sea-ice pack and thus the severity of sea-ice con-
tamination increases when going from Zone 0 to Zone 5. For comparison, we have plotted 
the antenna gain weighted sea-ice fraction from the OSI-SAF SIC product [10] in Figure 
6b. The sea-ice zones found by our algorithm match visually well with locations where 
gice (OSI-SAF) exceeds about 1%. 
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Figure 5. Schematic flow diagram of the sea-ice detection and flagging algorithm and defintion of the sea-ice zones 0–5. 

 
Figure 6. (a) Illustration of the sea-ice zones 0–5 for an area near the Antarctic ice shelf. Zone 0 (open ocean) observations 
are plotted white. The area near (65S, 140W) depicts a very large iceberg. (b) Antenna gain weighted sea-ice fraction gice 
from the OSI-SAF SIC product [10]. 

2.4. Sea-Ice Correction 
The purpose of the sea-ice correction algorithm is to estimate the contamination term 

ΔTB,c for the sea-ice flagged observations (given by Equations (2), (3) and (5)) and then 
subtract it from the measured SMAP TB,0 before the SSS is retrieved. As we did for the 
discriminant flagging algorithm, we again consider the two cases defined in Equation (6). 
Case 1 uses the TOA AMSR2 TB as input, and Case 2 uses the measured–expected AMSR2 
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surface emissivities as input. The corrections are determined as statistical linear regres-
sions, which have the forms: 

( ) ( )

( ) ( ) ( )
=

=

∆ = ∆ = α + α ⋅

 ∆ = ∆ = β ⋅ ⋅ − 

∑

∑

10

B,corr1 B,0,1 0 k B,TOA k
k 1

10

B,corr2 B,0,2 k S 0,meas 0,exp kk 1

T T SMAP T AMSR2

T T SMAP T E AMSR2 E AMSR2
 (8) 

The indices 1 and 2 distinguish the two cases 1 and 2. 
The regression coefficients αk and βk in Equation (7) are derived for the training set 

and then evaluated for the test set listed in Table 1. We derive separate regressions for 
each of the Zones 1–4. No sea-ice correction is performed for observations in Zone 0 (i.e., 
open ocean), in which sea-ice contamination is non-existent or small. Performing a correc-
tion, in this case, would likely introduce unnecessary errors into the SMAP SSS retrievals. 
Observations within Zone 5 are considered non-salvageable for the purpose of retrieving 
SSS. 

We train and apply separate corrections for the SMAP V-pol and H-pol channels. 
Note that the regression for Case 2 in Equation (7) does not contain a constant term. The 
assumption is that the correction term should go to zero if the measured and the expected 
AMSR2 surface emissivities are the same, as in this case the gice goes to zero as well. We 
also note that sea-ice contamination always results in a positive TB bias. Because of noise 
in the observations, the calculated values of ΔTB,c in Equation (7) are sometimes negative. 
In these instances, we set ΔTB,corr = 0, and we do not apply a sea-ice correction. 

3. Results 
3.1. Correlation between SMAP and AMSR2 Brightness Temperatures 

A pivotal point for the performance of the proposed flagging and correction method 
is the very good correlation between the SMAP and the AMSR2 measured–expected TB 
for the 8-day aggregate observations near the sea-ice edge. The ΔTB,0 of the two lowest 
AMSR2 frequency channels, 6.93 GHz and 10.65 GHz, correlate best with the SMAP ΔTB,0. 
This is mostly due to the fact that the higher AMSR2 frequencies are more strongly af-
fected by atmospheric effects (i.e., water vapor and cloud water absorption), which act as 
noise sources in the detection and correction algorithms. Figure 7 shows a 2-dimensional 
logarithmic joint histogram of the SMAP V-pol specular surface TB bias ΔTB,0(SMAP V) 
and the scaled AMSR2 6.93 GHz V-pol specular TB bias λ·ΔTB,0(AMSR2 6V) for the test set 
scenes (Table 1) within sea-ice zones 1–4. The scaling factor λ can be determined from a 
linear regression and is found to be λ = 1.15. The correlation coefficient is 0.96 (Table 4). 
Similar values are found (Table 4) for the correlation coefficients between the ΔTB,0(SMAP 
V) and the sea-ice correction terms ΔTB,corr,1 and ΔTB,corr,2 that were derived in Section 2.4. 
It is because of these high correlations, and the fact that the AMSR2 TB are insensitive to 
SSS, that we can employ them for sea-ice flagging and sea-ice correction in the SMAP SSS 
retrieval algorithm. 

Table 4. Pearson correlation coefficients between the SMAP V-pol specular surface TB bias 
ΔTB,0(SMAP V) for the test set scenes (Table 1) within sea-ice zones 1–4. The ΔTB,0 (6V) is the AMSR2 
6.93 GHz V-pol specular TB bias. The ΔTB,corr1 and ΔTB,corr2 are the values for the sea-ice corrections 
that were derived in Section 2.4. 

Product ΔTB,0 (6V) ΔTB,corr1 ΔTB,corr2 
correlation 0.96 0.96 0.96 
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Figure 7. 2-dimensional logarithmic joint histogram of the SMAP V-pol specular surface TB bias 
ΔTB,0(SMAP V) and the scaled AMSR2 6.93 GHz V-pol specular TB bias λ·ΔTB,0(AMSR2 6V) for the 
test set (Table 1) within sea-ice zones 1–4. The bin size is 0.25 K. The value of the scaling factor is λ 
= 1.15. The dashed line indicates the 1:1 line (ideal case). The full line indicates the binned average 
between y-axis versus x-axis and x-axis versus y-axis. The Pearson correlation coefficient is 0.96. 

We note that the lowest frequency AMSR2 channels (C-band and X-bands) correlate 
best with SMAP, though the higher AMSR2 channels (Ku–Ka-bands) still contain valuable 
information when it comes to sea-ice contamination, and it is, therefore, beneficial to in-
clude them in our method. 

3.2. Performance Evaluation of the Sea-Ice Correction Algorithm 
Table 5 summarizes the performance evaluation statistics for the two cases of the sea-

ice correction algorithm applied to the test cases within Zones 1–4 and compares them to 
the case without applying a correction. We have also included estimated values for the 
sea-ice fraction gice in each zone. 

Table 5. Performance statistics of the sea-ice correction algorithm (Section 2.4.) for the test set (Table 1) within sea-ice zones 
0–4. The table lists biases, standard deviations and RMS (all in K) for the performance metric, which is the SMAP V-pol 
specular surface TB bias ΔTB,0(SMAP V). Case 1 refers to the algorithm using the AMSR2 TOA as input. Case 2 refers to 
the algorithm using the AMSR2 measured minus expected specular surface emissivities as input. The estimated average 
gice values in the 2nd column are obtained by dividing the values for the TB biases without correction in each zone by 125 
K, which is a typical value for the L-band TB difference between sea-ice and ocean scenes. 

  No Correction Case 1  
Using AMSR2 TB TOA 

Case 2  
Using AMSR2 E0 Meas-Exp 

Zone estimated gice Bias Std.Dev RMS Bias Std.Dev RMS Bias Std.Dev RMS 
0 <0.05% 0.07 0.20 0.21       
1 0.3% 0.33 0.28 0.43 −0.03 0.27 0.27 0.02 0.28 0.28 
2 0.6% 0.70 0.56 0.89 0.06 0.52 0.52 0.02 0.50 0.50 
3 2.2% 2.76 2.02 3.42 0.19 1.32 1.33 −0.10 1.33 1.33 
4 9.6% 11.62 8.07 14.14 −0.01 3.12 3.12 −0.51 3.35 3.39 

The correction algorithm was designed and trained to debias the SMAPΔTB,0 in each 
of the zones. The values show that this goal has been largely achieved. It is also 
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encouraging to see reduced values for the standard deviations. The relative improvement 
compared to the uncorrected cases is strong for Zone 3 observations and even stronger for 
Zone 4 observations. We should note, however, that the remaining errors after the correc-
tion for Zone 3 and Zone 4 will still result in large errors in the SSS retrievals. A TB error 
of 1 K translates into an SSS error of about 4 psu in cold water (Section 1), and, thus, the 
expected SSS errors are about 5 psu in Zone 3 and about 12 psu in Zone 4. SSS errors of 
these magnitudes might still be too large for many scientific or operational oceanographic 
applications. Based on the results shown in Table 5, our analysis is able to give a reliable 
estimate of the SSS error in each of the zones. We expect that sea-ice corrected observations 
within Zone 1 and Zone 2 will be useful for the majority of scientific studies. The following 
sections will show several examples. Ultimately, it depends on the size of the signal of 
interest, and it will be up to the data users to decide if they want to discard the data for 
Zones 3 and 4. 

Table 5 indicates that the Case 2 algorithm, which employs external ancillary fields 
and the RTM performs slightly better in Zones 1 and 2, whereas the Case 1 algorithm, 
which does not use external ancillary fields, performs slightly better in Zone 4. This is 
likely due to the fact that the quality of the external ancillary fields degrades with increas-
ing sea-ice concentration. In particular, the ancillary SST and wind fields depend on sat-
ellite measurements, which become less accurate or are unavailable for observations 
within Zone 4. In Case 1, the higher frequency channels are indirectly employed to remove 
the atmospheric, wind, and SST effects from the TB TOA. In Case 2, this role is taken by 
the ancillary fields and the RTM calculation of atmospheric attenuation and wind induced 
rough surface emission. For Case 1, it is conceivable to develop a more elaborate machine 
learning technique, for instance, a neural network. It will need to be seen if this results in 
better performance than the statistical regression algorithm. 

3.3. Antarctic Scene Examples 
Figure 8 shows the results of the sea-ice flagging algorithm when applied to the sam-

ple test scenes from Figures 1 and 2. The figure plots only observations that fall within 
Zone 0. This means that all of the sea-ice contaminated data have been removed resulting 
in almost bias-free scenes. Figure 9 shows the result within Zones 0–2 after the sea-ice 
correction algorithm has been applied. Only few cells are visible that are still contami-
nated by sea-ice. The vast majority of grid cells are free of large sea-ice contamination, and 
the SSS retrievals are of similar quality as over the open ocean. We will discuss the residual 
errors in ΔTB,0(SMAP) that remain after the sea-correction is applied in more detail in Sec-
tion 4. 

 
Figure 8. SMAP V-pol TB biases for the test cases from Figure 1 and Figure 2 after discriminant and 
NN flagging. The resulting observations lie all within sea-ice Zone 0. (a) 13 August 2019; (b) 4 Jan-
uary 2019. 



Remote Sens. 2021, 13, 5120 16 of 23 
 

 

 
Figure 9. SMAP V-pol TB biases for the test cases from Figure 1 and Figure 2 after flagging and sea-ice correction within 
sea-ice Zones 0–2. (a) 13 August 2019; (b) 4 January 2019. 

3.4. Arctic Scene Example 
Figure 10 shows an example of how the algorithms perform in the Arctic. The large 

red areas are freshwater outflows from Siberian rivers. This positive SMAP TB bias is most 
likely caused by the HYCOM reference SSS underestimating the freshening caused by 
these river outflows whereas SMAP picks it up. AMSR2 is not sensitive to the freshening, 
and, thus, these areas remain unflagged, and no sea-ice correction is done. This is the de-
sired outcome i.e., areas with no sea-ice should not be flagged as such. On the other hand, 
it is evident from Figure 10 that our algorithm is capable of detecting, flagging, and cor-
recting the sea-ice contamination near the sea-ice edge, where spurious SMAP TB biases 
are observed. 

 
Figure 10. SMAP V-pol TB biases for an Arctic test scene on 24 September 2019 (Set 8 from Table 1). (a) before flagging 
and correction in zones 0–3; (b) after flagging and correction showing zones 0–2. The large red areas indicate freshwater 
river outflows. These areas are not affected by the sea-ice flagging and correction algorithms. 

3.5. Icebergs 
Very large drifting icebergs are a potential source of serious errors in the SMAP SSS 

retrievals. Even though icebergs are not sea-ice, the electromagnetic properties of sea-ice 
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and icebergs result in a similar degree of contamination in the SSS measurement. The a-
priori climatological ice mask (Section 2.1.6.) deliberately includes areas that are prone to 
contain drifting icebergs. That is essential to enable the sea-ice flagging algorithm to also 
detect icebergs. A closer look at Figure 2 shows some very large icebergs near Antarctica, 
which are both visible in the SMAP TB and in the AMSR2 6V TB. Checking the results of 
the sea-ice flagging algorithm (Figure 8b) and the sea-ice correction algorithm (Figure 9b) 
for the same scene indicates that our method is able to detect these icebergs and correct 
the contamination to a good extent. 

A good example of this detection and correction is provided by the very large iceberg 
A-68 [35], which was drifting near the South Georgia Islands and several hundred kilo-
meters away from the Antarctic sea-ice edge in the early months of 2021. It was the cause 
of large spurious fresh SMAP SSS values in that location, whose fresh biases exceeded 10 
psu. This resulted in a surface area of about 250,000 km2 of undetected contaminated 
SMAP SSS data over the course of several weeks. Figure 11 shows (a) the iceberg contam-
inated SMAP data and (b) the result after flagging and correcting the contaminated obser-
vations. Our method appears to be very effective in detecting and mitigating the problem. 

We note that neither of the products [9,10] shows this iceberg in their SIC data. 

 
Figure 11. SMAP V-pol TB biases for an area around the South Georgia Islands near the Antarctica 
on 02 March 2021 (Set 9 from Table 1) that was affected by the very large drifting iceberg A-68 [35]. 
(a) before flagging and correction; (b) after flagging and correction showing zones 0–2. 

4. Discussion 
This section discusses the uncertainty and error sources in our methodology and its 

limitations. 
(1) Radiometer noise in the AMSR2 TB measurements is a source of error. However, the 

noise in the individual measurements is strongly reduced in the eight-day averages. 
Thus, the impact of AMSR2 radiometer noise on our detection and correction 
algorithms is small. 

(2) A larger uncertainty source are errors in the external ancillary fields, which might 
not get suppressed in the eight-day averaging. This impacts the algorithms from Case 
2, which use the ancillary fields to remove atmospheric and wind roughness effects 
from the AMSR2 TOA TB. We expect the errors in the ancillary fields for SST, wind 
speed, and direction to increase with increasing sea-ice fraction gice and decreasing 
distance from the sea-ice edge. The ancillary data sets for these parameters are Level 
4 products that rely on microwave satellite observations as input. When approaching 
the ice edge, the microwave satellite observations are flagged, and, thus, fewer 
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satellite input data become available. This can result in lower accuracy of the ancillary 
Level 4 product [26]. 

(3) One of the major assumptions when using the AMSR2 TB to flag and correct the sea-
ice contaminated SMAP TB was that the spatial resolutions of the SMAP and the 
AMSR2 TB measurements are similar. When averaged over eight days, the different 
orientations of the antenna footprints at a certain location have less of an impact. This 
means that SMAP and AMSR2 see approximately the same Earth scene. That 
assumption is of course only approximately fulfilled, and in reality, there is some 
spatial mismatch between the SMAP and the AMSR2 observations. It is possible to 
reduce this uncertainty source by resampling the SMAP and all the AMSR2 channels 
to the same target location and the same spatial resolution by employing the Backus-
Gilbert optimum interpolation technique [17]. This resampling would use a polar 
stereographic projection for selecting the target locations, which is better suited than 
a regular 0.25° grid in polar regions. This is a project that is currently being 
considered, but it will require considerable effort. 

(4) There are scenarios that can result in a degradation of the good correlation between 
the SMAP and the AMSR2 TB. The most important one is thin sea-ice, which impacts 
the higher AMSR2 frequencies more than the lower ones or the SMAP L-band. We 
note that, at L-band, the sea-ice penetration depth is approximately 0.5 m, and the 
penetration depth grows with the electromagnetic wavelength. Large areas of thin 
ice tend to form in the Arctic oceans during fall. In the S hemisphere, this problem is 
less prevalent. Further studies are necessary to examine if and how much this poses 
a problem for our flagging and correction method. 

(5) Undetected RFI in the AMSR2 TB also constitutes an error source. 
(6) A problematic case is sea-ice close to the coast, which can result in simultaneous land 

and sea-ice contamination of the SMAP antenna field of view. Our proposed sea-ice 
detection and correction algorithms were not designed to handle this case. Likewise, 
we expect that the sidelobe correction for land contamination that is currently 
applied in the NASA/RSS SMAP SSS retrievals [13,14] is not able to cope with this 
scenario either. 

(7) The flagging method is not able to detect observations of very small sea-ice fractions 
that are significantly lower than the detection threshold of the discriminant analysis 
(1.5%) and that are not NN or next to NN of an observation that has been flagged by 
the discriminant analysis. 

(8) The statistical linear regressions that are used in the sea-ice correction algorithm are 
designed to de-bias the ΔTB,0(SMAP) in each sea-ice zone, which they do (Table 5). 
The residual errors after applying the correction approximately add to zero when 
summing over all test scenes with standard deviation values listed in Table 5. 
However, we note that the spatial correlation scales of these residual errors can be 
quite large. For instance, in Figures 9a, 10b, and 11b green bands are visible in the 
corrected observations, which indicate larger areas where the algorithm slightly 
overcorrects. In Figure 9b, a few yellow–orange areas are visible, which indicate that 
the algorithm undercorrects in these locations. That means that we should not expect 
that this residual error can be significantly reduced by spatial smoothing. 
Consequently, we anticipate that the remaining errors in the 70-km NASA/RSS 
SMAP SSS product will have a similar magnitude than in the 40-km product near the 
sea-ice edge. 

5. Conclusions 
The AMSR2 TB measurements between C-band and Ka-band contain valuable infor-

mation that can be employed in flagging and correcting sea-ice contaminated SMAP ob-
servations. This will result in better SMAP SSS measurements in polar oceans that cur-
rently suffer from sea-ice contamination, which is otherwise difficult to detect and re-
move. We plan to implement both the sea-ice flagging and the sea-ice detection algorithm 
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into the upcoming Version 5 release of the NASA/RSS SMAP SSS product. The calculated 
correction ΔTB,corr (Equation (7)) allows us to provide an approximate value for the gain 
weighted sea-ice fraction gice in the SMAP antenna field of view and thus of the severity 
of the sea-ice contamination. The performance results from Table 5 can be used to estimate 
the residual RMS error in the retrieved SSS after the sea-ice correction is performed. 

More extensive validation of the sea-ice corrected SSS retrieval is warranted and will 
be carried out. It will be particularly important to conduct a comparison with in-situ 
ground-truth measurements in the polar oceans, e.g., saildrones [36]. 

Possible future improvements or refinements include spatial resampling of the 
SMAP and AMSR2 observations to the same location and spatial resolution, as mentioned 
in Section 4. It is also desirable to see if the temporal resolution can be improved. We have 
designed the SMAP sea-ice detection and correction algorithms for eight-day time-aver-
aged observations as our main goal was to improve the Level 3 eight-day SMAP SSS prod-
ucts, which are used in most scientific applications. However, sea-ice concentration and 
contamination can change within eight days. In particular, near the ice edge, sea-ice mo-
tion can exceed 100 km within this eight-day time window both along and across the ice 
edge. Our method is based on the time-averaged SIC at a certain location. This time-aver-
aged SIC is approximately the same for the AMSR2 and the SMAP eight-day aggregates, 
as long as there are no temporal gaps in data acquisition for either of the two sensors. A 
shorter time window for the AMSR2 aggregates is warranted when dealing with Level 2 
retrievals, which are of interest for most operational applications. That said, a smaller time 
window will increase the noise in the sea-ice detection and correction algorithms. We plan 
to explore if the time averaging window could be narrowed without increasing the missed 
detection and false alarm rates too much. 

We expect that the proposed methodology could be applied to Aquarius SSS retriev-
als as well. This would require that the AMSR2 observations being spatially resampled to 
the lower Aquarius resolution of 100–150 km. Adapting this methodology to SMOS, 
which is a synthetic aperture radiometer, is more difficult and it is not clear if it is feasible. 
It is safe to assume that the method can be continued with AMSR3, which is planned to 
be launched in the 2023 time frame, if SMAP is still operating by then. A very exciting 
future mission that can apply our methodology is the European Copernicus Imaging Mi-
crowave Radiometer (CIMR) [37], which is planned to start operating by the end of this 
decade. CIMR will simultaneously observe the same Earth scene at a wide frequency 
range between L-band and Ka-band, and, thus, provide most of the necessary input for 
our methodology with one single instantaneous measurement. 

Supplementary Materials: The following are available online at 
https://data.remss.com/smap/SSS/support_data/remote_sensing_special_issue/: Regression coeffi-
cients: Table S1: regression coefficients ΔTB0 (SMAP) versus TB,TOA(AMSR2), Table S2: regression co-
efficients ΔTB0 (SMAP) versus E0,meas(AMSR2)–E0,exp(AMSR2). For details see Equation (7). Support 
figures: SMAP and AMSR2 measured–expected TB zooming into coastal areas and near islands. The 
figures are provided to demonstrate that there is no significant land contamination in either the 
SMAP or the AMSR2 TB. 
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Appendix A. Fisher Linear Discriminant Analysis 
Our sea-ice detection algorithm is based on the Fisher Linear Discriminant Analysis, 

which is a well-established statistical technique in pattern classification for distinguishing 
two classes of data [38,39]. This appendix gives a brief summary of the method. 

Consider two data sets Ωi, i = 1, 2, each of which contains Ni data points. Each data 
point itself is a measurement in a d-dimensional space and thus labelled as a d-dimen-
sional vector X. In our case, the measurement vector X consists of the 10 AMSR2 TOA TB 
or the measured–expected specular surface emissivities (Table 2). The sample means Mi 
of each set Ωi are given by: 

ii

1
N ∈Ω

= ⋅ ∑i
X

M X  (A1) 

which are both again d-dimensional vectors. The Fisher Discriminant Analysis considers 
the projection of the d-dimensional data vectors onto a fixed d-dimensional vector W. The 
projected means are thus: 

i

i
i

1M
N ∈Ω

= ⋅ ⋅ = ⋅∑ T T
i

X
W X W M  (A2) 

where WT denotes the transposed vector and thus WT·X is the scalar product between the 
two vectors W and X. The distance between the projected means is: 

( )1 2M M− = ⋅ −T
1 2W M M  . (A3) 

The variances and scatters of each projected data set are: 

( )
i

22 2
i i i

i i

1 1M : s
N N∈Ω

σ = ⋅ ⋅ − = ⋅∑ T

X
W X 

  (A4) 

and the variance of the combined (pooled) data is: 

( )2 2 2
1 2

1 2

1 s s
N N

σ = ⋅ +
+

 

. 
(A5) 

The goal is to determine the projection vector W that leads to the maximum separa-
tion between the two data sets. This is achieved by maximizing the objective function J(W), 
which maximizes the distance between the projected data points by simultaneously min-
imizing the pooled projected variance: 
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( ) 1 2
2 2

1 2

M M
J

s s

−
=

+
W

 

  . 
(A6) 

The optimization of J(W) employs the covariance and scatter matrices of the individ-
ual sets Ωi: 

( ) ( ) ( )
i

i
i i

1 1:
N N∈Ω

Ω = ⋅ − ⋅ − = ⋅∑ T
i i i

X
Cov X M X M S  (A7) 

and the within-scatter matrix S: 

= +1 2S S S . (A8) 

The optimized projection vector W is determined by the expression: 

( )−= ⋅ −1
1 2W S M M  (A9) 

and the value of the discriminant is given by WT·X. The normalization of the projection 
vector is arbitrary. In our study we have normalized it to have unit length, i.e., WT·W = 1. 
In order to obtain the decision criterion between the two classes, one creates plots of the 
probability density functions pdfi (i = 1, 2) of the discriminant values in each class (Figure 
4). The standard way of deciding if an event falls into class 1 (class 2) is the check if the 
discriminant pdf of class 1 (class 2) is larger than the discriminant pdf for class 2 (class 1). 
That puts the value d for the decision boundary between the two classes at the abscissa of 
the intersection point between the two pdf. In the context of Figure 4: 

( )
( )

2 1

1 2

d pdf pdf Class 2

d pdf pdf Class 1

⋅ > ⇒ > ⇒ ∈

⋅ < ⇒ > ⇒ ∈

T

T

W X X

W X X
. (A10) 
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