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Abstract

Identifying causal variants from genome-wide association studies (GWASS) is challenging
due to widespread linkage disequilibrium (LD). Functional annotations of the genome may
help prioritize variants that are biologically relevant and thus improve fine-mapping of GWAS
results. However, classical fine-mapping methods have a high computational cost, particu-
larly when the underlying genetic architecture and LD patterns are complex. Here, we pro-
pose a novel approach, SparsePro, to efficiently conduct functionally informed statistical
fine-mapping. Our method enjoys two major innovations: First, by creating a sparse low-
dimensional projection of the high-dimensional genotype data, we enable a linear search

of causal variants instead of a combinatorial search of causal configurations used in most
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existing methods; Second, we adopt a probabilistic framework with a highly efficient varia-
tional expectation-maximization algorithm to integrate statistical associations and functional
priors. We evaluate SparsePro through extensive simulations using resources from the UK
Biobank. Compared to state-of-the-art methods, SparsePro achieved more accurate and
well-calibrated posterior inference with greatly reduced computation time. We demonstrate
the utility of SparsePro by investigating the genetic architecture of five functional biomarkers
of vital organs. We show that, compared to other methods, the causal variants identified by
SparsePro are highly enriched for expression quantitative trait loci and explain a larger pro-
portion of trait heritability. We also identify potential causal variants contributing to the ge-
netically encoded coordination mechanisms between vital organs, and pinpoint target genes
with potential pleiotropic effects. In summary, we have developed an efficient genome-wide
fine-mapping method with the ability to integrate functional annotations. Our method may
have wide utility in understanding the genetics of complex traits as well as in increasing the
yield of functional follow-up studies of GWASs. SparsePro software is available on GitHub at

https://github.com/zhwm/SparsePro.

1 Introduction

Establishment of large biobanks and advances in genotyping and sequencing technologies
have enabled large-scale genome-wide association studies (GWASSs) [1-3]. Although GWASs
have revealed extensive associations between genetic variants and traits of interest, under-
standing the genetic architecture underlying these genetic associations remains challenging
[4-6], mainly because GWASSs typically rely on univariate regression models, which are not
able to distinguish the causal variants from other variants in linkage disequilibrium (LD) [3, |7,
8.

Several statistical fine-mapping approaches have been proposed for identifying causal vari-
ants in GWASs while considering the underlying LD patterns. For instance, BIMBAM [9], CAVIAR
[10] and CAVIARBF [11] estimate the posterior inclusion probabilities (PIPs) in a pre-defined

locus by evaluating multivariate Gaussian likelihood enumerating all possible configurations.
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FINEMAP [12] accelerates the inference with a shotgun stochastic search focusing on the most
likely subset of causal configurations. However, the number of causal configurations required
to evaluate can grow combinatorially as the number of causal variants increases, thus tremen-
dously increasing the computational cost if multiple causal variants exist. SUSIE [13] introduces
an iterative Bayesian stepwise selection algorithm for variable selection, which can also be ap-
plied to statistical fine-mapping with greatly improved computational efficiency.

Furthermore, it has been recognized that functional annotations of the genome may help pri-
oritize variants that are biologically relevant, thus improving fine-mapping of GWAS results [8].
For example, PAINTOR [14] and RIiVIERA [15] empirically estimate the impacts of functional
annotations from statistical evidence, which improves the accuracy of fine-mapping but has a
high computational cost, especially when multiple causal SNPs exist in the same locus. Poly-
Fun [16] adopts stratified LD score regression [17] to effectively partition total trait heritabil-
ity into annotation-dependent heritability estimates, and uses these estimates of annotation-
tagged heritability to specify functional priors for fine-mapping methods.

In this work, we present a unified probabilistic framework called Sparse Projections to Causal
Effects (SparsePro) for statistical fine-mapping with the capacity to incorporate functional anno-
tations. Accompanied with an efficient variational expectation-maximization inference algorithm
[18], SparsePro achieves superior accuracy in identifying causal variants as well as computa-
tional efficiency compared to the state-of-the-art approaches in both simulation studies and real
data analyses. We further demonstrate the utility of SparsePro in genome-wide fine-mapping of

functional biomarkers for five vital organs in human.

2 Materials and Methods

2.1 SparsePro method overview

To fine-map causal SNPs, our method takes two lines of evidence (Figure[f). First, from esti-
mated marginal associations between genetic variants and a complex trait of interest, accom-

panied by matched LD information, we can group correlated genetic variants together and as-
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sess their effects jointly. Then, we infer the contribution of each SNP towards each group of
causal effect separately to obtain posterior inclusion probabilities (PIPs). Second, optionally,
if we have knowledge about any functional annotations which may be enriched for the causal
SNPs, we can estimate the relative enrichment of these annotations, and re-prioritize SNPs
according to the enrichments of these annotations. As outputs, our model yields functionally

informed PIP for each SNP and the enrichment estimates of candidate functional annotations.

2.2 Our contributions in the context of the existing methods

Our work is related to two existing methods, SuSiE [13] and PolyFun [16]. Inspired by the “sum
of single effects” model in SUSIE, we introduce a sparse projection of the genotype in our model
specification so that the identification of causal variants and estimation of causal effect sizes
are separated. This sparse projection avoids exhaustively evaluating the combinatorial num-
ber of causal configurations. For statistical inference, SUSIiE adopts an iterative Bayesian step-
wise selection algorithm that operates on the Bayes Factors (BFs) [13]. Here, we use a paired
mean field variational inference algorithm [18] to jointly update the variational parameters for
the causal effects and causal indicators of each SNP. Moreover, we have adapted our algorithm
to directly work with GWAS summary statistics and provided appropriate estimates for the hy-
perparamters including trait variance and heritability estimates. To enable functionally informed
fine-mapping, PolyFun uses genome-wide heritability estimates from LD score regression to
set the functional priors for fine-mapping methods [16]. In contrast, we aggregate the genome-
wide statistical fine-mapping evidence by maximizing the evidence lower bound of SparsePro

to prioritize relevant annotations and robustly derive genome-wide functional priors.
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« 2.3 SparsePro model specification

We assume the following data generative process (Figure [1)) for a continuous polygenic trait.

First, the prior probability 7, for the g-th SNP (¢ € {1, ..., G}) being causal is defined as:

exp(A,w)
25:1 exp(Agw)

7Ty = softmar(A,w) =

s Where A is the 1 x M annotation row vector of M candidate annotations for the g-th SNP; and
s wisthe M x 1 vector of logarithm of relative enrichment. Here, we use the softmax function
o7 to ensure the prior probabilities sum up to 1. If no functional information is provided, the prior

s probability of being causal is considered equal for all SNPs, i.e. 7, = é

We assume that there exist K independent causal effects, and that
sk ~ Multinomial(1, )

s Where = (7, ..., 7¢) and s;, is a binary indicator vector of length G indicating which SNP is the
10 causal SNP under the k-th (k € {1, ..., K'}) causal effect.

Then, the causal effect sizes are sampled from a normal distribution, i.e.
Be ~ N(0,751)
Finally, the continuous trait y y«; over N individuals is generated as follows:
y=X) siBi+e
k
or in matrix form:
y=XSB3 + €

101 Where Xy« is the full genotype matrix, S« is the sparse projection matrix, . is the causal

w2 effect vector, and ey, ~ N(0,7, 'Iy) denotes the variance not attributable to the modelled ge-
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netic effects.

2.4 A variational inference algorithm for Bayesian fine-mapping

With this model specification (Figure[{)), finding the causal variants is equivalent to inferring the

sparse projections s, and the effect sizes j; given y and X for k € {1, ..., K}:

p(Y7 S7 B|X7 77(7 73, Ty)
p(Y|X7 ﬁ7 7,87 Ty)

p<S7 [5|Y7X77‘:t7 7-67Ty> =

As the number of possible causal configurations grows combinatorial with GG, the exact pos-
terior solution is intractable because of the marginal likelihood in the denominator. Unlike most
existing fine-mapping approaches using sampling-based methods to search through a subset
of possible causal configurations [12, [19], we adopt a paired mean field factorization of varia-

tional family to approximate the posterior [18]:

q(S,B) = HQ(Ska/Bk:) = HQ(Sk)Q(5k|Sk)

This variational distribution preserves the dependency between s, and 5. It has been shown
that the paired mean field variational family has similar mode and shape as the desired poste-
rior distribution, and that such inference can achieve high accuracy with substantially improved
computational efficiency [18].

To find the best approximation, we minimize the Kullback-Leibler (KL) divergence between
the posterior distribution and the proposed variational distribution, which is equivalent to maxi-

mizing the evidence lower bound (ELBO) [20]:
ELBO = E,[logp(y, S, B|X,®, 75, 7,)] — E,[logq(S, B)]

Based on the mean field assumptions [18], this optimization can be conducted iteratively for
the k" causal effect and the ¢g** SNP with the following closed-form updates until convergence

(derivation details are available in Supplementary Notes).
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We update posterior effect size for the g-th SNPs in the k-th causal effect:

* 7— * *
1y, = Tf X,y =X, X vyioup) (1)
kg k"#k
with
7']:9 = XgTXgTy + 73, (2)

where o represents element-wise multiplication of vectors.

We then update the posterior probability of the g-th SNP being causal in the k-th causal ef-
fect:
T,z‘g N T,;"g_;fkg)

1
Vg = softmaz(log T, — 5 log —2

2m 2 3)

For fine-mapping, we take the maximum of these K probabilities as the PIP for SNP g: > =

max(’ﬂkgu T 77?(;])'

2.5 Adaptation to GWAS summary statistics

The above variational inference algorithm requires access to large datasets containing both
individual-level genotype X and phenotype data y. Since a growing number of GWASs have
released publicly available summary statistics (i.e., marginal effect size estimate Bg and its
standard error se, for the g-th SNP), we adapt SparsePro to directly operate on these sum-
mary statistics with additional information from an LD reference panel (i.e. estimates of pair-
wise SNP-SNP Pearson correlation).

Specifically, if we have reasonable surrogates for X X, X"X and Xy, we can plug them
into Equations (), (2), and (3). We include two forms of reformulation depending on whether

the genotypes are standardized to have zero mean and unit variance in the GWAS.

1. If the genotypes are standardized, we have
X, Xy=N

XX = Nx LD
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X,y =Np,
where N is the sample size.

2. If the genotypes are not standardized, we have

Bg = (XgTXg)”X;y

seg = \Jvar(y) (X] X,) 7!

Therefore,

XTX — var(y)
99 (seg)

XX = LD * (se'se)
X,y =X, X, *

Notably, if y has been standardized to have unit variance prior to a GWAS, we naturally
supply var(y) = 1. Otherwise, it can be estimated as var(y) = 2Np(1 — p)se? where N
(the study sample size), p (minor allele frequencies), and se (standard errors of effect size

estimates) are usually available in GWAS summary statistics.

2.6 Variational expectation-maximization for integrating functional anno-

tations

To estimate the relative enrichment of functional annotations and further prioritize variants,
we adopt a variational expectation-maximization scheme to maximize ELBO with respect to
the logarithm of relative enrichment (w) first and then use the estimate W to calculate 7, (prior
probability of being causal) for each SNP.

Suppose we have M candidate annotations and A, (m € {1,...,M}) is a 0/1 indicator de-
noting whether the g-th SNP has the m-th annotation. By setting the derivative of ELBO with

respect to w,, to 0 and solving for w,,, we have the following estimate for the logarithm of rele-
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vant enrichment (detailed in Supplementary Notes),

7’1/7“0
/b

Wy, = log(

where

ky = Z[Agm = 1]softmax( Z A Wiy

g m’'#m

ko = Z[Agm = 0]softmax( Z Ay Wiy )

m/#m

9
= Z[Agm = 1}7;;9
k,g

o= [Agm = 07,

k,g

We note that this metric is equivalent to the logarithm of a relative risk, thus its standard error

can be calculated as

We evaluate the significance of annotation enrichment with the log likelihood ratio test (G-
test) [21]. Only annotations which demonstrate statistical significance are included in our model

to update the prior probability of being causal for each SNP. Specifically,

g = softmax(z Ay ,)

140 This functionally informed prior helps prioritize causal SNPs in addition to statistical evidence.

w 2.7 Hyperparameter settings

12 We have three hyperparameters: number of causal effect K, inverse of the unexplained vari-
13 ance 7, and inverse variance of causal effect sizes 75, in our model. As we show in Supple-

14« mentary Notes, our model is not sensitive to the setting of K as long as K is larger than the

9
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actual number of independent effects, except that increasing K marginally increases the com-
putation time.

We set 7, as

_ 1
Y war(y) x (1 — h?)

where h? is the local SNP heritability that can be estimated by a modified Heritability Estimation
from Summary Statistics (HESS) [22] based on GWAS summary statistics (Supplementary
Notes)

We set 75 as

k

8= var(y) * h?
for each of the independent causal effects. We use k € {1, ..., K} to account for different effect

sizes and to improve model identifiability.

2.8 Simulation studies

We conducted simulations to showcase the efficiency and utility of our method. We leveraged
resources from the UK Biobank [1]. Specifically, we first retained 353,606 White British an-
cestry participants by excluding one individual from each pair of closely related individuals
(who had a 3rd degree or closer relationship). We then retrieved the genotypes of these indi-
viduals based on 271,699 SNPs which had a minor allele frequency > 0.001 and an imputa-
tion quality score > 0.6 on chromosome 22. Next, we sampled 50 causal SNPs with a two-
fold relative enrichment amongst SNPs that were annotated as “conserved sequences” [23],
“DNase | hypersensitive sites” (DHS) [24], “non-synonymous” [25], or that overlapped with his-
tone marks H3K27ac [26] or H3K4me3 [24]. We used the GCTA GWAS simulation pipeline [27]
to simulate a continuous trait with a per-chromosome heritability of 0.01. We tested the associ-
ation between each SNP and this simulated trait, and obtained GWAS summary statistics using

the fastGWA software [28]. This process was replicated 22 times to imitate a GWAS. We ob-

10
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tained LD information calculated using the UK Biobank participants from https://alkesgroup.
broadinstitute.org/UKBB_LD/|[16]. These LD matrices were generated for genome-wide
SNPs binned into sliding windows of 3 Mb where two neighboring windows had a 2-Mb over-
lap.

We applied SparsePro to the GWAS summary statistics with the above LD information, and
iterated over all sliding windows, first without any functional annotation information. We de-
noted the fine-mapping results as “SparsePro-". Next, we aggregated the results from all 22
replications to estimate the relative enrichment for ten binary functional annotations. In addition
to the five annotations simulated to be enriched of causal SNPs, we also included five anno-
tations without enrichment: “actively transcribed regions” [29], “transcription start sites” [29],
“promoter regions” [30], “5’-untranslated regions” [25], and “3’-untranslated regions” [25].

Annotations with a G-test p-value < 1 x 10~% were selected to conduct functionally informed
fine-mapping, and the results were denoted as “SparsePro+". 753 and 7, were set according to
aforementioned empirical estimates. PIPs for SNPs in the 1-Mb centre of each 3-Mb sliding

window were extracted.

2.9 Method comparisons using simulated data

We also performed fine-mapping with some of the state-of-the-art methods. To perform fine-
mapping with conditional and joint (COJO) analyses [31] and FINEMAP [12], we first selected
COJO lead SNPs based on GWAS summary statistics by performing stepwise model selec-
tion implemented in the GCTA-COJO software [27]. We then applied FINEMAP with shotgun
stochastic search to SNPs in a 1-MB window centered at each COJO-identified lead SNP. We
wrote an in-house script using the “susie_rss” function to perform genome-wide fine-mapping
with SuSIE in the same sliding windows as SparsePro. We aggregated summary statistics from
22 replications and used PolyFun with the “baselineLF2.2.UKB” model [16] to calculate func-
tional priors. The “baselineLF2.2.UKB” model contained all annotations used in SparsePro as
well as additional pre-computed LD-related annotations for optimal performance of PolyFun

[16]. The estimated priors were provided to SuSIE via “prior_weights” and to FINEMAP via the

11


https://alkesgroup.broadinstitute.org/UKBB_LD/
https://alkesgroup.broadinstitute.org/UKBB_LD/
https://alkesgroup.broadinstitute.org/UKBB_LD/
https://doi.org/10.1101/2021.10.04.463133
http://creativecommons.org/licenses/by-nc-nd/4.0/

194

196

197

198

199

200

201

202

204

205

206

207

209

210

211

212

213

214

215

216

217

218

219

220

bioRxiv preprint doi: https://doi.org/10.1101/2021.10.04.463133; this version posted November 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

--prior-snps option, respectively. The maximal number of causal SNPs in each locus was set
to 5 for all methods.

We compared the performance of these methods in terms of precision (1 - false discovery
rate), recall, calibration of PIPs, as well as computation time, all evaluated on a 2.1 GHz CPU

node on Compute Canada.

2.10 Fine-mapping genetic determinants of functional biomarkers for vi-

tal organs

To investigate the genetic coordination mechanisms of vital organs, we performed GWAS in
the UK Biobank [1] for five functional biomarkers: forced expiratory volume in one second to
forced vital capacity (FEV1-FVC) ratio for lung function, estimated glomerular filtration rate for
kidney function, pulse rate for heart function, total protein for liver function and blood glucose
level for pancreatic islet function. For each trait, we first regressed out the effects of age, age?,
sex, genotyping array, recruitment centre, and the first 20 genetic principal components before
inverse normal transforming the residuals to z-scores that had zero mean and unit variance.
We then performed GWAS analysis on the resulting z-scores with the fastGWA software [27,
28] to obtain summary statistics.

Using the summary statistics and the matched LD information [16], we performed genome-
wide fine-mapping with SparsePro-, SparsePro+, SuSIiE and PolyFun-informed SuSiE as de-
scribed in the simulation analyses (Section [2.9), except that the number of causal effects was
set to 9 for each LD region to account for potentially more causal variants.

To evaluate the biological relevance of SNPs fine-mapped by different methods, we assessed
their relative enrichment in tissue-specific expression quantitative loci (eQTL). Tissue-specific
eQTL identified in the most recent release of the Genotype-Tissue Expression (GTEX) project
[32, 33] were obtained from https://gtexportal.org/home/datasets. The eQTL information
was not used by any functionally informed fine-mapping methods.

Additionally, we calculated trait heritability conferred by fine-mapped SNPs with SparsePro-

and SparsePro+, respectively, at several commonly used PIP thresholds for determining causal

12
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variants: 0.50, 0.80, 0.90, 0.95, and 0.99. The adjusted R? obtained from multivariate linear re-
gression of the z-scores (i.e. inverse normal transformed trait residuals after regressing out co-
variate effects) against all fine-mapped SNPs was used as a surrogate of the SNP heritability.
We compared these results to heritability captured by the same number of SNPs fine-mapped
by SuSiE and PolyFun-informed SuSiE, separately at each PIP threshold. For instance, if SparsePro-
identified J SNPs with a PIP > 0.5, we would select J SNPs with the highest PIP determined
by SuSIE and compare the adjusted R2. Notably, this analysis evaluates predictive associations
instead of actual causality, hence the adjusted R? is not a direct indicator of the validity of the
fine-mapping results.

We selected SNPs with a PIP > 0.8 to explore possible pleiotropic effects using phenogram

[34]. Loci with potential pleiotropic effects were visualized using LocusZoom [35].

13
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3 Results

3.1 SparsePro demonstrates superior performance in simulation

We performed simulations based on real genotype data from UK Biobank (Materials and Meth-
ods). We observed that SparsePro consistently demonstrated superior accuracy in identify-

ing true causal variants. SparsePro without annotation (SparsePro-) achieved an area under
the precision-recall curve (AUPRC) of 0.3699, higher than the AUPRC of 0.2677 by FINEMAP
and the AUPRC of 0.3573 by SuSiE (Figure [2A). Notably, SparsePro had a substantially higher
precision at the same recall rates (Figure [2A). For example, at the recall rate of 25%, Sparse-
Pro achieved greater than 95% precision, which is highly desirable in fine-mapping because
only a small number of the prioritized SNPs will be experimented validated in vivo or in vitro in
practice (Figure [2A).

Moreover, SparsePro can incorporate functional priors (Supplementary Table S1) with im-
proved fine-mapping power. SparsePro+ achieved an AUPRC of 0.4636, outperforming both
functionally informed FINEMAP (AUPRC = 0.3088) and functionally informed SuSiE (AUPRC
= 0.4042) with functional priors derived by PolyFun. As expected, we also found that the per-
formance of SparsePro was not sensitive to the pre-specified number of independent causal
effects (Supplementary Table S2 and Supplementary Notes).

Compared to FINEMAP and SuSiE, the PIPs yielded by SparsePro appeared to be much
more calibrated. It has been shown that for a well-calibrated fine-mapping method, the mean
PIP of all SNPs with a PIP above a certain threshold should be equal to the precision if these
SNPs were to be considered causal variants [16]. Here, we found that the mean PIP of all SNPs
considered to be causal variants by SparsePro was almost identical to the desired precision at
any threshold (Figure [2B). In contrast, the PIPs generated by FINEMAP and SuSiE appeared
to be inflated (Figure [2B).

For instance, if SNPs with a PIP > 0.8 were to be considered as causal variants, SparsePro-
and SparsePro+ would both have a median precision across simulations of 95% and 100%

respectively (Figure [2C). The selected SNPs by FINEMAP (median precision = 50% only)
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and SuSiE (median precision = 71% only) included an excessive proportion of false positives,
even with functional priors (median precision = 77% for FINEMAP and 79% for SuSiE; Fig-
ure 2C). The high precision by SparsePro was consistent for all frequently used PIP thresholds
(Figure [2C) although FINEMAP and SuSiE sometimes have a slightly higher recall.

Furthermore, SparsePro conferred not only higher fine-mapping precision, but also higher
computational efficiency. In our simulation, it took only an hour to fine-map chromosome 22,
which was 6.5 times faster than FINEMAP and 3 times faster than SuSiE (Figure 2D and Sup-
plementary Table S3).

3.2 Fine-mapped SNPs by SparsePro are more enriched in tissue-specific

eQTL and confer higher trait heritability

We performed GWAS in the UK Biobank [1] for five functional biomarkers: FEV1-FVC ratio
(lung function), estimated glomerular filtration rate (kidney function), pulse rate (heart function),
total protein (liver function) and blood glucose level (pancreatic islet function). Genome-wide
fine-mapping of five functional biomarkers based on the UK Biobank population using Sparse-
Pro identified multiple potentially causal variants (Supplementary Table S4). To assess bio-
logical relevance of the fine-mapping results, we estimated the relative enrichment of causal
signals in tissue-specific eQTL for each trait (Materials and Methods). We found that the fine-
mapped SNPs were significantly enriched in tissue-specific eQTL for all five biomarkers, while
results based on SparsePro-/+ showed the strongest enrichment (Figure [A). For example,
for total protein, the fine-mapped SNPs determined by SparsePro- were 4.00-fold (95% CI:
3.25-4.92) more likely to be liver-specific eQTL than non-fine-mapped SNPs, compared to a
1.54-fold (95% CI: 1.35-1.75) enrichment based on fine-mapped SNPs by SuSiE. While SuSiE
was substantially improved by functional priors derived from PolyFun with a 2.20-fold (95% CI:
1.97-2.45) enrichment, the fine-mapped SNPs by SparsePro+ exhibited the highest biological
relevance, being 4.06-fold (95% ClI: 3.31-4.97) more likely to be liver-specific eQTL.

Moreover, at most PIP thresholds, the SNPs fine-mapped by SparsePro- explained a higher

proportion of phenotypic variance based on all UK Biobank subjects (Methods) compared to
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the same number of the most likely causal SNPs identified by SuSiE (Figure [3B and Sup-
plementary Table S5). With the functional annotations (Supplementary Table S5), the fine-
mapped SNPs by SparsePro+ consistently achieved a higher SNP heritability for estimated
glomerular filtration rate, FEV1-FVC ratio, as well as total protein compared to the PolyFun-
informed SuSiE; although for glucose and pulse rate, PolyFun-informed SuSiE was able to
identify SNPs with a slightly higher predictive performance at certain PIP thresholds (Figure
and Supplementary Table S6).

3.3 Pleiotropic effects of SNPs rs1260326 and rs5742915 on the func-

tions of multiple vital organs

Overall, we observed considerable polygenicity for the five biomarkers of the vital organs (Figure [dA).
Interestingly, at the PIP threshold of 0.80, we found two potentially causal variants for three of
the five biomarkers. Specifically, SNP rs1260326 (Figure [4B), a missense variant (Leu446Pro)
in gene GCKR, was fine-mapped for glomerular filtration rate (PIP = 1.000), blood glucose level
(PIP = 0.998), pulse rate (PIP = 0.823) and total protein level (PIP = 1.000). Notably, this spe-
cific variant has been found to be significantly associated with a wide variety of glycemic traits
[36] and other quantitative traits for metabolic syndromes and comorbidities [37, [38], and has
been implicated in the functions of liver and other vital organs [39-41].

Another SNP, rs5742915 (Figure [4C), a missense variant (Phe645Leu) in gene PML was
fine-mapped for FEV1-FVC ratio (PIP = 0.858), pulse rate (PIP = 1.000) and total protein level
(PIP = 0.987). This variant has also been associated with other quantitative biomarkers of poly-
genic traits featuring development and metabolism, including birth weight [42], height [43], ap-
pendicular lean mass [44], and age at menarche [45]. These findings, along with other SNPs
exhibiting pleiotropic effects at somewhat lower PIP thresholds (Supplementary Table S4) pre-
sented promising genetic targets for experimental validations in a larger effort towards under-

standing the mechanisms of genetic coordination among vital organs.
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4 Discussion

Accurately identifying trait-determining and disease-causing variants is fundamental in genet-
ics and particularly important for appropriately interpreting GWAS results [5, 8]. In this work,
we developed SparsePro, an efficient fine-mapping method to help prioritize causal variants for
complex traits, possibly with prior functional information. Through genome-wide simulations, we
showed that SparsePro was highly accurate and computationally efficient compared to existing
methods. By fine-mapping genetic associations with five biomarkers for vital organ functions,
we demonstrated that SparsePro identified candidate variants that were biologically relevant,
including two variants with pleiotropic effects, which might indicate genetically encoded coordi-
nation among vital organs.

Compared to the existing methods, SparsePro has three important features. First of all, we
use an efficient variational inference algorithm to approximate the posterior distribution of the
causal variant indicators instead of exhaustively searching through all possible causal config-
urations or performing stepwise regression. As a result, SparsePro can be significantly faster
than the existing fine-mapping methods, such as FINEMAP [12], and is more than twice as
fast as SUSIE [13], which is a similar variable selection framework but implements an itera-
tive Bayesian stepwise selection procedure. The substantially improved computational effi-
ciency enables statistical fine-mapping of large chunks of the genome instead of analyzing
genetic associations on a per-locus basis as in most existing follow-up studies of GWASSs. In
our simulation studies, compared to locus-wise fine-mapping based on COJO-identified lead
SNPs, such a genome-wide fine-mapping requires neither a pre-specified p-value threshold
(e.g9. p < 5 x 1078) for determining candidate loci nor an arbitrary number of causal effects per
locus. If functional annotations are available, the estimation of functional enrichment may also
be more robust by including more variants with little additional computational overhead.

Second, we utilize a paired mean field variational family, where the causal effect and the ca-
sual indicator are coupled in the variational distribution. This ensures that our approximation
matches closely with the true posterior distribution of the causal variant indicators [18]. As a

result, SparsePro yielded better-calibrated PIPs compared to existing fine-mapping methods.
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Third, given GWAS summary statistics, we provide estimates for hyperparameters including
7, and 7 that are reasonable in the context of polygenic trait genetics. Consequently, at several
commonly used PIP thresholds for defining causal variants, SparsePro showed improved con-
trol of false positives, demonstrated higher precision in identifying causal variants in simulation
and obtained stronger enrichment for tissue-specific eQTL in real data application.

Last, we propose and implement a probabilistic model that coherently integrates statistical
evidence and functional prior information. The key difference between SparsePro+ and other
methods that leverage functional priors, such as PolyFun [16] and PAINTOR [14], is that each
annotation is tested for its relevance with the trait of interest before being used to derive the
priors in our model. Therefore, functional annotations serve as complementary evidence when
statistical evidence is not sufficient to discern causal variants. Based on our results, it seems
that this approach distills better prior information from the functional annotations compared to
the aforementioned methods.

We note that SparsePro can be further improved with the following future directions. First,
SparsePro generally requires that the supplied LD reference panel matches well with that of the
GWAS study population to guarantee proper convergence. While we advocate the public avail-
ability of the in-sample LD information along with the GWAS summary statistics, a more robust
model is needed to account for mismatched LD information. Second, SparsePro currently sup-
ports only binary annotations while compatibility with continuous annotations is also desirable.
Last, the current variational expectation-maximization scheme might not accurately estimate
the joint enrichment of highly correlated annotations. Performing variable selection beforehand
or effectively aggregating enrichment estimates may enable the inclusion of multiple correlated
informative annotations, such as cell type-specific annotations to further improve the utility of
SparsePro.

In summary, SparsePro is an efficient genome-wide fine-mapping method with the ability of
integrate functional annotations. We envision its wide utility in understanding the genetic archi-
tecture of complex traits, identifying target genes, and increasing the yield of functional follow-

up studies of GWASs.
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5 Figure Legends

Figure 1. SparsePro overview. The data generating process of SparsePro is depicted in a
plate model with shaded nodes represent observed variables and unshaded nodes represent
latent variables. The trait y is generated from K causal effects, where the k-th causal effect
size (. ~ N (0, 75,). We use a sparse projection s, ~ Multinomial(1,7t) of genotype to indicate
causal variant for the k-th effect. Given the causal effect sizes and sparse indicators of causal
variants, the target trait y; for individual : follows a normal distribution y; ~ N (X; >", 8¢k, Tgl).
To help prioritize variants with functional annotations, we assume the prior probability of being
causal 7, for the g-th variant as 7, = softmax(A,w) where A, is a M x 1 functional annotation
vector and w is the M x 1 vector of annotation enrichment coefficients. We adopt an efficient
variational inference algorithm to jointly estimate both causal effect sizes and sparse indicators
and an expectation-maximization scheme for estimating annotation enrichment coefficients w

as detailed in Section

Figure 2. SparsePro demonstrated improved accuracy and computational efficiency in genome-
wide simulation results. (A) Precision-Recall curves. The inset shows the area under the preci-
sion recall curve (AUPRC) for each method. (B) Calibration of posterior inclusion probabilities
(PIPs). The y-axis is the mean PIPs for all SNPs considered as causal variants, correspond-

ing to the expected precision at different PIP cutoffs. The x-axis represents the actual preci-

sion at different PIP cutoffs. The black dashed line indicates an optimal calibration, where the
expected precision perfectly matches the observed precision. (C) Precision and recall rates
obtained at five frequently used PIP thresholds. Error bars indicate inter-quartile ranges. (D)
Comparison of computational time. Boxes denote inter-quartile ranges and the line inside each
box indicates the median running time. The color legends are displayed at the bottom of the

figure.

Figure 3. Biological relevance of fine-mapped SNPs for five biomarkers, each for a distinct

vital organ. (A) Relative enrichment of causal signals in tissue-specific eQTL. Target traits and
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the corresponding organs are indicated. Estimates of relative enrichment with 95% confidence
intervals are plotted on a logarithmic scale. (B) Comparison of the proportion of total trait vari-
ance explained by fine-mapped SNPs between SparsePro- and SuSiE.(C) Comparison of the
proportion of total variance explained by fine-mapped SNPs between SparsePro+ and PolyFun
informed SuSiE. Fine-mapped SNPs were identified at five PIP thresholds. As a surrogate of
SNP heritability, the proportion of trait variance explained was obtained from multivariate linear
regression adjusted R?. In this multivariate regression, we regress the inverse normal trans-
formed trait residuals against all fine-mapped SNPs after adjusting for covariate effects. We se-
lected the same number of top-ranked SNPs for each method separately at each PIP threshold

(Materials and Methods).

Figure 4. Fine-mapping genetic associations for five functional biomarkers of vital organs. (A)
lllustration of genome-wide distribution of fine-mapped SNPs on 22 chromosomes. SNPs with
a posterior inclusion probability > 0.80 were indicated as colored solid circles. Two loci with
potential pleiotropic effects on four and three vital organ biomarkers respectively were high-
lighted by red dashed rectangles. Locus zoom plots were presented for these two loci: (B) lo-
cus with fine-mapped SNP rs1260326. and (C) locus with fine-mapped SNP rs5742915. SNPs

in a 500 kb window are included, colored by r? with the corresponding fine-mapped SNP.
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Figure 1: SparsePro overview. The data generating process of SparsePro is depicted in a plate
model with shaded nodes represent observed variables and unshaded nodes represent la-
tent variables. The trait y is generated from K causal effects, where the k-th causal effect size
Br ~ N(0,75,). We use a sparse projection s, ~ Multinomial(1,7) of genotype to indicate
causal variant for the k-th effect. Given the causal effect sizes and sparse indicators of causal
variants, the target trait y; for individual 7 follows a normal distribution y; ~ N'(X; 37, sifk, 7, ).
To help prioritize variants with functional annotations, we assume the prior probability of being
causal 7, for the g-th variant as 7, = softmax(A,w) where A, is a M x 1 functional annotation
vector and w is the M x 1 vector of annotation enrichment coefficients. We adopt an efficient
variational inference algorithm to jointly estimate both causal effect sizes and sparse indicators
and an expectation-maximization scheme for estimating annotation enrichment coefficients w
as detailed in Section 2
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Figure 2: SparsePro demonstrated improved accuracy and computational efficiency in
genome-wide simulation results. (A) Precision-Recall curves. The inset shows the area under
the precision recall curve (AUPRC) for each method. (B) Calibration of posterior inclusion prob-
abilities (PIPs). The y-axis is the mean PIPs for all SNPs considered as causal variants, cor-
responding to the expected precision at different PIP cutoffs. The x-axis represents the actual
precision at different PIP cutoffs. The black dashed line indicates an optimal calibration, where
the expected precision perfectly matches the observed precision. (C) Precision and recall rates
obtained at five frequently used PIP thresholds. Error bars indicate inter-quartile ranges. (D)
Comparison of computational time. Boxes denote inter-quartile ranges and the line inside each
box indicates the median running time. The color legends are displayed at the bottom of the fig-

ure.
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Figure 3: Biological relevance of fine-mapped SNPs for five biomarkers, each for a distinct vi-
tal organ. (A) Relative enrichment of causal signals in tissue-specific eQTL. Target traits and
the corresponding organs are indicated. Estimates of relative enrichment with 95% confidence
intervals are plotted on a logarithmic scale. (B) Comparison of the proportion of total trait vari-
ance explained by fine-mapped SNPs between SparsePro- and SuSiE.(C) Comparison of the
proportion of total variance explained by fine-mapped SNPs between SparsePro+ and PolyFun
informed SuSiE. Fine-mapped SNPs were identified at five PIP thresholds. As a surrogate of
SNP heritability, the proportion of trait variance explained was obtained from multivariate linear
regression adjusted R2. In this multivariate regression, we regress the inverse normal trans-
formed trait residuals against all fine-mapped SNPs after adjusting for covariate effects. We
selected the same number of top-ranked SNPs for each method separately at each PIP thresh-
old (Materials and Methods).
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Figure 4: Fine-mapping genetic associations for five functional biomarkers of vital organs. (A)
lllustration of genome-wide distribution of fine-mapped SNPs on 22 chromosomes. SNPs with
a posterior inclusion probability > 0.80 were indicated as colored solid circles. Two loci with
potential pleiotropic effects on four and three vital organ biomarkers respectively were high-
lighted by red dashed rectangles. Locus zoom plots were presented for these two loci: (B) lo-
cus with fine-mapped SNP rs1260326. and (C) locus with fine-mapped SNP rs5742915. SNPs
in a =500 kb window are included, colored by r? with the corresponding fine-mapped SNP.
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were downloaded from https://cnsgenomics.com/software/gcta/bin/geta_1.93.2beta.zip.
FINEAMP were downloaded from http://www.christianbenner.com/finemap_v1.4_x86_64.
tgz. SUSIE (version 0.11.42) were installed from CRAN. PolyFun were installed from https:
//github. com/omerwe/polyfun. UK Biobank LD information was downloaded from https://
alkesgroup.broadinstitute.org/UKBB_LD/. Tissue-specific eQTL were obtained from https:
//storage.googleapis.com/gtex_analysis_v8/single_tissue_qtl_data/GTEx_Analysis_

v8_e(TL_EUR. tar.
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= 1 Supplementary Notes

= 1.1 SparsePro is not sensitive to hyperparameter K

ss7  1he number of causal effects K is an important hyperparameter in statistical fine-mapping.

sse  In methods that exhaustively search through causal configurations, the computation time in-

ss9  creases combinatorially with K since the number of candidate causal configurations also grows
s combinatorially. In contrast, in SparsePro, the computation time increases linearly with K. In

se1  practice, most of the computation time is spent on loading LD information, thus the computa-

s« tion time varies only slightly with K € {5,7,9,11}. The output of SparsePro is not sensitive to
ses the choice of K as long as K is greater than or equal to the actual number of causal effects. In
saa ouUr simulation studies, we found that with K = 7, 9, or 11, the resulting PIPs were extremely

sss  highly correlated with those based on K = 5, and the overal AUPRC metrics were also highly

ss6  consistent (Supplementary Table S2).
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1.2 Modified HESS estimates for hyperparameters 7, and 73

Local heritability estimates are useful in setting hyperparameters for SparsePro. Shi et al. [22]

provided an unbiased estimator for local heritability estimation based on summary statistics:

. NBTRIB-P
hy = N—_P

where R is the LD matrix, § is GWAS summary effect size, N is the sample size in the GWAS
and P is the number of SNPs considered in a locus. However, this estimate requires that when
generating summary statistics, both genotypes and phenotypes should be standardized to have
zero mean and unit variance. Since summary statistics generated by some GWAS pipelines do
not specifically standardize the genotypes and phenotypes, we modified the HESS estimator to

account for the non-unit variance:

(Bov)"(X"X)"(B ov) —var(y)P

hy = var(y)(N — P)

where o represents element-wise multiplication and v is a P x 1 vector: v, = X;Xp for the p-th
SNP with genotype vector X,,. This estimate can be adapted to directly operate on summary

statistics as explained in Materials and Methods.

1.3 Full derivation of variational EM algorithm:

As has been described in Materials and Methods, based on the data generative process, for

the k-th causal effect, we have:

sk, ~ Multinomial(1,Tt)
5k ~ N(07 Tﬂikl)
y=XY sifite

k
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s With ¢; ~ N (0,7,"). Therefore, we have the joint probability:

561

562

563

5

o3
X

565

566

567

5l

(o2}

8

p(Y’ Sa B|X7 77(7 78, Ty) - p(Y|X7 S: Ba Ty) Hp(ﬁkh—ﬁk) Hp(Sk|7'~t) (4)
k

k

The goal of fine-mapping is to infer the posterior probability, and in particular, of the sparse

projection S (from here we make the dependency on hyperparameters implicit for the ease of

notation):

_ply, S, B|X)

We use a paired mean field factorized [18] variational family ¢(S, ) to approximate the pos-

terior:

q(S,B) = [ [ als. Be) = [ ] a(se)a(Brlsr)

Note that in this variational family, we do not specify the form of the distribution; rather, we

only specify the dependency of ;. on s, and that all K causal effects are independent of each

other. Also, the form of the variational family does not depend on any observed data.

To better approximate the posterior distribution with members of the variational family, we

aim to minimize the KL divergence between the posterior distribution and the proposed varia-

tional distribution, which is equivalent to maximizing the ELBO [20]:

ELBO = Eys p)[logp(y, S, BIX)] — Eys g [logq(S, B)]

To maximize the above ELBO, the following requirement should be satisfied for each k:

where E

S\ kB \k

log Q(Sk, ﬁk) = EQ(S\kvﬁ\k)Ky? S, B‘X)]

) is the expectation with respect to the variational distribution excluding the £-th
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component. With the joint probability provided in Equation (4) we have

log p(y, S, BIX) =logp(y|X,S,B) + Y _logp(Bil7s,) + > _(sil7)
k k

N T Ty

=3 log ﬁ — 5(y — X(Z k) (y — X(Z sk5r))

k
1 Ty B 02 ~
+ zkxﬁlog% B 76’6) + %:Zg:skgbgﬂg

sso laking expectation with respect to the variational distribution excluding the k-th component

o and plugging in s, = 1 and sy, = 0 for all SNPs excluding the g-th SNP, we can obtain the joint

5

N

1 distribution of the k-th effect as:

5

J

T T ~ N
log q(skg = 1,81y = 0, Bi) = const — %Bi — é’X;Xgﬁz + TyﬁkX;(y — XB\x) + logmy  (5)

572 where

B = Eysop [ D SkBel = > vi o 1

K1k k' #k

s We recognize that

Q</6k‘|sk:g:1a Sk\g = 0) ~ N(H’l:gv Tl:g>

By matching sufficient statistics for this normal distribution, we can obtain the following varia-

tional parameters for updates:

T]:g = TyX;Xg + 73,

* T o
Mg = 7_]; X;(Y - Xﬁ\k)
g
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By integrating out /3, in Equation (5), we obtain that

*

Trg 1
log q(skg = 1,81y = 0) = log 7y, — = log —I— 2Tkgpkg + const

Therefore, the posterior probability of the g-th SNP being causal in the k-th effect can be esti-

mated as:

7_

1 *
Vg = 4(Skg = 1,8k = 0) = softmaz(log 7, — log 5 L 5 Thglths)

This completes the variational expectation step in our inference algorithm. When functional
annotations are available, we use the following maximization step to integrate relevant annota-

tions. After the expectation step, we have that

ELBO = const + Z Vio.g 108 Ty
k.g
. exp(A,w)
= const + Vo log =———F"——
Z kg >, exp(Agw)

k,g

= const + Z ’Ykg A w — log Z eXp gW))]

k,g

To maximize ELBO with respect to the relative enrichment of the m-th candidate annotation,
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we take partial derivatives of ELBO with respect to w,, and set it to 0 to solve for w,,:

0 Agm eXp(AgW))]
Zg exp(Agyw))

— Z ’Y* [A . Zg Agm eXp(Agmwm) eXp(Zm’;ém Agm’wm’))
- k.gl‘igm Zg exp(Agmwm) eXp(Zm’#m Agm/wm,))

_ Z A Zg Agm exp(Agmwm)softmax(Zm,im A gy W)
— kgl igm > g XP(Agmwi)so ftmaz (-, Agm W)

= Z[Agm = 1]’729
k.g

OELBO . >
o = D Vgl Agm —

ow
m k,g

B Z . e > [Agm = Usoftmaz (3,2, Agm W)
kg ewm A, = 1lsoftmax v Ag Wt ) + A, = 0lsoftmax s A g Wy
k.g gl*7g m/#m <79 gl*™g m/#Em * g
k‘le“’m

kle“’m + k‘[)

=1y —(ri+ 1)

=0
where

ki = Z[Agm = 1]softmax( Z Ay Wiy )

g m/#m

ko = Z[Agm = 0]softmax( Z Ay Wiy )
g m/#m

= Z[Agm =17k
k.g

To = Z[Agm - O]Vlzg
k.g

We then obtain:
]{71 evm 1

kievm + ko :7“1+7”0

574 and solve for:
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T1/To
w,, = log <ﬁ>
Notably, this estimate is analogous to a relative risk estimate in a 2 x 2 contigency table. Sup-
pose we consider one annotation, then k; corresponds to the number of variants with this spe-
cific annotation while &, corresponds to the number of variants without the annotation. Mean-
while, r, corresponds to the sum of posterior probability for variants with the annotation while r,
corresponds to the sum of posterior probability for variants without the annotation.

Similarly, the standard error of this estimate can be calculated based on the standard error of

a relative risk:

Finally, we can evaluate the statistical significance of enrichment with the log likelihood ratio

test (G-test) [21].

2 Supplementary Table Legends

Supplementary Table S1 Relative enrichment of functional priors in simulation studies.

Supplementary Table S2 Comparison of fine-mapping results based on different hyperpa-

rameter settings of the number of causal effects K.
Supplementary Table S3 Details of computation time by each method.

Supplementary Table S4 Fine-mapping results for five functional biomarkers based on the

UK Biobank, including genetic variants with a PIP > 0.1.
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Supplementary Table S5 Relative enrichment of functional annotations for five functional

biomarkers.

Supplementary Table S6 Comparison of fine-mapped SNP heritability for five functional

biomarkers.
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