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Network Anomaly Detection (NAD) has become the foundation for network management and security due to the rapid devel-
opment and adoption of edge computing technologies. There are two main characteristics of NAD tasks: tabular input data and
imbalanced classes. Tabular input data format means NAD tasks take both sparse categorical features and dense numerical features as
input. In order to achieve good performance, the detection model needs to handle both types of features efficiently. Among all widely
used models, Gradient Boosting Decision Tree (GBDT) and Neural Network (NN) are the two most popular ones. However, each
method has its limitation: GBDT is inefficient when dealing with sparse categorical features, while NN cannot yield satisfactory
performance for dense numerical features. Imbalanced classes may downgrade the classifier’s performance and cause biased results
towards the majority classes, often neglected by many exiting NAD studies. Most of the existing solutions addressing imbalance
suffer from poor performance, high computational consumption, or loss of vital information under such a scenario. In this paper, we
propose an adaptive ensemble-based method, named GTF, which combines TabTransformer and GBDT to leverage categorical and
numerical features effectively and introduces Focal Loss to mitigate the imbalance classification. Our comprehensive experiments on
two public datasets demonstrate that GTF can outperform other well-known methods in both multiclass and binary cases. Our
implementation also shows that GTF has limited complexity, making it be a good candidate for deployment at the network edge.

1. Introduction

In the past few decades, the Internet of Things (IoT) and cloud
services have penetrated many aspects of our lives and served
quantities of applications, for example, automated vehicles,
medical applications, industrial IoT, and cloud data centers
[1-4]. These emerging applications have shown considerable
potential in improving the quality of life and network services.
However, the proliferation of these new technologies also has
led to an increasing trend of cyberspace attacks and other
threats, making security concerns still hamper IoT adoption.
Reportedly, the losses caused by cybercrime in the United

States exceeded $4.2 billion in 2020 [5]. As a result, network
security is a critical concern in our daily lives and business
operations. There is an urgent need for efficient and reliable
anomaly detection mechanisms to shield our network.
Traditional NAD methods, such as firewalls and rule-
based Network Intrusion Detection Systems, are often
insufficient to detect unknown attacks due to the inability
to keep up with the most recent and sophisticated attacks.
With the prevalent application of artificial intelligence,
machine learning (ML), especially deep learning (DL), has
attracted much attention in edge computing and cloud
computing [6-10], due to its advantages in discovering
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hidden patterns from vast amounts of data. ML/DL
techniques are now widely used for the purpose of NAD,
enhancing the security of the networking infrastructure
and crucial data.

A typical ML/DL-based NAD method, which aims to
detect anomalous network traffic by observing traffic data
over time to distinguish potential attacks from normal
traffic, usually takes the tabular data as the input and reads
the data in CSV format. The tabular data consists of series of
network traffic records, each of which is a network con-
nection session (or a flow) and is labeled as either normal or
a specific attack type. In particular, the tabular input means
that the input features of a NAD method can have both
categorical and numerical ones. For example, transaction
protocol types and service types are usually regarded as
categorical ones, while the duration and source/destination
bytes are numerical values. Therefore, a classification model
must be able to learn effectively with tabular input data. In
general, among traditional ML methods, decision-tree-based
ensemble methods (e.g., Gradient Boosting Decision Tree,
GBDT [11]) dominate the use cases for tabular input data
due to their superior performance. On the other hand, the
deep learning methods are more preferred for unstructured
input data (e.g., images, speech, and text) [12]. Because of its
popularity and performance, this paper focuses on GBDT.
While some recent researches confirm that GBDT is still the
most accurate method on tabular data [13, 14], others claim
to outperform GBDT [15, 16] or come within a hair’s
breadth of GBDT’s performance [17]. In general, each of
them holds its pros and cons dealing with tabular data.

On the one hand, GBDT has better effectiveness in
handling dense numerical features than sparse categorical
features. Like many other tree-based models, GBDT can
automatically collect and combine the helpful numerical
features to fit the training targets properly by picking the
features with the most significant statistical information gain
to build the trees [18]. Since categorical features are generally
converted to high-dimensional and sparse one-hot encod-
ings, GBDT will obtain small information gain on sparse
features. As a result, GBDT cannot handle categorical fea-
tures efficiently. In addition, GBDT and other tree-based
methods are fast to train and have better interpretability. On
the other hand, DL methods’ advantage mainly lies in their
capability in handling sparse categorical features by learning
parametric embeddings to encode categorical features and
their power in learning from large-scale data. The main
limitation of DL methods, such as Fully Connected Neural
Network, is their shortcoming in learning with dense nu-
merical features directly, mainly because of complex opti-
mization hyperplanes and the risk of falling into local
optimums [19]. Therefore, DL methods cannot match the
performance of GBDT in many tasks and datasets [15, 20].

Another challenge of the NAD task is the class imbalance of
the real-world network traffic captured by edge devices [21],
making it challenging for the classifier to make decisions on
such skewed data distribution. In such cases, learning-based
classification methods are always designed to achieve the
highest overall accuracy, which may produce a bias towards the
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majority class [22]. Similar scenarios also exist in other real-
world applications, such as credit fraud detection [23] and
medical diagnosis [24], but we focus on the NAD task at the
network edge in this paper. Anomalies rarely occur, and
normal data usually accounts for a large proportion. Fur-
thermore, the minority class ordinarily carries the concepts
with more significant interests than the majority class [25].

Accordingly, developing an adaptive method to address
two major challenges of NAD tasks, that is, tabular inputting
and imbalance problem, is desired. Inspired by some recent
studies, we intend to combine Neural Networks and tree-based
models to learn effectively from tabular data and introduce a
well-designed loss function to deal with class imbalance. In this
paper, we propose a novel method for the NAD task, called
GTF, an ensemble of GBDT and TabTransformer enhanced
with Focal Loss. We explored the GBDT2NN [26] and the
TabTransformer-based classifier [17] to handle numerical
features and categorical features, respectively, as shown in
Figure 1. As for class imbalance, we utilize Focal Loss, which is
proposed in the field of object detection for solving the extreme
foreground-background class imbalance, which degrades the
first-stage detector’s performance [27], to deal with imbalanced
traffic classification. Besides, all of these methods are first aimed
at binary classification problems, and we extend them to the
multiclass NAD task. In summary, the main contributions of
our work are listed as follows:

(i) We introduce a novel supervised NAD method with
adaptive learning, named GTF, which improves the
robustness and effectiveness for tabular data with
class imbalance problems. Our method is applicable
to various kinds of classification tasks but is par-
ticularly useful for NAD.

(ii) We consider the tabular input data of NAD tasks
and introduce two advanced models, that is, Tab-
Transformer and GBDT2NN. Our proposal com-
bines the advantages of GBDT and NN to handle
both categorical and numerical features efficiently.

(iii) By integrating Focal Loss, the proposed GTF can adapt
to scenarios in which the performance suffers from
class imbalance and compensate for the degradation of
the classification model in such scenarios.

(iv) We also propose an adaptive learning framework
for GTF to automatically search for optimal pa-
rameters without the expert’s experience. Experi-
ments demonstrate that GTF could achieve superior
results on two well-known NAD datasets, that is,
KDD’99 and UNSW-NBI5, and achieve robust
performance in both multiclass and binary cases.

(v) We evaluate the complexity of GTF in terms of
computational requirements and runtime. Our
analysis shows that GTF is really efficient and
scalable. Thus, it is a good fit to deploy on con-
strained edge devices.

The rest of the paper is organized as follows. We
summarize the related work in Section 2, followed by our
proposed method in Section 3. In Section 4, we provide the
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FiGure 1: The framework overview of GTF. We use two modules to treat categorical and numerical features, respectively. The adaptive
training module can learn optimal w, and w, through optimizer and find best « and y used for Focal Loss from searching space au-

tomatically. For y;r, TT represents Tab Transformer.

experimental details and results. Finally, we draw the con-
clusion in Section 5.

2. Related Work

As aforementioned, each of GBDT and Neural Network has its
own weaknesses when facing the tabular data. Since sparse
categorical features may impair the growth of trees in GBDT
because of tiny statistical information gain, some methods
require to encode categorical features into dense numerical
values, which can be handled well by tree-based models. Some
GBDT methods can directly take categorical features as their
inputs, such as LightGBM [28] and CatBoost [29]. For example,
CatBoost transforms categorical features to numerical before
each split is selected in the tree by using various statistics on
combinations of categorical features and combinations of
categorical and numerical features. However, it may cause
information loss. Binary coding [30] is another choice to
encode features, which enumerates possible binary partitions of
categorical features. But this method may cause overfitting and
bring bias when there is not enough data in each category [28].
Neural Networks have been applied in many fields, but they are
not well suited for tabular data. They mainly focus on the sparse
categorical features and pay less attention to the dense nu-
merical features. Although NN generally employs normaliza-
tion [31] or regularization [12] for numerical features before the
training phase, they usually cannot outperform GBDT and fail
to find optimal solutions for tabular decision manifolds. For
learning effectively with tabular data, some recent researches
also try to combine the advantages of NN and GBDT. Although
these methods are believed to have decision ability like trees to
some extent, they mainly focused on computer vision or click
prediction tasks rather than the NAD task with tabular in-
putting. Moreover, they may suffer from some disadvantages,
like being inefficient and redundant.

Imbalance classification, also known as Imbalance
Learning, has been one of the most challenging problems in

machine learning and deep learning. Many research works
have been proposed to solve such problems and they can be
summarized into three categories: data-level methods, al-
gorithm-level methods, and cost-sensitive learning. To
combat imbalance, typical algorithms adopt resampling
techniques before training, such as SMOTE, ADASYN,
NearMiss, and Tomek Link [32-35]. Most data-level
methods have a distance-based design. On the one hand,
resampling on large-scale data may lead to a high cost of
computing the distance between samples. On the other
hand, distance-based design may not be applicable for
categorical features or missing values. Except for the time
consumption of oversampling, undersampling may lose
important information. Algorithm-level methods usually
combine ensemble learning algorithms with advanced
resampling techniques introduced to reduce the variance
and they have achieved superior performance. But some of
these ensemble methods are more time-consuming (e.g.,
SMOTEBagging and SMOTEBoost [36, 37]) and others have
the risk of underfitting or overfitting (e.g., EasyEnsemble
and BalanceCascade [38]). Cost-sensitive learning takes
costs associated with the different classes into account. It
mainly consists of two approaches: (1) assign the corre-
sponding cost directly to each category and (2) employ
metalearning during the training phase by preprocessing
(usually data-level techniques) and postprocessing steps.
However, some of them require a prerequisite of domain
experts to set a cost matrix, and some have high compu-
tational complexity.

In summary, although there are increasing works that
build more effective models and deal with skewed class
distributions, most of them cannot completely solve the
challenge of the NAD task (tabular input space and class
imbalance). In this paper, we integrate NN and GBDT into a
whole framework and adopt the advanced loss function to
address the imbalance, which is suitable for real-world NAD
datasets.



3. Methodology

In this section, we provide the formalized problem definition
and our proposed method. Specifically, we focus on the
imbalanced NAD task with tabular data as input. The whole
framework, as the adaptive training module shows in Fig-
ure 1, consists of two components: TabTransformer for
sparse categorical features and GBDT2NN for dense nu-
merical features. We also introduce Focal Loss and adaptive
tuning to guide the training phase. We will describe the
details of each component in the following subsections.

3.1. Problem Definition. First of all, we only consider the
input dataset in tabular format, which is very common in
real-world applications at the network edge. Besides, we
assume that there are n categories of network traffic, where
n>2 and at least one category is the normal network traffic
class. Then, for the i-th category, we use N; to denote its
sample size. In this paper, we define the dataset as “an
imbalanced dataset” when the sample sizes from different
classes have wide ranges. In this paper, we use “majority
classes” to refer to those with large sample sizes and “mi-
nority classes” to refer to other classes with much smaller
sizes. Our ultimate goal is to improve the classification
accuracy of minority classes without affecting the perfor-
mance of overall classes.

3.2. TabTransformer for Categorical Features. Motivated by
the initial success of Transformer [39] in NLP, Huang et al.
adopted the idea to tabular data and proposed TabTrans-
former [17], which is an architecture that provides and
exploits contextual embeddings of categorical features. Their
study suggests that, for tabular data, TabTransformer can
achieve comparable performance to tree-based ensemble
approaches and outperform the state-of-the-art deep
learning methods. As shown in Figure 1, we utilize Tab-
Transformer’s advantage in handling categorical features, so
we only use a part of its original structure. We remove the
continuous features in the input, as well as the following
normalization layer and concatenation layer related to these
features. Figure 2 shows the architecture of TabTransformer
used in this paper.

Generally speaking, TabTransformer comprises a col-
umn embedding layer, followed by a stack of N transformer
layers, and a multilayer perceptron (MLP) before the loss
function. Each transformer layer consists of a multihead self-
attention layer followed by a position-wise feedforward
layer. To learn categorical features more effectively, Tab-
Transformer applies embedding technology on sparse vec-
tors to get low-dimensional dense representation before
stepping into transformer layers, denoted as

E¢ (Xcat) :{e¢1 (xl)’ te ’e¢m (xm)}’ (1)

where x_, represents all the categorical features with x; being
i-th categorical feature. e, (x;) is corresponding embedding
vector for x;, which can be learned by back-propagation.
Based on the above equation, the first transformer layer takes
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FiGURE 2: The architecture of TabTransformer.

E;(x,) as its input, passes the output to the second
transformer layer, and so forth. Unlike the original Tab-
Transformer, we directly pass the output of the stack of
transformer layers into an MLP to get the prediction. The
prediction y; can be formulated as follows:

Yrr (Xcat) = /l(f(E¢ (Xcat); 61); e2)’ (2)

where function f denotes N transformer layers, .# denotes
the MLP, and 6, and 6, denote the parameters of two
components.

3.3. GBDT2NN for Numerical Features. Gradient Boosting
Decision Tree (GBDT) [11] is a widely used ensemble model
of decision trees. In many application domains, it outper-
forms other machine learning algorithms such as Random
Forest and Support Vector Machine. GBDT, as a tree-based
gradient boosting algorithm, can build new trees by com-
puting the information gain and fitting the residuals of
previous trees. As mentioned in Section 2, GBDT’s strength
lies in learning overdense numerical features but it fails to
grow trees effectively using sparse categorical features. The
path from the root node to the leaf node can build a decision
rule, which can act as a vital cross feature. As a result, we
choose GBDT to deal with numerical features.

While using GBDT alone is much easier, combining it
with NN models is way more challenging. Most of the prior
studies try to distill the trees of GBDT into an NN model but
only transfer model knowledge in terms of the learned
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function without considering other informational knowl-
edges in the tree structure. In [26], Guolin et al. proposed a
novel idea to efficiently distill the learned trees, called
GBDT2NN, which could perfectly approximate the decision
function and tree structure of GBDT with the help of the
strong expressiveness ability of NN. For a single tree ¢, it can
be distilled into an NN 4" denoted as follows:

¥ (x) = #(x[1'];8) x ¢, 3)

where x[I'] is the input of ./, I' represents the used features
given from GBDT, and 6 is the parameter of .#. q° denotes
the leaf values of tree and q! is the leaf value of i-th leaf. Since
GBDT will get various trees after training, constructing an
NN for each tree is very inefficient. In order to improve the
efficiency, they proposed Leaf Embedding Distillation and
Tree Grouping to downsize the scale of NNs. The Leaf
Embedding Distillation adopts embedding technology and
converts the one-hot representations of leaf indexes to dense
vectors as the targets to be approximated in the learning
process. The Tree Grouping divides the trees into k groups,
and each group T has s = [m/k] trees, where there are m
trees in total. Finally, the output of GBDT2NN can be
denoted as

k
Yaeprann (X) = Z yr, (%), (4)
i

where y1, (x) = A (x[1"];8") , which represents the output
of //; for j-th tree group.

3.4. Combination of TabTransformer and GBDT2NN. As
described in previous subsections, we now own the output of
TabTransformer and GBDT2NN. So, we are ready to
combine them to perform end-to-end training. To get

prediction y of the whole model, we assign different trainable
weights that can be obtained from back-propagation, that is,
w, and w,, for y; and yepprony as

¥ (x) = 0 (w; X ygpprann (X) + wy X yrr (%)), (5)

where ¢ is the activation function for the last layer, for
example, softmax for multiclass classification, and the loss
value can be expressed as

Loss = Z (Y (x),y), (6)

where y is the true label of sample x and £ is the loss
function.

3.5. Focal Loss. Focal Loss (FL) [27] is proposed to resolve
the class imbalance in object detection tasks, and it is an
improvement on the traditional cross-entropy (CE) loss. A
proven ability of Focal Loss to solve the imbalance problem
in the NAD task has been discussed in [40]. So, we also use
FL as the loss function to focus on hard samples while
avoiding the bias towards the easy samples. Hard samples
are those in the training set which cannot be well predicted,
and easy samples are the opposite. According to [27], for a
binary classification task, FL is as follows:

FL=-Y ay,(1-73,)"log(3;) + (1 - @) (1 - y,)7!log(1 - 7).
i=1

(7)

where ¥; represents the probabilistic predictions as defined
in Section 3.4, y; represents the labels of input samples, a is a
balanced variant, y > 0 is called focusing parameter, and m is
the number of samples. When y = 0, it turns into CE loss.
For the multiclass classification task, we can use the concept
of one-vs-all to extend FL as follows:

FL(3py)=~(ay+(1-a)(1 =) - (1=(y-7:+(1=p)- (1-53)))" - (¥ log(3;) + (1 = y)log(1 - 3;)), (8)

where we assume that there are m samples and # classes, and
then y is the one-hot encoding of the labels, and 7, rep-
resents the probabilistic predictions with the size of (m,n).

To obtain optimal o and y, we also deploy adaptive
training in the proposed framework by feeding different «
and y from the searching space into Focal Loss. According to
[27], we set ranges of & and y to be (0.25, 0.75) and (0.5, 5),
respectively. In the training phase, we only need to choose a
target metric, such as F1-score, and GTF can automatically
search for the best parameters that yield the best perfor-
mance. Such an adaptive training method enables GTF to be
suitable for any scenarios and avoids the need for prior
knowledge to set appropriate parameters.

4. Experiment

In this section, we will perform comprehensive evaluations
of GTF on two public datasets and compare it with several

well-known methods. We will first describe the detailed
experimental setup. Then, we will analyze the performance
of GTF in both multiclass and binary cases to illustrate its
effectiveness.

4.1. Experimental Setup. In this section, we will start with
details about datasets and the evaluation criteria. Then, we
will brief the comparison methods and ablation study and,
finally, our implementation.

4.1.1. Dataset. To illustrate the effectiveness of our proposed
method, we conduct experiments on two publicly available
intrusion detection datasets, as listed in Table 1.

KDD Cup 1999 dataset [41], also known as KDD’99, is
widely used by data mining techniques for the NAD task and
includes a wide variety of intrusions simulated in a military
network environment. It has been preprocessed into 41



features per network connection and consists of 5 categories
of traffic. Besides the Normal traffic, there are 4 types of
attacks: DoS (Denial of Service attacks), Probe (Scanning
attacks), R2L (Remote to Local attacks), and U2R (User to
Root attacks). Among the entire dataset, the majority class is
DoS, which occupies 79.2% of the training set and 73.9% of
the testing set. On the contrary, U2R only accounts for 0.1%
of the training set and 0.2% of the testing set.

UNSW-NBI15 dataset [42], published in 2015, is usually
used as an alternative to KDD’99. Compared to KDD’99, it
can better reflect modern low footprint attack scenarios and
thus is more accurate to simulate the real-world traffic.
Similar to KDD’99, the UNSW-NB15 dataset has 49 features
(7 irrelevant features are removed and the reduced size of
feature set is 42) and 9 types of attacks. The types of attacks
are Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic,
Reconnaissance, Shellcode, and Worms.

Imbalance Ratio per Label (IRLbI) is a commonly used
indicator to quantify the degree of class imbalance in a
dataset. It calculates the ratio of the number of majority class
i’s samples (Np,oniry) Over the number of the class i's
samples (N;) in the multiclass case, as shown as follows:

N . .
IRLb]; = — 2oty (9)

1

As for the binary case, we simply use IR because there
only exists one minority class.

Both KDD’99 and UNSW-NBI15 datasets are provided in
CSV format and have different degrees of imbalanced class
distributions. Tables 2 and 3 list the statistics of each dataset.

We consider both imbalanced binary and multiclass
classification. In the binary case, we dividle UNSW-NB15
into two categories: Normal and Attack. Then, we apply
random sampling to the Attack class of the training set to
construct datasets with different degrees of imbalance, where
we set IR to 50, 100, 500, and 1000, respectively.

4.1.2. Implementation. We use scikit-learn (https://scikit-
learn.org/stable/index.html), LightGBM (https://lightgbm.
readthedocs.io/en/latest/index.html), imbalanced-ensemble
(https://github.com/ZhiningLiu1998/self-paced-ensemble),
CatBoost (https://catboost.ai/) and PyTorch (https://
pytorch.org/) packages to implement these classifiers. We
train these models with following parameters:

(i) Tree-Based Models. We set the learning rate at 0.01,
the number of trees at 128, and the max number of
leaves at 10.

(ii) NN-Based Models. We use AdamW optimizer with a
learning rate of 0.001, a batch size of 1024, and the
early stopping rounds of 20.

(iii) TabTransformer. We set the embedding dimension
at 32, the number of Transformer layers at 6, and the
number of attention heads at 8.

(iv) GBDT2NN. We decide to use 10 and 20 as fixed
values for the number of tree groups and the leaf
embedding dimension, respectively.
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In order to simulate computationally constrained edge
devices, we conduct all experiments on a laptop running
Windows 10 with 8 GB RAM and a six-core Intel(R) Core(R)
CPU. As in most papers, we perform 10-fold cross-valida-
tion for tree-based models and run all NN-based models five
times with different random seeds.

4.1.3. Evaluation Criteria. Traditionally, accuracy metrics
may have a bias towards the majority class and cannot
reasonably reflect the model performance in our scenarios.
As aresult, we propose using the other evaluation criteria for
both overall and individual metrics. All of these metrics are
implemented in scikit-learn, a widely used Python library. In
order to define our proposed criteria and their equations, let
us use TP,/FP; to denote true/false positive and TN,/FN; to
denote true/false negative for a given class i.

(1) Individual Metrics. To evaluate the performance on in-
dividual class, we consider Recall, Precision, and F1-score as
individual metrics. They are defined in the equations below.
Based on these equations, we can see that Fl-score is a
weighted average of the Recall and Precision and is usually
considered as a trade-off between them.

TP;
Recall;(R,) = —+—,
"N TP, + BN,

TP,

Precision, (P;) = W’FP, (10)

1 1
R; X P;
F1-score; (F1;) =2 - Rl N Pl'
it

(2) Overall Metrics. To evaluate the overall performance in
the multiclass case, we choose the Area Under the Receiver
Operating Characteristic Curve (ROCAUC) and the Mat-
thews Correlation Coefficient (MCC). ROCAUC shows the
insensitivity of class imbalance (when average == ‘macro’
and multi_class == ‘ovo’ are set in scikit-learn). MCC is a
correlation coeflicient, whose value ranges from -1 to 1. A
coefficient of 1 means a perfect prediction. Generally
speaking, MCC is considered as an unbiased and more
comprehensive metric for class-imbalanced tasks. In the
binary case, we only use MCC as the overall metric.

~ TP x TN — FP x FN
~ /(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(11)

MCC

4.1.4. Comparison Methods and Ablation Study. Since our
goal is to address the imbalance issue in NAD tasks while
learning effectively from tabular input data, we need to
evaluate GTF based on these two scenarios. In order to
conduct a comprehensive comparison and analysis, we use
various models in the evaluation. First, we use LightGBM as
our baseline due to its excellent performance and reliability.
For NN-based models, we choose the original


https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://github.com/ZhiningLiu1998/self-paced-ensemble
https://catboost.ai/
https://pytorch.org/
https://pytorch.org/

Security and Communication Networks

TaBLE 1: Details of the datasets used in experiments.

Dataset Training Testing Numerical features Categorical features
KDD’99 494021 311029 34 7
UNSW-NB15 175341 82332 37 5

TaBLE 2: Class distribution and IRLbl of KDD’99.

0 1 2 3 4

Num. Num. IRLbI, Num. IRLbI, Num. IRLbl, Num. IRLb],

Training 391 458 97278 4.0 4107 95.3 1126 347.6 52 7528.0

Testing 229855 60593 3.8 4166 55.2 16 345 14.1 70 3283.6

*0: DoS, 1: Normal, 2: Probe, 3: R2L, and 4: U2R.

TabTransformer because it has been proven to be superior to
recent deep Neural Networks for tabular data while
matching the performance of tree-based ensemble models,
like GBDT. For tree-based models, we include CatBoost,
which could outperform other GBDT frameworks signifi-
cantly and can handle categorical features very efficiently.
Last but not least, we include two state-of-the-art methods
for imbalance classification in NAD tasks. One is an algo-
rithm-level method named Self-Paced-Ensemble (SPE [43])
and the other is a cost-sensitive method named FLAGB [40].

To prove the improvement brought by GTF, we also
design two additional ablation experiments. In the first
ablation experiment, we only use GBDT2NN without
TabTransformer to evaluate the performance of GBDT2NN.
As described in the preceding paragraph, TabTransformer
has been tested separately, so we do not repeat it. In another
ablation experiment, we weaken the GTF by removing Focal
Loss to estimate its importance to GTF (represented by
GT(F) in subsequent sections).

4.2. Results and Analysis. We first evaluate the performance
of GTF in the multiclass case and show the results of both
overall and individual comparisons on the two datasets in
Tables 4 and 5, respectively. Note that the top-2 results are
marked in bold. Due to the space limitation, we only present
the most relevant metrics, that is, ROCAUC and MCC, for
overall metrics and F1 for individual metrics. We also
consider the binary case as described in Section 4.1.1 and
show the experiment results in Figure 3. Lastly, we describe
the results of the ablation study and give a computational
complexity analysis of the proposed GTF.

4.2.1. Results on KDD’99. It can be seen that GTF outper-
forms other methods on both ROCAUC and MCC in the
multiclass case, which explicitly indicates the advantage of
our approach on imbalanced tabular data. Besides GTF,
TabTransformer, GBDT2NN, and FLAGB also demonstrate
enhancement on overall metrics. CatBoost and SPE achieve
slightly better ROCAUC compared to baseline but worse
performance on MCC. Compared to the baseline, GTF
improves the ROCAUC (87.71% versus 76.79%) and MCC
(82.46% versus 69.59%) simultaneously.

In terms of individual metrics, GTF/GT(F) improves
the baseline significantly and beats other methods in three
classes (0, 1, and 4). For class 3 and class 4, as shown in
Table 2, all of their IRLbIs in the training set are relatively
large. Especially for class 4, IRLbl =7528. Thus, the
baseline cannot give a reliable prediction on minority
classes and clearly demonstrates how the classifier’s
performance is negatively affected by the increased IRLbL
For instance, the F1 of baseline declines to 0 in class 4. The
performances of TabTransformer and CatBoost also suffer
from the large IRLbL. In class 3 and class 4, they both
achieve 0 F1-score. Interestingly, as far as class 3 and class
4 are concerned, SPE shows the opposite result compared
to FLAGB and GTF. It performs best in class 3 but worst in
class 4, while the other two perform better in class 4,
mainly because of the ability of Focal Loss to focus on
minority classes. Compared with FLAGB, GTF has an
obvious improvement on F1-score of all classes and boosts
F1,/F1,;/F1, by 2 to 3 times.

4.2.2. Results on UNSW-NBI5. For the UNSW-NBI5
dataset, although the numbers from GTF are not as eye-
catching as those on KDD’99, it is still compelling enough as
the metrics are either the best one or close to the best one.
Regarding overall metrics, GTF achieves the best result on
ROCAUC, which slightly improves the baseline (92.02%
versus 91.11%), and the GTF’s result on MCC is slightly
worse than the baseline (69.87% versus 70.27%). Other
methods, such as TabTransformer, do not yield any sig-
nificant improvement on ROCAUC and achieve similar or
worse performance on MCC. Such a situation also reflects on
individual metrics. Overall, GTF is the most suitable method
because it can boost ROCAUC the most without decreasing
MCC. As far as individual metrics are concerned, GTF either
performs better than the baseline or achieves very similar
numbers. Its improvements on F1,, Flg, and Fl, are
maximum among all methods, which is the only one that can
boost F1 on class 8 and class 9. Among all classes, GTF and
SPE significantly outperform other methods in class 2, class
3, and class 5. These classes are relatively common in the
training set, and their IRLbels are relatively low (all less than
50). It is counterintuitive to see the numbers, but it further
confirms the supremacy of GTF.
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TasLE 4: Comparison of metrics obtained by different methods for KDD’99. The results are expressed in %, and F1; means F1-score in

class i.
Overall Individual

Model

ROCAUC MCC F1, F1, F1, F1, F1,
Baseline 76.79 69.59 97.65 74.86 21.34 2.03 0
GTF 87.71 82.46 98.44 84.19 77.47 11.11 45.07
GT(F) 86.59 82.80 98.54 84.53 76.18 9.51 20.37
TabTransformer 79.58 82.33 98.39 84.45 81.31 0 0
GBDT2NN 80.19 82.04 98.41 83.70 76.53 9.60 20.90
CatBoost 82.23 61.86 91.29 71.84 76.50 0 0
FLAGB 85.31 69.98 95.96 78.64 39.87 3.40 21.13
SPE 81.04 64.92 97.70 66.67 19.34 14.22 1.36

Bold values represent top-2 results.

TaBLE 5: Comparison of metrics obtained by different methods for UNSW-NB15. The results are expressed in %, and F1; means F1-score in

class i.
Overall Individual
Model
ROCAUC MCC  Fl, F1, F1, F1, F1, Fl,  FIl, F1, Fl, Fl,

Baseline 91.11 70.27 84.83 84.95 5.78 8.79 69.19 0 40.33 32.78 41.18 98.18
GTF 92.02 69.87 82.44 84.13 11.57 2491 69.42 3.14 38.37 36.36 47.78 98.35
GT(F) 90.34 66.42 82.12 82.81 8.62 23.32 68.07 2.18 37.13 28.87 39.31 98.18
TabTransformer 84.59 69.59 84.92 84.13 0 26.35 69.97 0 38.61 0 0 98.14
GBDT2NN 70.36 55.42 77.87 25.93 3.25 22.30 58.38 5.50 26.47 0 0.67 92.63
CatBoost 91.22 70.13 85.16 84.02 0.34 1.11 68.28 0 40.39 0 31.19 98.05
FLAGB 91.04 70.17 84.87 85.01 5.24 8.61 68.93 0 40.14 43.75 39.44 98.15
SPE 90.95 56.55 73.76 61.46 10.66 24.00 60.79 8.84 33.31 7.07 11.57 97.80

Bold values represent top-2 results.

Based on the results, we can conclude that GTF can
provide the best performance in the multiclass case with the
comprehensive consideration of overall and individual
metrics. It demonstrates that the proposed GTF can not only
learn efficiently from tabular data but also mitigate the
imbalance classification problem.

4.2.3. Overall Metric in the Binary Case among Different IRs.
Due to the limited space, we only show the overall metric of
the binary case, that is, MCC, in Figure 3. The results indicate
that the classifiers’ performance generally shows a down-
ward trend as the IR increases, and GTF outperforms other
methods under all IRs. The performance of TabTransformer
is the worst as it cannot distinguish Attack records from the
Normal ones at all. The performance of CatBoost is very
unstable, which is also lower than the baseline in most cases.
FLAGB achieves good performance when IR = 50, but its
performance drops dramatically when IR >100. Both GTF
and SPE outperform others regardless of the value of IR.
From the figure, we also observe that GTF’s performance is
more stable (approximately within 20% range) for different
IRs, compared to SPE. It is worth mentioning that SPE
consumes about twice as much training time as GTF does in
our experiments. Therefore, we can conclude that GTF can
perform much better than other methods in the binary case
while being fast enough.

4.2.4. Ablation Study. As shown in Tables 4 and 5 and
Figure 3, neither TabTransformer nor GBDT2NN can
achieve the best performance across all cases. What is worse
is that, in some cases, these two models perform way worse
than the baseline in terms of overall and individual metrics.
On the contrary, in both multiclass and binary cases, GT(F)
can beat TabTransformer and GBDT2NN on most metrics.
For example, in Table 5, GT(F) can achieve good perfor-
mance on F1, and Flg, while both TabTransformer and
GBDT2NN yield 0. Even though when GT(F) leads to worse
performance compared to TabTransformer or GBDT2NN,
such as F1, and F1; in Table 5, the achieved performance
tends to be close to the best ones or above averages. This
indicates that the combination of TabTransformer and
GBDT2NN can improve the overall performance and pre-
vent performance degradation in several cases.

Now we want to understand the impact of Focal Loss on
the classification model by comparing GTF and GT(F). It is
obvious to see that GTF outperforms GT(F) on almost all
metrics, especially on the metrics to detect minority classes
(e.g., F15 in Table 4 and F1, and F1g in Table 5). In some
cases, such as F1, in Table 4, the Focal Loss leads to more
than 100% improvement of the score. Another two inter-
esting data points are F1, and F1; in Table 4. In these two
cases, GT(F) is clearly underperforming compared to Tab-
Transformer and GBDT2NN. But there is a big performance
boost when the Focal Loss is added in GTF. For the overall
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TaBLE 6: Computational complexity of GTF.

Inference time

# of parameters Batch size MACs (M) (milliseconds)
1 0.36 12.32
355,731 1024 364.27 119.72

metrics in the binary case, we also observe more than 30%
performance improvement on MCC when IR is 1000, as
shown in Figure 3.

To summarize, all our results illustrate the effectiveness
and performance improvement brought by GTF, which is a
combination of TabTransformer, GBDT2NN, and Focal Loss
to focus on minority classes.

4.3. Computational Complexity. Because edge devices usu-
ally have limited computation resources and memory, we
also evaluate the complexity of GTF using (1) the number of
multiply-accumulate operations (MACs, also known as
MADDs) performed per inference, (2) the number of pa-
rameters, and (3) the inference time. We consider two batch
sizes: 1 and 1024. The obtained results are displayed in
Table 6. From these numbers, we can see that the number of
parameters is less than one million, which is much less than
some complex deep learning models. The MACs grow
linearly with the batch size, but the inference time grows at a
much slower rate. For instance, we notice that increasing the
batch by 1000 times (from 1 to 1024) will only incur about a
ten-time rise for inference time. When the batch size is 1
(single sample), the inference time can be as short as
12.32 ms. Thus, we can conclude that GTF is feasible to be
deployed on constrained edge devices.

5. Conclusion

In this paper, we described the challenges of tabular input
and class imbalance which exist in the nature of the NAD
task. Based on the analysis of data characteristics, we pro-
pose a new method named GTF that combines the advanced

cost-sensitive algorithm and tabular learning strategy.
Specifically, our proposal utilizes TabTransformer and
GBDT2NN to handle categorical and numerical features,
respectively. It also applies Focal Loss in the learning process
to reduce the bias towards the majority classes. Powered by
these components, GTF could gain powerful learning ca-
pability on tabular data while maintaining the ability to
handle imbalance classification tasks. Compared to existing
well-known models, our comprehensive experiments
demonstrate that GTF can learn more effectively with
tabular data and adapt to different imbalanced datasets in
both multiclass and binary cases. Moreover, our imple-
mentation also shows that GTF is effective enough to deploy
on constrained edge devices for NAD purposes.
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