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ABSTRACT

Towards Real-Time Distributed Planning in Multi-Robot Systems

Mohamed Abdelkader

Recently, there has been an increasing interest in robotics related to multi-robot

applications. Such systems can be involved in several tasks such as collaborative

search and rescue, aerial transportation, surveillance, and monitoring, to name a

few. There are two possible architectures for the autonomous control of multi-robot

systems. In the centralized architecture, a master controller communicates with all

the robots to collect information. It uses this information to make decisions for the

entire system and then sends commands to each robot. In contrast, in the distributed

architecture, each robot makes its own decision independent from a central authority.

While distributed architecture is a more portable solution, it comes at the expense

of extensive information exchange (communication). The extensive communication

between robots can result in decision delays because of which distributed architecture

is often impractical for systems with strict real-time constraints, e.g. when decisions

have to be taken in the order of milliseconds.

In this thesis, we propose a distributed framework that strikes a balance between

limited communicated information and reasonable system-wide performance while

running in real-time. We implement the proposed approach in a game setting of two

competing teams of drones, defenders and attackers. Defending drones execute a pro-

posed linear program algorithm (using only onboard computing modules) to obstruct

attackers from infiltrating a defense zone while having minimal local message passing.

Another main contribution is that we developed a realistic simulation environment as

well as lab and outdoor hardware setups of customized drones for testing the system
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in realistic scenarios. Our software is completely open-source and fully integrated

with the well-known Robot Operating System (ROS) in hopes to make our work

easily reproducible and for rapid future improvements.
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Chapter 1

Introduction

The objective of this work is to present a set of tools for an efficient distributed

coordination in a team of entities (or agents) to collaborate in order to fulfill an

assigned objective under certain practical system’s constraints. Our work is motivated

by practical challenges that arise in certain adversarial game setups where agents

(e.g. robots) need to coordinate their decisions in real-time under certain system

constraints in order to achieve system-wide objectives. We apply certain optimization

techniques to allow individual agents to coordinate their behavior in a distributed way

to accomplish certain system objective in real time. We also validate our proposed

approaches through realistic simulations and hardware implementation. Furthermore,

our implementation is provided as open-source package that can run inside the robot

operating system (ROS).

1.1 Multi-Agent System

There are many definitions of the term agent in different communities and we would

like to elaborate on certain aspects that are in line with the concepts in this thesis.

An agent is not limited to a computer system, but can generally be a biological entity

such as bees, ants, birds, or human. However, in this thesis, we consider agents that

of computer system type. More specifically, we consider agents that can sense, decide

and take actions in certain environment. You can think of it as a robot that has

sensors to perceive the environment, actuators to manipulate the environment, and
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computers to generate decisions.

We can summarize the required features in an agent we consider as follows.

• We consider computer agents such as robots that has sensors and actuators

• Agents need to be autonomous. They should be able to take decision on their

own with out human intervention

• Agents should be able to reason about their environment in order to achieve

certain objectives. For example, a group of robots need to navigate through an

unknown environment while avoiding collision and with obstacle and with each

other.

Designing an single agent to react in an environment might be a simple task.

However, designing multiple agents to operate simultaneously in an environment to

achieve certain objective is more challenging as the disturbance, not only from envi-

ronment but also from the results of other agents actions, becomes harder to handle.

So, an agent need to be able to react to changes in the environment and interact with

other agents in order to achieve a specific objective.

Having multiple agents working together can help achieve tasks that are harder

to do with a single agent. For example, a group of robots that carry a single heavy

payload that cannot be handled by a single robot. However, that does not mean

controlling them is easier. As the number and complexity of these agents increase,

controlling them in a way that they cooperate with each other becomes very chal-

lenging. In multi-agent systems, cooperation becomes more difficult due to the fact

that the environment is unpredictable and the information received about the world

or other agents (through sensing or communication) are generally incomplete and

imperfect. Designing agents controllers under such conditions becomes extremely

challenging, as we will see later in the thesis, specially if certain optimal performance

is required. In many real world applications, there are other important limitations
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that has to be addressed in designing controllers in multi-agent systems. More specif-

ically, real-time implementability, limited computation power, and/or limited com-

munication resources are of a paramount interest. Designing optimal controllers in

the presence of such limitations becomes challenging as it may require more com-

putation time and/or communications that may violate the real-time constraints of

the system, and/or extensive communication (for information exchange). Generating

goal-oriented decisions in multi-agent systems can be done in centralized or decen-

tralized way. The difference is explained as follows.

1.2 Centralized vs. Distributed Coordination

A conventional way of generating optimal decisions inmulti-agent systems is to design

a centralized controller. A centralized controller receives full information about the

world and agents and generates decisions that are sent to individual agents to execute.

Although a centralized controller (or decision maker) can generate optimal decisions,

it suffers from well known issues such as scalability in the number of agents and single-

point-of-failure. Furthermore, It assumes full knowledge about the environment and

agents states at all times which is impractical due to the aforementioned limitations.

Another way of generating decisions in multi-agent systems is decentralized con-

trol. This can be more practical in many systems such as wireless sensor networks

[1, 2, 3], distributed parameters estimation [4, 5], formation control [6], and col-

laborative object transportation [7], to name a few. In decentralized control, each

agent generates its own decision based on its own limited knowledge of the world

and other agents. With such setup, decision making approaches can generally be

scalable, single-point of failure is eliminated, the previous limitations on incomplete

information and limited computations can be addressed. Several existing works pro-

vide methods for decentralized decision making in multi-agent systems for different

system setups. However, they rarely address the real-time implementability of such
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methods and verifications on an actual system.

In this thesis, we try to design distributed planning algorithms that respect prac-

tical implementation constraints such as limited computation and communication

resources. We also provide a hardware realization of the proposed approaches for

system performance validation and assessment under real testbed.

1.3 Motivation

The work in this thesis is motivated by the challenges that arise in certain adversarial

game settings. In particular, we consider an adversarial game setting between two

teams with conflicting objectives. One team is called defenders which is a set of

robots that are supposed to protect their defined defense zone against the other

team. The other team is the attackers which is also a set of robots that try to

infiltrate the defenders defense zone. Looking from the defenders perspective, we

seek to design algorithms that allow each defender to take individual actions without

a central coordinator and by interacting (e.g. communicating) with other defenders

in the team. This game setting is a simplified version of the capture the flag game

which is popular because it is a complex game with a variety of challenges that must

be addressed in a practical multi-agent system (see for example [8, 9, 10, 11]).

In such systems consisting of mobile robots that are battery powered, have lim-

ited processing capabilities, and communicate over noisy and shared channels, real

time implementability of an algorithm has higher priority than optimal performance

specially when robots travel at high speeds and have to react promptly. In particular,

for systems like quadrotors that have higher-order complex dynamics, it is extremely

important to compute a feasible control action in real time. Optimality of control

actions is always desirable but time complexity for computing these actions can make

them undesirable for such complex systems under practical situations. It is imper-

ative that the update actions are computed efficiently in real time because a small
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delay in the computation or execution of a feasible action may result in the defeat of

the entire team.

In the literature, numerous approaches have been proposed for path planning prob-

lems. One approach is to formulate the problem as a dynamic program as in [12],

which can guarantee optimal solution. However, except for special cases like LQR

problems that have analytical solutions, dynamic programs suffer from the curse of

dimensionality and cannot be solved even for a moderate size system. A computation-

ally efficient approach is to formulate the problem as a mixed integer linear program

or a linear program. However, only centralized solutions have been proposed based

on these approaches [9, 10]. Another popular approach is based on model predictive

control (MPC) in which each agent assumes a model for all the other dynamic agents

in its environment over a finite prediction horizon and solves an optimization problem

(see for example [13, 14, 15]). However, these solutions typically require communi-

cation of entire trajectories among neighboring agents, which can result in excessive

communication cost and latency in decision making.

In this work, we present a distributed, energy efficient, and real time imple-

mentable algorithm for path planning for the attackers-defenders game. We start

with reviewing the roots of the problem in a centralized setup and the correspond-

ing challenges. Namely, the problem can be formulated as a centralized dynamic

program which is computationally prohibitive to solve. Then, a centralized linear

program formulation is adopted which is presented in [10] that allows for online solu-

tions. Next, we propose an approximate algorithm for its distributed implementation.

For the distributed implementation, each defender solves a local version of the linear

program based on the current locations of its neighboring agents, and of the attack-

ers. Since the optimization problem has to be solved over a fixed prediction horizon,

each defender requires a model for the evolution of the attackers. We assume that

the attackers are updating their locations based on a feedback law that moves them
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towards the flag.

We also evaluate the performance of the proposed algorithm in realistic simulations

using quadrotors and provide a hardware implementation that shows the real-time

applicability of the approach. Moreover, an open-source software package for the

simulation and hardware implementation is available for public testing and future

improvements/extensions.

1.4 Thesis Organization

In Chapter 2, a background on the related literature is presented. The motivating

problem setup is presented in Chapter 3 followed by the centralized problem formu-

lation and solutions in chapter 4. The proposed distributed approach is discussed in

Chapter 5, and the simulation and the hardware implementations are discussed in

Chapter 6. Finally, the concluding remarks and future work are discussed in the last

chapter, Chapter 8.

1.5 Objectives and Contributions

The main objective of this thesis is to design distributed algorithms for online de-

cision making that respects practical requirements in multi-agents such as limited

computational resources and limited information exchange for real-time applications.

The contributions of this thesis folds in the following streams:

‚ Designing a real-time and online distributed path planning algorithm in the

context of an adversarial game based on linear program formulation.

‚ Validating the proposed algorithms in terms of real-time performance in a real-

istic simulation as well as a hardware setup composed of two teams of quadrotors in

competing in a certain game setup.

‚ Providing an open-source software package that is used in the simulation and

hardware testing for easier future extensions.
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Chapter 2

Background

There are several frameworks to solve distributed decision making problems accord-

ing to the the problem structure. In this chapter, numerous works in this area are

summarized under 3 main clusters: (1) distributed dynamic programming and re-

inforcement learning (2) distributed optimization algorithms, (3) distributed model

predictive control (DMPC).

2.1 Distributed Dynamic Program and Reinforcement Learn-

ing

In order to introduce distributed approaches based on dynamic program, a brief

introduction on a dynamic program problem is presented.

2.1.1 Dynamic Program

Dynamic programming provides a systematic theoretical framework to solve any se-

quential decision making problem [16]. Example of problems that can be solved using

dynamic programming are optimal control, Markovian decision problems, planning,

to name a few.

First, the dynamic program formulation of a centralized problem is presented.

Then, different techniques for solving the centralized problem in a decentralized setup

are presented in the next section.

In this thesis, we will work with problems of discrete and finite state space X and
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actions U , and discrete time.

The elements of a decision making problem are described as follows.

• States: Representation of the information evolution over time e.g. position of

a robot over time. A state at a specific time t is denoted by xptq P X , where X

is the space of all possible states. For brevity, when the time index t is dropped,

x “ xptq and y “ xpt ` 1q.

• Controls: Actions that are committed to, which can take the system to a new

state. A control variable at a specific time t is denoted by uptq P U , where U is

the set of all admissible controls. For brevity, when the time index t is dropped

u “ uptq

• State transition: state evolutions are governed by generally non-linear tran-

sition function. xpt ` 1q “ fpxptq, uptqq.

• Objective: A performance metric which can be a reward to maximize or a cost

to minimize. In this thesis, without loss of generalities, we will work with cost

functions. A stage cost at time t is denoted by gpxptq, uptqq. The objective is

described by Eq. 2.1.

J ˚ “ min
up0q,up1q,¨¨¨ ,upT´1q

T
ÿ

t“0

gpxptq, uptqq (2.1)

The objective is to minimize the total cost which is equal to the sum of stage

costs gpx, uq over a finite time horizon T. The optimal actions are the minimizers

that correspond to the optimal cost J ˚ are denoted by u˚p0q, ¨ ¨ ¨ , u˚pT ´ 1q.

A naive way to find u˚ is to perform an exhaustive search over the actions u P U

for each state x. However, this is clearly a computationally prohibitive approach when

the action space U is large. Dynamic programing uses principle of optimality [17] to

solve 2.1 in an intelligent way that reduces the search space significantly compared to
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an exhaustive search. In simple words, the principle of optimality states that starting

at any point xt on an optimal path xp0q, ¨ ¨ ¨ , xpT q, the path xptq, ¨ ¨ ¨ , xpT q is itself

an optimal path.

It can be shown that finding the optimal controls corresponds to finding the so-

lution to Bellman’s equation [16].

J ˚pxq “ min
u

gpx, uq ` J ˚pfpx, uqq (2.2)

Problem 2.1 can be further generalized for stochastic systems where the probability

of transitioning from x to y after committing action u is Pupx, yq. The corresponding

Bellman’s equation for a discounted cost over an infinite horizon becomes,

J ˚pxq “ min
u

gpx, uq ` α
ÿ

y

Pupx, yqJ ˚pyq (2.3)

Where α P p0, 1q is a discount factor that captures time preference i.e α Ñ 0

corresponds to short term gain while α Ñ 1 corresponds to long term gain.

Dynamic programing offers a number of approaches to solve bellman’s equation.

One approach that is relevant in later discussions of decentralized approximate dy-

namic program make use of linear programming shown below. It can be shown that

the solution to Bellman’s equation 2.3 is equivalent to the solution of a linear pro-

gram, see [18]. Although there are very efficient tools to solve linear programs, the

size of this linear programs (mainly the constrains) is a function of the state and

inputs space size. For large size problems, it becomes computationally prohibitive to

solve.

Another quantity of interest is the Q-function, which will be used later in the

decentralized approaches. The optimal Q-function is:

Q˚px, uq “ gpx, uq ` α
ÿ

y

Pupx, yqJ ˚pyq (2.4)
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It also can be written as:

Q˚px, uq “ gpx, uq ` α
ÿ

y

Pupx, yqmin
vPU

Q˚px, vq (2.5)

Eq. 2.5 represents Bellman’s equation in terms of Q-function.

The optimal policy µ˚pxq can be found by:

µ˚pxq “ argmin
u

Q˚px, uq (2.6)

2.1.2 Distributed approaches

Now, let’s consider a system of n agents. The system state is x “ px1, ¨ ¨ ¨ , xpq where

xj P Xj is some partial state. Similarly, the system controls are u “ pu1, u2, ¨ ¨ ¨ , unq

where ui P Ui is the control of agent i. In general, policies obtained by dynamic pro-

gramming produce actions that depend on the entire state x “ px1, ¨ ¨ ¨ , xpq. However,

in a decentralized setup it is desired to have policies that produce controls ui that

depend only on a subset of the state variable x. We seek to solve for Q˚px, uq in a

decentralized manner such that the obtained polices provide controls ui that depend

only on a subset of x.

In the literature, solving for Q˚ in a decentralized way is done using different

approaches. Some approaches try to solve for Q˚ or an approximation for it in an

offline setting. In other words, Q˚ is first obtained and then implemented. Some

other approaches solve for Q˚ in an online way. In such approaches, usually the

system model is not know, and Q˚ is learned by experiencing different policies and

optimizing them based on certain rewards. This usually discussed as reinforcement

learning. Usually , Q˚ is approximated by a function Q̂ with a special structure that

renders itself to decentralized implementation. This approximation is done either, to

generate a structure that is appealing to distribute implementation, or because Q˚ is
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actually complex and large to compute. Different works presented different methods

of offline and online estimation of Q˚ which are summarized below.

2.1.2.1 Exact offline approximation of Q-function

In [19], the authors present a linear programming method to find a decentralized pol-

icy from a function with special structure that approximates the centralized Q˚px, uq.

Firstly, Q˚px, uq is approximated by Q̂px, uq “
řn

i Qipx, uiq. As mentioned, ui de-

pends only on some xi according to an information structure. In particular, let

Ii “ tj| ui depends on xju

In particular, Ii is the set of indices of the state variables that action ui depends

on. The Cartesian product of the spaces of the variables used to decide action ui is

denoted as

Xi “
ą

jPIi

Xj

With this notation, a decentralized policy can be defined as µi : Xi Ñ Ui for i “

1, ¨ ¨ ¨ , n. One should note two pieces of information about Qipx, uiq : Xi ˆ Ui Ñ R.
ř

i argmin
ui

Qipx, uiq “ argmin
u

Q̂px, uq, since ui appears only in Qipx, uiq. Also, the

choice of ui depends only on the states appearing in Xi, because these are the only

states appearing in Qipx, uiq. Therefore, µ is decentralized since each decision ui

depends only on subset of the states Xi.

Given this setup, a linear program algorithm can be formulated to generate an

approximation Q̂px, uq “
ř

i Qipx, uiq to the optimal Q-funcitons, Q˚px, uq. The

reader is referred to [19] for more details on the linear program the corresponding

theoretical analysis.

The solution to this linear program is equivalent to the problem of minimizing the

error between the optimal Q-function Q˚ and its approximation Q̂. Therefore, The
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quality of the distributed solution is a function of the approximation error between

Q˚ and Q̂.

Now, we present few notes on the previous approach. The previous approach

seeks to find a local approximation architectures for decentralized control. However,

it requires to solve a centralized linear program to generate an approximation to the

Q-function. Furthermore, computing and storing the Q-function for practical scale

of large scale is intractable, and using a centralized policy may lead to prohibitive

requirements on communication structure between agents. It is also noted that the

previous algorithm provides an offline solution i.e. decentralized policies need to be

generated offline before they can be used. Another note is that the algorithm works

only once the information structure is fixed and, hence, does not work with networks

of dynamic topologies.

To overcome the high dimensionality in the previous approach, and to adapt to dy-

namic network topologies a different approach that adopts a different approximation

of the Q-function based on basis functions is discussed in the next section.

2.1.2.2 Inexact offline approximation of Q-function

In [20] the authors presented another linear program approach to provide different

approximations of Q-function that simultaneously address the curse of dimension-

ality and the need for decentralized control strategies. They propose a method of

generating local and linear approximation of Q-function which is based on linear

programming approximation of dynamic programs [21], [22].

The following equation shows the approximation of the Q-function.

Q˚px, uq «
ÿ

i

Q̃iphipxq, ui, riq “
n

ÿ

i“1

K
ÿ

j“1

φi,jphipxq, uiqri,j (2.7)

In 2.7, Q-function is approximated by a linear combination of local basis functions

φi,j. Each agent i makes observations governed by hi : X Ñ O. When the state of
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the system is x, the agents observes hipxq. φi,j depends on the state x only through

the information, provided by hipxq, available for agent i.

The optimal policy for the approximation in 2.7 is

µpxq “ argmin
u

t
n

ÿ

i“1

K
ÿ

j“1

φi,jphipxq, uiqri,ju “ pargmin
ui

t
n

ÿ

i“1

K
ÿ

j“1

φi,jphipxq, uiqri,juqni“1

(2.8)

Based on 2.8, each agent can make decisions µipxq based on local information

hipxq without coordinating action choices with other agents. However, coordination

can be rendered through the structure of the state space and information functions

hipxq.

The reader is referred to [20] for more details on the approximate linear pro-

gram algorithm and the error bounds between the approximation and the optimal

Q-function Q˚.

This algorithm provides an approximation of the Q function in terms of basis

function that reduces that dimensionality since the basis is a function of hpxq and

not directly a function of x. However, in the linear program that is solved in order

to solve for the weights φi,j, the constraint size is still linear in the number of states

x, which makes computationally prohibitive for large scale problems.

For problems where the system model (e.g. that transition probabilities) is not

know, online reinforcement learning methods can be used. This is described as follows.

2.1.2.3 Distributed reinforcement learning

Q function can be obtained iteratively in an online setting as follows. Define r as the

immediate (current) reward of being at state x and committing action u. Q can be

learned (or updated ) according to the following rule,

Qpx, uq “ r ` γmaxu1Qpx1, u1q, 0 ă γ ă 1 (2.9)
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Using 2.9, Q converges to Q˚ given that each px, uq is visited infinitely many times.

In a distributed setting, learning Q˚ can done by sharing information about Q

values from each agent. This can be done using simple averaging [23] as follows,

Qipx, uq “
1

n

ÿ

j

Qjpx, uq (2.10)

This simply means that each agent i shares its current Q value with every other

agents j and computes a simple average. In this case, all agents share the same Q-

table. However, this approach showed a reduced convergence to Q˚ [23]. Another

approach is to do expertness based cooperative Q-learning [24]. In this approach

agents value more the Q values from expert agents. Specifically, each agent i updates

its Qi value as follows.

Qipx, uq “
ÿ

j

Wij ˆ Qjpx, uq (2.11)

Where Wij is an importance weight to the Q data held by agent j. The idea is to

value more highly the knowledge of agents who are experts. Using proper measures

for expertness and when agents have highly different expertness values, it can be

shown that it outperforms the simple averaging method in 2.10 in terms of faster

convergence [24]

2.2 Distributed Optimization

A decision making problem can generally be formulated as an optimization problem

with certain objective and constraints structure. Distributed optimization algorithms

decompose the original problem to smaller subproblems, one for each agent, that can

be solved iteratively either in sequential or parallel manner.In many problems such

as networked robotics, collaborative control, network resource allocation, estimation

and identification problems and others, it is desired that the distributed optimization

method relies only on local information between the subproblems without the need
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for a central coordinator.

Distributed optimization algorithms usually exploit certain problems structure

such as separability in the cost function and/or constraints in order to derive dis-

tributed algorithms. In this section, a set of distributed optimization algorithms are

presented in order to give the reader a quick overview on the different methods used

in this domain.

We will categorize the presented methods as follows.

• Unconstrained convex problems. In this category, distributed methods

that solve problems with only objective functions and no constraints on the

optimization vector, are presented. There are methods that can work with time

varying and time invariant communication topology (graphs)

• Constrained convex problems. When constrains on the optimization vari-

ables are present, there are different methods that can handle global convex

constraints and local convex constraints. Also, for this category there are meth-

ods for time invariant and time varying communication topologies.

In what follows, different algorithms that fall under the previous two categories are

briefly presented in terms of their advantages as well as their shortcomings. For more

details on the algorithms, the reader is referred to the mentioned references. Finally,

a summary of different distributed optimization setups are presented in Table 2.1

2.2.1 Unconstrained Problems

Consider the following problem,

min
x

N
ÿ

i“1

fipxq

x P R
m

(2.12)
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In problem 2.12, the cost function is a sum of local convex functions fipxq : Rm Ñ

R which are functions of the whole optimization vector x P R
m

In [25], the author presents an algorithm that solves problem 2.12 in a distributed

way using a combination of sub-gradient [26] and consensus steps [27]. The method

works with a dynamic graph topology GpV,Ekq, where V is set of nodes or agents,

and Ek is the set of edges at time k. Each agent i computes and maintains estimates

about the optimal decision vector x based on sub-gradient information of his own

cost function fi. The communication is local and can be asynchronous. Each agent,

obtains its own estimates on x iteratively over time, using the following rule.

xipk ` 1q “
N
ÿ

j“1

aijpkqxjpkq ´ αipkqdipkq (2.13)

xipkq is the estimate obtained by agent i at time step k. aijpkq is the weight that

agent i puts on the estimate xjpkq provided by agent j at time k. aijpkq ą 0 if agent

i is connected to agent j at time k, aijpkq “ 0 otherwise. dipkq is the gradient of the

local function fi at time k. If fi is not smooth then, dipkq is the sub-gradient of fi.

The algorithm has convergence guarantees to approximate optimal global solution as

well as convergence rates of estimates maintained by each agent.

The advantages of the previous algorithm is that it provides computationally ap-

pealing approach for distributed unconstrained optimization with asynchronous local

communication, dynamic graph topology, and with convergence guarantees. How-

ever, it can be not practical to use if the (sub)gradient of fi is complex or not easily

obtainable. Although the required communication is local, it need to be iterative and

can be practically not desirable in real systems specially when the size of x is large.

2.2.2 Constrained Problems

For constrained optimization problems, there are different algorithms for different

constraint types i.e. global vs. local convex constraints.
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First, let’s consider the following problem of optimizing a sum of agent’s local

convex function over a global convex set of constrains.

min
x

N
ÿ

i“1

fipxq

x P X

(2.14)

In [28], the author presented an algorithm that can solve problem in 2.14 in an

asynchronous way for convex objective functions fi with a common convex constraint

set x P X . The algorithm provides guarantees of convergence to optimal solution

with the presence of link failures for a static graph topology. The algorithm uses

information (estimate of x from an agent) broadcast and only one agent is allowed to

broadcast its estimate of x at every time step k.

Next, let’s consider the following problem with local convex constraint sets.

min
x

N
ÿ

i“1

fipxq

x P
N
č

i“1

Xi

(2.15)

In 2.15, each agent i computes its estimate of xpkq, denoted by xipkq, at time k that

has to lie in a local convex set Xi.

In [29], authors presented a distributed projected sub-gradient algorithm that can

solve problems of the form 2.15 over a static graph topology. For a dynamic topology,

an error on the optimal solution is established. The algorithm uses a combination of

sub-gradient and consensus steps, similar to 2.13, but with projection on the local

convex set Xi. Each agent updates its own estimate of xpkq, denoted by xipkq, at

time k according to the following rule.
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vipkq “
N
ÿ

j“1

aijpkqxjpkq

xipk ` 1q “ PXi
rvipkq ´ αkdipkqs

(2.16)

In 2.16, there are three steps. In the first step, agent i performs a consensus step

to obtain a weighted average vipkq using its current local estimate and the estimates

from neighbors j. Then, a gradient step is taken using the (sub)gradient dipkq of the

local function fi. Finally, a projection is performed to get an estimate xipk ` 1q that

lies in the local convex set Xi.

Using a step size αk converging fast enough to zero, with time-invariant topology

(i.e. aijpkq are constant), and all local sets Xi are the same (i.e.
ŞN

i“1 Xi “ Xi “ X),

the estimates xipkq converge to the optimal solution. The algorithm is not suitable

of problems where a mixture of local and global constraints are present.

2.2.3 Summary

We presented some distributed optimization algorithms that demonstrate the founda-

tional ideas for for solving multi-agent decision making problem where the objective

function and the constraints are convex. Those are leading references to several other

similar variants with differences on the technical details such as optimality, conver-

gence rates and connectivity. Table 2.1 summarizes approaches concerning distributed

optimization problems.

Methods for distributed optimization for non-convex problems are not as mature

as the works on convex problems and is also not of interest of the work in this thesis.

However, we refer the reader to works in [41], [42], and [43] for further readings on

that topic.
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Table 2.1: Summary of distributed optimization methods for convex problems.
Constraint Type Communication

graph
Approach References

Unconstrained

Static

sub-gradient + consensus steps [30], [31]
augmented Lagrangian + consen-
sus step

[32]

randomized incremental sub-
gradient

[33]

ADMM [27], [34], [35]

Dynamic
sub-gradient + consensus steps [36],[37]

sub-gradient + consensus steps [38]

Global set Static
projected sub-gradient + consen-
sus steps

[28], [39]

dual decomposition [40]

Local sets Static
projected sub-gradient + consen-
sus steps

[29]

augmented Lagrangian method [32]

2.3 Distributed Model Predictive Control

Another line of works related to online computation of control strategies utilize model

predictive control (MPC) based approaches. MPC in simple words is a way of on-

line periodic re-planning of decisions based on certain performance criterion to be

optimized and a model for predicting system’s response in time. It also can handle

systems with multi-variabl and input and state constraints. For a rigorous explana-

tion of receding horizon control concepts, see [44, 45, 46].

For distributed control applications, there is number of approaches on distributed

model predictive control (DMPC). As the mathematical and problem descriptions

can vary between the different approaches, only a brief description of the different

approaches is provided according the proposed categorization below. DMPC can be

categorized from the following perspectives.

• Process properties
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• Control architecture

• Theoretical properties

Process properties perspective is related to the system dynamics type, i.e. linear,

non-linear, hybrid. Also, it describes coupling sources in the system or how the

optimization is non-separable in inputs, state, outputs, constraints, or objective. For

example, in [47, 48, 49, 50], authors considers DMPC problems for linear systems

with coupling in linear constraints, inputs, objective, states, respectively. For non-

linear systems, works in [51, 52, 53, 54] provide specific approaches for problems with

coupling in input, constraints, objective, state and dynamics, respectively.

Control architecture perspective is related to how the subsystems or agents in-

teract (i.e. distributed with communication, decentralized with no communication).

It is also related to how the computation and communication schemes. In other

words, if the computations are iterative or not, and if the communications are serial

or parallel. For example, works in [55, 56, 57] provide DMPC approaches that require

iterative computations to generate the control actions. There is also some works that

propose DMPC approaches with non-iterative computations, see [58, 59, 60]. From

communication scheme perspective, most of the proposed DMPC approaches work

with parallel communication scheme where each all agents can compute their con-

trols at each sample time, see [61, 62, 55]. A less number of works discuss DMPC

approaches where serial communications is used, see [63, 64].

Theoretical properties perspective is related to optimality, suboptimality bounds,

stability and robustness. The reader is referred to [65] for more details on such

approaches and on a review of several application specific DMPC approaches.
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2.4 Summary

In this chapter we provided a general review of the main clusters of works we believe

are related to the distributed decision making in multi-agent systems. In summary,

there are two main clusters of works that provide general frameworks to distributed

decision making: distributed dynamic programing and distributed optimization. There

is another cluster of works that provide application specific approaches in the context

of distributed model predictive control (DMPC). The work in this thesis starts build-

ing a distributed algorithm in the context of a specific setting discussed in Chapter

3, for online real-time decision making. Furthermore, the message of this work is

to also provide a way of generalizing the proposed application-specific approach to

quantify the trade-off quality of the distributed solution against the centralized one,

for example, through (approximate) dynamic program techniques.
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Chapter 3

Problem Setup

3.1 Introduction

In this chapter, we will introduce the motivating problem that is used as a guiding

case throughout the work presented in this thesis. The motivating problem is a basic

variant of a game setup called capture the flag (see for example [8, 9, 10, 11, 66]).

In this game, two teams of players battle against each other. Each team has a zone

that has some flags. Each team’s objective is to infiltrate to the other team’s home

zone, grab the flag, and bring it back to their home zone while avoiding obstacles

and collision with their teammates. The game is a mix of offensive and defensive

behaviors: each team should capture the opponent’s flag while at the same time

blocking them from capturing their own flag. The game is depicted in Fig 3.1.

In a general setup of this game, the system consists of a large number of vehicles

that are either self-operated or controlled by a human operator. Each team must

achieve a common objective: search and rescue and home monitoring and surveil-

lance. The vehicles can be controlled by a central coordinator or have some sort of

distributed control architecture. All units may communicate with each other through

a communication setup which can be subject to bandwidth and latency limitations

and dropouts. There also can be either global sensing setup e.g. GPS, or local ones

via the individual agent’s sensors.

This game brings a set of complex challenges and research questions. They range

from the individual vehicle control, the global planning and coordination of multi-
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Figure 3.1: The RoboFlag playing field.

agent systems, distributed/decentralized planing and coordination, to hardware im-

plementation and validation. These challenges must be achieved in an uncertain, and

most likely adversarial, environment.

In this thesis, we work with a simplified version of this game in order to focus

on particular research questions addressed in this thesis. In the simplified setup, the

teams are named defenders (blue team) and attackers (red team). There are no flags

that need to be captured. Instead, the attackers objective is to just infiltrate into the

defenders’ home zone (can be called defense zone later on). The defenders objective

is to block attackers from infiltrating the home zone. The new simplified setup is

depicted in Fig 3.2.

The objective in this work is to design a distributed decision making algorithm to

allow defenders take meaningful local decisions (no central controller) subject to real-

time constraints (e.g. fast decisions in milliseconds), limited information exchange,

and probably with communication bandwidth limitations. In particular, the focus is
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on how the defenders generate meaningful paths locally in real-time in the presence

of environmental uncertainties e.g. moving attackers. The attackers are allowed to

commit to arbitrary decision strategies either automated or controlled by a human

operator.

Next, related works on multi-vehicle path planning is briefly summarized. An

optimization method for multi-vehicle path planning is based on the notion of coor-

dination variables and coordination function [67]. In this approach, the information

that must be shared to for cooperation is collected in single vector quantity called

the coordination variable. The coordination function quantifies how the change in

coordination variable affects the individual’s myopic objectives. Trajectories are gen-

erated such that obstacle avoidance and timing constraints are satisfied. However,

the locations of the considered threats are known.

Other papers on mission planning of unmanned aerial vehicles construct Voronoi-

based paths from the currently known locations of the threats. Several combinations

of paths from a start point to a target are provided by the Voronoi edges. Among

those, one may select either the lowest-cost flyable path [68], or the path that min-

imizes exposure to radar [69]. A stochastic approach may also be applied, where a

probability of a threat or target is assumed to be known [70]. In such approach, a

chosen path minimizes the probability of getting captured or disabled by a threat.

Using this method, global strategies may be computationally inefficient, while the

path generated by the strategy can get in a limit cycle [70].

There are several classes of multi-robot systems that can be considered as hybrid

systems with linear dynamics subject to linear inequalities involving real and integer

variables. One approach called model predictive control (MPC) can be used to sole

such problems, where an optimization problem is solved using based on a prediction

of the system behavior over certain time horizon [71].This approach is useful when the

prediction of the future system’s behavior cannot be accurate due to, for example,
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future disturbances. In this case, the optimization is re-executed based on a new

observation or measurements, and a new solution is used, which benefits from the

feedback action.

Other multi-vehicle classes have their optimization as a mixed integer linear pro-

gramming (MILP) problem. The optimization may combine task assignment and

path planning subjected to UAV dynamics constraints, collision or obstacle avoid-

ance and timing constraints [72, 73, 74]. Collision avoidance constraints guarantee

that vehicles do not collide with each other or with obstacles, which can be static or

moving according to a predefined motion model [73, 74].

Mixed integer linear program has been tested in the RoboFlag competition similar

to the capture-the-flag competition which is described earlier in this introduction

[75, 76]. The objective is to compute a set of control inputs that minimizes the number

of opponents that enter their protected zone. The adversaries are considered UAVs

with deterministic motion described by a linear model. In addition, the approach

is computationally prohibitive, since the problem is not scalable in the number of

agents.

In the following section, we provide the main mathematical modeling of the game

setup that will be used in this thesis. Further modification in the modeling part will

be presented as needed in later chapters.

3.2 Modeling

In this section, we provide definitions of the elements of the adopted problem setup.

The following definitions will be general with no specific implementation details. In

later chapters, the exact implementation of those definitions are presented as needed.

For example, a control input u that belongs to a certain input set U is defined, but

the structure of the U is not specifically mentioned yet. In later chapters, a more

specific details on how, for example, u and U are implemented is presented.
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Figure 3.2: The simplified adversarial game setup used in this thesis.

Now, let’s introduce the problem setup. As mentioned, the game is composed of

two teams called defenders and attackers that battle against each other. Agents have

certain states to describe their locations in environment over time. An agent’s state

evolves according to certain dynamics which is a function of the current state x and

action u (or control input). The game runs according to some rules. These elements

are explained as follows.

• Environment: This is the space where agents navigate, and is assumed to be

bounded. The spacial model of the environment is represented by a grid world

where a bounded continuous space, for example in R
2, is discretized into a finite

number of regions called sectors. So, the spacial model of the environment (or

the map) is defined by a collection of sectors denoted by S “ ts1, ¨ ¨ ¨ , sns
u

where ns is the total number of sectors. With this model, there are special

sectors defined as follows.

– Base: Base sectors define the locations that correspond to the defender’s
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base zone, which should be protected against attackers team. So the base is

defined by a collection of sectors denoted by Sbaseptq Ă S. If base locations

are static over time, the time index is dropped, Sbase.

– Obstacles: Those are locations that should be avoided by all agents at

all times to avoid collision. Sectors that represent obstacle locations are

denoted by Sobstacleptq Ă S. If the obstacles set is static over time, the time

index is dropped, Sobstacle.

• Agents: Firstly, agents and players will be used interchangeably. Two teams

are considered, defenders, and attackers. Each team consists of a collection of

players (agents) denoted by Pr “ tpr1, ¨ ¨ ¨ , prnr
u, where r P td, au is the team

type, and nr is the total number of players in the respective team r.

• States: States in this game setup provide a representation of the location of

players in the grid S over time. The state of agent i of team r at time t is

denoted by xr
i ptq. The state of an agent at time t may be constrained, for

example, to respect some dynamics,

xr
i ptq P X r

i ptq (3.1)

where X r
i ptq is a set of possible states at t. One representation of xr

i ptq is the

sector number that agent i of team r occupies at time t. We will another

representation of the state in Section 4.3. xrptq “ pxr
1, ¨ ¨ ¨ , xr

nr
q is a vector that

represents the joint state of team r.

• Actions: Firstly, we will use actions and control inputs interchangeably. Ac-

tions describe how players are transfered between sectors in S. For a player i, we

define ur
i ptq which is the action of agent i in team r at time t. ur “ pur

i , ¨ ¨ ¨ , ur
nr

q

defines a vector of the team’s joint action. Each agent’s action may belong to
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a set of admissible controls

ur
i ptq P U (3.2)

• Dynamics: Describes how the agents states evolve over time. In general, we

can model each team’s state xr as follows:

pxrq` “ f rpxr, puqrq ` f attrpxr,x´rq (3.3)

where pxiq` is the updated state, f rppxqr,urq is a transition function, generally

non-linear, f attrpxr,x´rq is an attrition function that would describe how the

state is affected in the case an agent is captured which is generally non-linear

function. ´r represents the opposite team.

• Rules: The evolution of agents across the environment should follow the dy-

namics (3.3) and satisfy states and inputs constraints (3.1) and (3.2), respec-

tively. An enemy is considered captured if it is within a predefined distance

from a defender, i.e dpxe, xdq ď dcapture for some distance measure dp¨q.

• Objectives: The defenders objective is to protect the base zone Sbase against

the intrusion of the attackers, e.g. txa
i u X Sbase “ φ. The attackers objective is

to infiltrate the base zone of the defenders, e.g. txa
i u X Sbase ‰ φ.

• Time: In this thesis, we will work with discrete time scale t “ 0, 1, ¨ ¨ ¨ for the

case of an infinite time horizon. For a finite time horizon, t “ 0, 1, ¨ ¨ ¨ , T , for

some T ă 8.

3.3 Summary

The motivating problem that is used as a guiding case in this work is an adversarial

game between two teams of players (or agents) called defenders and attackers. De-

fenders protects their base zone against attackers infiltration while avoiding obstacles
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and inter-collision. This setup brings several research question, for example, gener-

ating fast local planning decisions within limited computation and communication

resources.

The objective in this thesis is to design algorithms that allow defenders to take

meaningful local decisions (no central coordinator) in real-time (e.g. milliseconds)

within limited computation and communication resources.

In this chapter, a general modeling of the problem setup is presented, and spe-

cific details and model implementations are discussed in next chapters. In the next

chapters, we will start investigating how to solve this problem, i.e. generate optimal

decisions for defenders to block attackers from infiltrating into the base zone. Central-

ized solutions are firstly discussed in Chapter 4 followed by the proposed distributed

approaches in Chapter 5.
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Chapter 4

Centralized Solutions

4.1 Introduction

Let’s recall that we are working with an adversarial game between two teams of

robots, defenders and attackers. On the defender’s side, the objective is to find

optimal policies to block attackers from infiltrating the base zone, see figure 3.2.

This also can be considered as path planning problem where we seek to find the

optimal paths (sequence of locations) of defenders that minimizes the infiltrations

of attackers into the base zone over certain time horizon. The final target is to

let the defenders generate local decisions on their own without relying on a central

coordinator and based on limited information exchange. However, we start discussing

how we can generate optimal policies using centralized approaches in the first place.

The limitations of centralized approaches are, then, presented before we start the

discussion on designing distributed real-time approaches.

In this chapter, two centralized approaches are discussed. First, the problem is

formulated as a dynamic program (DP) which is a well established general framework

for solving any sequential decision making problem. The dynamic program approach

provides a framework to compute the optimal policy for the defenders decisions.

The practical limitations of such approach are then presented. Next, an alternative

centralized formulation that is appealing for on-line and real-time implementation

is presented. This is an incentive approach that is based on linear program which

provides generally suboptimal, but meaningful, policies compared to the dynamic
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program approach. In the next chapter, the distributed approach is presented.

4.2 Dynamic Programming Approach

The problem of interest is a sequential decision problem as defenders locatoins has to

be decided at each time step over certain time horizon. Dynamic program can find

the optimal policy for such problems [16]. In other words, we seek to find an optimal

policy µdpxdq for the defenders to maximize time before an enemy infiltrates the base

zone, Sbase. If such optimal policy exists, defenders can generate their decisions at

time t by committing to action udptq “ µdpxdptqq. Several works used DP to solve

similar path planning problems for cooperative autonomous vehicles, for example see

[77, 12, 78]. To use DP to solve this problem, we need to define the states, state

transition, actions, and cost (or reward).

• States: Each agent i in team r P td, au has a state xr
i ptq that represents its

sector location in S. The defenders team state is defined as xdptq “ pxd
1, ¨ ¨ ¨ , xd

nd
q

represents the sectors locations which the defenders team occupies. Similarly,

xaptq “ pxa
1, ¨ ¨ ¨ , xa

na
q represents the sector locations which the attackers team

occupies. For example, if there are two defenders at sectors t1, 10u and one

attacker at sector t20u, then xdptq “ p1, 10q, and xaptq “ p20q. The augmented

state is denoted by xptq “ pxdptq,xaptqq P Snd`na .

• Actions: Actions represent direction that an agent can take at any time.

Namely, let the set of admissible actions at any time be U “ {East, West,

North, South, North-East, North-West, South-East, South-West, Stay}. An

agent i in team r P td, au can commit an action at time t which is denoted by

ur
i ptq P U . The join action of a team is denoted by urptq “ pur

1, ¨ ¨ ¨ , ur
nr

q and

the augmented action vector which combines both teams actions is denoted by

uptq “ pudptq,uaptqq P Und`na .
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• Dynamics: This describes how agent transition from stat xrptq to state xrpt`

1q after committing action urptq. The dynamics for each time are generally

captured by Eq. 3.3.

• Stage reward: This is the reward that defenders get as long as attackers have

not infiltrated the base zone. We are interested in maximizing time before

an attacker infiltrates the base zone. With that objective, a reasonable stage

reward gp¨q can be defined to receive a reward as long as attackers are not in

the base zone. An example stage reward is defined as follows.

gpxdptq,udptq,xaptq,uaptqq “

$

’

’

&

’

’

%

1 if xa X Sbase “ φ

0 if xa X S ‰ φ

(4.1)

The objective is to maximize time before an attacker gets into the base zone. We

also assume that attackers will commit to a worst-case strategy in order to minimize

the cumulative rewards of defenders. In other words, let defenders be at state xd,

attackers will commit to a strategy that minimizes the cumulative reward of defenders.

This can be interpreted as the maximizing the infinite discounted sum of the stage

rewards as follows.

max
µd

min
µa

8
ÿ

t“0

αtgpxdptq,udptq,xaptq,uaptqq (4.2)

Now let’s define Jpxq as the cost-to-go and J˚pxq as the optimal cost-to-go eval-

uated at the augmented state x. In DP, a relationship of interest is the Bellman’s

equation. It provides a way for computing the optimal cost-to-go based on the prin-

cipal of optimality, see [16]. Bellman’s equation is described as follows.

J˚pxptqq “ max
µd

min
µa

tgpxdptq,udptq,xaptq,uaptqq ` αJ˚pxpt ` 1qqu (4.3)
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Eq 4.3 can be solved using a linear program over the whole state space x P Snd`na

and input space u P Und`na , see [16]. The optimal policy can be obtained using

µ˚p¨q “ argmax J˚p¨q.

4.2.1 Computational Example

From (3.1) and (3.2), we notice that the complexity of the state space scales exponen-

tially in the number of agents, and, therefore, becomes intractable for large number

of agents. In the following numerical example, the DP algorithm is tested to evaluate

the optimal policy and the computational effort.

The DP algorithms is tested on the following game,

• Environment: 5 ˆ 5 grid world, with ns “ 25. The sectors collection S “

ts1, ¨ ¨ ¨ , s25u.

• Agents: Two defenders nd “ 2, and one attacker na “ 1.

• Actions/controls: Defenders control actions are defined as ud “ pud
1, u

d
2q P

Ud “ t1, 2, . ¨ ¨ ¨ , 9u2 which maps to {East, West, North, South, North-East,

North-West, South-East, South-West, Stay} with cardinality of |Ud| “ 81. Each

agent is assumed to move maximum of one square in any direction at one time

step. The enemy’s control action ue “ pue1q is defined similarly.

• States: The augmented state (for two defenders and one enemy) x “ pxd
1, x

d
2, x

a
1q P

X , where X “ t1, 2, . ¨ ¨ ¨ , 25u3 is the state space of cardinality |X | “ 15625.

• Rules: Agents can move at most one sector ahead per time step k. An enemy

is captured if dpxd
i , x

a
j q ă 1 where dp¨q is the number of sectors attacker j is

away from defender i.

• Base zone: Defender has to protect the base sectors defined as Sbase “ ts21, s22u.
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Figure 4.1: 25-sector grid. Blue circles are defenders in sectors s8, s12, and red circle
is the attacker in sector s11. Base sectors marked as “Base” in red are s21, s22. This
snapshots shows a captured enemy since the enemy is one sector away from a defender.

• Dynamics: Agents are assumed to move on cell away in each time step, in any

direction u P U

Figure 4.2.1 depicts this example.

The optimal policy pµdpxqq˚ was computed offline using 2.5 GHz Mac laptop

with 4 cores, 16GB RAM, and took approximately 4 hours. Then, the policy is

stored in a look-up table. During the game, defenders observe the game state (their

sectors locations as well as attackers) x “ pxd,xaq, and they commit to the corre-

sponding optimal action in the look-up table, ud “ µdpxq. Although the optimal

policy can be stored and used in real-time, any modification in the grid size, defense

sectors, and/or number of agents in both teams, would require recalculation of the

optimal policy µd, which obviously not practical to be computed in real-time. The

presented example is also a relatively small, and for larger setups, the computations

get exponential in the number of agents and, hence, prohibitive.
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Because of the curse of dimensionality of the path planning problem using dynamic

program, we are forced (in practice) to accept reasonable and meaningful suboptimal

routing policies. To overcome the curse of dimensionality in the DP approach, usu-

ally approximate methods are used. There are some works related to path planing

in multi-vehicle settings. For example, in [79, 12], the authors use approximated dy-

namic programing approach for application of UAVs to search certain bounded area.

The approach uses limited look-ahead horizon that is assumed to be much smaller

than the actual time horizon, in order to reduce the the search complexity. It also

adds a utility function to the stage gain in order to reduce the possible interference

(duplicate visits of locations) of UAVs. In [80], the authors propose an approximate

dynamic programing approach for multi-platform path planning. The approach sim-

plifies a stochastic DP problem to a deterministic one that reduces the search space.

For an online calculation of optimal actions/controls and more scalable against

changes in the number of agents, a linear program approach for multi-vehicle path

planning with adversaries is proposed in [10]. The work in this thesis is build upon

this approach which is discussed in the following section.

4.3 Linear Program Approach

In this section a different formulation of the adversarial game is presented. The

approach assumes linear formulation of the objective function and the dynamics of

agents motion in the world grid associated with some linear constraints. This leads to

a linear program formulation which dramatically boosts the computation speeds and

make it more appealing for real-time and online execution even on micro-controllers

with limited computation power. In the following section, the game setup is described

and the linear program solution is presented. Keep in mind that this is still a cen-

tralized approach. In the next chapter, a distributed version of this linear program

approach is presented.
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4.3.1 State Space Model

The model description of the game setup presented here is for the same environment

setup that is discussed before. Agents in both teams (defenders and attackers) evolve

in grid world represented by a collection of sectors S in discrete time. There is a

base zone (or defense zone) to be protected by defenders and defined as Sbase P S. A

collection of reference sectors Sref represents sectors that possibly surround the base

zone for surveillance purposes.

4.3.1.1 State and Actions

The state in this model represents the level of occupancy of each sector in the grid.

The state of each sector si is xsi P Z`, which is the number of its occupants, where

Z` is the set of non-negative integers. The state of the grid (all sectors) with respect

to an agent i in team r P td, auis

xr
i “ rxr

s1,i
. . . xr

sns ,i
sT P Bns ,

where B fi t0, 1u and

xsj ,i “

$

’

’

&

’

’

%

1 agenti occupies sj

0 otherwise.

The state is restricted to be in t0, 1u in order to have one agent per sector at any

time, for example for collision avoidance purposes.

The state of the grid with respect to all the agents in team r P td, au is

xr “
ÿ

xr
i

Actions (or controls) describe the transfer of agents (or quantity of occupancy)
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between sectors in S. For an agent i, we define an input vector that describes all

transfers from sector sj to sector sk as follows.

usjÑsk,i “

$

’

’

&

’

’

%

1 xsi,i “ 1 and i transfers to sk

0 otherwise.

An augmented input vector for agent i is

usj ,i “ rusjÑs1,i . . . usjÑsj´1,iusjÑsj`1,i . . .

usjÑsns ,i
sT . (4.4)

If agent i occupies sector sj, then usj ,i P Bpns´1q represents its transfer to some other

sector in the grid. The complete input vector of agent i in team r P td, au with respect

to all the sectors in the grid is

ur
i “ rpur

s1,i
qT pur

s2,i
qT . . . pur

sns ,i
qT sT P Bnu .

where nu “ nspns´1q. Similar to states, the input vectors for defenders and attackers

are

ud “
ÿ

ud
i ua “

ÿ

ua
i

4.3.1.2 Dynamical Model and Constraints

The evolution of the state of sj with respect to agent i is modeled by the following

linear model.

x`
sj ,i

“ xsj ,i `
ÿ

skPN psjq

uskÑsj ,i ´
ÿ

skPN psjq

usjÑsk,i (4.5)

where x`
sj ,i

is the updated state of sector sj with respect to agent i. The first

and the second terms in (4.5) represent the flow of agent i into and out of sector sj,
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Figure 4.2: Representation of the battlefield. The defense zone is Sbase “ ts1u labeled
‘Base’ and Sref “ ts2, s6, s7u labeled ‘ref’. There are two defenders that are located
at sectors s11 and s14. Neighborhood of the defender at sector s14 is represented by
the arrows pointing to sectors ts8, s9, s10, s13, s15, s18, s19, s20u. Attackers are labeled
as ‘e’ and are located at sectors s23 and s25.

respectively, with respect to the neighborhood set of sj defined by N psjq P S. The

neighborhood set of a sector sj is the set of all sectors that surrounds it (see Figure

4.2). The input usjÑsj is omitted as it coincides with the new state x`
sj ,i

.

The state of a sector is constrained to be non-negative (only positive resources).

This constraint is defined as

xsj ,i P B fi t0, 1u,

0 ď
ÿ

skPN psjq

usjÑsk,i ď xsj ,i (4.6)

The previous inequality constraint simply means that all out-transfers from a sector

sj should not exceed the current quantity available in that sector.

The dynamical model (4.5) and the constraints (4.6) for a team r P td, au can be

written in a compact form as

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pxrq` “ xr ` Binu
r ´ Boutu

r “ xr ` Bur

0 ď Boutu
r ď xr

xr P Bns , ur P Bnu

(4.7)
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for appropriate Bin and Bout (B “ Bin ´Bout). We refer the reader to [10] for further

details on the problem setup.

4.3.1.3 Adversarial Model

The adversarial behavior in the game is modeled as attrition. Attrition can be inter-

preted as the result of collision with opponent team. The objective of each team can

be maximization of such attrition to their opponents. Attackers motion are modeled

similar to defenders’ model in 4.7. By adding attrition, the model can be updated

for both teams as follows.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pxrq` “ xr ` Binu
r ´ Boutu

r “ xr ` Bur ´ drpxr,x´rq

0 ď Boutu
r ď xr

xr P Bns , ur P Bnu

(4.8)

Where ´r is the opponent of r.

4.3.1.4 Model Simplifications

There are few obstacles that need to be handled before a linear program formulation

can be done based on 4.8. These are

• The attrition function is generally nonlinear.

• the control vector of attackers ua is not known.

• the states and controls are integers, namely, binaries, which qualifies for linear

mixed integer program, but not a linear program.

In [81], a similar model was proposed with linear model approximation based on

the following simplifications which lead to a linear program formulation.
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• First, the attrition function is removed from 4.8 and the model becomes

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pxrq` “ xr ` Binu
r ´ Boutu

r “ xr ` Bur

0 ď Boutu
r ď xr

xr P Bns , ur P Bnu

(4.9)

• Next, it is assumed that the attackers implement an assumed feedback control

policy such as

ua “ Gaxa (4.10)

Where Ga P Bnuˆns

Due to these simplifications, the simplified model in 4.9 is expected to be largely

different from the actual model in 4.8. For this, a receding horizon strategy [71] is

implemented in order to overcome this discrepancy. This is demonstrated in more

details in the following sections.

4.3.1.5 Enemy Modeling

The attackers’ feedback matrix Ga contains assumed information about the antic-

ipated behavior of attackers. It is generally unknown, but introduced for sake of

prediction in the optimization problem which will be defined later. Ga can represent

the following behavior.

• an assumed anticipated paths of attackers

• attackers behavior as diffusion over the grid

• probability map of attackers evolution



57

More specifically, a control input that represents a transfer from sector sj to sector

sk can be written as

usjÑsk “ gsjÑskxsj (4.11)

Where gsjÑskxsj is the assumed feedback. By setting gsjÑskxsj P t0, 1u, it rep-

resents the next anticipated location of attackers. To represent diffusion behavior,

i.e. an agent at sector sj can split into more than one sector in the next step, the

feedback can be set as gsjÑskxsj ă 1. It also can be interpreted as a probability that

of moving from sector sj to sector sk. In all cases, it can be represented as follows.

$

’

’

&

’

’

%

gasjÑsk
P r0, 1s

ř

skPN psjq g
a
sjÑsk

ď 1

(4.12)

A numerical example of G be found in [10].

4.3.2 Optimization Setup

The simplified system of agents (vehicles) is described by a system of linear equations

and constraints described by 4.9 and 4.10. Next, a linear objective function is intro-

duced in order to allow the formulation and use of linear program in order to derive

optimal paths agents may follow. The optimal paths are described by a sequence of

states over certain finite time horizon. In the following, the linear program elements

such as the objective function and constraints are derived.

4.3.2.1 Objective Function

For each team r P td, au, an objective vector is defined over a finite time horizon Tp

as follows.

Xr “
`

xrr1sT xrr2sT ¨ ¨ ¨ xrrTpsT
˘T
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where xrrts P Bns is the state vector at future time t

Considering an adversarial environment, possible objective can be:

• Evasion: By minimization of intercepted defenders vehicles

• Pursuit: By maximization of intercepted attackers vehicles.

• Surveillance: By tracking a reference state vector.

Now, a linear objective function can be represented in the following form.

min
xdrts

˜

Tp
ÿ

t“1

“

αd ¨ xarts ` βd ¨ xd
refrts

‰T
¨ xdrts

¸

which can be formulated in a compact form as follows,

min
Xd

“

αd ¨ Xa ` βd ¨ Xd
ref

‰T
¨ Xd (4.13)

where α P R and β P R are constants. When αd ą 0, the inner product ă Xa,Xd ą

induces an evasion behavior i.e. defenders will avoid attackers. On the other hand,

if αd ă 0, the inner product ă Xa,Xd ą increases for an optimized state Xd and

induces an pursuit behavior i.e. defenders will chase (or capture) attackers. If a

surveillance behavior is desired, then βd ă 0 in order to increase ă Xd
ref,X

d ą. A

higher magnitude of β forces the defenders to remain in Sref and protect Sbase from

there. The coefficients α and β are selected to assign the desired weights to each of

the behavior and they can be chosen to satisfy |α|, |β| P r0, 1s and |α| ` |β| “ 1.

4.3.2.2 Constraints

The linear objective function in 4.13 should satisfy the dynamics and constraints

defined in 4.9 and 4.10. More specifically, the following equations must be satisfied

for all t P t0, 1, ¨ ¨ ¨ , Tpu.
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xdrt ` 1s “ xdrts ` Bd ¨ udrts

Define a control vector over the time horizon t0, 1, ¨ ¨ ¨ , Tp ´ 1u,

Ud “
`

udr0sT udr1sT ¨ ¨ ¨ udrTp ´ 1sT
˘T

For appropriate Txx0
and Txu, the above dynamics can be equivalently written

as,

Xd “ Txx0
¨ xdr0s ` Txu ¨ Ud (4.14)

The control vector udrts must satisfy,

Bout ¨ udrts ď xdrts (4.15)

For appropriate Txu,c,Txx0,c, the input constraints can be written as,

Txu,c ¨ Ud ď Txx0,c ¨ xdr0s (4.16)

In addition, obstacle avoidance can be represented as a linear constraint as follows,

XT
obs ¨ Xd “ 0 (4.17)

where Xobs P BTpns is a vector where the entries corresponding to obstacle locations

are 11s and 0 otherwise.

The details of the compact matrices mentioned above are discussed in Appendix

A
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4.3.2.3 Mixed-Integer Linear Program

The linear objective function in 4.13 and the constraints in 4.14, 4.16, and 4.17 form

a mixed integer linear program optimization from defender’s perspective and can be

written as follows.

min
“

αdXa ` βdXref

‰T
Xd

s.t. Xd ´ TxuU
d “ Txx0

xdr0s

Txu,cU
d ď Txx0,cx

dr0s (4.18)

XT
obsX

d “ 0

Variables Xd P BTpns , Ud P BTpnu

The vector of attackers state Xa is not known. However, as previously discussed,

an assumed feedback law uarts “ Ga ¨ xarts is used to complete the linear program

formulation. More specifically,

xart ` 1s “ pI ` BaGaqt`1 ¨ xar0s (4.19)

For an appropriate Txx0,G, the attackers state vector can be written in the following

compact form.

Xa “ Txx0,G ¨ xar0s (4.20)

The details of constructing the compact matrices are discussed in Appendix A.

4.3.3 Linear Program Problem

The problem in 4.18 is a mixed-integer linear program problem where states and in-

puts take values on B “ t0, 1u. Although there are methods that solve such problems

such as cutting plane, and branch and bound [82], a linear programing formulation is

preferred as it provides faster computations. Therefore, problem 4.18 is transformed
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into a linear program after some relaxation steps explained as follows.

4.3.3.1 Relaxations

To formulate a linear program problem, the states and inputs are assumed to be

0 ď Xd,Ud ď 1 instead of taking only binary values as in problem 4.18. If an optimal

solution of the relaxed problem is feasible with respect to the mixed-integer problem,

then it is also an optimal solution to the latter [82]. However, the relaxed problem

can produce non-integer solutions which are not feasible to problem 4.18. Therefore,

a suboptimal solution of the relaxed problem is constructed that is feasible to 4.18.

min
“

αdXa ` βdXref
‰T

Xd

s.t. Xd ´ TxuU
d “ Txx0

xdr0s

Txu,cU
d ď Txx0,cx

dr0s (4.21)

XT
obsX

d “ 0

0 ď Xd ď 1

0 ď Ud ď 1

4.3.3.2 Suboptimal Solution

Let pu˚qdrts P B̄ “ r0, 1s be the relaxed optimal solution to the relaxed problem

(linear program) for all t P t0, 1, ¨ ¨ ¨ , Tp ´ 1u, which will be generally non-integer

vector between 0 and 1. This implies that an agent in a sector can be split to several

portions in the on-step reachable neighbor sectors. An example of such case is shown

in Figure 4.3(a). To get a feasible solution, the control variable corresponding to the

maximum split (portion) is assigned the value 1 and the rest are 0, see Figure 4.3(b)

for an illustration. The suboptimal feasible solution is denoted by ũdrts
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(a) (b)

Figure 4.3: (a) A possible optimal solution to the linear programming relaxation. (b)
The corresponding integer suboptimal solution to the mixed integer programming
problem.

4.3.3.3 Receding Horizon Implementation

Due to the modeling differences between the prediction and optimization models in

4.9, 4.10 and the actual linear model (or the controlled ’plant’) in 4.8, significant

discrepancies are expected. To compensate for that, the optimization result will be

implemented in a receding horizon manner described in the following steps.

1. Defenders and attackers current states xd and xa are measured

2. The relaxed LP in 4.21 is solved and the first optimal control input pu˚qdr0s is

obtained

3. A feasible control input ũdr0s of the mixed-integer linear program is constructed

4. Apply ũdr0s and repeat.

4.4 Summary

In this chapter, the centralized modeling and solution to the adversarial game of in-

terest is presented in two different setups. The objective is to derive optimal policy

for the defenders to maximize the time before an attacker infiltrates to the defender’s

base zone. First, a dynamic programing approach is presented which provides the
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global optimal solution of the problem. However, it suffers from the curse of di-

mensionality in the number of agents, hence, the computations of the optimal policy

even for moderate problem size (grid size and number of agents) become prohibitive.

Second, a linear program approach is presented. Although it provides a suboptimal

solution compared to the dynamic programing approach, it provides a fast online

approach that is more practical for real-time implementation. In the next chapter,

a distributed approach is proposed which allows to eliminate the central coordinator

in the centralized setup while respecting some practical requirements such as limited

computations and local information exchange.
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Chapter 5

Distributed Solutions

5.1 Introduction

This chapters presents the proposed distributed approaches in this thesis. This is

derived under the setting of the attackers-defenders adversarial game setup discussed

earlier and utilizes the centralized linear program formulation presented in the previ-

ous chapter. The work in this chapter is also published in [83].

Distributed planing is desired in systems with multiple entities e.g. robots for

number of reasons. First, the computation burden might be huge on a single central

controller for large systems, and distributing the computation over multiple controllers

can dramatically reduce the computations. Also, a centralized system is prone to what

is called single point of failure which means that the system will completely fail once

the central controller fails. On the other hand, using a distributed setup, allows the

system to go under graceful degradation.

There are several distributed approaches that provide theoretical solutions for

various problems setup as mentioned earlier in this thesis. However, we have ob-

served that even for algorithms that are computationally light, e.g. gradient based

algorithms, the implicit communication requirements are huge. In other words, each

agent is required to exchange information, e.g trajectories of the states, iteratively

many times, with its neighbors in order to converge to an optimal solution. The

transfer of state trajectories iteratively many times between agents in order to take

a single decision for a single time step imposes a lot of burden and trust on the
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(a) (b)

Figure 5.1: (a) depicts a centralized control setup. If the central controller fails, all
system fails. (b) shows an example of distributed control setup where each robot has
its own controller and communicates with its neighbors if needed. If a robot fails the
system still functions, but with probably reasonable degraded performance.

communication resources which also is proportional to energy consumption. It also

can introduce delays for a real-time decision making. For example, in our defenders-

attackers game, each robot needs to compute its decision (its next location) based on

its current location and its neighbors location, in a fraction of a second (e.g. maximum

of 50 millisecond), denoted by Tc. The allowed maximum time step Tc decreases when

the robot travels at higher speed. For a robot to collect its neighbors location, it may

use communication for that. Using traditional distributed optimization algorithms,

agents are required to communicate state trajectories during the allowed computation

time Tc, until they converge. Since such algorithms are iterative, agents communicate

a trajectory, then they perform some computations, then they communicate again un-

til they converge. So, communicated trajectories cannot just be communicated once,

but iteratively, as there are computations between each communicated trajectories.

Figure 5.1 shows an example of such scenario.

We are interested in designing an algorithm that can be deployed in a distributed

manner such that the information exchange (e.g. by communication) is reduced while

producing reasonable decisions. In general, approximated solution is not avoidable
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Figure 5.2: There are two time scales, an outer time scale and an inner time scale.
Each agent has to take an action during each time step in the outer time scale,
rtDr0s, tDr1ss where tDr1s ´ tDr0s ď Tc. The step inside the outer time scale is
represented by the two vertical solid lines at tDr0s and tDr1s. Agents communications
happen on an inner (faster) time scale (inside the outer time scale step Tc) represented
by the vertical dotted lines. At each inner time tick tA communication happens.
Between two consecutive inner time ticks computation happens to eventually converge
to a solution. The decision has eventually to be taken at tDr1s

as a result of global information reduction. However, a suboptimal, but meaningful,

decision can be good enough as a trade off. Furthermore, computationally light

algorithms are desired for real-time execution and to be run on a robot’s micro-

controller in which usually has limited computation resources.

In this chapter, we show a proposed algorithm that address desired requirements,

namely, real-time execution with reduced information exchange while providing rea-

sonable decisions. In the defenders-attackers setting, we exploit the linear program

framework discussed in previous chapter as it can be solved efficiently faster compared

to other convex optimization problems, and is validated to run in a real-time setting

on embedded micro-controllers.

5.2 Distributed Approach

In this section the proposed distributed approach is introduced. Recall that the

objective is not only to introduce one more alternative distributed approach, but to
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actually address certain practical requirements. The following requirements need to

be met.

• The approach can be easily implemented in a distributed way. In other words,

the degree of autonomy is increased as much as possible, and centralized su-

pervision is only needed for emergency or recovery purposes. Otherwise, the

agents (e.g. robots) should be able to act stand alone all the time and generate

meaningful local decisions.

• The distributed approach can generate useful decisions with out exhaustive

exchanged information (i.e. exhaustive communication burden)

• The distributed approach should be implementable in real-time on computing

modules with limited computation resources. In other words, most small scale

robots (specially UAVs) can carry computing modules that have limited power

and may not be able to execute complex and computation demanding algorithms

in real-time (e.g. milliseconds).

With these requirements in mind, the following distributed approach is proposed.

5.2.1 Modeling

We consider the game of attackers-defenders described in Chapter 3. We recall the

problem elements as follows.

• Optimize certain performance measure Jp¨q over a finite time horizon T . In

particular, attackers infiltration into the base zone is to be minimized.

• The optimization is subject to state and control constraints. For example, the

state has to respect certain dynamics xpt`1q “ fpxptq,uptqq which may describe

the reachable cells (grid sectors) in one time step, and x P X . Similarly, u P U ,
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which may describe certain possible directions of motion. We assume that X

and U are discrete sets.

The problem can be generally written as

min
ÿ

t

Jpxptqq

subject to xpt ` 1q “ fpxptq,uptqq (5.1)

xptq P X , uptq P U

We consider a cooperative multi-agent task where agents optimize a common

performance cooperatively. In other words, each agent knows the objective function

structure, the assumed system dynamics, and the system state and input constraints.

However, only local information are available to each agent a time t. Specifically,

each agent has partial information of the total system state xptq and can only execute

its own part of the total system control input uptq.

In the setting of the attackers-defenders game, if a centralized controller were to be

used, and the total state xptq is observed (positions of all attackers and defenders), an

optimal solution for the defenders udptq can be computed. However, in a distributed

setup, we assume that each agent can generally observe part of the total state x,

and is responsible for generating its control only, which is part of the total system

control input udptq. Therefore, a suboptimal solution can be generated. As a step to

possible improvement of the solution, we propose that each agent uses the assumed

dynamics of the whole system, which we assume to be known to all agents, to plan its

own state, its neighbors state, and possibly the state of unobserved neighbors. More

specifically, each agent executes the following algorithm.

1. Each agent i observes its current position as well as its neighbors positions. We
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assume that neighbors positions are perfectly observed.

2. Agent i constructs a local copy of the system state xdptq denoted by xd
i ptq based

on its local observations

3. Agent i produces a local optimal solution pud
i q˚ by solving

min
ÿ

t

Jpxd
i ptqq

subject to xd
i pt ` 1q “ fpxd

i ptq,ud
i ptqq (5.2)

xd
i ptq P X , ud

i ptq P U

The local solution pud
i q˚ contains a local solution for agent i and its neighbors,

from the perspective of agent i

4. Agent i extracts its solution from pud
i q˚ denoted by rpud

i q˚si and implements it.

It does not share its local solution of other agents.

5. Repeat

Using the above algorithm, each agents acts like a local centralized planner that

computes solutions for itself and its neighbors (or agents that it is connected to at

time t) in its local problem, see Figure 5.2.1. However, the computed solutions of the

neighbors are not communicated to them (as the usual case in distributed algorithms)

which reduces communication requirements. The quality of the solution produced us-

ing this approach and compared to the centralized solution, which is considered as the

ground truth, depends on the connectivity of the network, or the graph. In general,

as the connectivity between each agent to every other agent increases, the solution

quality increases. If the network is fully connected, i.e. each agent is connected to all

other agents, the centralized solution is obtained. However, this comes at the expense

of congested network due to the increased communication which we try to avoid in
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Figure 5.3: Example of a local perspective of a robot in a distributed planning in-
stance. Agent i plans for itself and its neighbors only and does not count for other
non-neighbor agents.

this work. So, apparently there is an unavoidable trade off between optimality and

connectivity in distributed optimization algorithms. A meaningful suboptimal solu-

tion can be good enough and it will be shown through extensive numerical simulation

that the proposed approach can provide near-optimal solution under the investigated

simulation scenarios. An alternative distributed approach that can provide approxi-

mate centralized solution with analytical bounds on the optimal solution, and with

generally reduced communication is discussed later.

5.2.2 Local LP Problem

In order to make online real-time local decisions, we exploit the linear program for-

mulation in 4.21. We now write algorithm in 5.2 in the form of a local linear program

as follows.

Define Xd
i “

`

pxd
i p1qqT pxd

i pT qqT
˘

to be agent i estimate of defenders trajectory

over a prediction horizon T . Define Ud
i “

`

pud
i p0q pud

i pT ´ 1qqT qT
˘

to be agent’s i

estimate of the defenders trajectory over T . Define xd
i p0q to be the initial state vector

(with 1’s at the initial sector locations, 0’s otherwise) considering agent i and its
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neighbors only. Xa, Xref, α, β and the optimization matrices are defined the same

as in the centralized version in 4.21. If only local attackers are perfectly observed,

then we define a local estimate of attackers trajectory as Xa
i Now, the local linear

program problem is presented.

min
“

αdXa
i ` βdXref

‰T
Xd

i

s.t. Xd
i ´ TxuU

d
i “ Txx0

xd
i p0q

Txu,cU
d
i ď Txx0,cx

d
i p0q (5.3)

XT
obsX

d
i “ 0

0 ď Xd
i ď 1

0 ď Ud
i ď 1

5.2.2.1 Collision Avoidance Guarantees

In the centralized LP problem in 4.21, collision of agents of the same team could be

avoided by the constraints 0 ď Xd ď 1. This means that a maximum of one agent can

occupy any sector at any time t. However, in the local version in 5.3, each agent has

only local perspective of neighbor agents or agents connected to, hence, xdp0q is not

fully known to each agent. Therefore, collision avoidance is not guaranteed anymore.

To overcome this problem, an extra condition is imposed on the local problem. We

require the assumption that each agent can see (or share position information with)

agents that are at least 2 hops away. More specifically, agent i at sector s can observe

agents positions within reachable sectors that are two-step away in time. The set of

reachable sectors of agenti in sector s in k time step is denoted by Nkpsiq. So, each

agent i in sector s can observe each agent j in N2psiq. To make sure that no collision

happens in a 1-step ahead move, we can impose the condition N1psiq X N1psjq “ φ.
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Figure 5.4: A collision example if robots that are 2-step away do not account for each
other’s position.

We also assume that agents follow the same linear dynamics in 4.9 while transferring

between sectors.

A possible collision in case an agent does not account for agents that are 2-step

away is demonstrated in Figure 5.2.2.1.

The previous approach is assessed through several simulations and showed reason-

able performance in real-time scenarios. It was also implemented in a hardware setup

and was able to provide responsive reasonable defender actions in real-time under the

investigated setups. The details of the simulation and hardware setup is discussed in

Chapter 6.

The previous local LP approach provides a promising reasonable heuristic solution

for a real-time application of the attackers-defenders setup. However, more analysis on

the performance guarantees are currently missing which is a potential future direction

of this work. However, in the following, we introduce an alternative distributed

approach that can provide a guaranteed approximate solution.
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5.3 One-step Lookahead Distributed Approach

In this approach the optimal centralized cost J˚p¨q is approximated by an approximate

cost J̃p¨q, that is easier to compute. This can be seen in dynamics program problems

as the usually the optimal cost-to-go function J˚ is difficult to compute, for example

due to the large size of the state and input spaces. It can be shown that that optimal

cost obtained by using the approximation function J̃ is bounded by some value which

is a function of the approximation accuracy [84].

We define the problem of interest as follows. Recall the infinite horizon determin-

istic cost with discount factor 0 ă γ ă 1.

J “
8
ÿ

t“0

γtgpxptq, uptqq (5.4)

Also, recall the bellman equation which can be used to solve for the optimal cost

J˚ for an infinite horizon, deterministic problem with discounted factor γ ă 1.

J˚ “ mintgpxptq, uptqq ` γJ˚pfpxptq, uptqqqu (5.5)

As mentioned, J˚ can be hard to compute, so an approximation J̃ is used such

that,

||J˚ ´ J̃ || “ ǫ (5.6)

5.6 represents the approximation error.

Assuming that µ is a greedy policy that corresponds to J̃ . Then, the corresponding

optimal cost Jµ satisfies,

||Jµ ´ J˚|| ď
2γǫ

1 ´ γ
(5.7)

Proof. See Sec. 6.1.1 in [84]
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Now let’s rewrite the cost in 5.4 as two terms, the current stage cost at time t “ 0

and the remaining cost over the remaining horizon.

J “ gpxp0q, up0qq `
8
ÿ

t“1

γtgpxptq, uptqq (5.8)

We can write the optimal cost-to-go J˚ as

J˚ “ min
up0q

t gpxp0q, up0qq ` γJ˚
1 u (5.9)

J˚
1 is the optimal cost-to-go from time t “ 1.

In fact, by comparing 5.5 and 5.9, we conclude that J˚
1 “ J˚.

In 5.9, once J˚ “ J˚
1 is known, one needs only to optimize over up0q only. Usually,

J˚ is hard to compute for large systems, and an approximation J̃ is adopted as in 5.6

and the bound on the approximate optimal cost is equivalent to the one in 5.7.

Up to now, we have obtained an approximate optimal solution that is as good as

the approximation accuracy for the centralized problem. The advantage is that J̃ is

supposed to be easier to compute. Now, one can solve the approximate problem in

distributed way using a distributed optimization algorithm, for example using dual

decomposition as in [29]. That way, agents will need to communicate less information

instead of entire long trajectories as it is usually the case in such algorithms. How-

ever, agents still need to communicate iteratively in order to converge to the optimal

solution and the convergence is asymptotic.

In next chapter, extensive simulations and hardware testing are discussed to test

the proposed local LP algorithm under different settings.
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Chapter 6

Simulation and Hardware Implementations

6.1 Introduction

This chapter presents another main contribution of this work. It provides several

simulations and hardware testing results for the proposed local LP algorithm in 5.3

under realistic real-time simulations and hardware settings. The simulations are done

in the context of the attackers-defenders game. The work discussed in this chapter is

accepted in the ICRA2018 conference [85] at the time of writing this thesis.

The software that is used in order to perform the simulation and hardware testing

in this work is available as an open-source package (with ROS integration) at [86].

We discuss the following simulations and hardware settings.

• First, we provide MATLAB simulations which heuristically compare between

the quality of the local LP solutions and the centralized ones under large number

of random attackers-defenders game configurations. This simulation does not

include a real-time scenario with actual robot’s dynamics simulation. However,

it is meant to assess how the local algorithm behaves under individual game

configuration without propagating the solution in time.

• Next, we evaluate the local algorithm in a realistic simulation environment with

realistically simulated drones. The algorithm system-wide performance is eval-

uated in a complete game time under different settings. One setting is to allow

a human operator, which has full view of the game, to control an attacker. An-

other setting is considered where multiple attackers have automated attacking
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strategy using the centralized LP in 4.21.

• Finally, the local LP algorithm is implemented and tested on real hardware

using quadrotors equipped with low-power embedded computer which executes

the algorithm in real-time, in both indoors and outdoors settings.

6.2 Simulations

6.2.1 Local vs. Centralized Solution Quality

The solution quality of the local LP algorithm is numerically compared to the cen-

tralized solution using several random configuration of a certain game setup. The

game setup is as follows

• Agents: 4 defenders and 4 attackers are considered.

• Grid: 11 rows and 13 columns grid with 143 sectors. S “ ts1, ¨ ¨ ¨ , s143u. Base

(defense) zone is defined as Sbase “ ts72u. Reference sectors which surrounds

Sbase is defined as Sref “ ts58, s59, s60, s73, s86, s85, s84, s71u

• Rules. Each agent can move at most one sector away in any direction per time

step. In this simulation, defenders can see all attackers at all time. An attacker

is captured once it is one sector away from a defender.

• Receding Horizon Length: The prediction horizon Tp “ 3 time steps.

• Objective Parameters: The attacking weight is α “ ´0.99, and the defensive

weight is β “ ´0.01. This induces an attacking strategy.

The algorithms implementation and simulation is done in MATLAB on using a

single machine. A 1000 configurations were randomly sampled, i.e. different initial

locations of attackers and defenders. For each configuration sample, the centralized

and local LP algorithms are executed, and the defenders next optimal locations are



77

number of mismatches
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

pe
rc

en
ta

ge
 o

f t
ria

ls
 %

0

10

20

30

40

50

60
LP-based Distributed vs. centeralized setups: solution mismatch

Figure 6.1: LP-based Distributed vs. centralized setups: solution mismatch

extracted. The number of matching solutions are then compared. A complete match

is when all computed local solutions match the centralized one. For example, let the

centralized solution (the next optimal location of a defender i) be di, defender i local

solution be d̂i. If di “ d̂i for all i, then it’s a complete match. Another comparison

is also made when most of the solutions match. For example, a one-mismatch means

that di “ d̂i for all i except for only one agent j. Similarly, a n-mismatch can be

defined.

A histogram in Figure 6.1 shows the local solution quality compared the central-

ized one in terms of solution mismatches. It shows that 60% of the random scenarios

provided the exact centralized solution, and 94% provided up to only one mismatch

in the optimal defenders positions. In other words, the local LP algorithm provides

near-optimal solutions under the considered random configurations.

Another observation is that the discrepancy between the local and centralized LP

algorithms is proportional to the number of agents in the same grid. Figure 6.2 shows
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the percentage of trails that provide no mismatch, and one mismatch as a function

of the number of defenders. In general, as the number of agents increases and their

connectivity structure remains the same, the discrepancy is expected to increases.
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Figure 6.2: LP-based Distributed vs. centralized setups. (a) No solution mismatch
as a function of number of defenders. (b) Maximum of one solution mismatch as a
function of number of defenders
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6.2.2 Real-Time Simulation using Simulated Drones

In this section we discuss a more realistic simulation settings where the local LP algo-

rithm is used in a complete attackers-defenders game with realistic simulated drones.

Drones were chosen as a robot example as it can travel in higher speeds compared

to, for example, ground robots. We also had access to actual drones in the RISC lab

which is also used for actual hardware implementation which is discussed later. While

moving in high speeds, defenders need to make fast decision which imposes a challenge

on real-time constraints. Before we conducted a complete hardware implementation,

we did a realistic simulation that is as close as possible to hardware implementation

where different scenarios can be safely and cheaply examined in short time.

6.2.2.1 Simulation Setup

We use quadrotors as our testing platforms as they provide high maneuverability even

in constrained test spaces. Each quadrotor is controlled by two levels of controllers.

A low-level controller for attitude, velocity, and position stabilization and tracking, is

handled by the open-source PX4 autopilot firmware1. A high-level controller executes

the proposed algorithm and provides position setpoints to the low-level controller.

Our simulation setup includes four components as follows.

• Local LP Algorithm: An implementation of the proposed algorithm as a

C++ class. The algorithm’s class provides convenience functions to easily setup

problem’s parameters and inputs, executes the proposed LP algorithm, and ex-

tracts the problem solution. The algorithm uses the open-source linear program

C++ library, GLPK 2 for fast linear program optimization. Also, a ROS C++

node (program) is created to interface between the algorithm class and ROS

environment.

1px4.io
2https://www.gnu.org/software/glpk/

px4.io
https://www.gnu.org/software/glpk/
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• PX4: Open-source autopilot software, which provides low-level control to the

quadrotor’s states including orientation, velocity, and position. The same soft-

ware is used on actual autopilot hardware e.g. Pixhawk. However, since the

autopilot is used in simulation, it expects to receive simulated sensors data from

a simulator, Gazebo in this work, instead of actual hardware sensors. Also, com-

manded actuators signals are sent to Gazebo simulator to control the UAV’s

motion in the simulation. The PX4 firmware used in the simulation is called

software-in-the-loop, SITL. The reader is referred to the PX4 developer guide3

on how to setup the SITL simulation for multiple UAVs.

• Gazebo: A robotic simulator which provides realistic simulation of a robot’s 3D

motion dynamics in space. It also provides the autopilot software with simulated

sensor data, e.g. IMU, barometer, and GPS measurements. It also receives the

actuators’ (motors’) commanded signal from the autopilot in order to control

the UAV motion. Moreover, it can simulate a more realistic environment by

including a wind and magnetic field profiles.

• ROS: Robot Operating System, which is a middleware that provides a conve-

nient interface between all simulation components and reduces (or can elimi-

nate) required changes to transfer the implementation to actual hardware setup.

The proposed simulation setup is depicted in Fig. 6.3

The simulation setup was tested on an i7 computer which runs Ubuntu 16.04,

ROS Kinetic, and Gazebo 7.

The game setup in the following simulation is defined as follows.

• Agents. The maximum number of agents used in the following simulations is

3 in each team. There is no particular reason on the selected number of agents

and they can be selected arbitrary.

3https://dev.px4.io/en/simulation/multi-vehicle-simulation.html

https://dev.px4.io/en/simulation/multi-vehicle-simulation.html
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Figure 6.3: Architecture of simulation setup
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• Grid: We consider a 2D battle field represented by a 7 ˆ 7 square grid. Each

sector is 2ˆ2 m2. The base zone is located at the first sector i.e Stextbase “ ts1u,

and the reference sectors surrounding the base sector are Sref “ ts2, s8, s9u

• Capture Distance: An enemy is captured if it is within a circle of radius 2.1

meters from a defender.

• Objective Weights: The attacking and defensive weights are α “ ´0.99, β “

´0.01, respectively. The weights are the same for all simulations scenarios

unless mentioned otherwise.

In the following, we present simulation results of some test cases using the pro-

posed simulation setup.

6.2.2.2 Simulation 1: Human controlled attacker vs. 3 de-

fenders

In this scenario the problem setup includes 3 quadrotors in the defenders’ team and

one quadrotor in the attacker’s team. To make the battle more interesting, the

attacking quadrotor is controlled by a human operator through a joystick, which

controls the quadrotor’s lateral velocities. An interesting note is that, the human

controlled quadrotor is allowed to exhibit any behavior although the defenders assume

a specific predictive attacking model that can exhibit very different behaviors than

the human one. This helps to evaluate the distributed attacking/defending strategies

against non-modeled attacking behavior.

Fig. 6.4(a) shows the UAV trajectories during the battle. As we can see, defenders

were able to distribute themselves in order to block the attacker from entering the

base zone, before it is eventually captured at position p7.8, 6.1q although the attacker

had higher speeds than defenders.
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(a) Position trajectories of simulation trial 1 (b) Velocity trajectories of simulation trial 1

(c) Position trajectories of simulation trial 2 (d) Velocity trajectories of simulation trial 2

Figure 6.4: Fig (a) shows trajectories of all quadrotors in simulated scenario where
attacker was captured at position p7.8, 6.1q. Fig. (b) shows the corresponding velocity
trajectories during the trial. fig. (c) shows the position trajectories of trial 2 where
the attacker was able to enter the base, as its maximum speed factor was much higher
than defenders. Fig. (d) shows the corresponding speed profiles of trial 2
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In Fig. 6.4(c), we can see that the human operator was able to drive the attacking

UAV to the defense zone. Thus occurrence is mainly because the attacker’s speed

factor, see Fig. 6.4(d), was significantly increased while the defenders speed factor

remained the same as in trial 1.

6.2.2.3 Simulation 2: Multi-attackers vs. multi-defenders

with no obstacles

In this scenario we show a simulation of a game scenario where multiple attackers

are available. The attackers in this scenario also try to optimize their motion planing

using the centralized version of the LP algorithm in 4.21 where attackers have the

advantage over defenders of knowing global information about where all players are

at all times. Using this approach, attackers try two weighted behaviors,

• Evasion: where they try avoid collision with defenders. This is captured by

pXdqTXa. In this case attackers assume a model of defenders in order to compute

Xd over a prediction time horizon. The assumed model of defenders is similar

to the one mentioned in [10].

• Attacking: where they try to attack the defense zone captured by the term

pXrefqTXa.

These two behaviors can be weighted by the objective parameters α and β. In this

particular simulation α “ 0.8, β “ ´0.2 which results in more evasion than attacking.

The objective function looks like

“

αXd ` βXref
‰T

Xa

In this simulation, the grid size is increased in order to allow for more mobility

for the drones. The grid size is 10ˆ 10 where each sector is 5ˆ 5 m2 resulting in grid
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Figure 6.5: Simulated world in Gazebo simulator. This snapshot shows the initial
position for 3 defenders, the black drones on the top side of the field marked by yellow
circles, and 3 attackers, the red drones on the lower part of the field. The base is
marked by the tree.

area of 50 ˆ 50 m2. The set of base locations contains only one sector,

mathcalSbase “ t35u and the reference sectors set that surrounds the base location

is Sref “ t24, 25, 26, 34, 36, 44, 45, 46u. The Gazebo simulated battle field is shown in

Figure 6.2.2.3.

In this simulation, agents start at predefined initial locations, shown in Figure

6.2.2.3 and hover in position until they receive the battle command. After the battle

command is signaled, all agents start to battle. Each defender executes the local

LP algorithm considering its neighboring defenders and local attackers that it can

see. In particular, defenders and attackers that are in 2-sector away are considered.

Each attacker, as mentioned, has access to all players (both defenders and attackers)

positions at all time. Once an attacker is captured, it lands and is no more considered

in the rest of the game. The game continuous as if this player does not exist.
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The figures in 6.2.2.3 show a sequence of snapshots of a game simulation trial

with no static obstacles. The left-most attacker was captured by the defender in the

lower part of the field as it was in its sensing region in the beginning of the game.

After the defender captured the attacker, the attacker is disabled, and the defender

wen back to protect the base. The other two defenders do not see attackers in their

sensing region, so they stay around the base reference sectors. as the game evolves,

the remaining two attackers try to go to the base while avoiding defenders. Once they

became in sensing region of one of the defenders, they got captured and the game

ends.

6.2.2.4 Simulation 3: Multi-attackers vs. multi-defenders

with obstacles

In this simulation case, static obstacles are added, see Figure 6.2.2.3, to the same

game setup in the previous simulation case. Static obstacles can be encoded as single

linear constraint XT
obsX

d “ 0. Figures in 6.2.2.4 show a game simulation trial where

agents started at the same initial positions and were able to plane their motions

during the battle while avoiding the static obstacles.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Sequence of snapshots in a game trial. (a) and (b) show the first capture.
(c) and (d) show the second capture. (e) and (f) show the final capture. 2D figures
show attackers trajectories in red, the remaining are for defenders. The green circle
marks the base location surrounded by yellow ones which mark reference sectors.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Sequence of snapshots in another game trial with static obstacle included.
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6.2.2.5 Defenders Prediction Quality

As mentioned, each defender make an optimistic prediction of its neighbors. In the

following simulation, an experiment between 8 defenders and 3 attackers was per-

formed. The three defenders are executing the distributed LP algorithm while the

attackers are executing the centralized LP algorithm (with global information).

Figure 6.8 shows the trajectories of the players as well as the average prediction

quality of each defender over the whole game time. As we can see, most of the de-

fenders were able to make more than 50% successful prediction about their neighbors

motion over the game time. Defender 4 (marked as D3 in the trajectory figure as the

counter starts from 0) has less successful prediction rate compared to the rest. This

is mainly that it was less connected to the rest of the defenders during the game.

This observation trivially indicates that the distributed LP algorithm performance is

a function of the network topology. It tends to give better prediction results when

the agents network is more connected.
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(a)

(b)

Figure 6.8: Prediction quality of defenders in 8-defender vs.3-attacker game. (a)
shows the complete trajectories of all players during the game run. (b) shows the
average prediction quality of each defender over the whole game time.
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6.2.3 Comparison with Related Works

In this section we compare the main aspects of our distributed framework with other

recent frameworks that we believe of relevance to this work. In particular, we make

a comparison with works introduced in [87, 88].

In [88], the authors consider a pursuit-evasion setup that consists of a single evader

and multiple pursuers in 2D plane. Capture guarantees are provided for a single

pursuers and, therefore, can be generalized for multiple evaders. The strategy is

based on a voronoi tessellation of 2D bounded environment where each player occupy

a voronoi cell. The pursuer’s policy that guarantees capturing the evader in finite

time, tc ă 8, is to head to the midpoint of the shared voronoi edge with the evader.

Pursuers that do not share an edge with the evader (non-neighbors) just go straight

ahead towards the evader position. This framework assumes global information of all

players positions at all times.

In [87], the authors extended the work in [88] to multi-pursuer vs. multi-evader

setup and beyond 2D space. Each evader is assigned to its nearest pursuers which

share voronoi edges (or faces in higher dimensions). Then, the same strategy discussed

in [88] of multi-pursers vs single evader is used to guarantee capture in finite time,

tc ă 8. a pursuer is not assigned to an evader, it moves straight to the nearest

evader.

In both works, the capture guarantees are proved and the control strategy is a

simple equation that can be implemented in real-time. Also, there is no assumption

of the evader’s motion model except that it has the same maximum pursuers’ speed.

However, there are no explicit collision avoidance mechanism and no coordination

between pursuers that can greatly improve the capture time.

An example representation of the game in 2D is depicted in Figure 6.9. In the

following section, we present simulations that highlights the main differences between

these works and the proposed linear program framework.
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Figure 6.9: A 2D Voronoi tessellation of a single evader vs. multi-purser game in a
10 ˆ 10 plane. The evader is represented by a red circle in the lower left corner. The
remaining blue circles represent the locations of the pursuers. The evader’s neighbors
are defined by the pursuers who share a Voronoi edge.
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6.2.3.1 Simulations and Discussion

We discuss two simulation experiments of multi-pursuer vs. a single evader. In the

first experiment, the evader is held stationary while being pursued. This is mainly

to observe the group behavior of pursers in the game. In the second experiment, the

evader is controlled by a human via a joystick, similar to the experiment done with

the proposed linear program framework. The evader has a maximum speed that is

equivalent to the pursuers’. The game is played in an area of the same size of the

experiments discussed in Section 6.2.2.

Figure 6.10 show a simulation experiment of 5 pursuers vs. a stationary evader.

As we can see from the trajectories in Figure 6.10(c), pursuers act independently with

no effective coordination. The trajectories look like individual chasing which is less

effective than strategies that would, for example, make pursuers enclose the evader.

This observation is more obvious when the pursuers’ start locations are almost co-

linear as can be seen in Figure 6.11.

Figure 6.12 shows a different simulation run where a single evader is controlled

via a joystick against 5 pursuers. Again, we can see the individual chase from the

pursuers trajectories. This is mainly due to the fact that there is no coordination

strategy between pursuers as the case in the LP-based approach. In particular, the

LP-based approach, both the task assignment (which defender goes to which attacker)

and the motion planning is solved concurrently. On the other hand, the Voronoi based

approach solves only for the motion planning part.
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(a) (b)

(c)

Figure 6.10: Voronoi diagram and trajectories of players in single evader vs. multi-
pursuer game. The evader is stationary during the game. (a) shows the Voronoi
tessellation of the initial locations of players. (b) shows the final Voronoi tessellation
after the evader is captured at 1.0m distance. (c) shows the complete trajectory of
the players during the game. The capture time is highlighted in red over the evader’s
capture location which is 7.2 seconds.
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(a)

(b)

Figure 6.11: Simulation of a stationary evader vs. 5 pursers. (a) shows the initial
players’ configuration and they are almost co-linear. (b) shows players trajectories
during the game run.
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(a)

(b)

Figure 6.12: Simulation of joystick controlled evader against 5 pursuers.
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6.3 Hardware Implementations

System integration and testing are key aspects of Robotics in general. As mentioned

before, the main focus of this work, besides the algorithmic contribution, is to provide

a complete physical system to validate the proposed real-time distributed algorithm.

In multi-rotor UAVs, power consumption and weight are major constraints in their

design, which limit their endurance. Therefore, it is always preferred to reduce pay-

load and power consumption as much as possible. In that regard, we opt to use

low-power and low-weight affordable components that allow us to achieve the com-

putational needs and real-time execution for the proposed approach. We present

a complete indoor and outdoor experimental setups that show that validity of the

proposed framework.

In this section, we present our indoor/outdoor hardware setups and evaluate the

performance of the proposed distributed algorithm in real-time. Although it is more

realistic to perform experiments in a real outdoor environment, we start by testing it in

a controlled indoor environment, in order to ensure better debugging and discover/fix

possible malfunctioning.

6.3.1 Indoor Setup

The adversarial game is demonstrated in an indoor lab setup which is used to validate

the overall system integration and the main framework aspects. The setup mainly

consists of a set of small drones that carry computational modules and battle inside

an arena. The indoor flying arena is equipped with a motion capture system (or

MOCAP) to provide indoor localization needed by the drones as GPS devices do

not work in such closed environment. The hardware components are summarized as

follows:

• Indoor flying arena equipped with OptiTrack motion capture system. The mo-
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tion capture system is used to provide local positioning for in indoor setup as

GPS does not in such settings.

• Quadrotors: 25cm wide

• Pixhawk: Open-source autopilot that runs the PX4 firmware which is the same

autopilot used in the simulation setup

• Odroid XU4: Onboard embedded Linux computer that executes the local LP al-

gorithm. It also has WiFi communication modules to communicate positioning

data to the low-level autopilot

• Communication: A single WiFi router is used to provide all necessary commu-

nication. All drones communicate to the WiFi router.

The system architecture is depicted in Fig. 6.13, and detailed description is as

follows. We perform our indoor flight test, in the flying arena of the Robotics, Intelli-

gent Systems & Control (RISC) lab. The arena has dimensions of 6 ˆ 7 ˆ 3 m3. It is

equipped with OptiTrack motion capture system4 which acts as an indoor positioning

system, as GPS receivers do not work indoors. The motion capture system provides

position information of defined rigid bodies e.g. quadrotors. A desktop Linux machine

equipped with ROS receives the position information from motion capture system and

publishes them as ROS topics which are then transmitted to each UAV, to become

aware of its position in the indoor environment.

Each UAV is a small quadrotor of 0.25m width, see Fig. 6.3.1. It is equipped

with a Pixhawk autopilot which runs open-source PX4 firmware that is used for the

attitude, velocity, and position stabilization. Pixhawk is serially connected to an on-

board embedded Linux computer, ODROID XU4. ODROID XU4 runs ROS Indigo,

MAVROS package (ROS interface to Pixhawk), and a ROS node that interfaces the

4http://optitrack.com

http://optitrack.com
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Figure 6.13: Architecture of hardware setup. A motion capture system (OptiTrack)
is used to provide position information to all drones. Each drone uses the positions
information to localize itself and to optimize its paths with respect to its neighbors.
There are two computational modules. One is the Pixhawk flight conroller which
provides low-level flight stability. A higher level module, ODROID XU4 is used to
execute the planning algorithm.
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Figure 6.14: Quadrotor setup. The propulsion system composed of 2300Kv motors
with 5-inch propellers and 20A speed controllers. The power is provided through a
3S LiPo battery

proposed algorithm to ROS. ODROID mainly receives positions from motion capture

system via WiFi, executes the proposed algorithm, and sends position setpoints to

Pixhawk.

6.3.1.1 Algorithm Onboard Execution Speed

Prior to flight test experiments, we first test the execution speed of the algorithm on

ODROID XU4 for different problem setups. This allows the selection of a reasonable

problem configuration that can be run in real-time on the hardware of interest. Table

6.1 shows the average execution speed of one run of the algorithm on ODROID XU4,

in Hz, for different problem setups.

As we can see from Table 6.1, the proposed algorithm can be executed at relatively

high rates for different problem configurations. In our experiments, we choose configu-

ration 5. The corresponding optimization problem size in terms of number of variables
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Table 6.1: Algorithm execution speed on ODROID XU4

Setup # Sectors Agents Prediction steps (Tp) Freq. (Hz)
1 10 ˆ 10 3 vs. 1 3 2.3
2 10 ˆ 10 3 vs. 1 2 5.5
3 10 ˆ 10 3 vs. 1 1 22.7
4 7 ˆ 7 3 vs. 1 3 11.0
5 7 ˆ 7 3 vs. 1 2 27.8
6 7 ˆ 7 3 vs. 1 1 111.0

and constraints is pns`n2
sqTp “ 4900, p5ns`2n2

sqTp “ 10094, respectively. It is impor-

tant to note that the problem structure is highly sparse. The total number of non-zero

element in the overall constraints matrix is of order Opp2Tp ` 4N2qn2
sq, and the total

number of all elements is of order Op2T 2
p n

4
sq. Where N “ maxi |N psiq| i P t1, ¨ ¨ ¨ , nsu

is the maximum number of reachable sectors in 1 time step. For the chosen prob-

lem configuration, the sparsity is approximately 98%. This sparsity is taken into

account in the algorithm implementation, which, in result, dramatically boosts the

computation speeds on ODROID XU4 as presented in Table 6.1.

Fig. 6.15(c) show executions frequency profiles of 3 defenders quadrotors during

a game trial. The average execution speed of the algorithm was around 30Hz. Such

relatively high rate allows quadrotors to produce fast decisions, which result in smooth

and rapid reactions against attackers.

Although each drone can get all positions of all other drones in the indoor flying

arena, each defender drone only uses the position information of defined neighbor

drones only and ignores the rest. Neighbor drones are those within 2-sectors away in

each direction.

6.3.1.2 Indoor Trial

Hardware trials were performed using similar configuration as in the simulation test.

The indoor setup can be seen in Figure 6.3.1.2. Figure 6.3.1.2 shows a sequence of
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(a) Position trajectories

(b) Velocity trajectories

(c) Execution frequency profile of defenders during a
real trial

Figure 6.15: Fig. (a) shows position trajectories of all quadrotors during a real
experiment where the attacker was captured at position p4.1, 4.1q. Fig. (b) shows
the corresponding speed profile. Fig. (d) shows the algorithm execution speed for all
defenders during the game run, where the average is around 30 Hz
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Figure 6.16: A Snapshot of hardware setup during a game trial of a human controlled
attacker against 3 defenders executing the local LP algorithm. Defenders are sur-
rounded by circles and the attacker is surrounded buy a rectangle. The base zone is
represented by a toolbox at the upper-left corner.

snapshot from a game trial of a human controlled attacker against 3 defenders that

executed the local LP algorithm. The corresponding trajectories are shown in Figure

6.15(a), where the attacker was captured at position p4.1, 4.1q. The corresponding

velocity profile is depicted in Figure 6.15(b). In this trial the human operator tried

to drag the defenders towards the back and then take a round path through the

right of the flying arena. The two defenders with the red and blue trajectories were

dragged towards the attacker (more weight on the attacking behavior). However, the

third defender with the green trajectory were closer to the base zone. Eventually, the

attacker was captured by both the green and blue defenders, being one sector away

from them although it had more speed profile than the defenders.

6.3.2 Outdoor Setup

At the submission time of this draft, the outdoor test were ongoing and not finalized.

However, the latest updates are reported and final results will be included in the final
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(a) Agents in initial maneuvers.

(b) Agents in pre-capture state.

(c) End of the game where attacker is captured.

Figure 6.17: Snapshots of agents maneuver during a game trial of a human controlled
attacker (surrounded by a rectangle) against 3 defenders (surrounded by circles).
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version of this thesis.

Outdoor tests provide much more realistic environment in several aspects. First,

compared to limited indoor space, much larger spaces can be available which provides

more opportunities to experience many different maneuverabilities from both attack-

ers and defenders. The outdoor environment has different disturbance resources such

as wind disturbance and communication interference. This can help to evaluate, for

example, the actual motion of the robots against the assumed models.

The outdoor setup differs from the indoor one mainly in the localization method.

In the discussed indoor setup, the localization accuracy was in the order of millimeter

in ally 3 dimensions. In outdoor setup, however, it is not the case. Instead, an

access to GPS positioning system is available. So, the drones are equipped with GPS

receivers that provide an adequate horizontal positioning with 1m accuracy. The

altitude estimation is usually unreliable if high accuracy is required. To overcome

this limitation, we use accurate altimeter sensors, LIDAR, which provides precision

altitude estimation with accuracy of the order of 10cm. This is required as the game

is assumed to be played in 2D, where the altitude is fixed.

6.3.2.1 Outdoor Scenario

We considered an outdoor scenario of 3-defender vs. a human-controlled attacker.

The outdoor test was performed at a green park at KAUST with a predefined 8 ˆ 8

grid cells with actual dimensions of 30ˆ30 m2. The main outdoor setup is summarized

as follows.

• Drones: A 45cm-wide quadrotor is used which carries the same modules as in

the indoor setup. Additionally, they carry a GPS and altimeter modules for

outdoor positioning. A picture of the drone is shown in Figure 6.3.2.1. Three

quadrotors of equivalent capabilities were used as defenders against a fourth

one that was used as human controlled attacker.
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Figure 6.18: A 45cm-wide quadrotor which is used in the outdoor tests.

• Communication: All communication go through a single wifi router that oper-

ates in the 5GHz bandwidth which was found less interfered.

• Computational modules: The same computational modules as the indoor setup

were used. A Pixhawk controller was used as the low-level autopilot, and an

ODROID XU4 was used for the high-level path planning.

Similar to the simulation and indoor tests, the battle begins once a battle signal is

triggered, and it ends once all attackers are captured. The capture event is defined by

a specific distance between an attacker and any defender. An attacker is commanded

to land once capture and considered out f the game. Once all attackers are captured,

defenders are commanded to land. If an attacker wins, by entering the defense zone,

all defenders are commanded to land and attackers are allowed to stay in the air until

they are commanded to land by operators. In the considered outdoor setup, only one

attacker is considered which is controller by a human operator.

An aerial shot during an outdoor test is shown in Figure 6.3.2.1. Figure shows

a 2D representation of drones position trajectories during an outdoor experiment of

3-defender vs. a human-controlled attacker.
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Figure 6.19: An aerial snapshot of the outdoor setup.

For the considered outdoor setup, grid of 8ˆ 8 and a prediction horizon of 3 steps

in time, the algorithm was executed onboard at frequency of 10Hz, which is less than

the smaller grid considered in the indoor setup, but in the acceptable range.

6.4 Summary

This chapter presented a realistic simulation and hardware implementation of the

proposed distributed linear program algorithm in the application of adversarial game

of interest. The Simulation is realistic in the sense that the adversarial game was im-

plemented using simulated drones in the Gazebo Simulator as well as actual drones.

The Gazebo simulator provides a realistic simulation of rigid body dynamics. This,

indeed, helps evaluating the proposed algorithm in a more realistic simulation en-

vironments and also reduces the required efforts to transition to actual hardware

implementation.

Another important contribution is the system integration and validation in a com-
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(a) (b)

(c) (d)

Figure 6.20: 2D representation of the drones trajectories in an outdoor experiment.
Defenders have blue trajectories. The attacker has a red trajectory. The upper left
figure shows the initial positions of the drones. The next ones are sequential snapshots
of the trajectories ending with capture snapshot in the lower right figure.
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plete hardware implementation. This is also accomplished using real drones that exe-

cute all required software including the distributed planning algorithm onboard. The

most important point is that, it was shown that the algorithm executes in real-time,

e.g. in the order of 10s of Hz on low power computing modules. This is attractive

for large swarms of small drones that are limited in payload and power consumption.

We provided two physical implementation setups, indoor and outdoor. The indoor

setup help for rapid testing in a controlled environment and to validate important sys-

tems aspects such as real-time performance, communication stability, repeatability,

and overall system integrity. The presented outdoor setup provides a more realistic

testing cases where more maneuverability can be executed under real environment

conditions.

Several game scenarios are presented to show the performance of the algorithm.

It’s trivial that the algorithm performance is not optimal compared to the centralized

version because defenders information about other defenders and attackers is limited

to a defined neighborhood. Whereas, in the centralized version, the position of all

agents in the grid is known to all defenders at all times. However, defenders exploit

the fact that they know each other’s motion models in order to produce behaviors that

are meaningful under the real-time constraints. Also in such applications, real-time

urgency is favored over performance optimality.

The system integration and validation also revealed some areas of future improve-

ments. One aspect is related to agents’ motion modeling. Although multirotors

are agile aerial vehicles which can execute aggressive maneuvers, they are still con-

strained by their inertia, which limit abrupt changes in flying direction. For example,

a quadrotor cannot reverse its flying direction instantaneously, which is assumed by

the motion model of the linear program algorithm. This also applies on the attackers

motion model. A more realistic model that can capture such limitations, can help

to better predict the decisions of both teammates and adversaries. However, this
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can add more complexity into the problem formulation, e.g. adds nonlinearity, which

can break the linear program formulation that is appealing for real-time execution.

Another aspect that can be improved is the real-time execution under larger grid. In

some scenarioes, it might be required to consider larger grids in order to have more

resolution and accurate maneuvers. As reported in Table 6.1, the execution speed on

the considered onboard computer showed dramatic decrease as a function of the grid

size. It would be more practical if the execution speed could be kept at constant rate

or at least linear with respect to grid size in order to respect the real-time constraints.

One of the main outcomes of this work is that all the software that is used to

obtain the simulation and hardware results is available as an open-source package

which is also compatible with ROS. This helps to reproduce this work and to have

less time improving on the existing work. The package is available at [86]
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Chapter 7

Additional Contributions

7.1 Introduction

In this chapter I provide additional contributions besides the main PhD work of this

thesis. In my broader interest in multi-robot applications, I was involved in three

additional works that are summarized as follows.

• Design of a complete multi-drone system for collaborative search, pick, and drop

of randomly placed objects

• Design of a realistic simulation environment for implementation of distributed

motion planning based on submodular functions

• Design of drone platforms for onboard multi-robot localization for GPS-denied

environment

My contributions in the previous works are detailed in the following sections.

7.2 Cooperative Multi-UAV System for Autonomous Aerial

Grasping in Outdoor Environments

This project is motivated by the Mohamed Bin Zayed International Robotics Compe-

tition (MBZIRC) that took place in Abu Dhabi, UAE, in March 2017. The challenge

setup considered in this work is given as follows. A team of UAVs has to collaborate

in order to search, localize, track and pick up a set of static objects autonomously.
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Figure 7.1: An example of the system setup while being simulated in the V-REP
robotic simulator, where three drones are considered. The search area is divided into
three sub-areas, one for each drone. Objects are placed randomly in the search space

The objects are known to be of a ferrous material, and may consist of various sizes,

shapes, and colors which need to be transported to a dedicated single drop zone. The

search area is defined by a set of GPS coordinates that are known a priori. This

problem brings up a set of practical research and system design questions regarding

multi-UAV coordinated control, aerial object grasping, and vision-based object iden-

tification and localization within a limited time. A simulation snapshot of the system

is depicted in Figure 7.1.

Despite the excess of literature in this area, it is noticeable that most of the

work that has been done in the past on the implementation of cooperative multi-

agent systems using UAVs, is in indoor environments [89], [90], in presence of perfect

positioning and precise localization, optimal lighting conditions, and robust commu-

nication infrastructure. However, in outdoor environments, the implementation of
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multi-UAV system is more challenging because of the disturbances and uncertain-

ties in surroundings. In this paper, we focus on an outdoor implementation and

integration of multiple UAVs to complete a given complex task cooperatively and

autonomously. We tackle the challenge of autonomous cooperative multi-UAV aerial

grasping in outdoor environments from a practical perspective. Another constraint

that greatly hinders the operation of UAVs autonomously outdoors is the need for

onboard computation, because of the power and payload limitations of UAVs. In

most of the cited work, the computations and high-level algorithms are run off-board,

which is an acceptable for indoor lab experiments, but for realistic and outdoor ap-

plications in which complete, or high-degree of autonomy of the robot is desired,

onboard computation is a condition that must be satisfied. Hence throughout this

paper, we only deal with and propose the strategies for fully onboard control and

computation capability for all UAVs.

As discussed earlier, aerial grasping is among the few top research interests of

people working in the field of aerial robotics. Several useful techniques have been

proposed and experimented with UAVs for grasping of objects of various shapes,

textures, weights, and sizes over the years [91], [92], [93]. Though a lot of these

strategies focus on the versatility of grasping, rather than its robustness and precision,

which is totally fine as far as the research is concerned, but it is easy to notice that

for many practical and industrial applications, the need to grasp ferrous objects, in

particular, remains a key objective. It is because of the well-known reliability and

strength of the ferrous enclosures. Given most of the aerial grasping mechanisms put

high constraints on the maximum payload limit as well as the aerial maneuvers of

the robot itself, we came up with an intelligent and customized gripper design which

is based on maximizing the payload capability while keeping the constraints on the

aerial maneuvers of the robot to a minimum. We specifically design and implement a

passive magnetic gripper for the outdoor multi-agent setup, by extending our concept
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of passive aerial grasping of ferrous objects in outdoor environments [94] and by

combining it with the impulsive drop mechanism [95], for aerial grasping with UAVs.

The main attribute which makes the work presented in this paper unique is our

low cost, fully onboard, and autonomous implementation of real-time cooperation

strategies, on multiple UAVs for an important and practical application of industrial

and commercial importance, that is aerial grasping. Being able to demonstrate the

robust performance of our multi-agent system in outdoor environment adds further

to the value of the project. Several pivotal components of the system such as the

grasping and drop mechanisms have been developed completely in-house as well and

their superior performance is demonstrated by experiments.

7.2.1 Contributions

In this work, my contributions are summarized as follows.

• Design of customized drone that carries a customized passive gripper for mag-

netic objects, vision system for object identification, and onboard computer for

mission software execution

• Design of the software architecture which includes the finite state machine of

the mission, communication and coordination protocol for dropping agreement,

object picking strategy, and the ROS interface of the software

In this work we used three customized hexarotors to accomplish the mission, see

Figures 7.2, 7.3. The onbarod components that each drone carries are summarized in

Table 7.1.

7.2.1.1 Gripper Design

A major component of the grasping dron is the gripper design. There is a number

of works which presented indoor demonstrations of aerial grasping. For example, a
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Figure 7.2: Cooperative multi-UAV system for aerial grasping in outdoor environ-
ments

Figure 7.3: Fully equipped hexarotor platform
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Table 7.1: UAV hardware components

Item Description

Frame: DJI flamewheel F550 hexacopter
Propulsion system: DJI E310 900KV with 9 inch propellers
Battery: 10Ah 4 cells LiPo battery
Flight controller: Pixhawk 2 (the Cube)
Onboard computer: Odroid XU4
Altitude sensor: LiDAR Lite v3 sensor with 40m range
Camera: Fish eye ELP camera
Gripper: Customized design with permanent magnets & release

mechanism

multi quadrotor setup to carry a penetrable payload with grippers [89], or with cables

[90]. Also, in [96] and [97], the authors presented multi-MAV systems for structure

assembly. In all previous works, experiments were done indoors and with known

locations of objects.

In this work, we present a simple light-weight gripping mechanism for ferrous ob-

jects with feedback on the picking state. An important aspect of this whole task was

to design a robust and reliable grasping mechanism for the UAVs, which enables them

to pick up and drop the target ferrous objects in a reliable manner. The payload is

an important consideration while designing a gripper for drones. We would like to

keep the grip as strong as possible while keeping its own weight to a minimum. Thus

for ferrous grasping application, we investigated various options including electro-

magnets, Electro-Permanent Magnets (EPMs), and Permanent Magnets. Low power

consumption compared to electromagnets, high payload capability, and convenient

commercial availability of the EPMs, apparently, make them a default choice. How-

ever, we designed our own magnetic gripper and a novel impulsive servo-actuated

drop mechanism that conforms with the requirements of the actual system. The

mechanism is based on our earlier work [94] and is inspired by our participation in

MBZIRC Robotics Challenge 2017 [98]. Fig. 7.4 shows the complete gripper assem-

bly mounted to the hexarotor frame. All the assembly parts have been designed and
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printed via the Objet 30 Prime 3D printer at RISC Lab. The whole gripper, when

assembled, weighs around 250g. The servo mount holds everything in place. The

square magnetic pad at the heart of the mechanism is the key to spontaneous grasp-

ing. It employs four 6.33 mm cubes of N42 Neodymium magnets. These magnets are

collectively capable of providing a net lift of around 0.76kg. For our testing, the test

objects we used, weigh 350g at maximum. Thus, one pad does the job for us. It is

further embedded, in its center with a push button, that is pressed every time the

gripper picks up or drops an object. As is described later in this section, this is a

vital feature for ensuring a flawless autonomous flow of the state machine during the

grasping operation.

The drop mechanism as shown in the Fig. 7.4 consists of two high-speed servo

actuators, which when activated push the object off the magnetic pad using their

respective horns. the two servos are mounted at right angles to each other ensuring

a strong push, when activated at the same time. This concept of impulsive drop

[95] is quite efficient in terms of design simplicity as well as power consumption,

since the only time the gripper consumes power is in the drop phase. The average

power consumption over a complete pick and drop cycle of gripper operation is thus

comparable or less than an EPM which requires additional power to activate the

magnets as well, which in our case is zero, since the permanent magnets are always

activated. An Arduino Nano serves as a dedicated ROS node for controlling the

gripper actuation. It reads the push button feedback from the magnetic pad and

publishes the pick/drop status to ODROID in real-time. It is subscribed to pick/drop

commands from the ODROID as well, in response to which it either activates or

deactivates the drop servo mechanism.

In addition to the gripper, the assembly also has a built-in small sized servo gimbal

for the camera module. This customized 3D printed gimbal uses two Hitech ultra-

nano servos to stabilize the roll and pitch of the camera as the UAV flies and carries
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Figure 7.4: Gripper design: (a) side view, and (b) bottom view. The 3D printed
gripper enclosure holds two servo motors, four permanent magnets, push-button for
feedback, gimbaled camera with its holder, and Arduino Nano for actuation control
and ROS interface
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out various maneuvers. This gimbal keeps the camera faced down, aligned with the

ground all the time, which makes the object tracking and detection convenient.

Each of the three UAVs in our setup was equipped with the same gripping mech-

anism. The actuation and grasping routine for any UAV proceeds as follows: The

magnets are activated by default. In the pick-up state, the servos are deactivated i.e.

the horns rest above the magnetic pad. Thus as a UAV tracks, descends and picks

up an object, the feedback signal from the push button switches from ’0’ to ’1’. A

’0’ means an object is not picked, while a ’1’ means that an object has been picked

up successfully. Thus ’1’ message serves as a pick-up confirmation for the main state

machine. Now when a UAV reaches the drop zone, the Arduino (ROS node) receives

a drop signal from the ODROID (main state machine), and hence it activates the

drop mechanism. As the object is dropped, the push-button feedback switches from

’1’ to ’0’. Similar to pick up routine, the ’0’ message serves as the drop confirmation

for the main state machine. Once it gets the confirmation, it proceeds to the next

state (i.e. search and pick up) and also sends a pickup signal to the Arduino which

deactivates the drop mechanism again, and the process continues.

7.2.1.2 Communications

In this work we used WiFi to establish peer-to-peer communication links between

the three drones. Communication is only needed for the drones to resolve conflicts

during the dropping stage as only one drone can be inside the drop zone. We also

avoided the use of single ROS master in ROS system. In the standard ROS network,

there is a single master node that establishes the communication links between all

nodes in the ROS network. To avoid the single point of failure of the single master

node, each drone runs its own ROS master independently. However, this way drones

loose the convenient ROS communications to exchange information. For that, we

established an additional peer-to-peer communications between drones using TCP
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(a) (b)

Figure 7.5: Inter-UAV communication architecture. Figure (a) shows the standard
ROS communication way, which is prone to single point of failure issue. Figure (b)
shows our customized communication method to mitigate this issue.

Figure 7.6: Content of custom MAVLink message used in inter-drone communication

protocol. Figure 7.5 shows the standard ROS network and the modified one. The

communicated information is encoded in custom MAVLink message, see Figure 7.6.

7.2.2 Outdoor Experiments

The complete system with the three drones was tested in an outdoor arena and a

video of the complete system in action is available on RISC’s YouTube channel 1.

Each drone was tested individually to confirm its successful operation including

object search, identification and localization, object picking, and object dropping.

Figure 7.7 shows snapshots of testing the individual tasks during an autonomous

mission for a single drone.

Furthermore, a grand field experiment was conducted for the full autonomous

mission in action and the order of execution was as follows.

• Area sectioning: An area is defined by taking the GPS coordinates of its corners.

The area is divided into non-shared sections, one for each drone.The GPS cor-

1https://youtu.be/ZNolRs-CYew

https://youtu.be/ZNolRs-CYew
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Single drone testing; (a) a snapshot of the drone in the search phase, (b)
a snapshot of the drone after an object is found and selected, (c) a snapshot of the
drone after an object is found and selected, (d) a snapshot of the drone while aligning
over the object to prepare for picking, (e) a snapshot of the drone while picking the
object, and (f) a snapshot of the drone after picking the object, going to the drop
phase
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ners of the sections are recorded. Each drone is given the predefined coordinates

and assigned to a particular section.

• Object Placement: As mentioned, magnetic discs of 20cm diameter are ran-

domly placed inside the operational area.

• Drone placement: Each drone is randomly placed inside its assigned section.

• Mission Start: Once each drone is armed and ready, a start signal is triggered

which initiates the full autonomous mission.

• Mission states: Each drone goes through a cycle of finite states until it clears

all objects inside its assigned section. The states include object search, object

picking, object dropping.

• Mission End: Once each drone has cleared its section, it lands. Once all drones

are landed, the mission is complete.

A single Linux computer was used to monitor the mission execution and drones

states. The mission was completed successfully in 3 minutes. Fig. 7.8 shows snapshots

of the grand experiment.

In our experiments, we used rosbags (data logging system in ROS) for data log-

ging as it provides convenient tools for data visualization and time-stamped mission

replays. Fig. 7.9 shows a snapshot of a log replay of one of the three drones during a

complete mission. The logged data includes time-stamped processed gray-scale image

where an object is encircled if it is detected, state of the mission, error distance to

the current detected object, and gripping status (gripped or not).

During several autonomous missions, a main factor of success is the accurate

object centering with respect to the drone’s gripper which is a result of accurate

object localization using vision. In Figure 7.11, a smooth descent can be seen while

the object is being centered with respect to the gripper’s center. This validates the
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(a)

(b)

Figure 7.8: Snapshots from the grand field experiment
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Figure 7.9: Log replay of a drone for a complete mission

Figure 7.10: Decreasing distance error between drone position and detected object
during picking phase

Figure 7.11: Drone’s smooth altitude trajectory during pick up
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effectiveness of the picking approach, which is one of the main contributions of this

work.

Our experiments also showed the effectiveness of our proposed gripper mechanism

over the electro-permanent magnets (EPM) solution. In particular, the proposed

gripper mechanism outperformed EPM in gripping flat object when the gripper sur-

face is not perfectly aligned with the object surface. A major issue we faced with

EPM is that it required perfect alignment and touch with the object flat surface in

order to be fully activated. For that, we installed EPMs on a large gimbal in order to

stabilize them along with the camera. On the other hand, using the proposed gripper,

perfect alignment is not required. Once the object is near the magnets active field, it

is automatically pulled towards the magnets. Therefore, a gimbal for the gripper is

not required.

Finally, we would like to highlight some of the challenges that were faced. For sake

of the simplicity of the system, we used blob detection methods on low-computation

modules for vision-based object detection. Such methods are usually tuned for par-

ticular colors at specific environmental effects e.g. light intensity. Therefore, it is

challenging to use the same parameters to detect the same colors in different light

conditions which we faced during field tests. More complex method can be used, but

at the expense of more computation power. One possible solution is to use adaptive

vision parameters (e.g. color thresholds) according to a trained model that accounts

for environmental changes e.g. light intensity. The trained model can, then, be

executed rapidly on low-computation modules.

7.2.3 Summary

In this work, we presented a fully integrated multi-agent UAV system for searching,

collecting and transporting objects with unknown locations. The proposed system

simplifies such complex tasks by introducing full autonomy which extends its applica-
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tion domains to real-life situations such as search and rescue missions and commercial

package delivery. Objects were localized based on a monocular camera and the drone

altitude, and picked up using our customized passive grasping mechanism with feed-

back. The overall system architecture was implemented and tested successfully in

an outdoor environment using a simple yet effective approach with low-cost hard-

ware, which makes it an appealing research test-bed. Further enhancements can be

made in the design as well as the cooperative control techniques to incorporate robust

performance of the system under varying environment conditions.
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7.3 Distributed Motion Planing using Submodular Minimiza-

tion

Submodular functions are discrete analog of convex functions. These functions are

popular in combinatorial optimization because they can be efficiently minimized.

Moreover, they have a lot of applications for instance in facility location, resource al-

location, matching problems, and coverage problems etc. In [99], Jaleel and Shamma

proposed a novel algorithm for the distributed minimization of submodular func-

tions. They also showed that submodular functions can be used for distributed mo-

tion planning in multi-agent systems. To evaluate the real-time performance of this

submodular minimization based distributed motion planning framework, I was in-

volved in developing a realistic simulation setup. The problem setup was the same

as attackers-defenders game used in this thesis. However, the defender team was

solving a submodular minimization problem in a distributed manner. In this setup

the neighboring agents were communicating with each other. However, even with the

communication among neighboring agents, our simulations showed that the defenders

were able to compute their control actions efficiently.

7.3.1 Contribution

As mentioned, my contributions in this work is in the development of a realistic

simulation environment with integration into the Robot Operating System (ROS).

This allows for seamless transfer to actual hardware system.

For a realistic simulation setup, we used Gazebo robot system simulator to simu-

late drone dynamics and sensor feedback. The drones that we used in the simulations

are a realistic model of the IRIS+ quadcopter. The stabilization and the low level

control of the drones was handled by PX4 open-source autopilot, which is used in

actual quadcopter control. In the simulation setup, the autopilot received simulated

information of sensors, which included GPS, accelerometers, gyroscopes, pressure and
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altitude, from Gazebo. The autopilot software processed the simulated feedback data

form the sensors and computed actuator (motor) commands. The autopilot also re-

ceived high-level commands (e.g position set-points) and was responsible to track

them.

The building blocks of the simulation are as follows.

• Algorithm: The distributed subgradient based algorithm for computing the

motion plan of the defense team was implemented in MATLAB. In the algo-

rithm, we received the current positions of the attacker and defender drones

as feedback at each decision time. Based on this feedback, the algorithm gen-

erated distributed decisions in the form of commanded position set-points for

the autopilot to track. The update actions for attackers were also computed in

MATLAB according to protocol described in the previous section.

• Autopilot: The autopilot that we used was the PX4 autopilot, which is a

well know open-source professional autopilot. In our simulation, the autopilot

software was used for quadrotor stabilization and navigation. The autopilot

received position set-points from the MATLAB node. In order to mimic a

realistic scenario, each drone had an independent executable in which the PX4

autopilot was operating.

• Gazebo: We used the robot simulator Gazebo to generate a realistic simula-

tion of quadcopter dynamics. It provided the autopilot with simulated sensor

information. Moreover, it received the actuator (motor) commands from the au-

topilot to control the quadrotor dynamics. The simulator communicated with

each autopilot executable through a UDP communication.

• ROS: All software components were executed inside ROS which facilitated the

software development and integration. It also allowed us to use the same exact
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Figure 7.12: Architecture of the simulation framework. All software components run
inside the ROS framework. Each drone has an identical autopilot executable. Gazebo
simulator is used for dynamics simulation and sensor feedback.

code on actual hardware. This simulation framework is implemented as a ROS

package.

The operational hierarchy and the interface between different components in the

simulation setup are depicted in Fig. 7.12.

7.3.2 Results

The actual layout of the arena developed in Gazebo is shown in Fig. 7.13. In this

simulation scene, the battle field is a square region of dimension 20ˆ20 meter square.

Each team has four players, i.e., nd “ na “ 4. The defense zone is represented by

short green poles on one side of the arena. The defense team comprises four black

quadcopters deployed in front of the defense zone. The offense team comprises four red
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Figure 7.13: A layout of the battlefield developed in Gazebo. The small green poles
at the top represent the defense zone. The tall grey poles in the middle correspond
to the obstacles. The red quadcopters opposite to the defense zone are the attackers
and the black qudcopters in front of the defense zone are defenders.

quadcopters deployed on the other side of the arena. Static obstacles are represented

by long vertical columns that agents should avoid during their motion. The complete

simulation details can be found in [99].

In the simulation setup, the duration of a game was T “ 75 seconds. To avoid col-

lisions among attackers and defenders, the z-coordinate of the defenders and attackers

were set to 3 and 2 meters respectively. An attacker ai was considered captured if

min
zdPP d

}zd ´ zai } ď 2 meter,

where P d is the set of locations of all the defenders.

To run the simulation, the following sequence of steps were followed.

• All agents were commanded to takeoff and hover at their initial location, and
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(a) Scenario1

(b) Scenario 2

(c) Scenario 3

Figure 7.14: Snap shots of the simulation environment at the end of each game. In
addition to the game arena, we present the design parameters for the offense and
defense team in the top window and the trajectories followed by the attackers and
defenders in the bottom window for each scenario.
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wait for the battle signal

• Once the battle signal was triggered, the game started. During the game, each

agent moved towards the commanded position computed by the distributed

optimization algorithm executing in MATLAB.

• The game ended if one of the following conditions was satisfied

– all attackers were captured at the same time,

– maximum game time was reached

We simulated the game under three different scenarios. In the first scenario, the

behavior of all the defenders was set to defensive mode. In the second scenario, the

behavior of all the defenders was set to attack mode. In the last scenario, the behavior

of two defenders in the middle was set to attack mode with and the two defenders on

the side was set to defensive model. A snapshot for each game is shown in Fig. 7.14.

For a detailed video of the games, we refer the readers to the YouTube link in 2

As shown in the snapshots in Fig. 7.14, we superimposed the battlefield with two

windows. In the small window at the top, we added all the parameters values for that

particular simulation scenario. In the second window, we present the real-time trajec-

tories of all the players. In the first scenario, all the defenders stayed at their initial

locations till the attackers came close. Once the distance of the attackers from the

defense zone was less than 10 meters, the defenders started pursing them. However, in

the second scenario, the defenders started pursuing the attackers from the beginning

of the game. In the third scenario, the two defenders in the middle started pursuing

the attackers quickly since their behavior was set to attack. However, the defenders

on the sides waited till the attackers came close to their area of responsibility.

2https://youtu.be/kqPMLmbljjg

https://youtu.be/kqPMLmbljjg
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7.3.3 Discussion

• We start the discussion by highlighting the fact that we developed a realistic

simulation setup in which eight quadcopters were operating independently, con-

trolled by actual autopilot software. Each of these quadcopters was receiving

target set-point commands in real-time. These set-point commands were com-

puted based on the real-time sensor feedback data, which was used in an online

distributed optimization algorithm.

• From the videos of the capture the flag game under various scenarios, we can

observe that we were able to compute feasible trajectories for the defense team

from the distributed motion planning framework in an efficient manner. All

the defenders were able to avoid collisions and obstacles effectively in all the

scenarios. Moreover, they pursued the attackers by making real time decisions

under an assumed attacker model. In terms of execution time, the MATLAB

code was able to compute the target set points for all the attackers and defenders

in approximately 0.43 seconds. Based on these results, we can conclude that the

distributed motion planning framework presented in [?] is suitable for real-time

applications of UAVs and UGVs.

• It is important to highlight that the actual motion plan of the attackers was sig-

nificantly different from the model used by the defenders to make their decisions.

The defenders assumed that the attackers were always proceeding towards the

defense zone in a straight line. However, in the actual motion plan of the at-

tackers, they were actively avoiding the defenders as well. The effect of this

model mismatch can be observed from the simulations.

• Although the simulation setup was running on a high performance computing

machine, we did face issues because of the large number of quadcopters. Hav-

ing eight quadcopters as independent executables running PX4 autopilot and
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communicating with Gazebo resulted in some delays in communication among

different components of the simulation setup. The effects of delay in the feed-

back data, and the delay in the execution of commanded inputs can also be

observed from the simulations.

• The distributed algorithm for computing the motion plan of defenders required

local communication only. However, in the simulation setup, the algorithm

was running on a centralized machine. A future direction of this work is to

simulate and implement a completely distributed system in which the motion

plan of each quadcopter is computed on its onboard computer based on real-time

communications among neighboring agents in the network.

7.3.4 Conclusions

We developed a realistic simulation setup to verify the performance of a distributed

motion planning framework with discrete inputs. This motion planning framework

was based on distributed subgradient descent approach for submodular minimization.

The simulation setup was developed in Gazebo interfaced with MATLAB where the

high level scheduling was handled by ROS. They key feature of the simulation setup

was that it was able to effectively manage eight quadcopters controlled by actual

autopilot software. In this setup, we implemented capture the flag game with four

quadcopters in each time. Based on the performance of the distributed motion plan-

ning framework in this realistic simulation setup, we were able to conclude that the

framework is suitable for real-time applications.
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7.4 Multi-Robot Onboard UWB Localization

Robots in a swarm take advantage of a motion capture system indoor or GPS sensors

outdoor to obtain their global position. Motion capture systems are environment-

dependent and GPS sensors are not reliable in occluded environments. Figure 7.15

shows the conventional fixed anchor configuration vs. the mobile anchor configuration

which is desired in this work. Robots have to sense and interact locally in a swarm for

a reliable and versatile operation. In this work, we consider the on board localization

problem in multi-robot systems. A drone localizes another ground robot or aerial

robot by using its on-board sensing and computational capabilities together with a

set of ultrawideband sensors. The drone generates good enough relative position

estimate by using the motion model of the localized robot in the filtering process.

We validate our algorithm with outdoor experiments on a set of ground and aerial

robots.

In this work, we use the onboard sensor configuration on a moving drone to localize

another moving robot by the onboard computational unit of the drone. Specifically,

we modify the localization algorithm of [100] where the anchor vehicle’s model was

assumed to be non-holonomic. Here, we assume that the drone’s attitude dynamics is

controlled by the low-level controller and represent the drone motion as a holonomic

kinematics. The anchors are placed in a specific configuration on the drone. This

configuration forms a virtual localization frame on the moving drone. In this config-

uration, the anchor separations are allowed to be very short (less than half a meter)

compared to the fixed localization infrastructures (usually more than two meters).

We test the algorithm in two experimental scenarios. In the first scenario, the

moving anchor drone estimates a moving ground robot’s position and follows it at a

desired relative position. In the second scenario, the moving anchor drone estimates

another moving drone’s position and follows it at a desired relative position. We show

that the position error is within acceptable range with the proposed algorithm. We
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Figure 7.15: Illustration of two sensor network configurations. Orange and gray
diamonds represent the anchors and sensors, respectively. (a) Conventional anchor
configuration: The sensors are well separated from each other and the mobile vehicle
mostly lies inside the convex hull of the sensor network (yellow shaded area); (b) The
onboard-anchor configuration: The sensors are located very close to each other and
the mobile vehicle always lies outside of the convex hull of the sensor network.

demonstrate that although the anchors are placed very close to each other, we obtain

an acceptable localization performance by using the motion model and a rough initial

position estimate of the localized robot. We employ only on-board IMU, laser range

finder, and optical flow sensor to measure and control motion of the drone. Therefore,

our algorithm is independent of the environment or fixed infrastructures. Moreover,

we demonstrate with experiments that the motion control loop of the anchor drone

can be closed with the localization estimate feedback.

7.4.1 Contributions

My contribution in this work was to develop and test the drone system that is ca-

pable of carrying the required components and provide hover stability and motion

estimation without relying on GPS.

Two custom drones were developed and can be seen in Figures 7.16 and 7.17.

We performed experiments with two setups. In the first setup, we used a hexa-

copter drone that carries three UWB anchors and a ground robot that carries a single

UWB sensor. In the second setup, we used two drones: a hexacopter that carries

three UWB anchors and a quadrotor that caries a single UWB sensor. In both se-



138

Figure 7.16: Hexacopter setup

Figure 7.17: Quadrotor setup

tups, the hexacopter was to estimate the relative position with respect to the other

robot (ground robot or quadrotor). Apart from the UWB sensors, both drones were

equipped with similar components. In particular, they were equipped with a range

finder for precision altitude control, camera-based flow sensor for hovering and veloc-

ity estimation, a flight controller for drone low-level control, and a low-power Linux

computer for the localization and filtering computations. The detailed description

of the on-board components is shown in Table 7.2. Figure 7.16 and 7.17 show the

hexacopter and quadrotor used in the experiments. The hexacopter airframe was an

of-the-shelf airframe while the quadrotor was a custom 3D printed design.

Each drone used the Pixhawk flight controller which runs the PX4 open-source

autopilot firmware to provide attitude stability and velocity tracking. The flight

controller used the PX4Flow sensor [101] to provide accurate velocity feedback and

hovering. A PID velocity controller on the flight controller was used to track the
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Table 7.2: Drone Components
Component Description
Airframe Hexacopter of diameter 50 cm. Custom 3D

printed quadrotor frame of diamter 35 cm
Flight Controller Pixhawk running PX4 autopilot firmware
Range Finder LiDAR Lite v3 for precision altitude mea-

surements
PX4FLOW A camera flow sensor for hover positioning

and velocity estimation

Onboard Computer
ODROID XU4 running Uhuntu 16
and ROS Kinetic for high-level

computations
UWB sensors For localization

Figure 7.18: A diagram that shows the tasks executed on the drone.

commanded velocity by an onboard computer that was connected to the flight con-

troller. We used ODROID XU4 as the onboard computer which provides sufficient

computing power to execute the localization and filtering processes. The ODROID

was used as the high-level controller that sends velocity commands to the Pixhawk

flight controller based on localization feedback to follow the leader robot. Figure 7.18

shows a diagram of the tasks executed on the drone. All experiments were performed

outdoor.
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Figure 7.19: A snapshot of an outdoor trial with the ground robot moving with
0.2m/s forward velocity and the tracking drone at altitude 1.5m.

7.4.2 Results

We now present the outcome of four outdoor experiments. In the first set of ex-

periments, we used the first experimental setup, that is, the hexacopter tracked the

ground robot. In the second set of experiments, the hexacopter tracked the quadro-

tor. The experimental results are presented in the video3 as well. All experiments

were performed in windy weather outdoor.

3https://drive.google.com/drive/folders/17nhsL-RjtpI36NKx_6UD0PRHFCNlw54v?usp=

sharing

https://drive.google.com/drive/folders/17nhsL-RjtpI36NKx_6UD0PRHFCNlw54v?usp=sharing
https://drive.google.com/drive/folders/17nhsL-RjtpI36NKx_6UD0PRHFCNlw54v?usp=sharing
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7.4.2.1 Ground Robot Tracking by Hexacopter

In this scenario, the hexacopter’s altitude was set to 1.5m. (Figure 7.19). The drone

was to track the ground robot with the following control law:

vArks “ rvxA, v
y
AsJ

, (7.1)

vxA “

$

’

&

’

%

Kxexrks, if exrks ą ǫ

0, otherwise,

v
y
A “

$

’

&

’

%

Kyeyrks, if eyrks ą ǫ

0, otherwise,

where Kx, Ky are negative design constants, ǫ is a threshold to avoid chattering, and

exrks “ rdesx ´ rxrks. The maximum velocity of the drone was set to 0.4m/s in x and

y axes.

In the first trial, the ground robot was commanded to move with a constant speed

vGrks “ r0, 0.1sJm/sec. The initial relative position estimate was set as

r̂r0s “ r1.0, 1.0sJ m.

We present the estimated relative position and the commanded velocity of the

drone in Fig. 7.20. The algorithm was able to estimate the relative position with

a good enough performance and the vehicle successfully followed the ground robot

within an acceptable error bound.

In the second trial, a non-holonomic ground robot was commanded to move on a

circular trajectory with the following linear and angular speeds:

uGrks “ rv, ωsJ “ r0.3, 0.05sJm/sec.

The hexacopter was commanded to track the ground robot with the control law 7.1,
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Figure 7.20: Experiment scenario 1, the drone tracks the ground robot: The rela-
tive positions rx, ry (top) and the corresponding commanded velocity of the drone
(bottom). The dashed lines represent the bands within the threshold ǫ.

Figure 7.21: Experiment scenario 2, the drone tracks the ground robot moving on
a circular trajectory: The relative positions rx, ry (top) and the corresponding com-
manded velocity of the drone (bottom). The dashed lines represent the bands within
the threshold ǫ.

with maximum velocity increased to 0.6m/sec. Figure 7.21 shows the of relative

position estimates of the ground robot with respect to the hexacopter.

7.4.2.2 Quadrotor Tracking by Hexacopter

In this set of experiments, the hexacopter tracked the quadrotor based on the localiza-

tion feedback. The UWB sensor was mounted on top of the quadrotor. To satisfy the

LOS condition between the anchors and the sensor, the hexacopter’s and quadrotor’s
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Figure 7.22: Experiment scenario 3, the hexacopter tracks the quadrotor: The rel-
ative positions rx, ry (top) and the corresponding commanded velocity of the drone
(bottom). The dashed lines represent the bands within the threshold ǫ.

altitudes were set to 2m. and 1m., respectively.

In the first trial, the quadrotor performed a zig-zag motion with the commanded

velocity vGrks “ r0.3a, 0.3sJm/sec., where a “ t´1, 1u. The hexacopter used the

control law (7.1) with the maximum speed of 0.6m/sec. in both axes. We demonstrate

the relative position r and the hexacopter’s commanded velocities in Fig. 7.22. We

note that although the quadrotor’s motion was not smooth as in the case of ground

robot tracking, the hexacopter showed an acceptable tracking performance.

Finally, we performed a sense-and-avoid experiment with the hexacopter and

quadrotor. In this trial, the drones were located 6m. apart and they started to

move to each other on a straight line. The quadrotor’s forward direction headed the

hexacopter and it was commanded to move with the velocity vGrks “ r0, 0.2sJm/sec.

The hexacopter used the following repulsive control law:

vArks “ rvxA, v
y
AsJ

, (7.2)

“

$

’

&

’

%

r0, 0.2sJ
, if }r̂rks} ą dsafe

r0.4sgnprxrksq, 0.4sgnpryrksqsJ
, otherwise,

where dsafe “ 2m. is the safe distance between the drones and sgn is the signum
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Figure 7.23: Experiment scenario 4, the hexacopter avoids the quadrotor once the
distance between the drones goes below a safe threshold. The hexacopter starts to
move away from the quadrotor.

function. We present the GPS data of both drones in Fig. 7.23. The quadrotor started

motion from the upper-left corner and moved toward the hexacopter. The point where

hexacopter started to avoid quadrotor is clearly seen in this figure. We emphasize

that this sense-and-avoid behavior of the hexacopter was completely achieved by the

on-board localization outputs.

7.4.3 Discussion on Experimental Results

In the first scenario, where the drone tracked the ground robot moving in a linear

trajectory, the relative distance exceeded at most 2 meters away from the desired

bounds in the x direction, and 0.7 meter in the y direction. This is an acceptable

performance observing that the drone was standing against 10 m/s wind speed which

contributed to oscillations seen in both x and y axes, see Figure 7.20. In the second

scenario, the drone tracked the ground robot which executed a circular trajectory. The

drone maximum speed was increased by 50% of the speed used in the first scenario

in order to help the drone to better withstand the wind while tracking the ground

robot. The relative distance in the x direction exceeded at most 1.5 meters from the

desired bounds and 0.5 meter in the overall trajectory in the y direction. This shows



145

an improvement over the first scenario where the drone had less maximum speed.

We saturated the hexacopter’s maximum speed because the Px4Flow sensor was

not able to track the hexacopter’s motion for higher speed values. In fact, the quadro-

tor performed similar to the bang-bang control in most of the trials because the wind

highly affected the motion. We argue that the quadrotor would show a smoother

tracking performance in a steady weather.

We used the EKF parameters that gave the best observed performance. Especially,

we used higher values in the measurement covariance matrix compared to the process

covariances because the UWB distance values were not reliable due to the aggressive

motion characteristics of the drones. We suggest tuning of the EKF parameters for

specific anchor drone properties and weather conditions.

We considered only LOS case of the UWB sensors in this paper. However, there

are cases where the anchor-sensor lines can be occluded with obstacles or by the

vehicles. The NLOS characteristics of the UWB sensors need to be extracted for

those cases. In addition, we obtained UWB distance measurements and generated

velocity set-points with around 4 Hertz. In most cases, this frequency is not sufficient

to track vehicles with aggressive maneuvers. We argue that a better UWB sensing

mechanism would result in better tracking performance.

7.4.4 Conclusion

We have addressed the on-board localization problem in multi-robot systems. We

have used an onboard anchor configuration of ultrawideband sensors on a drone to

localize a moving ground or aerial vehicle by the drone. We have included the motion

model of the localized vehicle in the extended Kalman filter algorithm and obtained

reasonable estimation performance. The anchor drone used only on-board IMU and

optical flow sensors and was able to maintain a fixed relative position to the localized

ground robot and drone with the localization feedback in the experiments. The
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algorithm was also able to catch the slightly varying speed dynamics of the localized

robot.

The proposed localization approach can be improved in many ways. We plan to

apply different filtering methods and analyze the effects of the anchor separation dis-

tance to the estimation performance. Furthermore, we plan to extend our algorithm

to allow coordination of more than two robots.
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Chapter 8

Concluding Remarks

8.1 Summary

In this thesis, a distributed algorithm is proposed which tries to address the real-time

requirement of fast decision making problem while providing meaningful decision that

can be suboptimal. The approach is presented in the context of an adversarial game

setting between two teams of robots of conflicting objectives, an attacking team and

a defending team. We first discussed the centralized setting of the problem of interest

and formulated as a dynamic program which provides the optimal policy for the de-

fenders to minimize the time before an attacker infiltrates the defense zone. The main

challenge of such approaches is the curse of dimensionality which makes the problem

computationally prohibitive. An alternative centralized linear program formulation

is discussed which provided a fast and online heuristic solution. Extending on the

centralized LP approach, a local linear program algorithm that can be implemented

in a distributed setting is proposed that allows agents to take local decisions based on

simple local information of their neighbors (i.e. position information). The algorithm

does not require iterative information exchange before taking a decision. Required

information exchange happens only once and then local actions are generated. This

approach exploits the common knowledge of the objective structure and the assumed

agents motion models which are fused in the local optimization to provide meaningful

distributed behavior in the absence of global information. The linear program was

shown to be solved efficiently fast to provide a real-time implementation.
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The considered environment in this work is a 2D grid. However, it can be gen-

eralized to 3D grid, but at the cost of more computation burden which affects the

real-time performance. In the proposed work, the robots’ motion model is assumed

to be linear over the considered grid environment. We have seen this as an adequate

assumption in the considered application as the algorithm operates on the stabilized

closed loop of the lower-level system. In other words, we assume that the low-level

control stabilizes the robots’ dynamics and can track higher-level commands from

the LP algorithm. If aggressive motion is considered, it might be required to include

the higher order low-level dynamics of the robots which breaks the linear program

formulation, hence affecting the real-time execution speed.

Also, another contribution of this work is real-time realistic simulation and in-

door/outdoor hardware implementation using drones which are used to validate the

approach performance in realistic game settings. It was shown that the framework

was able to execute at 30Hz at a grid of size 7 ˆ 7 with prediction horizon of 3 steps

in time, and at 10Hz for grid of 8 ˆ 8 with a prediction horizon of 3 steps in time,

using only onboard low-power computation modules. This makes the framework at-

tractive for swarms of small aerial robots that are constrained in payload and power

consumption.

A bound on the solution of the proposed local LP algorithm is challenging to

find. An alternative approach where an analytical bound between the distributed and

centralized problems can be obtained is also proposed. The idea is to find a reasonable

approximation of the centralized cost function where it can be less complicated to

compute. Then, using conventional distributed optimization algorithms to solve the

approximated centralized problem in a distributed setting.

Finally, I believe that reproducibility of research work is key factor for successful

and rapid future improvements. For that matter, the software of the implementation

is provided as an open-source package with ROS integration which allows to reproduce
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the results shown in this work.

8.2 Future Research Work

The work presented in this thesis can be extended in the following directions. First,

it is challenging to find analytical bounds between the centralized and distributed se-

tups specially when information exchange about the system state is limited between

agent. This is called the suboptimality. An interesting problem is to be able to quan-

tify the trade-off between optimality and communication bandwidth, or the amount

of exchanged information. This, for example, can allow agents to decide when to

communicate in order to not to exceed certain acceptable degradation level. This is

a challenging problem that are now problem specific, i.e. it is not restricted for the

attackers-defenders game.

Another specific challenge that is specific to the considered game setup is the

computation time as a function of the grid size. Such computation time increases

exponentially as the grid size increases. This may impose a real-time challenge on the

LP approach. One suggestion that requires investigation is to choose a grid size that

can be computed in real-time (definition of real-time is an application-dependent),

even if the actual grid size is much larger. This acts as a local grid that moves with

the agents. The information of the remaining part of the bigger grid could then be

projected on the local one in order not to completely loose the overall perspective.

The solution provided by the this approach need to be compared to the one when the

overall grid is considered in the computation.

One more interesting direction is related to environmental learning. For example,

in the attackers-defenders game, defenders were computing online decision against

changes in the environment. The attackers team is considered as part of this changing

environment. in the LP approach, agents used an assumed model of their opponents

in order to help in the receding horizon planning (trajectory prediction). In general,
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this model can be in disagreement with the actual model the opponents use. One

suggestion is to use a hybrid prediction approach where a set of assumed models

such that agents can switch between different models according to certain measures

with respect the environment changes (including the opponents behaviors) during

the game. Another suggestion is to start with a nominal assumed model and tune

it online based on certain measurements of environment. Reinforcement learning

techniques provide a general framework of learning optimal policies by experience

when prediction models are not available. However, the number of trials is generally

large and might not be suitable for the considered application. In this case, an

alternative approach is required where learning can converge fast (definition of fast

is application-dependent).
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APPENDICES

A Implementation Notes for the local LP Algorithm

This appendix presents some details related to the formulation of the local LP algo-

rithm presented in Chapter 5 which is used in the implementations of the proposed

framework.

Dynamics

Recall the dynamics of the grid state,

x` “ x ` pBin ´ Boutqu (A.1)

Also recall the input matrix,

B “ Bin ´ Bout P Rnsˆnu

Where u

u “ ruT
s1

uT
s2
. . .uT

sns
sT P Rnu .

and usi is all possible controls (transfers) from sector si to all other sectors in the

grid.

usi “ rusiÑs1 . . . usiÑsi´1
usiÑsiusiÑsi`1

. . . usiÑsns
sT . (A.2)

Notice that Eq. A.2 is different from the definition in 4.4. That is because usiÑsi is
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added to the usi vector. However, it is always multiplied by zero. It is added in order

to make the implementation easier. Therefore, nu “ n2
s in this implementation.

A.0.0.0.1 Dynamics constraints : dynamics over prediction time horizon Tp,

X “ TxuU ` Txx0
xr0s (A.3)

where Txu is,

Txu “

»

—

—

—

—

—

—

—

–

B ¨ ¨ ¨ 0

B B ¨ ¨ ¨ 0

¨ ¨ ¨
... ¨ ¨ ¨

B B ¨ ¨ ¨ B

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pnsTpqˆpnuTpq

and,

Txx0
xr0s “

»

—

—

—

—

–

xr0s

...

xr0s

fi

ffi

ffi

ffi

ffi

fl

nsTpˆ1

Assuming that the optimization vector is,

X̂ “

»

—

–

X

U

fi

ffi

fl

pns`nuqTpˆ1

(A.4)

Eq A.3 can be written as,

„

InsTp
´Txu



X̂ “ Txx0
xr0s (A.5)

It can be converted to inequalities as follows,

»

—

–

InsTp
´Txu

´InsTp
Txu

fi

ffi

fl

2nsTpˆpns`nuqTp

X̂ ď

»

—

–

Txx0
xr0s

´Txx0
xr0s

fi

ffi

fl

2nsTpˆ1

(A.6)



166

Which can be re-written as

AdynamicsX̂ ď bdynamics

Flow Constraints

Flow constraints over prediction time horizon are described by,

Txu,cU ď Txx0,cxr0s (A.7)

where,

Txu,c “

»

—

—

—

—

—

—

—

—

—

—

–

Bout 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

´B Bout 0 ¨ ¨ ¨ 0

´B ´B Bout ¨ ¨ ¨ 0

...
...

...
...

...

´B ´B ´B ´B Bout

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Txu,c P RnsTpˆnuTp , and

Txx0,cxr0s “

»

—

—

—

—

–

xr0s

...

xr0s

fi

ffi

ffi

ffi

ffi

fl

nsTpˆ1

Using the same optimization vector in (A.4), constraints (A.7) can be written as,

„

0nsTpˆnsTp
Txu,c



nsTpˆpns`nuqTp

X̂ ď Txx0,cxr0s (A.8)

which can be written as,

AflowX̂ ď bflow
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Boundary Constraints

Constraints on optimization vector X̂ are,

0 ď X̂ ď 1 (A.9)

or,

X̂ ď 1pns`nuqTp

´X̂ ď 0pns`nuqTp

which can be written as,

»

—

–

I

´I

fi

ffi

fl

2pns`nuqTpˆpns`nuqTp

X̂ ď

»

—

–

1

0

fi

ffi

fl
(A.10)

which can be written as

AboundaryX̂ ď bboundary
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Compact Form of Constraints

Using inequality (A.6), (A.8), and (A.10), the LP problem can be written in compact

from as,

min
X̂

CT X̂

s.t.
»

—

—

—

—

—

—

—

—

—

—

–

InsTp
´Txu

´InsTp
Txu

0nsTpˆnsTp
Txu,c

Ipns`nuqTp

´Ipns`nuqTp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

p5ns`2nuqTpˆpns`nuqTp

X̂ ď

»

—

—

—

—

—

—

—

—

—

—

–

Txx0
xr0s

´Txx0
xr0s

Txx0,cxr0s

1pns`nuqTp

0pns`nuqTp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

p5ns`2nuqTpˆ1

(A.11)

which can be written as,

»

—

—

—

—

–

Adynamics

Aflow

Aboundary

fi

ffi

ffi

ffi

ffi

fl

X̂ ď

»

—

—

—

—

–

bdynamics

bflow

bboundary

fi

ffi

ffi

ffi

ffi

fl

(A.12)

Notes for GLPK Use

GLPK is an open source linear program and mixed-integer program efficient solver that

is used in the implementation of the proposed framework. We would like to note that

the boundary constraints in (A.9) and A.12 are not considered in constraints matrix

(the rows of A). It is entered as separate types of constraints in the defined glpk

problem.



169

Estimation of Enemy State, Xe

Attackers state trajectory Xa is used in the LP objective vector C “ βXref ` αXa as

follows,

JTp
pX̂q “ min

X̂
CT X̂ (A.13)

In this implementation, the attackers state is computes based on the following

linear model,

xart ` 1s “ xarts ` Buarts (A.14)

where,

uarts “ Gaxarts (A.15)

Hence,

xart ` 1s “ pI ` BGaqt`1xa
0 (A.16)

based on (A.16), the attackers state trajectory can be written as,

Xa “

»

—

—

—

—

—

—

—

–

pI ` BGaq

pI ` BGaq2

...

pI ` BGaqTp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

nsTpˆns

xa
0 (A.17)

or,

Xa “ TG xa
0

A.0.0.0.2 Calculation of Ga :

• This matrix contains the probabilities that an agent moves from one sector si

to another sector sj P Nsi .

• G P Rnuˆns
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• gsiÑsj is the probability that an agent in sector si will move to a neighbor sector

sj.

• usiÑsj “ gsiÑsj ¨ xsi

• Therefore, each row in G contains only one non-zero element, gsiÑsj .

• The non-zero elements in matrix G can be accessed in a Eigen matrix as

gsiÑsj “ Gpsins ´ ns ` psj ´ 1q, si ´ 1q. This assumes that matrix indexing

starts from zero, which is the case if Eigen matrix is used.
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