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ABSTRACT

Asymmetric Signaling: A New Dimension of Interference Management in

Hardware Impaired Communication Systems

Sidrah Javed

Hardware impairments (HWIs) impose a huge challenge on modern wireless commu-

nication systems owing to the characteristics like compactness, least complexity, cost ef-

fectiveness and high energy efficiency. Numerous techniques are implemented to minimize

the detrimental effects of these HWIs ,however, the residual HWIs may still appear as an

additive distortion, multiplicative interference, or an aggregate of both. Numerous studies

have commenced efforts to model one or the other forms of hardware impairments in the ra-

dio frequency (RF) transceivers. Many presented the widely linear model for in-phase and

quadrature imbalance (IQI) but failed to recognize the impropriety induced in the system

because of the self-interfering signals. Therefore, we have presented not only a rigorous ag-

gregate impairment model along with its complete impropriety statistical characterization

but also the appropriate performance analysis to quantify their degradation effects. Lat-

est advances have endorsed the superiority of incorporating more generalized impropriety

phenomenon as opposed to conventional propriety.

In this backdrop, we propose the improper Gaussian signaling (IGS) to mitigate the

drastic impact of HWIs and improve the system performance in terms of achievable rate

and outage probability. Recent contributions have advocated the employment of IGS over

traditional proper Gaussian signaling (PGS) in various interference limited scenarios even

in the absence of any improper noise/interference. It is pertaining to the additional degree

of freedom (DoF) offered by IGS, which can be optimized to reap maximum benefits.

This reduced-entropy signaling is the preferred choice to pose minimal interference to a
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legitimate network yielding another mechanism to tackle undesired interference. Evidently,

the incorporation of both inherent and induced impropriety characteristics is critical for

effective utilization.

Most of the recent research revolves around the theoretical analysis and advantages of

improper signaling with minimal focus on its practical realization. We bridge this gap by

adopting and optimizing asymmetric signaling (AS) which is the finite discrete implemen-

tation of the improper signaling. We propose the design of both structural and stochastic

shaping to realize AS. Structural shaping involves geometric shaping (GS) of the symbol

constellation using some rotation and translation matrices. Whereas, stochastic shaping as-

signs non-uniform prior probabilities to the symbols. Furthermore, hybrid shaping (HS) is

also proposed to reap the gains of both geometric and probabilistic shaping. AS is proven

superior to the conventional M -ary symmetric signaling in all of its forms. To this end,

probabilistic shaping (PS) demonstrates the best trade-off between the performance en-

hancement and added complexity.

This research motivates further investigation for the utilization of impropriety concepts

in the upcoming generations of wireless communications. It opens new paradigms in inter-

ference management and another dimension in the signal space. Besides communications,

the impropriety characterization has also revealed numerous applications in the fields of

medicine, acoustics, geology, oceanography, economics, bioinformatics, forensics, image

processing, computer vision, and power grids.
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RSI residual self-interference
RV random vector
RX receiver
SCP sequential convex programming
SEP symbol error probability
SER symbol error rate
SI self-interference
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SIMO single-input multiple-output
SISO single-input single-output
SNR signal-to-noise ratio
SOS second-order statistics
TX transmitter
WLT widely linear transformation
WUT widely unitary transformation
Z-IC one-sided interference channel
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Chapter 1

Introduction

Exponentially rising demands of high data rates and reliable communications given the

limited power and bandwidth resources impose enormous challenges on the next gener-

ations of wireless communication systems [1–4]. It has compelled researchers to think

beyond the traditional approaches and techniques. Various research contributions propose

new configurations and novel techniques to address these challenges [5, 6]. Nonetheless,

the performance of such systems can be highly degraded by the hardware imperfections in

RF transceivers [7–9].

Hardware impairments (HWIs) impose a huge challenge on next-generation network

planning and deployment especially at high-frequency [3,7–9]. HWIs emerge in various RF

stages including imperfections in analog-to-digital/digital-to-analog converters, non-linear

high power amplifier/low noise amplifier, mismatched local oscillator and phase shifter, etc.

[8–14]. HWIs are considered as the biggest limitation while considering the deployment of

massive amount of circuitry operating at relatively higher frequencies [13, 15]. Therefore,

RF impairments form a key design challenge for developing new techniques/configurations

in modern wireless communications, as these imperfections dominate the performance of

the overall system [8].

1.1 Overview

We use signals either to quantify real-world physical quantities or to exchange information.

Thus, we require appropriate signals and models for accurate performance analysis and de-
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sign of the underlying systems. Most of the studies adopt circularly symmetric (proper)

complex distribution for analysis rendering simplified computations owing to it’s uncor-

related and equal power real and imaginary components. However, a more generalized

approach is to deal with circularly asymmetric (improper) signals which may have corre-

lated/unequal components and contains the proper signals as a special case.

Communication systems conventionally employ proper signals pertaining to their math-

ematical tractability and optimal performance in P2P interference-free system setup. How-

ever, with the every increasing demands of wireless connectivity, most of the communi-

cation systems are limited by the interference/noise. This demands the adoption of the

more generalized improper/asymmetric signaling to improve the system performance. In

particular, improper Gaussian signaling has recently gained popularity for it’s superiority

in various interference-limited system configurations. The theoretical limits achieved by

IGS can be practically realized using adaptive asymmetrical discrete constellations. Asym-

metric signaling can be implemented using the structural and/or stochastic shaping of the

symmetric constellation.

The research work studies the theoretical impact of improper Gaussian signaling on

communication networks based on fundamental information theory studies, and realizes

practical systems using asymmetric discrete constellation based on appropriate signal pro-

cessing techniques.

1.2 Background and Limitations

In the backdrop of the aforementioned overview, the effectiveness of numerous research

contributions is limited due to certain deficiencies.

• Many applications in applied sciences employ complex analysis to model the real-

world data in complex domain. The complex analysis brings advantages like compre-

hensiveness, compactness, computational economy, extra dimension, elegant anal-

ysis and much more. Paradoxically, researchers resort to the more tedious two-
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dimensional real modeling of the complex variables for their statistical investiga-

tion [16] and the complex theory lost most of its beauty, elegance, and interest [17].

• Majority of the contributions assumed proper signal model for the underlying com-

plex phenomenon rendering simplified computations, which is in contrast with most

of the real-world scenarios [18]. The improper nature of complex models has been

proven for various entities in numerous diverse fields. For instance, the accumula-

tive additive thermal noise model in communication systems [19, 20], complex en-

velop of the scalar optical fields [21], empirical speech model [22], complex traces

of the seismic signals [23], ocean-current spectra [24], wind fields [25–27] and fluid

dynamics [28], complex valued model of unbalanced three-phase voltage in power

systems [29, 30] and neural activity in brain/spinal cord as measured by functional

magnetic resonance imaging (fMRI) [31–33].

• The ideal assumption of the perfect transceiver hardware or the effective impairment

mitigation allows researchers to resort to the conventional simplified system mod-

els. However, inaccurate parameters estimation, unreliable distortion modeling, and

unsophisticated compensation algorithms with limited capabilities lead to a certain

residual deterioration effect which is not neutralized by these strategies [34]. Addi-

tionally, HWIs like transceiver in-phase and quadrature-phase (I/Q) imbalance (IQI)

result not only in phase/amplitude errors and raised noise floor but also in an in-

evitable mixing of the desired and image signals. This transforms proper signal to

improper signal as well as proper thermal and distortion noise to improper accumula-

tive noise in the wireless communication systems [35]. It is worthy to emphasize that

the existing performance analysis literature does not investigate whether these hard-

ware impairments exhibit symmetric or asymmetric characteristics. On the other

hand, statistical signal processing research highlighted the asymmetric characteris-

tics of baseband communication signals due to the I/Q imbalance [31]. Residual
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improper HWIs can highly degrade the effective signal-to-interference plus noise ra-

tio (SINR), achievable rate, system outage probability, system error probability, and

throughput causing overall performance degradation.

These defficiencies and superficial assumptions not only lead to inaccurate modeling, mis-

leading analysis, and incorrect results but also deprives us from seeking the maximum

benefit of the additional design freedom [36, 37]. Thus, motivating researchers to develop

accurate models and propose effective compensation methods to meet the expected perfor-

mance.

1.3 Sources of Impropriety

The most common speculation in the complex analysis assumes propriety and/or circularity

of the r.v. under investigation. This phenomenon assumes uncorrelated real and imaginary

components of the complex entities with identical variance which is generally not true. This

section reveals numerous examples from real-world problems in diverse fields which render

improper complex signatures e.g., in medicine [31–33, 38–42], oceanography [24, 43, 44],

geology [23, 25–27, 45–48], optics [21, 49, 50], acoustics [22, 51, 52], power systems [29,

30, 53, 54]. and communication systems [20, 31, 36, 55–72].

The two main sources of impropriety include asymmetric signals and asymmetric data.

Asymmetric signals may occur naturally or result from some transforming phenomenon

whereas empirical data is generally asymmetric. The improper/asymmetric signatures in

numerous fields are highlighted in various technical contributions as shown in Fig. 1.1.

1.3.1 Communications

A necessary, yet insufficient condition for impropriety is that the real-valued random pro-

cess be at least nonstationary [73]. This implies that the complex baseband representations

of wide-sense stationary thermal noise and nonstationary transmitted data signals are ap-

propriately modelled as proper and improper (may reduce to proper) [63]. Thus, the po-
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Figure 1.1: Interdisciplinary Sources of Improperness

tentially improper nature of signals must be taken into account when designing detection

algorithms.

Improperness may originate from various modulation, coding or access schemes. Im-

portant examples of such digital modulation schemes include BPSK [55, 56], PAM [57],

GMSK [58, 59], OQPSK or staggered QPSK [60], SSB, VSB [61] and baseband (but not

passband) orthogonal frequency division multiplexing (OFDM) [74]. On the other hand,

coding schemes like STBC also result in improper signals [62]. Interestingly, the real-

valued data transmission over a complex-valued channel also results in non-zero pseudo-

covariance of the received observations or non-zero cross pseudo-covariance between the

received observations and the desired variable, thus resulting in improper received signal.

Such a scenario arises in the GSM, binary CPM, offset QAM [65] and general simplex

signals. In many sensor applications, DoA estimation with electronically steerable antenna
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arrays is improved by employing NC signal constellations [36, 63, 64]. In addition, mul-

tiple access scheme like direct-sequence code division multiple access (DS-CDMA) [75]

with narrowband interferer results in NC interference [65]. Consequently, such modulation,

coding and multiple access procedures can corrupt sensor observations with NC complex

noise. This necessitates appropriate observation models and distributed complex filters to

tackle them [66].

In areas such as radio communications, beamforming and spectral sensing, the ampli-

tude and phase imbalances between its I/Q components may also introduce non-circularity

in the received signals [67]. Additionally, hardware impairments (HWIs) like non-linearity,

IQI and phase noise rise in various RF and baseband blocks such as analog-to-digital con-

vertors, high power and low noise amplifiers, low-pass and band-pass filters etc. [8, 9].

These impairments accumulate at both the ttransmitter (TX) and receiver (RX) RF chains

and yield undesired effects. For instance, non-linearities result in additive Gaussian distor-

tion noise [12, 14, 76], whereas IQI not only induces phase and amplitude errors but also

mixes the desired and image signals [8,69,77,78]. This can be caused by transceiver imper-

fections [20,68–70], communication channels that are not rotationally invariant [31] or NC

interference from other sources [57]. Besides wireless communications, other noise mod-

els such as underwater propeller noise from maritime ship also demonstrate an improper

nature [42].

1.3.2 Power Systems

Accurate real-time estimation of system frequency is a major technical challenge for fu-

ture smart grids with dynamically updating generation and loading topology. Recently, the

complex signal retrieved after the Clarke’s (αβ) transformation of unbalanced three-phase

voltages is shown to be second-order NC [29, 30]. Therefore, the augmented statistics

and the corresponding WL models are exploited to manipulate varying degrees of non-

circularity relative to different frequency variation sources. Hence supporting the estima-
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tion of instantaneous frequency in a three-phase system under both balanced and unbal-

anced conditions [53, 54]. The complete second-order information offers next-generation

solutions for accurate, adaptive and robust frequency estimation as well as system fault

identification [29].

1.3.3 Medicine

In medical data analysis, non-circularity is exploited for features extraction and improved

estimations in electrocardiogram (ECG) [38] and functional magnetic resonance imagine

(fMRI) [39, 40], respectively. The fMRI measured neural activities in the brain or spinal

cord are recently recognized as improper signals [31–33]. Thus, the NC probability distri-

butions of the sources enable real-time extraction of eye muscle activity: electroculogram

(EOG) from the electroencephalogram (EEG) recordings using some blind source extrac-

tion algorithms [41]. Rhythms of brain waves are non-stationary signals [42] and thus

potentially improper because the temporal information arises from correlativity in the fre-

quency domain. Hence, NC characteristics are a useful resource for suitable analysis and

treatment in biomedical engineering.

1.3.4 Optics and Acoustics

Analogous to stochastic complex fields, arbitrary second moments of the complex en-

velopes of scalar optical fields are also completely characterized by its phase-insensitive

and phase-sensitive correlation functions [21]. Phase-insensitive correlation function is

analogous to the covariance matrix whereas phase-sensitive correlation function is equiv-

alent to the pseudo-covariance matrix in the optics. Thus, the non-zero phase-sensitive

correlation function marks improper optical field. Conventional light sources like sunlight,

light-emitting diode (LED) and lasers have trivial phase-sensitive correlation whereas ad-

vanced non-linear optical sources like squeezed states of light possess phase sensitive cor-

relation [49]. The biphoton states in quantum optical coherence tomography (Q-OCT)
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depict entanglement properties and offer various benefits owing to the phase-sensitive cor-

relation between its two photons [50]. Optical coherence theory should accommodate

phase-sensitive fluctuations for complete second order characterization pertaining to the

significant propagation differences between phase-insensitive and phase-sensitive optical

sources.

It is quite natural to assume real-world acoustic signals as NC owing to the anisotropic

noises, unequal powers of data channels and reflections, and short observation windows.

Thus, augmented statistical framework is required to accurately model the acoustic sources

for speech recognition [51, 52]. It is based on the fact that speech can be empirically

improper in the frequency domain [22].

1.3.5 Oceanography and Geophysics

Complex trace analysis of seismic signals [23], interpretation of ocean-current spectra [24]

and the analysis of wind fields [25–27] exploit the improperness of their respective complex

representations. The impropriety concept is well-known and appreciated by meteorologists

and oceanographers since the early 1970s [43, 44]. Recently, the improper nature of the

real-time wind data along with the tracking of degree of circularity is identified for renew-

able energy applications [46,47]. Similarly, adaptive filtering of the real-world wind signals

is based on its NC and nonstationary observations [48]. Others employ impropriety con-

cepts to further physical applications with asymmetric/anisotropic data structures e.g., in

fluid dynamics [28] and seismic data signals [45] to overcome modeling challenges. Most

of the above mentioned contributions are backed by [37], which claims the improper nature

of signals involved in various real problems.

This section highlights the existence of the impropriety concepts in diverse science and

engineering domains. Therefore, such real-world problems require rigorous characteriza-

tion for appropriate analysis and treatment.
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1.4 Motivation

Besides covering the broader aspects of various disciplines, this thesis is focused on the

communication systems with intentional/unintentional improper signatures. Next we high-

light some important deriving forces which motivated our research in impairment model-

ing, impropriety characterization, and improper/asymmetric signaling.

1.4.1 Impairment Modeling and Characterization

Inevitable imperfections/impairments can render drastic effects on the system performance.

Therefore, it is imperative to inculcate them in the system model and design problems. In

addition, the effective compensation schemes require an accurate statistical model of these

imperfections including hardware impairments and undesired self-interference whenever

they arise.

Hardware Impairments

Hardware impairments (HWIs) impose a huge challenge on next-generation network plan-

ning and deployment especially at high-frequency [3, 7–9]. HWIs emerge in various RF

stages including imperfections in analog-to-digital/digital-to-analog converters, non-linear

high power amplifier/low noise amplifier, mismatched local oscillator and phase shifter,

etc. [8, 9]. These hardware imperfections result not only in phase/amplitude errors and

raised noise floor but also in an inevitable mixing of the desired and image signals. Es-

pecially, the performance of multihop systems can be severely affected by the hardware

distortions (HWD) due to the accumulated effect of impaired transceivers at the participat-

ing nodes.

Hardware distortion is caused by different circuit impairments such as the phase noise

and non-linear distortion [8]. They render deteriorating effects on the wireless communi-

cation systems performance. On the other hand, the widely linear model of IQI is backed
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by some solid contributions [78–80]. Thus, according to statistical signal processing stud-

ies, widely linear precoders/transformations can efficiently map symmetric information-

bearing signals to asymmetric signals [31, 81]. However, only few works have acknowl-

edged the asymmetric characteristics induced by this WL structure of IQI [20, 68, 80, 82].

The WLT of IQI at the transmitter transforms PGS to IGS, which can be verified by find-

ing non-zero pseudo-variance of the resulting signal [79]. In contrast, the receiver IQI is

mainly responsible for the improper Gaussian additive noise [71,72]. Therefore, transceiver

impairments specifically IQI play a vital role in transforming the propriety of the informa-

tion signals and undesired noise/interference [20, 70, 83–85]. This motivates an accurate

modeling and thorough investigation of the multiple HWIs.

Self Interference in Full Duplex Relaying Systems

Several studies have been carried out to investigate extreme node densification and col-

laborative radio technologies to improve the spectral efficiency and meet the exponentially

growing wireless data traffic demands [86, 87]. Relaying technology has gained much in-

terest as it can be used in different network topologies and applications, to improve the

quality-of-service, such as unmanned autonomous vehicles and self-driving robots [88].

Particularly, multi-hop relaying can significantly extend the coverage and improve energy

efficiency [89, 90]. However, spectral efficiency decreases with the increase of number of

relays, where the frequency (or time) is shared between the nodes [91]. FDR is a promising

technology that can compensate spectral efficiency loss by allowing each node to transmit

and receive simultaneously [92]. However, it drastically suffers from self-interference (SI)

that can limit it’s operation. The SI signal is relatively larger than the desired signal of

interest, which increases the dynamic range span of the low-noise amplifier (LNA) and the

analog-to-digital converter (ADC) at the receiver side. As a result, both the undesired inter-

ference and the hardware noise levels increase, which can greatly suppress or even destroy

the information bearing signal [93]. Despite the multiple analog and digital cancellation
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stages, the FDR performance is still limited by the residual self-interference (RSI). Hence,

it needs to be taken into account for effective compensation.

1.4.2 Improper Characterization

Divergence from norms/conventions can sometimes beat the traditional and long-practiced

assumptions. Same is the case with long assumed circularly symmetric complex (CSC) sig-

nal conjecture followed before the advent of last three decades. The advancement from the

real stochastic domain to the complex stochastic domain came with the naive assumption of

equal energy and uncorrelated real and imaginary components of a complex random entity,

later named as proper complex random variables (r.v.) which is generally not true. This

section presents the motivation behind the impropriety specifications and implementation.

The theoretical implementation can be seen as IGS whereas the practical implementation

can be realized as asymmetric discrete signaling.

Impropriety and Circularity

A proper complex r.v. is uncorrelated with its complex conjugate whereas any correla-

tion between the two results in improper complex r.v. The investigation of the presence

and absence of this property is coined as propriety and impropriety, respectively. Another

related yet distinct phenomenon is the concept of CSC or circular r.v., demonstrating ro-

tationally invariant probability distribution in the complex plane [17, 31, 36, 55, 57, 94, 95].

The absence of this property renders non-circular complex r.v. and the evaluation study to

determine the circular and non-circular nature of complex entities is termed as circularity

and non-circularity, respectively.

Circularity is an assumption that was originally introduced for the definition of the

probability distribution function [17]. For instance, the PDF of a complex Gaussian random

vector (RV) assumes the anticipated and familiar natural form only for proper RVs [55,

94]. Moreover, the definitions of independence and/or correlation are inadequate without
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complete second order statistical (SOS) characterization. For example, it is shown that

contrary to the real case, uncorrelated complex normal r.vs. are not generally independent

[16]. Similarly, the propriety characterization is inevitable for the appropriate treatment

and accurate entropy quantification of the complex signals and complex impulse responses

of the equivalent base-band channels.

Improper Gaussian Signaling

IGS is a generalized complex signaling scheme that relaxes the symmetric characteristics of

PGS scheme allowing a correlation between the signal components and/or unequal power

of each component, as opposed to proper Gaussian signaling [94]. Hence, IGS incorpora-

tion can offer an additional degree of design, pertinent to its circularly asymmetric nature

characterized by the circularity coefficient [57].

1.4.3 Adaptive Asymmetric Signaling

Despite the overwhelming benefits of IGS, it is practically infeasible owing to the high

detection complexity and unbounded peak-to-average power ratio [2, 96]. This motivates

the researchers to design some equivalent finite and discrete asymmetric signaling (AS)

schemes for practical implementation. Such AS (improper discrete constellation) entails

redesigning the symmetric discrete signal constellation to convert it into an asymmetric

signal [2]. This can be achieved through the structural or/and stochastic shaping of the

finite discrete symmetric constellations such as M -ary QAM.

Structural Shaping

Several studies focused on geometric shaping (GS) to induce structural asymmetry in order

to improve the system performance. GS transforms equally spaced symbols to unequally

spaced symbols (due to correlated and/or unequal power distribution between quadrature

components of the symbols) in a distinct geometric envelop such as ellipse [97], parallelo-
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gram [96, 98] or some irregular envelop [99]. Thus, structural shaping demands incorpora-

tion and further investigation for practical implementation.

Stochastic Shaping

The asymmetric discrete family of constellations is practical, but they exhibit two types of

loss, i.e., shaping loss and packing loss in approaching IGS theoretical limits [96]. Most

of the efforts to close the gap between AS and ideal IGS are concentrated around GS with

a limited focus on stochastic/probabilistic shaping as another way to implement AS. Given

a fixed number of symbols and the symbol locations, an asymmetric constellation can be

obtained by adjusting the symbol probabilities [100]. PS maps equally distributed input bits

into constellation symbols with non-uniform prior probabilities [101]. This can be achieved

using DM for rate adaptation such as constant composition DM [102], adaptive arithmetic

DM [103], syndrome DM [104,105] DM-based compressed sensing [106,107]. The idea is

to employ a higher-order constellation (with non-uniform probabilities) as opposed to the

uniform constellation, while targeting a minimum transmission rate. This offers additional

DoF and adaptive rates.

1.4.4 Remarks

The detailed and thorough research on IGS and AS schemes encouraged us to put-forth

a comprehensive tutorial encompassing all the technical preliminaries. It also surveys all

the contributions in the journey from theoretical limits to practical realization pertaining

to the impropriety concepts. IGS enables improved performance limits in terms of achiev-

able rate, outage probability, power efficiency, and degree of freedom. On the other hand,

the practical implementation of these impropriety concepts using asymmetric signaling im-

prove the quality of service and reliability of the interference-limited systems.
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1.5 Literature Review

This section presents numerous contributions in the adopted research streams such as im-

pairments incorporation and compensation, impropriety characterization and implementa-

tion, rigorous and extensive performance analysis, and adaptive asymmetric signaling. Fol-

lowed by the concluding remarks enclosed in the deductions referring to the deficiencies in

these contributions and way forward.

1.5.1 Impairments Model Incorporation

The taxonomy of the literature emphasizing the notable hardware impairments and com-

pensation schemes in different system setups is presented in this subsection.

Hardware Distortions

Numerous efforts have been carried out to accurately model various forms of HWIs such

as HWD and IQI. Many studies focused on the statistical modeling of additive hardware

distortions at the transmitter and the receiver [10–13, 76, 108, 109]. However, few contri-

butions emphasized the distinct improper behavior of these HWDs [19, 83, 84, 110]. Such

characterization requires dedicated compensation techniques to meet the performance de-

mands.

I/Q Imbalance

Numerous contributions present the models of in-phase and quadrature-phase (I/Q) imbal-

ance where the self interference (SI) signal induces the amplitude and rotational imbalance

besides the receiver thermal noise. The effects of IQI imbalance were investigated for dif-

ferent communication systems in [12,14,72,72,78,111–116]. Various solutions have been

proposed to improve overall system performance in terms of achievable rate and outage

probability in the presence of I/Q imbalance at tranceivers. For example, [114, 115] dis-
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cusses an opportunistic relaying scheme to compensate IQI and loop-back self-interference

in orthogonal frequency-division multiplexing FDR system to reduce outage probability.

Additionally, Boulogeorgos et al. proposes an I/Q imbalance self-interference coordi-

nation scheme to improve system diversity and quality of the received signal but at the

expense of reduced transmission rate [111]. Similarly, Mokhtar et al. discusses an oppor-

tunistic relaying scheme to compensate IQI and loop-back self-interference in orthogonal

frequency-division multiplexing FDR system [115].

Joint Hardware Impairments

Few studies analyzed multiple RF front-end impairments and their individual baseband

equivalent error models [8, 117]. Schenk studied the modeling procedure, impact of non-

ideal hardware on the system performance, and digital compensation schemes of various

RF imperfections in high data-rate wireless systems [8]. Similarly, Boulogeorgos et al.

studied the impact of various HWIs on the energy detection spectrum sensing in cognitive

radio systems in [117].

RSI and HWI in FDR

Various studies have been carried out to address the deteriorating impact of RSI or HWD in

full-duplex communication systems. For example, the effects of HWIs were investigated

for different full-duplex communication systems in [12, 14, 71, 72, 78, 112, 114, 115] and

particularly for relay systems in [12, 14, 71, 72, 114, 115]. Of all these contributions, [112]

proposes a digital cancellation scheme to supplement RF/analog cancellation techniques

for self-interference mitigation in single-channel FD wireless communication. On the other

hand, [12] focuses on a low complexity hardware impairments aware transceiver scheme

to mitigate distortions in the transmitter and the receiver. Likewise, [71, 72, 114] analyze

the system performance under IQI at relay and destination with ideal transmitter consid-

ering a half-duplex amplify-and-forward (AF) relay, orthogonal frequency-division mul-
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tiplexing (OFDM), and IQI at all nodes in OFDM dual-hop opportunistic AF relaying.

Similarly, other contributions [118–122] presented power control mechanisms to improve

system throughput or outage performance in the presence of RSI and inter-relay interfer-

ence assuming ideal transceivers.

Very few studies focus on both RSI and HWD in a full-duplex operation mode. For

example, [14] carries out the performance analysis of dual-hop proactive DF relaying net-

works with best relay selection under hardware impairment and co-channel interference.

Similarly, [115] analyzes the outage probability of dual-hop DF FDR for an OFDM system

in the presence of IQI and loop-back SI. Besides carrying out the performance analysis, few

works proposed some compensation schemes to improve the system performance. For ex-

ample, [78] proposes a novel widely linear digital cancellation processing to mutually mit-

igate SI and practical hardware imperfections in direct-conversion FD transceiver. In [123]

and [124], authors proposed compensation schemes for various HWIs and RSI at the AF

relay(s), considering dual-hop HWI-FD-AF-relay system with ideal source and destination.

This motivates us to propose a mitigation signaling design to concurrently combat RSI and

transceiver distortions at the source and destination besides multiple HWI-FD-relays. Fur-

thermore, we have focused on the DF relaying strategy in-place of AF relaying scheme, to

support the communication in an interference limited environment, in order to meet next

generation traffic demands.

1.5.2 Error Probability Analysis of the Improper Systems

The error probability performance analysis of systems subjected to HWIs has recently re-

ceived few attentions [125–128]. Windisch and Fettweis quantified the impact of the re-

ceiver I/Q imbalance in terms of closed-form error probability [125],. Similarly, Qi and

Aissa studied the bounds on average symbol error probability (SEP) for the receiver I/Q

imbalanced MIMO system [126]. Moreover, Krishnan et al. derived the SEP for systems

suffering from Gaussian phase error [127]. Additionally, Bouhlel et al. analyzed the pair-
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wise error probability (PEP) over correlated Rayleigh and Ricean fading channel and incor-

porated both imperfect channel state information and additive hardware distortions [128].

To the best of author’s knowledge, none of these works incorporated the improper charac-

teristics of underlying HWIs while carrying out the error probability analysis and deriving

the optimal detectors. Therefore, the accuracy of the analysis and derived results is ques-

tionable and demands appropriate treatment.

1.5.3 Improper Characterization

Interestingly, the propriety concept is not unheard-of and vast majority of contributions

were put forward in one domain or the other. This concept is quite popular in the statis-

tics,signal processing, and information theory community but yet to find it’s standing in the

communication theory.

Impropriety and Circularity

Improper processes and models have seen growing interest in the statistics community

[63, 129, 130]. Similarly, the pioneering works in signal processing community which

emphasized the significance of detailed propriety characterization include [16,17,36,55,57,

131]. Moreover, the significant contributions from the information theory group comprises

of [94, 132–138]. Furthermore, few early contributions from the communication circle

include [56, 65, 75, 139–141].

Various studies discussed the significance of a complete characterization and appropri-

ate treatment of the systems involving improper and non-circular signals. These studies

deal with impropriety concepts that are focused on Gaussianity deviants [142], interfer-

ence mitigation [143], filtering [37], detection [144], estimation [145–147], source identi-

fication [148] and separation [39]. Furthermore, a comprehensive treatment of theoretical

fundamentals of improper and non-circular signals along with their diverse applications is

carried out in [31]. Despite of all these contributions, an exhaustive yet comprehensive sur-
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vey is required which not only encompasses all these domains but also furnishes complete

evolution from the theoretical aspects to the realization ones.

Improper Gaussian Signaling

Improper Gaussian signaling has caught significant attention in the last two decades. It was

expected to outperform it’s counterpart proper Gaussian signaling under improper noise/in-

terference. Surprisingly, it has emerged as a strong competitor in many interference-limited

scenarios even in the absence of any improper noise/interference. This section marks valu-

able contributions, which quantified the superiority of IGS over traditional PGS in both

cases.

Improper Interference/Noise Links Improper/asymmetric signaling dominates tradi-

tional signaling when the system is contaminated by the improper complex interference

[149–152], self-interference [78, 153, 154], improper noise [19, 75, 155, 156], asymmetric

noise/distortions [83,108,133] and non-circular hardware imperfections [20,68–70,77,82].

IGS is proven really effective in dampening improper noise and distortion effects in multi-

antenna or multi-nodal system settings [83, 110, 157–159]. The ergodic rate maximization

and outage probability minimization based on a generalized error model for accumula-

tive hardware impairments in SIMO and MIMO systems are studied in [20, 108] More-

over, IGS benefits can also be reaped in various full-duplex/half-duplex relay settings

by effectively compensating the residual self-interference, inter-relay interference and/or

HWD [79, 83, 153, 158–160].

General Interference Links Recent studies have demonstrated the perks of improp-

er/asymmetric signaling in the general interference-limited scenarios even in the absence

of improper contamination. Notable edge attained by improper transmission over proper

transmission in various interference-limited scenarios include interference broadcast chan-

nel (IBC) [161, 162], broadcast channel (BC) [163–165], multiple access channel (MAC)
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[166, 167], cross-interference channel (X-IC or IC) [81, 168–174], one-sided interference

channel (Z-IC) [175–178], relaying systems [158, 179–182] multi-antenna systems [183,

184], multi-cell systems [185], and multi-tier networks [186], etc. The reduced-entropy

IGS can also be beneficial in unlicensed spectrum-sharing techniques with minimal inter-

ference to the legitimate users in underlay [187–191], overlay [192] and interweave [193]

cognitive radio setups.

1.5.4 Adaptive Asymmetric Signaling

After realizing the infeasibile practical implementation of the celebrated IGS, some re-

searchers started exploring the asymmetric signaling as a way to adopt improper signaling

in the discrete finite space. Wireless communications community focused on Geometric

shaping whereas optical fiber and free-space optics adopted probabilistic shaping to realize

asymmetric signaling.

Structural/Geometric Shaping

A family of improper discrete constellations generated by widely linear processing of a

square M -ary QAM depict parallelogram envelop [96]. Similarly, GS based on optimal

translation and rotation also yields parallelogram envelop [98]. However, conditioned on

high SNR and higher order QAM, the optimal constellation is the intersection of the hexag-

onal lattice/packing with an ellipse where the eccentricity determines the circularity coef-

ficient [97]. GS has emerged as a competent player to reduce shaping loss and improve

reception at lower signal-to-noise ratios in terrestrial broadcast systems [194, 195]. GS pa-

rameters can be designed for diverse objectives such as capacity maximization [96], BER

reduction [98], and symbol error probability minimization [97].
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Stochastic/Probabilistic Shaping

PS-based schemes have been employed to enhance the system performance in optical

fiber communication (OFC) and free space optics (FSO). In OFC, multiple transforma-

tions are presented to approach Gaussian channel capacity using PS including prefix codes

[196, 197], many-to-one mappings combined with a turbo code [198], distribution match-

ing [199] and cut-and-paste method [200]. Furthermore, multidimensional coded modula-

tion format with hybrid probabilistic and geometric constellation shaping can effectively

compensate non-linearity and approach Shannon limits in OFC [201]. Coded modulation

scheme with PS aims to solve the shaping gap and coarse mode granularity problems [202].

Interested reader can read the classic work [132] for the design guidelines of AS in the

coherent Gaussian channel with equal signal energies and unequal a priori probabilities.

Probabilistic amplitude shaping is another concept that can only be used for symmetric

constellation with coherent modulation, which greatly limits its application [203]. For

FSO, a practical and capacity achieving PS scheme with adaptive coding modulation is

proposed with intensity modulation/direct detection [204].

The concept of PS is widely employed in the OFC and FSO systems. However, it

is quite not well investigated in wireless communication systems and only a few studies

have contributed in this domain [205,206]. For example, enumerative amplitude shaping is

proposed as a constellation shaping scheme for IEEE 802.11 which renders Gaussian distri-

bution on the constituent constellation [205]. Moreover, PS has been proposed to maximize

the mutual information between transmit and receive signals for non-linear distortion ef-

fects in AWGN channels [206]. To the best of authors’ knowledge, PS has not been used

to enhance the error performance or to realize the IGS for wireless communication systems

with HWD.
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1.5.5 Deductions

Numerous contributions have come forward in these broader streams to address the afore-

mentioned limitations. However, they lack in one or multiple aspects which seeks further

investigation. For instance, various studies incorporate one or the other form of HWIs

but very few focus on the accumulative impact of these HWIs. The rare contributions

which deal with the accumulative effects have failed to recognize the improper signatures

caused by the WLT of IQI. Interestingly, the improper characterization demands metic-

ulous characterization and generalized analysis which is certainly lacking in most of the

literature. Similarly, the impact of IGS has been abundantly studied in interference man-

agement but none of the work recognized its effectiveness in mitigating the HWIs. Al-

though IGS has emerged as a promising candidate in improving system performance in

various interference-limited scenarios, it is practically unfeasible. A handful of researches

signified this aspect and proposed GS as the practical implementation of IGS. Nonetheless,

we are the pioneers in suggesting PS as another way to induce impropriety which is far

superior to GS. We also presented HS accumulating the perks of both GS and PS to ap-

proach the theoretical limits offered by IGS. The details of our objectives and contributions

to address the aforementioned deficiencies are furnished in the next section.

1.6 Objectives and Contributions

The main objective of this dissertation is to encompass the journey from the theoretical lim-

its of IGS to practical implementation of asymmetric signaling with a special emphasis on

HWI systems. This necessitates accurate modeling and characterization of the aggregate

hardware impairments along with the efficient signaling design and compensation algo-

rithms to mitigate the aggregate degrading effect of improper impairments and interference.

Unlike traditional proper Gaussian signaling scheme, we adopt improper Gaussian trans-

mission signaling scheme to efficiently combat all forms of impairments and interference.
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Next, we take a step further towards practical feasibility and adopt geometric, probabilistic,

and hybrid shaping. The main contributions of thesis are enumerated below:

• We consider the combined effect of various HWIs including both transmitter and re-

ceiver I/Q mismatch as well as accumulative additive distortions at the transmitter

as well as the receiver [20].The aggregate model is advantageous for estimating and

modeling the combined impact for joint mitigation. Amplitude and rotational errors

from all impairment sources are modeled as multiplicative error whereas the distor-

tion noises are incorporated as additive errors, which result in a noise cloud around

the detected symbols.

• This research investigates full characterization of the self-interfering (SI) information

signals and improper Gaussian noise components inspired by the statistical signal

processing studies. Rigorous and accurate statistical model of aggregate hardware

imperfections captured their asymmetric characteristics pertaining to the widely lin-

ear transformation of the transmitted and received signal under I/Q imbalance in the

up- and down- conversion stage [31]. We extensively studied, meticulously mod-

eled, and precisely quantify the improper characteristics of the aggregate HWIs from

various impairment sources.

• We advocate adopting IGS signaling scheme as opposed to the traditional PGS scheme

for interference-limited scenarios. Our objective is to quantify the gain obtained by

IGS over PGS and to evaluate if the gain is significant enough to adopt IGS opti-

mization framework as the optimal IGS solution can sometimes reduce to PGS. IGS

benefits are analyzed in improving the achievable rate performance while efficiently

mitigating the improper HWDs.

• We explore the utilization of improper signaling scheme instead of the proper sig-

naling scheme to combat both the RSI and HWD in MH-DF-FDR systems. This

work studies the effect of HWDs and RSI on the achievable rate performance of the
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MH-FDR system in the absence of direct link. Then, employs IGS to compensate the

degradation on the achievable rate performance due to both intrusions. We developed

a rigorous joint optimization framework to design the signal characteristics by tun-

ing the signal symmetry degree in terms of the pseudo-variance in order to maximize

the end-to-end achievable rate of the MH-FDR system. We further proposed a dis-

tributed optimization framework that suits practical implementation of the proposed

transmission scheme offering reduced round-trip delays, computational complexity

and communication overhead.

• We analyzed the error probability performance of communication systems suffering

from HWIs induced by IQI and additive distortions at both transceivers. We derive

the optimal maximum likelihood (ML) detector and the suboptimal linear minimum

mean square error (LMMSE) receiver for the improper self-interfering information

signals [207]. We analyzed instantaneous and then average error probability based on

the pairwise error probability followed by the bounds and approximations for various

HWI system configurations.

• Motivated by the theoretical limits results, which demonstrate the benefits of em-

ploying improper Gaussian signaling to improve the performance of hardware im-

paired systems, we adopt asymmetric signaling scheme to minimize the error prob-

ability performance. Asymmetric signaling is inevitable for practical realization of

improper information-bearing signals. Therefore, we proposed and designed struc-

tural/geometric shaping of finite discrete constellations such as M -QAM using the

optimal rotation and translation matrices as opposed to the widely linear precoders.

Such transformation enabled us to significantly reduce the average symbol error rate.

• The issues associated with GS, such as high shaping gap and coarse granularity,

motivated us to adopt stochastic/probabilistic shaping to realize the IGS scheme and

combat HWD to assure reliable wireless communication. Our proposed PS is based
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on the optimal maximum a posteriori (MAP) detector and the design is governed by

the power and rate constraints for hardware distorted system. We further suggest

a hybrid shaped asymmetric signaling scheme that reaps benefits of both PS and

GS and present an adaptive algorithm that tunes both signal probability and shaping

parameters. Finally, we verify our proposed techniques i.e., PS, GS, and HS in terms

of BER and throughput performance in both AWGN and Rayleigh fading channels.

• Our survey bridges the interdisciplinary gap between the fields of information theory

and signal processing for the wireless communication applications pertaining to sig-

nal characterization. We emphasized the significance of propriety characterization

and elucidated the main differences between the intermingled terms of impropriety

and circularity. We carried out the taxonomy of literature to feature naturally occur-

ring sources of impropriety and their consequences. We further elaborated the perfor-

mance comparison of the theoretical limits achieved by IGS as compared to the con-

ventional PGS e.g., achievable rate, outage probability, power/energy efficiency and

DoF. We presented various design guidelines covering suitable optimization tools for

the IGS design in addition to the relevant impropriety detection, estimation, filtering

and separation procedures. This survey encompassed the journey from theoretical

IGS to practical asymmetric discrete signaling and corresponding asymmetric sig-

nal recovery methodologies namely equalization, estimation, filtering and detection.

Moreover, error probability (EP) analysis demonstrated the maximum reported per-

centage decrease and the corresponding SNR gains to attain a certain error rate with

asymmetric characterization relative to symmetric characterization in various system

configurations. Comprehensive survey of the applications, in data analysis, signal

processing and communication theory domains, reaping benefits by exploiting or in-

corporating impropriety concepts is also included. In the end, we summarized the

lesson learned throughout this study while pointing out the main challenges and way

forward.
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The proposed study not only encloses the existing contributions but also serves as an intro-

ductory and motivational guideline for the beginners in this domain. It further elaborates

various tools and techniques for appropriate improper/asymmetric signaling to reap the

maximum benefits.

1.7 Organization and Road map

The rest of the thesis is organized as follows. In Chapter 2, we provide the technical frame-

work to understand the preliminary impropriety concepts regarding complex and quater-

nion random vectors. Next we present the hardware impairment aggregate model along

with its statistical characteristics in Chapter 3. A case study of IGS performance in im-

proving the end-to-end achievable rate of a MH-DF-FDR system suffering from HWD and

RSI is tackled in Chapter 4. In the journey from theoretical IGS to practical AS, Chapter 5

analyzes the error probability performance and design the GS for a wireless communication

link suffering from numerous HWIs. In Chapter 6, we design and examine probabilistic

shaping as another way to implement AS and improve reliability and throughput of a HWD

system. Additionally, we employ hybrid of PS and GS to seek the maximum benefits from

the added DoF. Chapter 7 and 8 present the theoretical and practical aspects of improper

signaling for communications, respectively. Chapter 9 highlights the application of im-

propriety characterization in data analysis, signal processing, and communication systems.

Lastly, we summarize and conclude the dissertation followed by the challenges, lessons

learned, and way forward in Chapter 10.

1.8 Notations

In this report, scalars are denoted by lower-case italic letters, while vectors and matrices

are denoted by boldfaced lower- and upper-case letters, respectively. For a complex scalar

x, the conjugate and absolute value of x are represented by x∗ and |x|, respectively. On the

other hand, for a given vector x, the L2-norm, complex-conjugate, transpose and conjugate-
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transpose of x are represented by ‖x‖2,x
∗, xT and xH, respectively. The complex aug-

mented random vector x is defined as x =

[
xT xH

]T

,x ∈ CN. Identity matrix with N

dimension is presented by IN . For a square matrix A, the complex-conjugate, transpose,

conjugate-transpose, and square-root matrix of A are represented by A∗, AT, AH, A−1

and A1/2, respectively. As for the trace and determinant of A, Tr (A) and |A| are used,

respectively. Moreover, A�0 and A � 0 denote that A is a semi-definite positive matrix

and positive definite matrix, respectively. CM×N and RM×N describe a complex-valued

and real-valued matrix with dimensions M × N , respectively. C2N
∗ represents the set of

augmented vectors x. The expected value operator is given by E [.] and the probability of

occurrence of an event Ω is expressed as Pr {Ω}. Imaginary number i has it’s conventional

representation and is defined by i2 = −1.
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Chapter 2

Technical Framework

Many applications in applied sciences employ complex analysis to model the real-world

data in complex domain. The complex analysis brings advantages like comprehensiveness,

computational economy, extra dimension, elegant analysis and much more. For instance,

multi-component alternating current circuits assume complex impedance, in place of real

resistance and reactance, for refined circuit analysis. The resistance and reactance are

treated as the real and imaginary components, respectively, of a complex impedance [208].

Analogously, in digital communications, complex numbers enabled us to deal with quadra-

ture amplitude modulation (QAM) in a tractable mathematical way. Moreover, one square-

QAM signal compactly carries the information of two pulse amplitude modulation (PAM)

signals in its inphase and quadrature phase components [209]. The data from some physical

systems should be analyzed as complex-valued signals because the data represent motion

on the complex plane (e.g., tidal analysis in oceanography and two-component observa-

tions in meteorology [210]). Furthermore, directional processes (radar, sonar, Doppler

ultrasound, vector fields, bearings only estimation), where both the “intensity” (amplitude)

and “direction” (phase) components carry the information, are also most conveniently ana-

lyzed as complex valued processes [129, 211, 212].

But why stop at complex numbers? In fact, there are several applications which re-

quire higher dimensional representation such as quaternions, which is convenient to rep-

resent the rotations of three-dimensional space. Quaternions are used to characterize data

of several systems/applications including aerospace [213], computer graphics [214], signal

array processing [215], Fourier transforms of images [216], design of orthogonal polarized
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STBC [217], wave separation [218], wind forecasting [219], nonlinear estimation [220],

adaptive filtering [221, 222], and vector sensors [223]. One compelling application is

the unified treatment of the relative position and orientation in hand-eye calibration of a

robot [224].

In a nutshell, complex numbers and their extensions are immensely used in countless

real-world applications. Some of these applications treat variables, signals or images as

deterministic quantities. However, many applications require a stochastic modeling of the

underlying phenomena such as electromagnetic waves carrying random codes, polarized

magnetic disturbances, and noise in image processing etc. [225]. Therefore, complex and

quaternion r.v. require appropriate and complete characterization to be fully understood

and applied.

This section explains the basic technical framework to understand the interplay of prop-

er/improper and circular/non-circular RVs at length. It begins with the introduction of var-

ious stochastic data representations and distinguishes intermingled terms of propriety and

circularity. It further elaborates the appropriate transformations, operations, expressions

and testing for the improper characterizations.

2.1 Stochastic Data Modeling

Various data presentation techniques are proposed in order to connect data with its model-

ing domain. In the remaining section, we focus on complex and quaternion forms pertain-

ing to their vast applications [36, 129, 211–215].

2.1.1 Complex Random Vectors

Complex analysis of data can be carried out based on three data representations known as

complex, real composite and complex augmented representation of the complex random

vector (RV)s [31, 36]. Based on these representations, we will introduce the first-order and

second-order statistics (SOS) characteristics of the RVs and their intuitive meanings.
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Complex Representation

Consider an N -dimensional complex RV z = x + iy, where x,y ∈ RN and z ∈ CN . The

first order statistic given by the statistical mean) of z is

µz = E{z} = E{x}+ iE{y} = µx + iµy, (2.1)

where, µx, µy ∈ RN and µz ∈ CN . The conventional SOS characterization of z is perceived

by the covariance matrix, which is defined as

Rzz = E{(z− µz)(z− µz)
H} = Rxx + Ryy + i(RT

xy −Rxy), (2.2)

where Rxx and Ryy are the auto covariance matrices of the real and imaginary compo-

nents, respectively and Rxy is the cross covariance matrix between them. Furthermore,

Rxx,Ryy,Rxy ∈ RNxN and Rzz ∈ CNxN . The covariance matrices in (2.2) are found from

Ruv = E{(u− µu)(v − µv)T}, (2.3)

where u and v ∈ {x,y}. However, the complete SOS depiction involves another matrix,

R̃zz ∈ CNxN , named as pseudo-covariance matrix [57, 94].

R̃zz = E{(z− µz)(z− µz)
T} = Rxx −Ryy + i(RT

xy + Rxy). (2.4)

Complete SOS in the sense that R̃zz accounts for correlation and unequal power distribu-

tion of the quadrature components of a complex RV in addition to covariance matrix which

assumes equal power and uncorrelated real and imaginary components. For non-singular

Rzz, the following three conditions are necessary and sufficient for Rzz and R̃zz to be the

covariance and pseudo-covariance matrices of z [16]

• Rzz is Hermitian and positive semi-definite (PSD).
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• R̃zz is Symmetric

• the Schur complement Rzz − R̃zzR
−∗
zz R̃∗zz is PSD.

SOS are sufficient for the widely known Gaussian RVs as they can completely characterize

their distribution, characteristic function, and higher order moments [16].

Definition 2.1a. A multivariate complex Gaussian RV z can be fully characterized using

complete SOS properties as CN
(
µz,Rzz, R̃zz

)
[20].

Consequently, a scalar Gaussian r.v. z = x+iy can be fully described as CN (µz, σ
2
z , σ̃

2
z)

[57,226], where µz = E{z}, σ2
z = E{|z − µz|2} and σ̃2

z = E{(z − µz)2} represent the sta-

tistical mean, variance, and pseudo-variance of z, respectively.

Definition 2.2a. Two complex RVs z1 and z2 ∈ CN are uncorrelated iff both Rz1z2 and

R̃z1z2 matrices vanish, where cross covariance Rz1z2 = E{(z1 − µz1)(z2 − µz2)H} and

cross pseudo-covariance R̃z1z2 = E{(z1 − µz1)(z2 − µz2)T} [94].

Real Composite Representation

The complex RV z can be alternately represented as the real composite RV u = [xT yT]T ∈

R2N . The first- and second-order statistical characteristics of this representation are de-

scribed by µu ∈ R2N and Ruu ∈ R2Nx2N , respectively [16, 36, 55].

µu = E{u} =

 µx

µy

 , Ruu =

 Rxx Rxy

RT
xy Ryy.

 (2.5)

Definition 2.1b. A complex Gaussian RV z with alternate representation u can be fully

described as N (µu,Ruu) [166].

Definition 2.2b. Two complex RVs z1 and z2 with real representations u1 = [xT
1 yT

1 ]T and

u2 = [xT
2 yT

2 ]T are uncorrelated iff all four cross covariance matrices Rx1x2 , Rx1y2 , Ry1x2

and Ry1y2 vanish [94].
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Augmented Representation

The complex RV z is sometimes represented as an augmented complex vector z = [zT zH]T ∈

C2Nx2N for convenience. The presented representations u and z are interchangeable as

z =
√

2Tu and u = 1√
2
THz. where T is unitary transformation matrix defined as

[16, 36, 55]

T =
1√
2

 IN iIN

IN −iIN

 . (2.6)

Analogous to other representations, the complete first and second order characterization is

given by µz ∈ C2N and the augmented covariance matrix Rzz ∈ C2Nx2N , respectively,

which are expressed as [16]

µz = E{z} =

 µx + iµy

µx − iµy

 , Rzz =

 Rzz R̃zz

R̃∗zz R∗zz

 . (2.7)

The matrix Rzz, which was first used in [134], has the following features [31]

• Block pattern structure ( � �
�∗ �∗ )

• Hermitian and PSD

Owing to the special structure of Rzz, the matrix factorization like eigen-vlaue decompo-

sition (EVD), singular value decomposition, or Cholesky factorization work differently to

the regular matrices in the sense that all decomposed factors must follow the similar block

pattern structure [55]. Rzz can be connected with Ruu as

Rzz = E{zzH} = 2E{TuuHTH} = 2TRuuTH. (2.8)

Definition 2.1c. A complex Gaussian RV z can alternately be fully characterized as CN (µz,Rzz).

Definition 2.2c. Two complex RVs z1 and z2 with complex augmented representations z1

and z2 are uncorrelated iff Rz1z2
= E{(z1 − µz1

)(z2 − µz2
)H} vanishes.
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2.1.2 Quaternion Random Vectors

The algebra of quaternions was invented by Sir W. R. Hamilton in 1844 [227] while mul-

tiplying triplets of real numbers. Fortunately, he failed and defined an elegant way to

multiply quadruplets of numbers by giving up one familiar feature of ordinary multipli-

cation: commutativity. Quaternions are non-commutative extension of complex numbers

to hyper-complex numbers [228]. Analogous to the case of complex numbers, we present

three different representations of the quaternion RV.

Complex Representation

Consider an N -dimensional quaternion RV q ∈ HN , q = r1 + iri + jrj + krk where

r1, ri, rj, rk ∈ RN and the basis elements i,j and k satisfy i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i and ki = −ik = j (Non-commutative multiplication). The

quaternion conjugate is given by q∗ = < (q)−= (q) = r1−iri−jrj−krk and the involution

of q over a pure unit quaternion α ∈ {i, j, k} is defined as q(α) = −αqα [138, 229]. For

instance, the involution q(i) = r1+iri−jrj−krk inverts the sign of ri in q∗. Based on these

descriptions, the complete SOS characterization of a zero-mean q requires the covariance

matrix Rqq = E{qqH} and three pseudo-covariance matrices Rqq(i) ,Rqq(j) and Rqq(k) .

These pseudo-covariance matrices quantify the correlation between q and its involutions

q(α) over three pure unit quaternions [230]

Rqq(α) = E{qq(α)H} = −E{qαqHα}. (2.9)

Definition 2.3a. A zero-mean quaternion Gaussian RV q is completely characterized using

SOS of q and its involutions q(i),q(j) and q(k) as QN
(
Rqq,Rqq(i) ,Rqq(j) ,Rqq(k)

)
.
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Real Composite Representation

The zero-mean quaternion RV q can be alternately represented as the quadrivariate real

composite RV v ∈ R4N , v = [rT
1 rT

i rT
j rT

k ]T. Similar to complex case, the SOS properties

of v are given by the R4Nx4N covariance matrix [230]

Rvv =



Rr1r1 Rr1ri Rr1rj Rr1rk

Rrir1 Rriri Rrirj Rrirk

Rrjr1 Rrjri Rrjrj Rrjrk

Rrkr1 Rrkri Rrkrj Rrkrk


, (2.10)

where, Rrγrζ = E{rγrT
ζ } and Rrγrζ = RT

rζrγ
with γ, ζ ∈ {1, i, j, k}.

Definition 2.3b. A zero-mean quaternion Gaussian RV q with quadrivariate real composite

representation v is completely characterized using the symmetric correlation matrix Rvv.

Augmented Representation

Let q denotes the augmented representation of q and its involutions as

q =



q

q(i)

q(j)

q(k)


=



r1 + iri + jrj + krk

r1 + iri − jrj − krk

r1 − iri + jrj − krk

r1 − iri − jrj + krk


. (2.11)
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Analogous to complex case, the alternate representations of q are interchangeable using

q = 2ANv and v = 1
2
AH
Nq, where AN is a unitary transformation matrix defined as [231]

AN =
1

2



IN iIN jIN kIN

IN iIN −jIN −kIN

IN −iIN jIN −kIN

IN −iIN −jIN kIN


. (2.12)

The SOS characterization of q is given by the following augmented covariance matrix [232]

Rqq =



Rqq Rqq(i) Rqq(j) Rqq(k)

R
(i)

qq(i) R
(i)
qq R

(i)

qq(k) R
(i)

qq(j)

R
(j)

qq(j) R
(j)

qq(k) R
(j)
qq R

(j)

qq(i)

R
(k)

qq(k) R
(k)

qq(j) R
(k)

qq(i) R
(k)
qq


, (2.13)

where R
(β)

qq(α) = −βRqq(α)β with β ∈ {i, j, k}. The correlation matrix R
(α)

qq(α) = R
(α)H

qq(α) is

i-Hermitian, j-Hermitian and k-Hermitian for α = i, j and k, respectively. Thus, proving

a non-trivial extension of augmented complex statistics to its quaternion counterpart [231].

Rqq is linked with Rvv as

Rqq=E{qqH}=4E{ANvvHAH
N}=4ANRvvAH

N . (2.14)

Definition 2.3c. A zero-mean quaternion Gaussian RV q with augmented representation q

is completely characterized using the augmented correlation matrix Rqq.

The uncorrelation between two quaternions q1 and q2 with augmented representations

q
1

and q
2
, respectively, require the regular cross covariance Rq1q2 = E{q1q

H
2 } and three

involutional cross covariance matrices R
(α)
q1q2 = −αRq1q2α along with all possible combi-

nations of cross pseudo-covariance matrices E{q(γ)
1 q2

(ζ)H} contained in Rq
1
q

2
= E{q

1
qH

2
}

to be zero.
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2.1.3 Summary and Insights

In a nutshell, this subsection covers three well-known data presentation techniques i.e.,

complex, real composite, and complex augmented representation for both complex and

quaternion RVs. However, why do we need multiple equivalent representations of the same

phenomenon? To address this concern, consider the tedious analysis of real composite

representation which can be significantly simplified using complex representation [16].

Besides this intuitive reasoning, there are other limitations that will be discussed in next

subsection. Another curiosity, that arises, is why do we need redundant complex augmented

representation of the RVs. The response to this query is three-folds. 1) The uncorrelation

of real x1 and x2 is completely defined as Rx1x2 = 0. However, the uncorrelation of the

complex z1 and z2 is not completely defined as Rz1z2 = 0. Thus, we require augmented

z1 and z2 to completely characterize the uncorrelation as Rz1z2
= 0 [31]. 2) Pertaining

to the block structure of the Rzz, interestingly it can be invertible even when Rzz and R̃zz

are not [55]. 3) It is a powerful tool for WL transformations (refer to Section 2.3) [36].

On the other hand, vector representations i.e., real composite and augmented formulation

allow easier geometrical interpretations in high-dimensional space relative to the complex

representation [225]. In conclusion, we prefer complex representation for comprehensive

analysis, real composite representation for easy geometrical interpretations and augmented

formulation for complete modeling, characterization, and operations (e.g., inversion and

transformation) [231].

2.2 Propriety versus Circularity

Properness evaluation i.e., the identification of correlation between the complex valued

RVs and their complex conjugates is a popular subject in signal processing [17, 55, 57]

and information theory [94]. It has also been extended to quaternion valued r.v. [225] and

vectors [138,231] for various applications. This subsection illustrates extensive definitions
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of impropriety and the measures for degree of impropriety (DoI) for complex as well as

quaternion RVs based on different representations.

2.2.1 Complex Random Vectors

The full statistical characterization of complex RVs involves the analysis of the moments

and probability distributions (if exist). A complex RV is designated as proper/improper and

circular/non-circular based on these characteristics.

Propriety

Based on the real and complex representation of complex RVs, a proper complex RV is

described using the following definition

Definition 2.4 (Proper RV). A proper complex RV is composed of real and imaginary vec-

tors with identical auto covariance matrices Rxx = Ryy and skew-symmetric cross co-

variance matrix Rxy = −Rxy
T. Alternately, a proper complex RV z renders zero pseudo-

covariance matrix R̃zz [94]. Properness may also be seen as the uncorrelation of z with

its complex conjugate z∗ [95, 233]. These equivalent propriety definitions are sometimes

referred as Strict Propriety [55].

This implies that a proper RV z has Rxy with zero main diagonal elements rendering

uncorrelated real and imaginary components of each element zn in z. However, the off-

diagonal elements can be non-zero yielding correlated <{zk} and ={zl} for k 6= l [94].

For a zero-mean scalar complex r.v. z = x + iy, σxy = E{xy} = 0 is necessary for

propriety.

With slight abuse of terminology, we term z proper if z is proper where proper z implies

vanishing pseudo-variance R̃zz. However, proper z does not imply vanishing R̃zz rather

it implies a block diagonal structure of Rzz = Block-Diag (Rzz,R
∗
zz). This demonstrates

the equivalence of the propriety statements for z and z yet different implications. It is evi-

dent that for proper z, all eigenvalues of Rzz are real (same as that of Hermitian Rzz) and
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have even multiplicity (paired because of diagonal blocks Rzz and R∗zz). Thus, strict pro-

priety implies even multiplicity of the eigenvalues, however, it is not a sufficient condition.

Therefore, Schreier et al. established the following generalization based on the augmented

representation.

Definition 2.5 (Generalized Propriety). A complex RV is termed as generalized proper if

all eigenvalues of Rzz have even multiplicity [55].

The EVD of Rzz takes on the form Rzz = V
(
TΛTH

)
VH with diagonal TΛTH iff

z is generalized proper, otherwise block matrix TΛTH with diagonal blocks [55]. More-

over, the complex RVs z1 and z2 are cross proper iff the cross pseudo-covariance matrix

R̃z1z2 vanishes. Notably, they are jointly proper if the composite RV having z1 and z2 as

subvectors is proper [94] or if they are proper and cross proper [138].

Definition 2.6 (Improper RV). A complex RV z=x+iy is called improper if any of the

following statements holds [234]

• Non identically distributed x and y i.e., Rxx 6= Ryy

• Correlated x and y i.e., Rxy 6= −Rxy
T

• Non-zero R̃zz

• Correlated z and z∗

• Lack of block diagonal structure in Rzz

• Lack of even multiplicity of eigenvalues in Rzz

Absence of properness of a RV is termed as improperness and the extent of improper-

ness is argued by the eigenvalue spread of Rzz [234]. For instance, a RV z1 is less improper

than another RV z2 if the eigenvalues of Rz1z1
are majorized by (less spread out) those of

Rz2z2
[63].
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Figure 2.1: Extents of Circularity and their Implications

Definition 2.7 (Maximally Improper RV). For a given Rzz, the vector whose Rzz has least

eigenvalue spread must be proper R̃zz = 0 whereas the vector whose Rzz has maximum

possible eigenvalue spread must be maximally improper [31].

Circularity

A stronger version of propriety considering the probability distribution of a RV is named

Circularity and is defined as

Definition 2.8 (Circular RV). A complex RV z is said to be circular (having CSC distri-

bution about the origin), iff its distribution remains invariant under multiplication by any

(complex) number on the unit complex circle i.e., z and ẑ = zejα have the same distribution

for any real α [36, 95].

For a scalar z, is equivalent to spherical symmetry of the corresponding real composite

vector u = [x y]T [235]. On the other hand, the magnitude of circularity of a complex RV

z is further classified based on the behavior of the underlying random variables [17, 47]:

• Marginal Circular: If its components are complex circular r.v.

• Weakly Circular: If z and ejαz have the same probability distribution for any real α



57

• Strongly Circular: If z and eja�z have the same probability distribution for any real

vector a

• Total Circular: If its components are independent and circular. The circularity char-

acteristics are related to each other as shown in Figure 2.1.

Relation between Propriety and Circularity

Often the terms proper and circular are used interchangeably. However, as a matter of fact,

they are quite related yet distinct phenomenon.

Corollary 1. Propriety and circularity are related as:

Circularity =⇒6⇐= Propriety, Impropriety =⇒6⇐= Non-circularity

• For a zero-mean circular RV z, the respective pseudo-covariance matrices R̃zz and

R̃ẑẑ are related as:

R̃ẑẑ = E
[
ẑẑT
]

= ej2αR̃zz ∀α. (2.15)

Thus, (2.15) implies R̃zz should be a zero-matrix for any given α to satisfy circularly

symmetry. Thus, circularity implies properness whereas the converse is not true

in general.

• Propriety requires the second-order moments to be rotationally invariant. However,

circularity requires that the probability density function (PDF) and thus all existing

moments to be rotationally invariant. Thus, circularity implies zero mean and pro-

priety, but not vice versa [36].

• In the light of the aforementioned arguments, an improper RV with rotationally

variant second moment is essentially non-circular (NC). However, a NC RV with

non-zero mean but zero pseudo-covariance is still proper, proving the fact that non-

circularity does not imply improperness in general.
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(a) Proper and Circular Gaussian RV (Centered)
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(b) Proper and NC Gaussian RV (Non-Centered)
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(c) Improper Gaussian RV (Unequal Power)
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(d) Improper Gaussian RV (Correlated)

Figure 2.2: The Interplay between Propriety and Circularity

Example. Propriety and circularity are equivalent for a zero-mean Gaussian r.v. having

uncorrelated real and imaginary components with equal power distribution as depicted in

Figure 2.2a, whereas the same distribution with non-zero mean is proper but not circular

in Figure 2.2b. Furthermore, the deviation from equal power distribution and uncorrelation

result in improper as well as NC complex r.v. as shown in Figure 2.2c and Figure 2.2d,

respectively. The quadrature component has more power/variance than the in-phase com-

ponent in Figure 2.2c and non-perpendicular distribution contours to x- or y-axis depict the

correlation between I/Q components in Figure 2.2d.

For other zero-mean RVs propriety and circularity are related as shown in Figure 2.3.

The rotational invariance of all existing moments of circular RV certainly implies the ro-

tational invariance of second-order moments and thus it is equivalent to designating it as

a proper RV. Second-order circular or strictly proper RV demonstrates even multiplicity of

eigenvalues owing to the block-diagonal structure of Rzz = Block-Diag (Rzz,R
∗
zz) ren-

dering generalized proper RV. Consequently. a circular RV is always proper/generalized

proper. On the other hand, lack of any propriety condition as elaborated in Definition 2.6
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Figure 2.3: Extents of Propriety and their Implications

leads to improper RV. An improper RV with maximum eigenvalue spread of Rzz is termed

as maximal improper RV. Moreover, improperness always implies non-circularly as it nul-

lifies the condition of rotational invariant second-moment.

Degree of Improperness

Impropriety implies non-circularity, thus the rotational variance of the distribution of a

complex entity is characterized by the DoI. For a complex scalar r.v. z, with finite variance

σ2
z and pseudo-variance σ̃2

z , the measure of correlation between z and z∗ is given by,

Definition 2.9. Circularity quotient ρz is defined as the fraction between the pseudo-

variance and the variance

ρz =
σ̃2
z

σ2
z

= keiφ, (2.16)

where, DoI is measured by the circularity coefficient k = |σ̃2
z |/σ2

z and the circularity angle

is given by φ [57].

The term circularity coefficient for k is originated from [135] while the terms non-

circularity rate and non-circularity phase are also used for k and φ, respectively [236].

In reality, the circularity coefficient is the canonical correlation between z and z∗ [237].
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The geometric interpretation for the circularity quotient is given as ρz ∈ Ω, where Ω =

{z ∈ C : |z| ≤ 1} is the unit circle [57]. Thus, the circularity coefficient lies in the range

k ∈ [0, 1] providing an interesting result 0 ≤ |σ̃2
z | ≤ σ̃2

z . The circularity coefficient mea-

sures the degree of circularity, as in k = 0 means z is second-order circular whereas k = 1

means z is maximally NC (i.e., x or y is constant, equal to zero, or x is a linear function of

y) [238]. This quantifies DoI for a r.v., next we present DoI of a RV as:

Definition 2.10. For a complex RV z, the coherence matrix C = R
−1/2
zz R̃zzR

−T/2
zz with

Takagi factorization C = FKFT contains the canonical correlations or circularity coeffi-

cients ki in K = Diag(k1, k2, . . . , kN) and F is a complex unitary matrix. It is important

to highlight that ki is the circularity coefficient of the ith variable in z. The DoI can be

defined as a function of canonical correlations in following ways [234]

ρ1 = 1−
r∏
i=1

(
1− k2

i

) (r=N)
= 1− |Rzz| |Rzz|−2 , (2.17)

ρ2 =
r∏
i=1

k2
i

(r=N)
=

∣∣∣R̃zzR
−∗
zz R̃∗zz

∣∣∣ |Rzz|−1 , (2.18)

ρ3 =
1

N

r∑
i=1

k2
i

(r=N)
=

1

N
Tr
(
R−1

zz R̃zzR
−∗
zz R̃∗zz

)
, (2.19)

where r = rank(Rzz). The set of canonical correlations {ki}Ni=1 is also referred to as

circularity spectrum [135]. DoI must satisfy 0 ≤ ρi ≤ 1, ranging from proper signal (ρi =

0) to maximally improper signal (ρi = 1) [57]. The intuitive meaning of the aforementioned

measures of improperness is summarized as:

• ρ1 is 1 if at least one ki = 1 i.e., any one maximal improper variable in RV z will

result in maximum DoI. Additionally, it is 0 if all ki are 0. Thus, it helps in identify-

ing if any one element of the RV is maximally improper or if all entries in a RV are

proper. However, it fails to discriminate if all or any subset of the entries are maxi-

mally improper. Similarly, it is insufficient to identify any subset of proper entries.

Nevertheless, ρ1 gives the entropy loss due to improperness of a RV [36] (refer to
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Section 2.4) and it is also used for impropriety likelihood-ratio testing [237] (refer to

Section 2.5) as it measures the linear dependence between z and z∗.

• ρ2 is 0 if at least one ki = 0 i.e., any one proper variable in RV z will result in

minimum DoI. Moreover, ρ2 is 1 if all ki are 1. Thus, it helps in identifying if any

one element of the RV is proper or if all entries in a RV are improper. However, it

fails to apprehend if all or any subset of the entries are proper. Likewise, it cannot

assess any subset of maximally improper entries.

• ρ3 attains maximum value when all entries in z are maximally improper and attains

minimum value when all entries in z are proper. Nonetheless, it cannot identify

subset of proper or maximally improper entries in a RV.

In short, ρ1 and ρ2 complement each other and provide the missing information, whereas ρ3

is the preferred choice for joint assessment. Intuitively, K = I portrays all elements of the

RV z to be maximal improper. Nevertheless, it is a necessary but not sufficient condition

for maximal improperness of a RV On the other hand, maximum eigenvalue spread is the

sufficient condition for such maximal impropriety.

Discussion

The concepts of propriety and circularity and the absence of these phenomena i.e., impro-

priety and non-circularity along with the extent of improperness (namely DoI) are discussed

at length. Numerous degrees of propriety and circularity from strictly proper to general-

ized proper and from marginally circular to total circular, respectively, are also distinctly

stated. Eventually, the interplay between propriety and circularity can be concluded as:

circularity is a subset of propriety with more restrictions, whereas impropriety is a subset

of non-circularity.
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2.2.2 Quaternion Random Vectors

Impropriety characterization is not limited to the complex domain. For instance, Vakha-

nia studied the concept of properness in quaternion domain [239]; however, his definition

of Q-properness is restricted to the invariance of the PDF under some specific rotations

around angle of π/2. Amblard et al. further relaxed the conditions of Q-properness to

Cα-properness with an arbitrary axis and angle of rotation ϕ, q , eαϕq for any pure unit

quaternion α [225]. The evolved and refined definitions of quaternions propriety rely on

the vanishing properties of the pseudo-covariance matrices as:

Definition 2.11 (Rα-properness). A quaternion RV q isRα-proper iff the pseudo-covariance

matrix Rqq(α) vanishes [138].

Definition 2.12a (Cα-properness). A quaternion RV q is Cα-proper if it is correlated with

q(α) and uncorrelated with the rest i.e., q(ᾱ) [231].

Example A quaternion RV q is Cj-proper iff the pseudo-covariance matrices Rq,q(i) and

Rq,q(k) vanish [138]. Equivalently, Cj-proper quaternion exhibits the following Rvv struc-

ture [230]

Rvv =



Rr1r1 Rr1ri −Rrjr1 −Rrjri

Rrir1 Rriri −Rrkr1 −Rrkri

Rrjr1 Rrjri Rr1r1 Rr1ri

Rrkr1 Rrkri Rrir1 Rriri


, (2.20)

Proof. Evidently, (2.20) is obtained from (2.10) by exploiting the definitions of vanishing

Rq,q(i) and Rq,q(k) , which are expressed as

Rq,q(i)=−E{(r1+iri+jrj+krk)
(
rT

1 −irT
i +jrT

j +krT
k

)
}.

Rq,q(k)=−E{(r1+iri+jrj+krk)
(
rT

1 +irT
i +jrT

j −krT
k

)
}. (2.21)

Equating these pseudo-variances to zero render the set of four real-valued equations as



63

Table 2.1: Consequences of Vanishing Pseudo-Variances

Rq,q(i) = 0 Rq,q(j) = 0 Rq,q(k) = 0

Rr1r1 +Rriri =Rrjrj+Rrkrk Rr1r1 +Rrjrj =Rriri+Rrkrk Rr1r1 +Rrkrk =Rriri+Rrjrj

Rrir1−Rr1ri =Rrkrj−Rrjrk Rr1ri+Rrir1 =−Rrkrj−Rrjrk Rrir1 +Rr1ri =Rrkrj+Rrjrk

Rr1rj+Rrjr1 =Rrirk+Rrkri Rrjr1−Rr1rj =Rrirk−Rrkri Rr1rj+Rrjr1 =−Rrirk−Rrkri

Rr1rk+Rrkr1 =−Rrirj−Rrjri Rr1rk+Rrkr1 =Rrirj+Rrjri Rr1rk−Rrkr1 =Rrirj−Rrjri

shown in Table 2.1. In case of Cj-proper quaternion, the four set of equations each from

Rq,q(i) and Rq,q(k) are simultaneously solved. The solution implies Rrjrj = Rr1r1 , Rrkrk =

Rriri , Rrkrj = Rrir1 , Rrjrk = Rr1ri , Rr1rj = −Rrjr1 , Rrirk = −Rrkri , Rr1rk = −Rrjri ,

and Rrirj = −Rrkr1 . Consequently, substituting these relations in (2.10) yields Rvv in

(2.20).

Definition 2.12b. Alternately, a Cα-proper quaternion is defined to exhibit a distribution

that is invariant by left Clifford translation, i.e., q , eαϕq ∀ϕ, for one and only one

imaginary unit α [225].

Definition 2.13 (Q-properness). A quaternion RV q isQ-proper iff all three pseudo-covariance

matrices Rqq(i) , Rqq(j) and Rqq(k) vanish [138]. It also implies that q is uncorrelated with

its three vector involutions. Moreover, the corresponding Rqq is real-valued, positive defi-

nite, and symmetric [231].

Q-properness is also referred as H-properness and is equivalently reported as the dis-

tribution invariance of axis α and ϕ, i.e., q , eαϕq ∀ϕ, for any imaginary unit α [225].

Analogous to the Cj-proper case, the equivalent Rvv for Q-proper quaternion is obtained

by simultaneously solving the 12 set of equations (as given in Table 2.1) obtained by setting
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Rqq(i) , Rqq(j) and Rqq(k) to zero [230].

Rvv =



Rr1r1 −Rrir1 −Rrjr1 −Rrkr1

Rrir1 Rr1r1 −Rrjri Rrirk

Rrjr1 Rrjri Rr1r1 −Rrkrj

Rrkr1 −Rrirk Rrkrj Rr1r1


. (2.22)

Intuitively, aQ-proper quaternion is Cα-proper for all pure unit quaternions α = i, j, and k.

Additionally, Rα and Cα-properness are complementary and together they result in Q-

properness. As a special case, the propriety of scalar quaternion q = r1 + iri+ jrj +krk, is

equivalent to sphericity of v, i.e., it is called proper iff r1, ri, rj and rk are independent and

identically distributed (i.i.d) [230]. Analogous to the complex case, two quaternion RVs q1

and q2 are cross proper vectors as

• CrossRα-proper iff R
q1q

(α)
2

= 0 with α ∈ {i, j, k}.

• Cross Cα-proper iff R
q1q

(α′)
2

= 0 and R
q1q

(α′′)
2

= 0 with arbitrary one-to-one map-

ping between {α, α′, α′′} and {i, j, k}.

• Cross Q-proper iff all R
q1q

(i)
2

=R
q1q

(j)
2

=R
q1q

(k)
2

=0.

Similarly, two quaternion RVs q1 and q2 are jointly-proper iff they are Rα-, Cα- or Q-

proper and respectively cross proper [138].

Degree of Improperness

The degree of Π-properness of a quaternion RV q with Π ∈ (Rα, Cα,Q) and augmented

covariance matrix Rqq is evaluated as

PΠ = min
R̂qq∈RΠ

D
(
Rqq ‖ R̂qq

)
, (2.23)
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where RΠ represents the set of proper augmented covariance matrices with Π-properness e.g.,

RQ = {R̂qq|R̂qq(i) = R̂qq(j) = R̂qq(k) = 0}, (2.24)

RCα = {R̂qq|R̂qq(α′) = R̂qq(α′′) = 0}, (2.25)

RRα = {R̂qq|R̂qq(α) = 0}. (2.26)

Moreover, D
(
Rqq ‖ R̂qq

)
is the Kullback-Leibler divergence [240] between two zero-

mean quaternion Gaussian distributions with Rqq and R̂qq [138, Table III]. Interestingly,

the Pythagorean theorem for exponential families of PDF’s render PQ = PRα + PCα with

PQ,PRα , and PCα as defined in Table 2.4 [138].

Discussion

Quaternion propriety definitions are restricted to the SOS which completes the analysis for

Gaussian quaternions, e.g., the impropriety measure PΠ is also the non-circularity measure

for a zero-mean Gaussian quaternion RV based on its complete characterization using SOS.

Nevertheless, further investigation of the nth-order properness is required to handle other

distributions. As an example, the higher-order discrete rotational invariance analysis is

required to tackle 4D constellations in communication systems [241].

2.2.3 Summary and Insights

The extent of complex and quaternion RV properness is classified in two (strict and general-

ized proper) and three (Rα, Cα,Q-proper) categories, respectively. However, the strongest

versions of properness in complex and quaternion RVs have different implications i.e., a

strictly proper complex RV z may contain correlated <{zk} and ={zl} for k 6= l [94]

whereas a strictly proper quaternion (Q-Proper) RV q cannot contain correlated <{qk} and

={ql} with E{<{qk}={ql}} = 0 ∀ (k 6= l). Furthermore, the correlation between two RVs

can be assessed using cross and joint properness in both complex and quaternion RVs. Ad-
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ditionally, the respective DoI not only provides the entropy loss due to the improperness

but also helps in impropriety testing to identify the underlying type of properness for ap-

propriate transformation and processing [232]. Moreover, the complex domain DoI is also

useful in blind source separation [31] and the quaternion domain DoI can provide the error

exponent of Neyman-Pearson detector for binary hypothesis testing. Nonetheless, these

perks are only obtained with the usage of complex or augmented representations. The real

composite representation can only identify the improperness of a complex RV based on the

structure of the real covariance matrix, yet it fails to provide a measure for the DoI.

2.3 Transformations and Operations

Impropriety classification helps to identify the simplified form of processing and transfor-

mation in terms of computational complexity [219]. This subsection highlights suitable

processing models for complex as well as quaternion RVs based on their propriety charac-

terization.

2.3.1 Complex Random Vectors

Various transformations and operations of the complex RVs depend on their propriety char-

acterization. The appropriate processing enables us to exploit the additional design freedom

offered by the RVs’ improperness and extract the information embedded in them.

Transformations

Three forms of transformations, i.e., real linear transformation (RLT) or widely linear trans-

formation (WLT), complex linear transformation (CLT) and widely unitary transformation

(WUT) are reviewed as:
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• RLT L ∈ R2Mx2N on the real composite vector u ∈ R2N yields another real compos-

ite vector uRLT ∈ R2M as

uRLT =

xRLT

yRLT

 = Lu =

L11 L12

L21 L22


x

y

 . (2.27)

Equally, the augmented complex model of the transformation uRLT = Lu is given as

w =

 w

w∗

 =
√

2TuRLT =
√

2TLu = {TLTH}{
√

2Tu} = Nz, (2.28)

where,

N =

 N1 N2

N∗2 N∗1

 . (2.29)

is the augmented description of the WLT or linear-conjugate-linear transformation

preserving the block pattern structure. Thus, w = zWLT = N1z + N2z
∗ with

N1 =
1

2
[L11 + L22 + i (L21 − L12)] , (2.30)

N2 =
1

2
[L11 − L22 + i (L21 + L12)] . (2.31)

• A CLT or strictly linear (SL) transformation (SLT) is a special case of the WLT when

zCLT = N1z with N2 = 0 and the corresponding RLT is given as

zCLT =

 xCLT

yCLT

 =

 L11 L12

−L12 L11


 x

y

 . (2.32)

To summarize, RLT on R2N are linear on CN if they have the matrix structure as

in (2.32), otherwise they are WLT. Surprisingly, WLT in C-domain provides more

insight than the RLT in R-domain but offers computationally expensive hardware
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implementation [31].

• Interestingly, the EVD of Rzz is different from EVD of ordinary matrices and takes

the unfamiliar form Rzz = UΛUH with WUT U, satisfying UHU = UUH = I and

the following structure [55, 234]

U =

 U1 U2

U∗2 U∗1

 . (2.33)

Moreover, the eigen-valued matrix Λ is given as

Λ = TΛTH =
1

2

 Λ(1) + Λ(2) Λ(1) − Λ(2)

Λ(1) − Λ(2) Λ(1) + Λ(2)

 , (2.34)

where, Λ(1) = Diag (λ1, λ3, . . . , λ2n−1) and Λ(2) = Diag (λ2, λ2, . . . , λ2n) with λ1 ≥

λ2 ≥ . . . ≥ λ2n being the ordered eigenvalues of Rzz. This simplifies to a diagonal

matrix Λ = Diag
[
Λ(1),Λ(2)

]
for the special case of proper RVs.

Definition 2.14. Any RV obtained from a complex proper RV z by a linear or affine trans-

formation, i.e., ẑ = Âz + b̂, where Â ∈ CMxN and b̂ ∈ CM are constant, is also proper.

Thus, properness is preserved under affine transformations [94]. On contrary, the gener-

alized propriety is also preserved by unitary WLT and arbitrary SLT [55]

Operations

Inner products and quadratic forms of complex RVs are distinctly defined for different data

representations.

• The inner product of two N -dimensional complex RVs z1, z2 ∈ CN with real com-

posite representation u1,u2 ∈ R2N and augmented representation z1, z2 ∈ C2N
∗ is

defined as

uT
1 u2 =

1

2
zH

1 TTHz2 =
1

2
zH

1 z2 = <{zH
1 z2}. (2.35)
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• Moreover, the real-valued quadratic operation can be described using different rep-

resentations as [16, 36].

uTLu =
1

2
zHNz = <{zHN1z + zHN2z

∗}. (2.36)

Discussion

Remarkably, the maximal invariants of Rzz depend on the underlying transformations.

Meaning thereby, any function of Rzz that is invariant under particular transformation must

be a function of these maximal invariants only. For example, the eigenvalues of Rzz consti-

tute a maximal invariant for Rzz under WUT whereas the circularity coefficients constitute

a maximal invariant for Rzz under non-singular SLT [31].

2.3.2 Quaternion Random Vectors

The type of quaternion properness defines several types of linear processing [232]

• Full-widely linear processing is the general optimal linear processing with the simul-

taneous operation on the quaternion and its involutions as

qf = FH
1 q + FH

i q(i) + FH
j q(j) + FH

k q(k), (2.37)

where, qf ∈ HPx1 and FH
1 ,F

H
i ,F

H
j ,F

H
k ∈ HPxN . Full-WLT for augmented represen-

tation takes the form q
f

= FH
qq with Fq =

[
FT

1 FT
i FT

j FT
k

]T, whereas for the real

composite representation it becomes vf = FT
vv with Fv = AH

NFqAP .

• Semi-widely linear processing is for the Cα-proper vectors and takes the form qs =

FH
1 q + FH

αq(α).

• The conventional linear processing of the Q-proper vector take the simplified form

qc = FH
1 q.
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Notably, Rα-proper quaternion RVs do not result in a simplified linear processing model

[232]. A Q-proper RV is invariant under affine transformation [231] whereas the Cα-

properness is invariant under semi-WLT [138].

2.3.3 Summary and Insights

In conclusion, all the transformations and operations can be equivalently carried out in all

three data formulations. Of all transformations, the properness is only preserved under

affine or SLT i.e., the resultant vector after transformation will carry the same propriety

value as that of the original vector. Propriety characterization is especially significant to

apply the most simplified form of processing while carrying out transformations and oper-

ations. Furthermore, exploiting the WL model of the RV provides vast benefits, e.g., it can

provide four times faster convergence of the quaternion least-mean square adaptive filtering

relative to its quadrivariate counterpart [219, 221].

2.4 Entropy and Probability Density Functions

Information entropy quantifies the average ambiguity i.e., the amount of information or un-

certainty in an event. Thus, impropriety incorporation is crucial to evaluate the information

theoretic entropy losses as well as the probability distributions of the generalized Gaussian

RVs. This section presents the generalized framework of these analysis for both complex

and quaternion RVs.

2.4.1 Complex Random Vectors

This part contains the definitions of differential entropy and probability distributions for a

general complex Gaussian RV.
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Differential entropy

The entropy is broadly categorized as discrete and differential entropy to measure the

amount of surprise in discrete and continuous RV, respectively. Focusing on the differ-

ential entropy of a complex RV z with composite real representation u = [xT yT]T when

x and y are both Gaussian distributed, gives [55]

H(u) =
1

2
log
[
(2πe)2N |Ruu|

]
. (2.38)

Equivalently, the differential entropy of z in terms of the augmented covariance matrix Rzz

is [36]

H(z) =
1

2
log
[
(πe)2N |Rzz|

]
. (2.39)

Definition 2.15. The differential entropy of a complex RV z with a fixed correlation matrix

is maximum, iff the RV is zero-mean Gaussian and proper [94], where it is given by

HP (z) = log
[
(πe)N |Rzz|

]
. (2.40)

Remark For a scalar, the differential entropy is appropriately defined as the joint dif-

ferential entropy of its real and imaginary parts [94]. The difference is the differential

entropies of a proper and improper complex Gaussian RV z is given by the mutual infor-

mation I(z; z∗) between z and z∗ as [36]

HI(z) = HP (z)− I(z; z∗), (2.41)

where, I(z; z∗)=−1
2

log
N∏
i=1

(1−k2
i ) is a function of ρ1 (2.17).
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Complex-valued Gaussian Distribution

Van Den Bos was the pioneer to formulate a general multivariate Gaussian distribution

for improper complex processes. He demonstrated that the conventional definition of the

complex Gaussian distribution (based on the covariance matrix) is only a special case and

thus, applicable to proper processes only [134]. The PDF of a general complex Gaussian

RV z with u = [xT yT]T when x and y are both Gaussian distributed, is given as

p (u)=
1√

(2π)2N |Ruu|
exp

{
−1

2
(u−µu)TR−1

uu(u−µu)

}
. (2.42)

Equivalently, the PDF of a complex RV z with augmented covariance matrix Rzz is written

as [134]

p (z)=
1√

π2N |Rzz|
exp

{
−1

2
(z−µz)

HR−1
zz (z−µz)

}
. (2.43)

2.4.2 Quaternion Random Vector

This subsection contains the definitions of differential entropy and probability distributions

for a general multivariate quaternion RV.

Differential entropy

The differential entropy of a quaternion RV q with real representation v and the respective

covariance matrix Rvv is given by [138]

Hq (Rvv) = 2N ln (2πe) +
1

2
ln |Rvv|. (2.44)

Equivalently, the augmented representation renders [231]

Hq

(
Rqq

)
= 2N ln

(πe
2

)
+

1

2
ln |Rqq|. (2.45)
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Definition 2.16. The differential entropy of any quaternion RV is upper bounded by the

differential entropy of a centered Q-proper Gaussian RV with Rvv = σ2I4N and is given

by [231]

Hq 6 HQ−proper = 2N ln
(
2πeσ2

)
. (2.46)

Beyond the mutual information between two complex RVs, its generalization to higher

dimensions is termed as interaction information [242]. Took et al. presents the interaction

information between quaternion-valued Gaussian RVs q,qi,qj and qk in [231, eq. 43].

Unlike mutual information, interaction information can be negative depicting a decrease in

the degree of association between the variates in a multivariate quantity, when one variable

is dealt as a constant. The impropriety measure PQ measures the interaction information

between q and its involutions. It represents the entropy loss due to improperness as PQ =

Hq (Rqq)−Hq

(
Rqq

)
. Similarly, PCα and PRα presents the entropy losses due to Cα- and

Rα-improperness of q, respectively [138]. In other words, PRα measures of the entropy

loss due to the Q-improperness of the Cα-proper quaternion vector.

Quaternion-valued Gaussian Distribution

The PDF of a zero-mean Gaussian RV q with real representation Rvv is given by [138]

p (v) =
exp

(
−1

2
vTR−1

vvv
)

(2π)2N |Rvv|1/2
. (2.47)

Equivalently, it can be expressed using the augmented representation as [231]

p
(
q
)

=
exp

(
−1

2
qHR−1

qqq
)

(π/2)2N |Rqq|1/2
. (2.48)

In the Gaussian case, the distribution of a H-proper variable is contained in a 4D hyper-

sphere [225].
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2.4.3 Summary and Insights

Impropriety i.e., correlation between a RV and it’s conjugate results in loss of entropy and

this loss can be quantified in terms of mutual information and interaction information in

case of complex and quaternion RVs, respectively. Geometrically, it is the loss in capacity

by enclosing the codewords in a multidimensional ellipsoid instead of a hypersphere [243].

The differential entropy is maximum for a zero-mean proper Gaussian RV. Any deviation

from this trio i.e., zero-mean, properness, or Gaussianity will result in a loss of entropy.

Conventionally, researchers adhered to this trio to maximize entropy in a communication

system, however later divergence from this property was exploited to gain benefits in some

interference-limited applications.

2.5 Testing for Impropriety

Impropriety testing is a procedure to characterize the impropriety features of the random

signals. In particular, it involves the identification of a RV as proper or improper RV based

on its random samples. Moreover, it sometimes includes the quantification of the extent of

non-circularity of the potential improper RV. Impropriety testing is an important consider-

ation in order to exploit the significant performance gains offered by the improper signals

through appropriate processing. Impropriety defining pseudo-covariance matrix is practi-

cally estimated from the available data. However, the general non-zero estimate does not

indicate that the source is actually improper.

Therefore, various studies have proposed strategies to test for the impropriety of the sig-

nal from its observations based on different assumptions as highlighted in Table 2.2. They

include hypothesis testing based on likelihood ratio test (LRT) [129,131,156,230,232,237,

238,244–248,251], maximum likelihood (ML) estimation of circularity coefficients [250],

Wald’s type detector [226, 249] and invariant testing [129] etc. For instance, Schreier et

al. [237] and Olilla et al. [131] independently proposed a binary hypothesis test for im-
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Table 2.2: Impropriety Evaluation based on various Tests involving Different Data Repre-
sentations

Testing Criteria Analysis Variables Assumptions

GLRT with
augmented

representation

Conventional Complex RV

i.i.d samples of Gaussian RV and
simulated test threshold [131] [237]

independent but non-identical sam-
ples [244]

i.i.d complex elliptically symmetric
distributions [238]

i.i.d samples of Gaussian RV and an-
alytical test threshold [245]

Frequency

Complex vector
time-series Stationary Gaussian vector sequence

with spectral identification [246]

Complex vector
sequences

Stationary non-Gaussian vector se-
quence [247]

Stationary non-Gaussian signal with
improper/colored noise [156]

Spectral Im-
age

2D-spectrum Stationary non-Gaussian image with
improper Gaussian noise [248]

Conventional Quaternion RV i.i.d sample of quaternion Gaussian
RV [232]

LRT with real
representation

Conventional

Quaternion RV i.i.d sample of quaternion Gaussian
RV [230]

GLRT with real
representation

Complex RV

i.i.d samples of Gaussian RV and an-
alytical test threshold [129]

Wald’s type de-
tector

i.i.d CES distributions [249] [226]

Circularity coeffi-
cients estimation

Asymptotic analysis for arbitrary
distribution [250]

Invariant testing i.i.d samples of Gaussian RV and an-
alytical test threshold [129]
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propriety of the complex Gaussian data based on generalized likelihood ratio test (GLRT)

and simulated test thresholds. Whereas, [129] proposed analytical test threshold based on

the theoretical analysis of the null asymptotic distribution of the test statistic. In [252], a

real-valued formulation based on block-skew circulant matrices is considered for GLRT.

Interestingly, these studies deal with the i.i.d random samples taken from the Gaussian

distribution. The case of independent but not necessarily identical or non-Gaussian dis-

tribution of RVs is discussed in [244]. A robust Walds type ML (WTML)-detector for

propriety is also presented, robust to deviations from the Gaussianity assumption, based on

multiple i.i.d samples in the broad class of complex elliptically symmetric (CES) distribu-

tions [226, 249].

Previous parametric impropriety tests are limited to a sequence of independent RV.

To address this concern, [246] and [247] extended the results to stationary Gaussian and

non-Gaussian sequences, respectively, using power spectral representations. Interestingly,

[246] specifies the frequencies causing improperness when propriety is invalid, whereas

the approach in [247] provides only a decision on propriety. The impropriety testing is

not only limited to vectors and sequences rather it has also been extended to quaternions

[230, 232] and spectral images [248]. A compelling practical application is the detection

of random transmit waveforms from the Noise Radars (electromagnetic systems that use

random signals for detecting and locating reflecting objects) based on the circularity tests

[251].

2.5.1 GLRT for Complex Random Vectors

Of all impropriety tests, hypothesis testing based on GLRT and its variants are the most

popular owing to the simple derivation and intuitive interpretation of the detection rules.

Although the procedure is not generally optimal in the Neyman-Pearson sense, it is still

practical and reliable [129, 131, 253]. Moreover, GLR is well-known for its invariance
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characteristics as the hypothesis test (like propriety) must be invariant to but not WLT

[237, 254].

Let z ∈ CN be a complex Gaussian RV with the PDF given by (2.49). Now considerM

i.i.d random samples z1, z2, . . . , zM taken from the Gaussian distribution with augmented

mean µz and augmented covariance Rzz. Let Z = [z1, z2, . . . , zM ] denotes the augmented

sample matrix, where zm = [zT
m zH

m]T is the augmented sample vector. Then, the joint PDF

of these samples is given by

p (Z) = π−MN |Rzz|−M/2 exp

{
−1

2

M∑
m=1

(zm − µz)
H R−1

zz (zm − µz)

}
, (2.49)

=π−MN |Rzz|−M/2exp

{
−M

2
Tr(R−1

zz R̂zz)

}
, (2.50)

where R̂zz is the sample augmented covariance matrix

R̂zz =
1

M

M∑
m=1

(zm−µ̂z)(zm−µ̂z)
H =

 R̂zz
ˆ̃Rzz

ˆ̃R∗zz R̂∗zz,

 (2.51)

where µ̂z = 1
M

M∑
m=1

zm is the sample augmented mean vector. The aim is to distinguish

signals based on the binary hypothesis tests presented in Table 2.3. GLRT is the ratio

of likelihood with Rzz constrained to have zero off-diagonal blocks i.e., R̃zz = 0, to

likelihood with unconstrained Rzz. Thus, GLRT is testing the block-diagonal structure of

the augmented covariance matrix as [131, 237]

λ =

max
Rzz,R̃zz=0

p (Z)

min
Rzz

p (Z)
. (2.52)

In a GLR, the unknown parameters are replaced by ML estimates [253]. It is well known

that the unconstrained and constrained (R̃zz = 0) ML estimate of Rzz is the sample covari-

ance matrix R̂zz and R̂0, respectively, where R̂0 = Block-Diag
(
R̂zz, R̂

∗
zz

)
. Therefore,
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Table 2.3: Test Thresholds for C−GLR Hypothesis Tests

Null Hypothesis Alternate Hypothesis Test Threshold
Ref

(Proper) (Improper)

H0 : R̃zz = 0 H1 : R̃zz = R̃†zz Absent [131]

H0 : R̃zz = 0 H1 : R̃zz 6= 0 Simulated [237]

H0 : all δn = 0 H1 : all δn 6= 0 Approximated [129]

H0 : ρ = 0 H1 : ρ 6= 0 Asymptotic [226]

GLR can be expressed as

l = λ
2
M =

∣∣∣R̂−1
0 R̂zz

∣∣∣ (exp

{
−M

2
Tr(R̂−1

0 R̂zz − I)

}) 2
M

=

∣∣∣R̂zz

∣∣∣∣∣∣R̂zz

∣∣∣2 =

∣∣∣R̂zz − ˆ̃RzzR̂
−∗
zz

ˆ̃R∗zz

∣∣∣∣∣∣R̂zz

∣∣∣ . (2.53)

Thus, GLR test statistic is the quotient between the determinant of the Schur complement

of R̂zz and the determinant of R̂zz. This test statistic is defined in [131] and the hypothesis

testing involves the test for null R̃zz signifying proper RV z or known R̃†zz signifying

improper RV z. On the other hand, [237] presents slightly different hypothesis test as

given in Table 2.3 along with the simulated thresholds. We can also employ the estimated

canonical correlation matrix K̂ using R̂zz and ˆ̃Rzz as discussed in Definition 2.10. We then

have

l =
∣∣∣I− K̂K̂H

∣∣∣ =
N∏
n=1

(
1− k̂2

n

)
. (2.54)

This explains that the GLR is a function of the squared canonical correlations which make

up a complete/maximal set of invariants under linear transformation (LT). Contributions

like [250] suggest to directly find the ML estimates of circularity coefficients which are the

singular values of the empirical coherence matrix Ĉ, estimated from R̂zz and ˆ̃Rzz. More-

over, two invariant tests in [129] not only rely on these maximal invariants but also suggest
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the critical regions to minimize false alarms based on the Box approximation. These two

invariant tests based on the real composite representation state null-hypothesis as all δk = 0

where Takagi Factorization of Ruu = G∆1G
T with ∆1 = Diag ((I + ∆2) , (I−∆2)) and

∆2 = Diag (δ1, δ2, . . . , δN). They accept H0 iff

T1 ≡
N∏
n=1

(
1− δ̂2

n

)
≥ c1 (η1,M,N) , (2.55)

T2 ≡
N∑
n=1

(
δ̂2
n

)
≤ c2 (η1,M,N) , (2.56)

where c1 (η1,M,N) and c2 (η1,M,N) are constants based on the probability of false alarm

(PFA) and η1 is the specific size of the test [129]. Interestingly, T2 is the locally most

powerful (LMP) test as it has as high a power as possible for alternatives H1 i.e., those

for which all kn are small. However, no uniformly most powerful (UMP) invariant test for

impropriety exists for the problem N ≥ 2 [129]. Based on the standard ML theory, the

statistic l possesses an asymptotic chi-squared distribution with F = N(N + 1) DoF under

the null hypothesis [129, 238, 244]. Thus, the statistical analysis allows us to accept H0 iff

−(M−N) log T1 < χ2
F (1−η1) where χ2

F (1−η1) is the 100(1−η1)% point of the chi-square

distribution with F DoF. Additionally, the Wald’s type detector [226] for the uni-variate

case suggests to reject null hypothesis based on the ML estimate of circularity quotient ρ̂

of the underlying CES distribution with finite fourth-order moment if M |ρ̂|2/ς̂0 ≥ χ2
2;1−η2

,

where χ2
2;1−η2

denotes (1 − η2)th quantile of the chi-square distribution with 2 DoF, η2

PFA and ς̂0 as given by [226, (20)]. An interesting extension is to look for the extent of

non-circularity when the null-hypothesis is rejected e.g., [238] tests the hypothesis that a

particular number of circularity coefficients vanish.

To conclude, the impropriety testing can be implemented with great computational ef-

ficiency using the block-skew circulant matrices for the composite real formulation of the

GLRT [252]. One of the proposed efficient implementation involves the following test
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statistic

r =
22N

∣∣∣R̂uu

∣∣∣∣∣∣R̂zz

∣∣∣2 , (2.57)

where R̂uu = 1
M

M∑
m=1

(um − µ̂u)(um − µ̂u)T is the sample covariance matrix based on the

real representation in Definition 2.1a. Hellings et al. claim that this implementation reduces

the computational complexity roughly by a factor of four when compared to the implemen-

tation of the augmented complex version in (2.53), owing to its inherent redundancy.

2.5.2 GLRT for Quaternion Random Vectors

Like complex RV, propriety testing has also been expanded for the quaternion RV based

on its real composite [230] as well as augmented representation [232]. For instance, Via

et al. suggest three GLRTs to identify two main kinds of quaternion properness. Based

on the ML estimates of Rqq under three distinct hypotheses namely Q-proper, Cα-proper

and possibly improper vectors, the GLRTs binary hypothesis tests are given in Table 2.4.

The hypothesis testing is based on the test whether Rqq belongs to the convex set of Q-

proper and Cα-proper augmented covariance matrices, given as RQ (2.24) and RCα (2.25),

respectively, or not. Moreover, the GLRT test statistics are based on the ML estimate of

Rqq i.e., R̂qq and its constraint formulations D̂Q and D̂Cα under the hypothesis HQ and

HCα , respectively [232]

D̂Q = Block-Diag
(
R̂qq, R̂

(i)
qq, R̂

(j)
qq, R̂

(k)
qq

)
, (2.58)

D̂Cα =



R̂qq R̂qq(i) 0N 0N

R̂
(i)

qq(i) R̂
(i)
qq 0N 0N

0N 0N R̂
(j)
qq R̂

(j)

qq(i)

0N 0N R̂
(k)

qq(i) R̂
(k)
qq


. (2.59)

GLRT comparisons for Q-properness, Cα-properness and improperness are established
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Table 2.4: Quaternion GLR Hypothesis Tests and Decision Criterion

Null and Alter-
nate Hypothesis

GLRT Statistic GLRT Comparison

Q-properness
HQ: Rqq ∈ RQ

HI : Rqq /∈ RQ PQ=−1
2

ln
∣∣∣D̂−1/2
Q R̂qqD̂

−1/2
Q

∣∣∣ PQ
HI
≶
HQ

γQ

Cα-properness
HCα: Rqq ∈ RCα

HI : Rqq /∈ RCα PCα=−1
2

ln
∣∣∣D̂−1/2
Cα R̂qqD̂

−1/2
Cα

∣∣∣ PCα
HI
≶
HCα

γCα

Rα-improperness
HQ: Rqq ∈ RQ
HCα: Rqq ∈ RCα PRα=−1

2
ln
∣∣∣D̂−1/2
Q D̂CαD̂

−1/2
Q

∣∣∣ PRα
HCα

≶
HQ

γRα

with predefined fixed thresholds γQ, γCα and γRα , respectively.

2.5.3 Summary and Insights

Various studies present different test statistic and threshold levels for the GLR hypothesis

tests. Nonetheless, no invariant test for impropriety is uniformly most powerful, they all

are inclined and thus locally robust tests [129]. Most of the contributions describe the

GLRT of circularity assuming complex normal data [131, 237], which is further adjusted

to accommodate a broad class of CES distributions. If the propriety test is invalid, it is

then useful to detect the number of latent NC signals in a complex Gaussian RV based

on multiple hypothesis tests [255]. Similarly, GLRT for quaternions is focused on the

identification of Q-proper, Cα-proper or possibly improper RV.

The technical framework provides a comprehensive understanding of the impropriety

concepts and identification. We will apply this knowledge to appropriately characterize

different hardware impairments as presented in the next chapter.
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Chapter 3

Hardware Impairment Modeling

HWIs impose a huge challenge on next-generation network planning and deployment es-

pecially at high-frequency [3,7–9]. HWIs emerge in various RF stages including imperfec-

tions in analog-to-digital/digital-to-analog converters, non-linear high power amplifier/low

noise amplifier, mismatched local oscillator and phase shifter, etc. [8, 9]. These hardware

imperfections result not only in phase/amplitude errors and raised noise floor but also in

an inevitable mixing of the desired and image signals. This distinct behavior motivates re-

searchers to develop accurate models and propose effective compensation methods to meet

the expected performance.

Numerous efforts have been carried out to accurately model various forms of HWIs.

As an example, many studies focused on the statistical modeling of additive hardware dis-

tortions at the transmitter and the receiver [10–13, 76, 108, 109]. Other studies focused

on the modeling of in-phase and quadrature phase IQI where the self-interference (SI)

signal incorporates the amplitude and rotational imbalance besides the receiver thermal

noise [71, 72, 113, 114, 116, 256]. Moreover, a few studies like [8] and [117] analyzed

multiple RF front-end impairments and their individual baseband equivalent error models.

In [8], Schenk studied the modeling procedure, impact of non-ideal hardware on the system

performance, and digital compensation schemes of various RF imperfections in high data-

rate wireless systems. Similarly, Boulogeorgos et al. studied the impact of various HWIs

on the energy detection spectrum sensing in cognitive radio systems in [117]. However, we

considered the combined effect of various HWIs including both transmitter and receiver

I/Q mismatch as well as accumulative additive distortions at the transmitter as well as the
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receiver [20]. This research investigates full characterization of the self-interfering (SI)

information signals and improper Gaussian noise components inspired by the statistical

signal processing, which highlighted the asymmetric characteristics of baseband commu-

nication signals due to the IQI [31].

3.1 Transceiver Hardware Distortion Model

Consider a single-link wireless communication system suffering from various hardware

impairments. The non-linear transfer functions of various transmitter RF stages, such as

digital-to-analog converter, band-pass filter and high power amplifier result in accumulative

additive distortion noise ηt ∼ CN (0, κt, κ̃t), where |κ̃t| ≤ κt [8, 76]. These distortions

raise the noise floor of the transmitted signal xtx = x + ηt, where x is the transmission

signal. The transmitted signal further undergoes a slowly varying flat Rayleigh fading

channel h∼CN (0, λ, 0). Moreover, the receiver further induces an additive distortion ηr,

resulting from the non-linear transfer function of low noise amplifier, band-pass filters,

image rejection low pass filter, analog-to-digital converter. It is important to highlight that

the receiver distortions are in addition to the conventional thermal noise at the receiver.

y =
√
ph (x+ ηt) + ηr + z, (3.1)

where p is the transmitted power and z is the additive white Gaussian noise (AWGN) with

variance σ2
z . Furthermore, ηt and ηr are the respective additive impairment distortions at

the transmitter and the receiver. Various theoretical investigations and measurement re-

sults indicate that the Gaussian model accurately describes the aggregate of all residual RF

impairments when compensation algorithms are applied to mitigate hardware impairments

( [10,12–14,76,109,117,257–261] and references therein). This can also be motivated an-

alytically by the central limit theorem. In addition, ηt and ηr are generalized as asymmetric

signals pertaining to the transformation caused by some hardware impairments such as
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HWD with wide linear transformation characteristics [31, 81]. Thus, the aggregate HWDs

at the transmitter and the receiver are random variables with ηt ∼ CN (0, κt, κ̃t) where

|κ̃t| ≤ κt ≤ σ2
x and ηr ∼ CN (0, p|h|2κr, ph

2κ̃r), where |κ̃r| ≤ κr ≤ σ2
x. Clearly, the

proposed model reduces to the well-known system model y =
√
phx+ z in the absence of

transceiver distortions i.e. ηt = ηr = 0.

Lemma 1. The equivalent generalized aggregate model of the HWD is given by

y =
√
ph (x+ η) + z, (3.2)

with η = ηt +ηr distributed as CN (0, κ, κ̃). Also, κ = κt + κr and κ̃ = κ̃t + κ̃r capture the

aggregate HWD at both the transmitter and the receiver along with impact of fading chan-

nels.

Proof. We assumed a general asymmetric model for the additive distortion with ηt ∼

CN (0, κt, κ̃t) and ηr ∼ CN (0, p|h|2κr, ph
2κ̃r). Different from the existing literature that

assumes symmetric HWD, we assume the general asymmetric scenario where having sym-

metric distortion at both in-phase and quadrature components is not the only possible sce-

nario. Furthermore, the symmetric distortion can be transformed into asymmetric one after

passing through WLT [31]. Illustrative demonstrated shows that the symmetric distribution

of the proper additive distortions noise in Figure 3.1a transforms to the improper aggre-

gated noise in Figure 3.1b pertaining to the WLT induced by the I/Q imbalance (refer to

Section 3.2 for details). For a given fading channel, the variance and pseudo-variance of

the aggregated impairments in (3.1) are expressed, respectively, as follows

E
[
|√phηt + ηr|2

]
= p|h|2 (κt + κr) , (3.3)

E
[
(
√
phηt + ηr)

2
]

= ph2 (κ̃t + κ̃r) . (3.4)

The variance and pseudo-variance of the aggregated asymmetric distortions in (3.2) are
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Figure 3.1: Impropriety Characterization

p|h|2κ and ph2κ̃, respectively. Thus, the signal model in (3.1) can be equivalently modeled

as in (3.2) when κ = κt + κr and κ̃ = κ̃t + κ̃r.

It is important to note that in case of ideal hardware i.e. η = 0 is imposed by κ = 0

and κ̃ = 0. Where, κ = 0 is dictated by the negligible transmitter and receiver distortion

variances, κt = 0 and κr = 0, respectively. Also, κ̃ = 0 follows from Definition 2.9.

3.2 Transceiver I/Q Imbalance Model

Consider a wireless communication system employing synchrodyne architecture transceivers

in the RF front-end [262]. At the transmitter, the digital baseband modulated signal un-

dergoes pulse shaping and up-conversion to the desired carrier frequency. During this

homodyne up-conversion stage, the imperfect local oscillator and phase shifter introduce

I/Q imbalance. Transceivers with I/Q imbalance not only contribute to the amplitude and

phase errors but also induce self-interference (SI) signal xIQI, due to the limited image-

rejection capability [5]. Based on the practically validated I/Q mismatch model presented

in [8,72,256,263–267] and references therein, the equivalent quadrature imbalanced trans-

mit signal is expressed as xIQI = ν1x+ν2x
∗, where x is a band-pass modulated signal taken
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Figure 3.2: Transmitter I/Q imbalance

from M -QAM, M -PSK or M -PAM constellation, ν1 and ν2 account for the amplitude (at)

and phase (θt) errors at the transmitter I/Q mixer stage and are modeled as

ν1 =
(
1 + ate

jθt
)
/2; ν2 = 1− ν∗1 =

(
1− ate

−jθt
)
/2. (3.5)

The image rejection ratio (IRR) of transmitter I/Q mixer stages is defined as Υt = |ν1|2/|ν2|2,

resides between 20 dB and 40 dB [117, 256]. The baseband equivalent impact of transmit-

ter I/Q imbalance on 16-QAM and 16-PSK modulations is evident in Figure 3.2a and 3.2b,

respectively. I/Q imbalance transmits the filled symbols from a skewed and rotated sig-

nal constellation in-place of the ideally modulated hollow symbols. Note that the ideal

transmitter I/Q mixer stage exhibits at=1 and θt=0, yielding xIQI = x and Υt =∞. In ad-

dition, non-linear transfer functions of various transmitter RF stages result in accumulative

additive distortion noise as modelled in Section 3.1.

xtx = xIQI + ηt = ν1xm + ν2x
∗
m + ηt. (3.6)

The transmitted signal undergoes a slowly varying flat Rayleigh fading channel h ∼

CN (0, λ, 0) and receiver additive distortion ηr. The received signal is expressed in terms
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of the average transmit power p as yrx =
√
phxtx + ηr, where it again experiences I/Q im-

balance at the down-conversion stage yielding y = µ1yrx + µ2y
∗
rx [8, eq. 5.28] and [72, eq.

3]. The parameters µ1 =
(
1 + are

jθr
)
/2 and µ2 = 1 − µ∗1 =

(
1− are

−jθr
)
/2 capture the

receiver’s amplitude (ar) and rotational errors (θr). Thus, the receiver’s IRR in the down-

conversion process is Υr = |µ1|2/|µ2|2, where the perfect receiver I/Q balance occurs when

µ1 = 1 and µ2 = 0, which follows from ar = 1 and θr = 0. Consequently, the received

signal y under the aggregate HWIs model is given as

y =
√
ph̃1x+

√
ph̃2x

∗ + z, (3.7)

where h̃1 = µ1ν1h+µ2ν
∗
2h
∗ and h̃2 = µ1ν2h+µ2ν

∗
1h
∗ are modified channel gain parameters

accommodating fading and I/Q imbalance characteristics. Moreover, the aggregated noise

is given by

z = µ1 (
√
phηt + ηr) + µ2 (

√
ph∗η∗t + η∗r ) . (3.8)

Theorem 1. Transceiver I/Q imbalance transforms the symmetric transmitted signal to

asymmetric received signal and the proper Gaussian interference to improper Gaussian

interference [20].

Proof. This follows from the non-zero pseudo-variance of the received signal σ̃2
y = 2h̃1h̃2+

σ̃2
z and the accumulative interference term under HWI σ̃2

z = 2µ1µ2

(
p|h|2σ2

t + σ2
r

)
.

The appropriate detection and precise modeling of HWIs is essential for accurate anal-

ysis and efficient mitigation. My research aims at the performance analysis, effective trans-

mission design and optimal detection based on the presented impairment models. Next,

we present different case studies to study the drastic impact of different HWIs on various

system settings and the appropriate coping mechanisms.
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Chapter 4

Hardware Impaired Multihop Full-Duplex Relaying Systems

In this chapter, we analyze the performance degradation of a multihop decode-and-forward

FDR (MH-DF-FDR) system caused by the residual self-interference (RSI) and hardware

distortions (HWD) imposed by the full duplex relaying (FDR) operation and imperfect

hardware, respectively. In addition, we study the benefits of employing improper Gaussian

signaling (IGS) in the MH-FDR system. Different from the traditional symmetric signal-

ing scheme, i.e., proper Gaussian signaling (PGS), IGS has non-zero pseudo-variance that

can limit the impact of RSI and HWD in the MH-FDR system. To evaluate the system

performance gain using IGS, first we express the end-to-end achievable rate of the MH

system as the minimum rate supported by all participating links. Then, we optimize the

pseudo-variance of all participating transmitters including source and relays to compen-

sate the interference impact and improve the end-to-end achievable rate. We propose two

network optimization schemes based on the system characteristics i.e. joint optimization

framework and distributed optimization scenario. Interestingly, IGS-based scheme outper-

forms its counterpart PGS-based scheme, especially at higher interference-to-noise ratio.

Our findings reveal that using IGS in single-user detection systems that suffer from both

RSI and HWD can effectively mitigate the degradation in the achievable rate performance.

The rest of the chapter is organized in the following fashion. Section 4.1 highlights the

significance and contributions of this chapter. Section 4.2 studies the statistical model for

the MH-DF-FDR system under asymmetric self-interference and transceiver distortions.

Section 4.3 focuses on the information-theoretic achievable rate in the presence of im-

proper Gaussian interference and signal. Section 4.4 focuses on designing the transmission
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parameters based on the RSI and HWD characteristics. It deals with the joint as well as

distributed optimization framework to fine-tune the statistical IGS parameters to achieve

optimum system performance. Section 4.5 numerically analyzes the system performance

with/without IGS assuming different system parameters followed by the insightful conclu-

sion in Section 4.6.

4.1 Significance and Contributions

Analyzing the impact of hardware imperfections and RSI on the system performance and

evaluating different compensation schemes require an accurate statistical model of these

imperfections. RSI and HWD are modelled by widely linear transformations as discussed

in [78] and [79], respectively. Thus, according to statistical signal processing studies,

widely linear precoders/transformations can efficiently map symmetric information-bearing

signals to asymmetric signals at each transmitter [31,81]. Therefore, this work models both

RSI and HWD as asymmetric signals. Furthermore, the proposed research can employ

IGS for signal transmission to jointly mitigate the deterrent effect of both RSI and HWD.

IGS scheme has already been proven to evidently improve system performance in various

system configurations such as multiple-input multiple output systems [108,110], cognitive

radio systems [191,192], full-duplex relaying [79,179,268], and alternating relaying [159].

The IGS transmission scheme is expected to outperform PGS in the presence of RSI and

HWD in a MH-DF-HWD-FDR system. Our objective is to quantify the gain obtained by

optimal IGS over PGS and to evaluate if the gain is significant enough to adopt IGS opti-

mization framework as the optimal IGS solution can sometimes reduce to PGS. In order

to maximize the end-to-end rate, the IGS transmit signaling characteristics of the source

and relay have already been optimized as part of the MS dissertation for dual-hop DF-FDR

system [153].

In this chapter, we study the utilization of asymmetric signaling scheme instead of the

symmetric signaling scheme to combat both the RSI and HWD in MH-DF-FDR systems.
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Symmetric signaling or PGS is the traditional signaling scheme that assumes independent

signal components with equal power, which is described by its variance. On the other

hand, asymmetric signaling or IGS relaxes the PGS characteristics and can have dependent

signal component with/without equal power. Therefore, an IGS needs an additional sta-

tistical quantity to be accurately characterized, which is called the pseudo-variance [94].

We should note that IGS can be practically implemented using widely linear precoders,

which efficiently maps symmetric information-bearing signals to asymmetric signals at

each transmitter [31, 81]. The main contributions of this chapter are summarized as fol-

lows:

• Studying the effect of HWDs and RSI on the achievable rate performance of the

MH-FDR system in the absence of direct link.

• Employing IGS to compensate the degradation on the achievable rate performance

due to both HWDs and RSI in MH-FDR systems.

• Developing a rigorous joint optimization framework to design the signal characteris-

tics by tuning the signal symmetry degree in terms of the pseudo-variance in order to

maximize the end-to-end achievable rate of the MH-FDR system.

• Developing a distributed optimization framework that suits practical implementation

of the proposed transmission scheme offering reduced round-trip delays, computa-

tional complexity and communication overhead.

4.2 FDR under HWD System Model

Consider a MH relaying system, where a source (R0) intends to communicate with a des-

tination (Rk+1) as shown in Figure 4.1. Both the high shadowing and the severe path loss

effect are responsible for the absence of the direct link between R0 and Rk+1. As such,
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Figure 4.1: FDR System under HWD and RSI.

multiple FDRs (R1 − Rk) operate as intermediate nodes to facilitate the end-to-end com-

munication by expanding the coverage area with a full transmission rate. The limited power

budget of the participating relays renders negligible inter-relay interference. All relays op-

erate in a DF relaying strategy and the SI at the relays can only be canceled partially, thus

resulting in RSI as depicted in Figure 4.1. Furthermore, various HWDs at the transmit-

ter and receiver RF branches can drastically degrade the overall system performance. We

model the MH-DF-FDR system suffering from transceiver HWDs.

In the proposed MH-FDR with the DF relaying strategy under HWD, the mth node Rm

transmits an IGS signal xm ∼ CN (0, σ2
m, σ̃

2
m) to the nth node Rn in one hop. Pertaining to

the FDR operation, the received signal at the relay nodeRn suffers from RSI hnn in addition

to the aggregate effect of transceiver distortions for both m-n link, ηnm, and n-n link, ηnn.

The aggregate distortion ηnm = ηmtx + ηnrx includes the transmit distortions from the mth

node and the receiver distortions from the nth node in xm, which is transmitted from the

mth node to nth node. Similarly, ηnn = ηntx +ηnrx includes the transmit distortions as well as

the receiver distortions from the nth node in xn, which is transmitted from and looped-back

to nth node owing to its full-duplex operation. The aggregate transceiver distortions exhibit

the same statistical characteristics as detailed in (3.2). The signal is transmitted from R0

to Rk+1 in a sequential order. Therefore, the generalized received signal at nth receiver is

given by

yn =
√
pmhnm (xm + ηnm) +

√
pnhnn (xn + ηnn) + zn, (4.1)
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where n = 1, 2, . . . , k + 1 denotes the receiver nodes and m = n − 1 represents the se-

quential transmission nodes, thus m = 0, 1, . . . , k. In addition, pm is the transmit power

of the mth node taken from a limited power budget, hnm is the flat-fading channel of the

m-n link1 and zn ∼ CN (0, σ2
z , 0) is independent identically distributed (iid) AWGN at the

nth receiver node. The receiver at the relay node decodes the transmitted signal using sin-

gle user decoder, then encodes it from IGS code-book as xn ∼ CN (0, σ2
n, σ̃

2
n) for further

transmission. The same transmitted signal causes self-interference in the FDR transmis-

sion mode through the hnn link. Measurement-driven experimental studies [269–271] have

shown that, after undergoing all possible isolation/cancellation techniques and assuming

the perfect cancellation of slowly-varying line-of-sight path, the residual interference can

be well characterized as a flat-fading channel [115,179,272–275] and the RSI channel hnn

can be modeled as a zero mean symmetric complex Gaussian random variable ( [276–280],

and references therein).2 It is worthy noting that the self-interference link does not exist at

the destination node Rk+1 as there is no further transmission and self-interference. Addi-

tionally, the transceiver HWD of the m-n link, i.e., ηnm, is assumed to show the statistical

characteristics: ηnm ∼ CN (0, κnm, κ̃nm).

4.3 Achievable Rates

The overall end-to-end achievable rate of the MH-DF-FDR system, RT , is given as

RT = min
n
{Rnm} ; m = n− 1, (4.2)

1It is important to mention that the narrow band assumption has been adopted to simplify the presentation
of the mathematical modeling and optimization analysis. However, the same contribution can be straight-
forwardly extended to the multipath channel scenario such as OFDM for each sub-channel / sub-band after
incorporating the effective inter-carrier interference. The extension to OFDM does not affect the optimization
framework as the various transmission streams do not share the common resource budget.

2Note that the flat-fading assumption and Gaussian RSI model do not compromise the insights of the
analysis that follows. The same conclusions can be reached if more complex RSI models are used.
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where Rnm is the achievable rate of the m-n link in bits/sec. In our work, we deal with the

RSI and HWD as interference terms, thus Rnm considering the IGS transmission scheme

and asymmetric HWD terms can be obtained as [81]

Rnm =
Bnm

2
log2

σ4
yn −

∣∣σ̃2
yn

∣∣2
σ4
In
−
∣∣σ̃2
In

∣∣2 , (4.3)

where Bnm is the bandwidth of the m-n link. In addition, σ2
yn and σ̃2

yn are the variance and

the pseudo-variance of the received signal at the nth node, respectively. Also, σ2
In

and σ̃2
In

are the variance and the pseudo-variance of the self-interference signal plus noise at the

receiver end. Therefore, the achievable rate of the link between the mth transmit node and

the nth receiver node, Rnm can be expressed as

Rnm =
Bnm

2
log2

αnm − |pmh2
nm (σ̃2

m + κ̃nm) + pnh
2
nn(σ̃2

n + κ̃nn)|2

βnm − |pmh2
nmκ̃nm + pnh2

nn (σ̃2
n + κ̃nn)|2

, (4.4)

where βnm and αnm are defined, respectively as,

βnm =
(
pm|hnm|2κnm+pn|hnn|2

(
σ2
n+κnn

)
+σ2

z

)2
, (4.5)

αnm=
(
pm|hnm|2

(
σ2
m+κnm

)
+pn|hnn|2

(
σ2
n+κnn

)
+σ2

z

)2
. (4.6)

According to (4.4), Rnm is a function of the pseudo-variance σ̃2
m of the transmitted signal

and the pseudo-variance σ̃2
n of the self-interfering signal, which provides additional degrees

of freedom to mitigate the asymmetric interference caused by the HWD as well as RSI.

However, the achievable rate of the last hop between node Rk and Rk+1 is only a function

of σ̃2
k due to the absence of the self-interfering link.

4.4 HWD- and RSI-Aware Signaling Design

In this section, we design the transmit signals for all transmitting nodes, to maximize RT

under HWD and RSI for the adopted MH-DF-FDR system. The main goal of the system
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design is to optimize the statistical asymmetric characteristics of the transmitted signals to

maximize RT in (4.2) as follows

4-P1 : maximize min
n
{Rnm (σ̃2

m, σ̃
2
n)}

subject to 0 ≤ |σ̃2
m| ≤ σ2

m, ∀m,
(4.7)

where the constraint is adopted to confirm the bounds on circularity coefficient, for the

pseudo-variances of all transmitting signals from nodes R0 to Rk. Throughout the rest of

this work, we solve 4-P1 by proposing two optimization frameworks with different imple-

mentation, complexity and performance. Firstly, we propose an efficient joint optimization

scheme which requires a centralized processing framework. Later, we present a distributed

framework which optimizes the transmission parameters for a cluster of nodes.

4.4.1 Joint Optimization

In the joint optimization setup, we assume having a central node that gathers the channel

state information (CSI), HWD and RSI levels from all the participating nodes to jointly

optimize their signal parameters in order to maximize the overall end-to-end achievable

rate. After processing the gathered information, the central node distributes the optimal

transmission parameters for data transmission.

To solve 4-P1, we write all optimization parameters (transmit pseudo-variances) in a

vector form. The total number of the optimization parameters depend on the number of

participating relays and the corresponding communication hops. Considering k interme-

diate relays between the source and the destination results in k + 1 hops and hence k + 1

transmitting nodes. Therefore, we need to optimize k + 1 complex pseudo-variance vari-

ables or 2(k + 1) real transmit pseudo-variance variables. Thus, we define a real vector s

that captures the real and imaginary variables as

s=

[
<{σ̃2

0} ={σ̃2
0} <{σ̃2

1} ={σ̃2
1} . . .<{σ̃2

k} ={σ̃2
k}
]T

(4.8)
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Then, we express the link rate between nodes Rm − Rn in (4.4) as a function of the vector

s carrying optimization variables:

Rnm (s) =
Bnm

2
log2

αnm −
∣∣sTunm + vnm

∣∣2
βnm − |sTwnm + vnm|2

, (4.9)

where unm and wnm are defined, respectively, as follows:

unm=〈〈
[
pmh

2
nm jpmh

2
nm pnh

2
nn jpnh

2
nn

]T〉(Az,2k−2)〉(Ds,2m), (4.10)

wnm = 〈〈
[
pnh

2
nn jpnh

2
nn

]T 〉(Az,2k)〉(Ds,2n). (4.11)

Furthermore, the complex scalar vnm is defined as a function of transmit power, CSI and

HWD as,

vnm = pmh
2
nmκ̃nm + pnh

2
nnκ̃nn. (4.12)

Let us denote the numerator and denominator of the fraction in (4.9) asNnm(s) andDnm(s)

respectively. Thus, Nnm(s) can be written in a simplified form as

Nnm(s) = αnm − sTUnms− sTcnm − |vnm|2, (4.13)

where Unm is the outer product of unm, i.e., Unm = unmuHnm and cnm = v∗nmunm +

vnmu∗nm. The positive semi-definite characteristic of Unm renders the concavity character-

istic of Nnm in s. Analogously, Dnm(s) can be rewritten as

Dnm(s) = βnm − sTWnms− sTdnm − |vnm|2, (4.14)

with dnm = v∗nmwnm + vnmw∗nm and Wnm = wnmwH
nm, which implies the concavity

of Dnm in s thanks to the positive semi-definite properties of Wnm. Therefore, using the
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aforementioned representations, optimization problem P1 can be equivalently written as

4-P2 : maximize min
n

{
Bnm

2
log2

Nnm (s)

Dnm (s)

}
(4.15)

subject to 0 ≤ sTPms ≤ σ2
m, ∀m,

where Pm = diag
{
〈〈[1 1]T 〉(Az,2k)〉(Ds,2m)

}
. The max-min fractional problem in 4-P2 can

be efficiently solved by exploiting the properties of the logarithmic function. In addition,

we can transform the secondary minimization problem into the following maximization

problem

4-P3 : maximize −max
n

{
−Bnm

2
log2Nnm(s)+

Bnm

2
log2Dnm(s)

}
(4.16)

subject to 0 ≤ sTPms ≤ σ2
m ,∀m.

Evidently, log2Nnm (s) and log2Dnm (s) are concave functions owing to the the positive-

concave nature ofNnm (s) andDnm (s), respectively. Therefore, the subtractive form of the

objective function in 4-P3 is universally known as difference of convex (DC)-programming

(difference of concave) and cannot be handled straightforwardly. Thus, we employ sequen-

tial convex programming (SCP) to efficiently transform 4-P3 into iterative convex problems

which can be optimally solved in each iteration [281]. In this approach, we use the affine

Taylor series approximation of the function log2Dnm (s) to yield a convex objective func-

tion. The first-order Taylor series expansion of the function g(x) at point x(k) is given

by

ĝ(x, x(k)) = g(x(k)) +∇g(x(k))T
(
x− x(k)

)
. (4.17)

Thus, by employing the same expansion for the concave function log2Dnm (s) gives an
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affine approximation at s(i) as

^

Dnm
(
s, s(i)

)
=

Bnm

2 ln 2

(
lnDnm

(
s(i)
)

+
∇TDnm

(
s(i)
)

Dnm (s(i))

(
s− s(i)

))
, (4.18)

where ∇Dnm
(
s(i)
)

= −(Wnm + WT
nm)s(i) − dnm is the gradient of Dnm(s) evaluated at

s(i). It is important to note that no trust region is required as
^

Dnm(s, s(i)) ≤ Dnm(s(i)) [281].

Thus, 4-P3 can be convexified using the aforementioned procedure giving the following

problem that needs to be solved successively while updating s(i),

4-P4 : maximize −max
n

{
−Bnm

2
log2Nnm (s)+

^

Dnm(s, s(i))

}
(4.19)

subject to 0 ≤ sTPms ≤ σ2
m ,∀m.

Given, the convex objective function and convexity preservation by the point-wise maxi-

mization, the primary maximization problem can be equivalently written as follows [282]

4-P5 : minimize max
n

{
−Bnm

2
log2Nnm (s) +

^

Dnm(s, s(i))

}
(4.20)

subject to 0 ≤ sTPms ≤ σ2
m ,∀m.

The formulated problem 4-P5 yields an optimal solution for a given s(i) as it is the mini-

mization of a convex function pertaining to the convexity preservation by point-wise max-

imization. One way to solve 4-P5 is by introducing an auxiliary variable τ in order to

capture the point-wise maximization problem as follows

4-P6 : minimize τ (4.21)

subject to − Bnm

2
log2Nnm (s) +

^

Dnm(s, s(i)) ≤ τ, ∀m\{k}

− Bnm

2
log2Nnm (s) +

Bnm

2
log2Dnm(s) ≤ τ, m = k

0 ≤ sTPms ≤ σ2
m ,∀m.



98

Therefore, the solution of the proposed optimization problem reduces to solving 4-P6 iter-

atively using the SCP as discussed in the following subsection.

Centralized Joint Algorithm

To solve 4-P1 or equivalently 4-P2, we use the SCP that deals with a convexified version

of the difference of convex/concave problem 4-P3 in each iteration developing Algorithm

1. The proposed algorithm starts with a feasible starting point s(i) to find the affine ap-

Algorithm 1 Sequential Convex Programming
1: Initialize i← 0, ε←∞ and Set tolerance δ
2: Choose feasible starting point s(i)

3: while ε ≥ δ do
4: Evaluate

^

Dnm(s, s(i)) ∀m\{k}
5: Solve 4-P6 and obtain s using s(i)

6: s(i+1) ← s
7: Update ε← |si+1 − si|
8: i← i+ 1
9: end while

10: s∗ ← si+1

11: RT = min
n
{Rnm (s∗)}

proximation of 1
2
log2Dnm (s) for all transmitters, i.e., Rm and m < k. The last node does

not suffer from self-interference, which renders constant 1
2
log2Dnm (s) at m = k. Then,

the affine approximation
^

Dnm(s, s(i)) is used to optimally solve a quadratic contraint linear

programming (QCLP) problem defined in 4-P6 using any available convex optimization

solvers such as CVX-MATLAB employing interior-point method. Next, the solution of

the QCLP problem is used to update s obtaining s(i+1), which is the starting point for next

iteration. The algorithm solves successive convex QCLPs and updates the solution values

in each iteration until the desired stopping condition is met. The stopping convergence

criterion is when the absolute difference between two successive solutions is less than a

predefined threshold δ.

The obtained solution vector s contains the real and imaginary components of the trans-
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mit pseudo-variances for all transmitting nodes. Thus, the maximized end-to-end achiev-

able rate RT can be computed using (4.2) and (4.9). Despite of the efficacy of the joint-

optimization, it requires a centralized network realization, where all nodes share their in-

formation with a central node prior to the transmission. Then, the signal design is carried

out at the central node in order to update the relaying nodes with the optimized signal

parameters.

4.4.2 Distributed Optimization

The implementation of the joint optimization requires a centralized network realization.

However, the centralized realization may not be suitable in different scenarios due to:

• Time Delays: In the proposed MH-FDR system, we employ relay(s) to establish a

communication link between any two distant nodes in the absence of a direct link.

The same communication links are utilized to transmit CSI from each node to the

central node that performs the joint optimization of the transmit parameters. There-

fore, exchanging CSI results in notable delay depending on number of intermediate

nodes. Moreover, the CSI data is subjected to error propagation. Then, the central

node processes the received information, performs joint optimization and sends the

optimized parameters back to each node. Furthermore, the processing/computational

delay at the central node also increases with higher number of intermediate nodes.

Also, for large networks, the round trip time and computational delay may exceed

channel coherence time, which results in degraded performance. On the other hand,

the round trip in each cluster decreases significantly compared with the centralized

configuration due to the reduced cluster size.

• Communication Overhead: For a network involving large number of relays to es-

tablish a communication link between two distant nodes, pilot signals are sent be-

tween intermediate nodes to estimate the channels, then the CSI is sent to the central
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Figure 4.2: Different Sized Clusters with Their Two Possible Placements

nodes via the relays. Thus, the increase in number of relays will increase the cost

of communication overhead. However, it decreases in the distributed realization as

the entire network is divided into smaller clusters with fewer number of relays where

each cluster locally performs the optimization process. This local optimization pro-

cedure can be carried out at any node within cluster. However, the centrally located

node and the computationally competent node are two preferred choices in order to

reduce round trip delays and computing time, respectively. The selected node only

requires the CSI of the links within that cluster for local optimization and this CSI

can be communicated through control channels to save the communication overhead

on the information channels [283].

Therefore, to address the practical limitations of the centralized realization, reduce the com-

munication/processing overhead on one central node and avoid the excessive time delays,

the distributed optimization framework is proposed.

Distributed Algorithm

In the distributed framework, we aim at grouping the neighboring nodes into clusters of

equal sizes, havingN nodes andN−1 hops, in order to equally distribute the computational
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load among all clusters. Each cluster acts as a whole system and runs the joint-optimization

algorithm locally to maximize the end-to-end achievable rate within that cluster. However,

the common scenario arises when the total number of nodes is not an integer multiple of

the desired cluster size, thus they cannot be equally grouped into the clusters of same size.

As such, consider a system with k-relays between the source and the destination. Then,

we propose to divide this system into C equal clusters of size N, where each cluster has N

nodes, where C is found to be expressed as

C =

⌊
k + 1

N − 1

⌋
. (4.22)

As a result, this leads to Ns unassigned nodes where Ns is smaller than N and is found to

be

Ns = k −
⌊
k + 1

N − 1

⌋
(N − 1) + 2. (4.23)

In the following, we propose two grouping configurations to deal with the Ns nodes:

• Group the Ns nodes to form an additional small-cluster. Thus, the system will have

a total of C + 1 clusters.

• Group the remaining Ns nodes with a pre-defined cluster. Thus, the number of the

nodes in the new re-defined cluster becomes Nb and is found to be

Nb = N +Ns − 1. (4.24)

The performance of the distributed realization approach can be improved by smartly choos-

ing the cluster size and their placement in the network. A heuristic approach is to locate

this odd sized cluster either at the transmitter side involving source node or at the receiver

end involving destination node. However, it is important to note that the cluster formula-

tion yields sub-optimal solution owing to the neglected RSI at the end nodes. Therefore,

the big odd cluster is expected to outperform the small odd cluster and even the regular
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cluster pertaining to the inclusion of RSI of intermediate nodes. Thus, a good suggestion is

to place the big odd cluster at the weakest channel location as it will contain the bottleneck

link dictating the end-to-end achievable rate. On the other hand, the grouping scenario with

small cluster is preferred to be placed at the strongest channel location so that its compro-

mised transmission parameters are not detrimental for the overall end-to-end achievable

rate. The proposed suggestions have been supported and validated using simulation results

in Section 4.5.

For comprehensive illustration, consider the distributed network scheme presented in

Figure 4.3. We aim to divide this system having k = 4 relays into N = 3 sized clus-

ters, which is clearly not possible to have equally sized groups. Therefore, one approach

is to group the remaining Ns = 2 nodes in another cluster which can either be placed

in the middle or at the destination as shown in Figure 4.2a. Another possibility is to

place this at the transmitting end. As discussed, we prefer to formulate this cluster at

the max (|h10| , |h32| , |h54|). So that the compromised transmission parameters due to ne-

glected RSI do not dominate the system performance, which is dictated by the minimum

rate link. Another approach is to group the remaining Ns = 2 nodes with another clus-

ter formulating a Nb = 4 sized-cluster which can either be placed at the start or at the

end as shown in Figure 4.2b. Again, the preferred approach is to place this big cluster

around transmitter if the min (|h10| , |h21|) ≤ min (|h43| , |h54|), else place it at the end to

accommodate destination node. Thus, bigger cluster will host the bottleneck link and the

conforming transmission parameters, owing to the inclusion of RSI at larger number of

intermediate nodes, will dictate overall system throughput.

It is important to highlight that the above mentioned approach requires a rough idea

of the strong and/or weak channel gains throughout the span of the system to practically

locate the odd cluster. The small cluster and big cluster scenarios are separately dealt

in Algorithm 2 and 3 respectively. As mentioned earlier, the small cluster size leads to

inefficient solution, therefore we place this small cluster at a location which offers relatively
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higher channel gain. This is advantageous as the cluster with better channel conditions does

not dictate the overall system achievable rate. In the same way, we place big cluster at a

weaker channel location for more accurate solution parameters as it will dictate the overall

system rate. The following two algorithms are enumerated to practically implement the

distributed networking approach.

Algorithm 2 Distributed Algorithm with C + 1 clusters
1: Choose Cluster size N
2: Compute Smaller cluster size Ns using (4.23).
3: Formulate the small cluster at strongest channel location.
4: Initialize Cluster counter j ← 1
5: while j ≤ C + 1 do
6: if Before Ns then
7: Solve 4-P2 for m = (j−1)(N−1), . . . , (j)(N−1)− 1.
8: end if
9: if At Ns then

10: Solve 4-P2 for m = (j−1)(N−1), . . . , (j)(N−1)−(N−Ns)−1.
11: end if
12: if Beyond Ns then
13: Solve 4-P2 for m = (j−1)(N−1)−(N−Ns), . . . , (j−1)(N−1)+Ns−2.
14: end if
15: Distribute the locally optimized transmit parameters within cluster.
16: j ← j + 1
17: end while

In Algorithm 2, we begin by choosing a cluster size N and divide the entire system into

C clusters each having N nodes. The remaining nodes are grouped into a small cluster of

size Ns and are chosen to have relatively high channel gain. Then, Algorithm 2 groups the

clusters into three main groups with a total of C + 1 clusters. The first group consists of all

clusters before the Ns cluster. The second group comprises only the Ns cluster. Finally, the

last group comprises of all the clusters after the Ns cluster. The physical intuition behind

the three mentioned groups in the algorithm is to provide the appropriate indexing of the

involved transmitting nodes in each cluster for their transmission parameter optimization

by solving 4-P2. The transmit parameters are locally designed in an individual cluster by

solving optimization problem 4-P2 for the corresponding range of m-transmitters. It is
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worth mentioning that the problem 4-P2 is solved by iteratively solving the problem 4-P6

using Algorithm 1. The optimized variables are then distributed to each node within the

cluster and the process continues.

Algorithm 3 Distributed Algorithm with C clusters
1: Choose Cluster size N
2: Compute bigger cluster size Nb using (4.24).
3: Formulate the big cluster at the weakest channel location.
4: Initialize Cluster counter j ← 1
5: while j ≤ C do
6: if Before Nb then
7: Solve 4-P2 for m = (j−1)(N−1), . . . , (j)(N−1)−1.
8: end if
9: if At Nb then

10: Solve 4-P2 for m = (j−1)(N−1), . . . , (j−1)(N−1)+Nb−2.
11: end if
12: if Beyond Nb then
13: Solve 4-P2 for m = (j−1)(N−1)+Nb−N, . . . , (j−1)(N−1)+Nb−2.
14: end if
15: Distribute the locally optimized transmit parameters within cluster.
16: j ← j + 1
17: end while

Algorithm 3 realizes the C cluster scenario, where the Ns cluster is merged with a reg-

ular cluster to formulate Nb sized cluster. Similar to Algorithm 2, Algorithm 3 deals with

three groups of clusters by scanning the C participating clusters. In the absence of CSI, the

remaining cluster can be randomly placed anywhere in the network. Although the division

into clusters reduces the round trip delays, communication overhead, and computational

complexity, it does so at the expense of deviated solution parameters. The distributed

solution ignores the drastic effects of RSI at the destination node in each cluster. Thus,

the solution of the distributed setup is expected to deviate from the joint optimization one

depending on the cluster size. The bigger the cluster size, the closer the distributed opti-

mization solution to the joint optimization one, as it accommodates RSI of the intermediate

nodes and vice versa. In addition, the distributed optimization focuses on the minimum

rate performance of local cluster without considering other links, which may cause devi-
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ation from the joint optimization solution. This portrays a trade off between distributed

computational load and optimal performance.

4.4.3 Complexity Analysis

The computational complexity analysis of the proposed algorithms is carried out in the

sequel. The proposed joint and distributed transmit optimization algorithms depict a trade-

off between performance and the computational complexity assuming negligible round-trip

delays and the high end computational capabilities of the central node. The computational

complexity of these strategies can be expressed as follows:

• Joint Approach: O
(
ISCP

1 (N2
1k + αmax (N3

1 , N
2
1M1, F1))

)
• Distributed Approach: O

(
ISCP

2 (N2
2 (Γ− 2) + αmax (N3

2 , N
2
2M2, F2))

)
where ISCP

x is the number of SCP iterations before convergence (x = 1 for joint algorithm,

x = 2 for distributed algorithm with regular clusters of size N , x = 2a for distributed

algorithm with small cluster of sizeNs and x = 2b for distributed algorithm with big cluster

of size Nb). In addition, the total number of optimization variables in joint and distributed

optimization algorithms are given as N1 = 2k + 2 and N2 = 2Γ − 2, respectively. Where

k is the total number of relays and Γ is the number of nodes in a given distributed cluster.

As for α, it is assumed to be between 10 and 100 for the interior point method [282]. Also,

M1 and M2 are the number of inequalities representing constraints of joint and distributed

optimization problems, respectively, defined as M1 = 2(k + 1) and M2 = 2(Γ − 1),

respectively.

Furthermore, F1 = N1(1 +M1) +N2
1M1 and F2 = N2(1 +M2) +N2

2M2 are the costs

of evaluating the first and second derivatives of the objective and constraint functions in

joint and distributed algorithms, respectively. The computational complexities of joint and

distributed algorithms are further simplified in Appendix A and Appendix B, respectively.

The simplified complexity analysis is presented in Table 4.1 for joint-algorithm with k
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Table 4.1: Complexity Analysis of the proposed algorithms

Algorithm Size Complexity
Joint Algorithm k-relays O

(
αISCP

1 k3
)

Distributed Algorithm
N -sized Clusters O

(
αISCP

2 N3
)

Ns-sized Cluster O
(
αISCP

2a Ns
3
)

Nb-sized Cluster O
(
αISCP

2b Nb
3
)

relays and distributed-algorithm with Γ = N sized regular cluster, Γ = Ns sized small

cluster, and Γ = Nb sized big cluster.

Evidently, the trend 1 ≤ Ns ≤ N ≤ Nb ≤ k follows from (4.23) and (4.24), depicts

the least complexity for the Ns-cluster distributed algorithm relative to the N -cluster dis-

tributed algorithm. Moreover,Nb-cluster distributed algorithm depicts the most complexity

of all distributed algorithms. However, the relation Γ = (k + C + 1)/C demonstrates that

Γ << k. Thus, validating that the computational complexity of the distributed algorithm

in a cluster of size Γ is far less than that of the joint optimization algorithm involving k

relays.

4.5 Numerical and Simulation Results

In this section, we quantify the gain reaped by employing IGS transmission scheme in

place of PGS scheme for the adopted MH-DF-FDR system suffering from RSI and HWD.

Besides studying the degradation effect caused by these interferences, we also investigate

the impact of multiple relays and the cluster size in distributed optimization approach on

the overall system performance. In addition, we compare the performance of the two pro-

posed algorithm for distributed approach with Nb and Ns cluster sizes and their respective

placement in the system network.

As for the simulation parameters, we assume unity transmit power from all transmitters,

1 Hz bandwidth of all involved links, noise variance σ2
z = 1 and HWD level κnm = 1

along with the impropriety level |κ̃nm| = 0.9 at all participating nodes. Moreover, hnm

of the m-n link is modeled as a slowly-varying Rayleigh flat-fading channel with hnm ∼
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Figure 4.3: Impact of RSI and HWD on System Performance

CN (0, πnm, 0) 3. Furthermore, we assume 25dB SNR for m-n link and the RSI of 10dB

unless otherwise specified.

4.5.1 Effect of RSI and HWD

First, we study the performance degradation caused by the RSI and HWD in Figure 4.3a

and 4.3b respectively. In the first simulation example, we study the advantage of employing

IGS in suppressing the RSI effect on the average achievable end-to-end rate for a dual-hop

FDR system as shown in Figure 4.3a. Average rate is observed at various RSI gains πrr

ranging from 0dB to 25dB for three different HWD levels. For simplicity, we assume

equal HWD and impropriety levels at source, relay and destination as presented by κsr =

κrr = κrd = 0.1, 0.5 & 1 and |κ̃sr| = |κ̃rr| = |κ̃rd| = 0.9, respectively. Evidently, the

increasing self-interference severely degrades the achievable rate performance. In addition,

increasing HWD κnm from 0.1 to 1 also deteriorates the system performance.

s

Interestingly, the proposed IGS scheme is capable of providing significant performance

3 It is important to highlight that the presented technical contribution holds true for any form of fading
including Rayleigh, Ricean or Nakagami. It is because of the fact that the derived framework does not depend
on the statistical characteristics of the given channel model.
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enhancement at lower-residual HWD levels, assuming effective joint compensation of HWD

and SI, for the entire range of RSI levels as shown in Figure 4.3a. Similar results have been

demonstrated in [179] to emphasize the significance of employing IGS transmission in an

attempt to alleviate the RSI adverse effect in FDR system considering ideal transceivers.

It is important to highlight that the PGS scheme undergoes saturation at higher RSI levels

irrespective of the HWD level. Thus, it can be safely concluded that the RSI dominates in

degrading the rate performance for PGS. On the other hand, IGS scheme efficiently miti-

gates the RSI impact and reduces the rate degradation. The best relative improvement is

achieved at high RSI and low HWD levels.

Secondly, we study the degradation effect of HWD on the average achievable rate for

various impropriety levels and the relative performance gains obtained by the proposed

joint IGS scheme and a sub-optimal less-complex distributed IGS approach over the con-

ventional PGS scheme in Figure 4.3b. We assume a MH system incorporating 3 relays

between the source and destination with favorable channel gains of hnm= 30dB at each

participating link. Clearly, the rate performance drastically deteriorates with increasing

HWD variance, from 0 indicating the ideal hardware to 1 indicating the maximal impair-

ment level4 even at very good channels gain. Moreover, joint IGS optimally mitigates the

HWD impact relative to PGS scheme at various impropriety levels. We aim to quantify the

practical impropriety levels through exact mapping of HWDs aggregating from I/Q mix-

ers, PA, and LNAs in future measurement phase. In addition, distributed approach with

cluster size N = 2 locally optimizes the transmission parameters reducing complexity,

undesired communication overhead, and delays. The joint IGS scheme outperforms the

sub-optimal distributed approach, which exceeds traditional PGS in achievable rate per-

formance. Interestingly, the distributed approach performs close to optimal joint IGS for

lower impropriety levels.

4Maximally impaired hardware is attained when the one-dimensional additive distortion power/variance
becomes equal to the transmitted signal power in the absence of any other mitigation strategy. Alternatively,
it is occurred when the in-phase and quadrature-phase distortion components are fully correlated for a given
impropriety level.
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Table 4.2: Rayleigh Fading and Free Space Distance Pathloss Model

System Parameters Parameter Values
Number of relays 1 2 3 4 5

Transmitting nodes
2 3 4 5 6

(Source and Relays)
Distance (d) between

0.30 0.20 0.15 0.12 0.10
adjacent nodes (km)

Transmit power per node (mW) 5.0 3.3 2.5 2.0 1.7

4.5.2 Number of Participating Relays

Next, we investigate the effect of increasing number of relays on the system spectral ef-

ficiency in the absence of a direct link between a given source and destination located

600m apart. We assume a limited power budget of 10mW for all participating trans-

mitters including source and relays. Thus, increasing the number of relays decreases

the power transmitted by one transmitter yielding negligible inter-relay interference. We

have adopted a Rayleigh fading and free-space distance path-loss model (Pathloss(dB) =

92.45+20 log10 dkm+20 log10 fGHz) [284]. We assume increasing number of relays ranging

from 1 to 5 which decreases inter-node distances and path losses. We also choose uniform

transmit power distribution among all transmitting nodes as shown in Table 4.2. We further

assume 2.1GHz carrier frequency, 20MHz channel bandwidth and three levels of RSI i.e.,

0.5dB, 2.5dB and 4.0dB as shown in Figure 4.4a. For simplicity, we assume equal HWDs

and impropriety levels at source, relays and destination as presented by κnm = 0.5 and

|κ̃nm| = 0.9, respectively. Intuitively, the absence of inter-relay interference and better link

strength with increasing number of relays guarantees an increase in the spectral efficiency.

However, the presence of HWDs and limited power budget limits this performance gain.

Moreover, increasing RSI drastically degrades the average rate performance especially for

PGS and higher number of participating relays. It is evident from Figure 4.4a that IGS

transmission can improve the spectral efficiency up to 58% as compared to the existing

PGS transmission in the presence of residual interferences. Conclusively, the joint IGS
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Figure 4.4: Average Achievable Rate Performance.

scheme efficiently mitigates the interference effects for any given number of relays and

RSI levels.

4.5.3 Impact of Cluster size and Placement in Distributed Algorithms

Another simulation example in Figure 4.4b illustrates the system achievable rate attained

by various forms of distributive algorithms keeping the joint-IGS scheme as a benchmark.

A multihop (MH) system using 4-relays between the source and destination is optimized

using four different forms of N = 3 distributive framework employing algorithm 2 and 3.

IGS distributed algorithm with Nb cluster divides the 5-link network into a cluster of size

N = 3 and groups the remaining nodes in a bigger cluster of size Nb = 4. Further division

is based on the placement of thisNb cluster, it is evident from Figure 4.4b that the odd clus-

ter placement at weak channel location (IGS Dist Nb) outperforms the random placement

in the absence of CSI. Identically, IGS distributed algorithm with Ns cluster divides the

5-link network into 2 clusters of size N = 3 and the remaining link is isolated. Again, the

placement of the segregated link at the strongest channel location (IGS Dist Ns) performs

better than the random placement at any other location. It is worth noting that the Nb clus-

ter formation outperforms the Ns cluster formation irrespective of the cluster placement.
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Figure 4.5: Average achievable rate versus self-interference for various cluster sizes.

Therefore, Nb distributed algorithm is the preferred choice when feasible. Evidently, all

the proposed IGS schemes provide significant rate compensation/improvement at different

interference levels as compared to its counterpart PGS scheme.

Finally, the impact of cluster size is analyzed on the end-to-end achievable rate for three

different residual HWD levels with 0.9 impropriety in Figure 4.5. 3-relay FDR system

under HWD and RSI is locally optimized using 3-different cluster sizes N = 2 or 1-

hop, N = 3 or 2-hop, and N = 5 or 4-hop or joint IGS optimization. We study the

simulation results for a range of RSI from 0dB to 20dB. Interestingly, the proposed IGS

schemes outperform PGS scheme especially for the significant HWD and RSI levels. It

is apparent from Figure 4.5 that the bigger the cluster size, the closer rate performance of

the distributed to the joint optimization one. This proves the previously discussed intuition

in Section 4.4.2. However, there is a trade-off between the cluster size and the system

complexity, round-trip delays and communication overhead. Therefore, cluster size can be

decided as per system configuration.

Numerical and simulation results clearly advocate the benefits of deploying various

forms of the IGS scheme over the PGS scheme to improve the system performance in terms

of end-to-end achievable rate for various levels of RSI and HWD in the MH-FDR system.

Moreover, the distributed approach performs closer to the joint optimization approach for
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big cluster sizes and lesser number of clusters as shown in Figure 4.4b and Figure 4.5,

respectively. It is owing to the accommodation of the RSI effects at all intermediate nodes.

The theoretical limits attained by IGS transmission for the achievable rate of a MH-DF-

FDR system suffering from HWDs establish the performance limits that can be achieved

through future communication standards. The existing techniques can achieve the perfor-

mance demonstrated by the PGS scheme. However, this work motivates the future re-

search to propose appropriate adaptive coding and modulation which can achieve the IGS

performance. As an example, one of our recent work quantifies the error performance

improvement obtained by transforming traditional symmetric M-QAM to asymmetric M-

QAM transmission to mitigate the performance degradation due to hardware impairments

and realize the benefits of asymmetric (improper) signaling [285].

4.6 Conclusion

In this chapter, we analyzed the effectiveness of using improper Gaussian signaling (IGS)

scheme in multi-hop decode-and-forward full-duplex relaying (MH-DF-FDR) systems un-

der residual self-interference (RSI) and hardware distortions (HWD). To this end, we ex-

pressed the achievable rate for the underlying system and tuned the IGS pseudo-variance

to maximize the end-to-end achievable rate. We presented, analyzed and illustrated two

realization schemes named as joint and distributed optimization schemes. Distributed-IGS

is further categorized as per the cluster size as well as its relative position in the system

network. Distinct forms of IGS-scheme can be adopted for suitable system configurations.

For a small system configuration with fewer hops joint-IGS is the preferred choice. How-

ever, for a larger-hops system, the joint-IGS renders sub-optimal results pertaining to the

inevitable processing and round-trip delays back and forth from the central-node at the cost

of increased system complexity and communication overhead. Therefore, distributed-IGS

is the preferred approach for large system configurations. Furthermore, distributed-IGS

with bigger odd-cluster along with the optimal cluster placement is the preferred choice
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as per the acquired simulation results. In a nutshell, all forms of IGS are proven to be

promising candidates for next generation networks that can significantly improve the over-

all achievable rate under various HWD and RSI levels, which have asymmetric signatures

on the useful signal.
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Chapter 5

Asymmetric Signaling for HWI Systems

Error probability study of hardware impaired (HWI) systems highly depends on the adopted

model. Considering the distinct improper Gaussian features of HWI systems, captured by

recent models, HWI-aware receivers are designed. An optimal ML receiver serves as a per-

formance benchmark, and a sub-optimal linear minimum mean square error (LMMSE) re-

ceiver introduces a reduced-complexity implementation. Whereas, the conventional HWI-

unaware minimum Euclidean distance (MED) receiver, based on the proper noise assump-

tion, exhibits substandard performance. Next, the average error probability of the proposed

optimal ML-receiver is analyzed, where several tight bounds and approximations are de-

rived for various HWI systems. Motivated by the benefit of improper Gaussian signaling

in mitigating HWI, which is proven in recent studies, asymmetric modulation is adopted

and optimized for transmission. The numerical results demonstrate a bit error rate (BER)

reduction up to 70% of the proposed HWI-aware receivers over HWI-unaware receivers.

Moreover, the asymmetric modulation is shown to reduce the BER by 93%. These re-

sults signify the importance of incorporating accurate HWI models, designing appropriate

receivers and optimizing signal transmission for BER performance compensation.

This chapter is organized as: Section 5.1 describes the significance and main contri-

butions of this work. Section 5.2 describes the adopted system along with its complete

characterization. In section 5.3, we propose an optimal receiver and a sub-optimal linear

receiver for the system under mentioned HWIs. Next, we present error probability analysis

based on the pairwise error probability (PEP) for generalized M-ary modulation scheme

in section 5.4. Later, average error probability bounds and approximations are computed
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for three different adopted systems in section 5.5. Section 5.6 illustrates various forms

of transmit signal designs to reduce error probability followed by the numerical results in

Section 5.7 and the conclusion in Section 5.8.

5.1 Main Contributions

In this chapter, we analyze the error probability performance of communication systems

suffering from HWIs represented in IQI and additive distortions at both transmitter and

receiver. Moreover, motivated by the theoretical limits results in [20], which demonstrate

the benefits of employing improper Gaussian signaling to improve the performance of hard-

ware impaired systems, we adopt asymmetric signaling scheme to minimize the error prob-

ability performance. In the following, we summarize the main contributions as:

• Studying and accurately quantifying the asymmetric characteristics of the aggregate

HWIs from various impairment sources.

• Deriving the optimal maximum likelihood (ML) detector and the suboptimal linear

minimum mean square error (LMMSE) receiver based on the improper interference,

SI information signals, and asymmetric signaling transmission.

• Analyzing PEP based on the accurate model and optimal ML detector.

• Analyzing the average error probability and deriving bounds and approximations for

various HWI system configurations.

• Designing an asymmetric modulation signal to minimize the error probability.

5.2 System Description

Consider a wireless communication system with RF transceiver impairments including

hardware distortions and IQI. These impairments can be modeled as detailed in Chapter
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3. Therefore, the received signal with aggregate impairments is given in (3.7) as

y =
√
ph̃1x+

√
ph̃2x

∗ + z, (5.1)

where x is a band-pass modulated signal taken from M -QAM, M -PSK or M -PAM con-

stellation. Moreover, h̃1 = µ1ν1h+µ2ν
∗
2h
∗ and h̃2 = µ1ν2h+µ2ν

∗
1h
∗ are modified channel

gain parameters accommodating fading h and IQI (ν1, ν2, µ1, µ2) characteristics . The ag-

gregated noise z is given by (3.8). Thus, the transceiver IQI transforms the symmetric

transmitted signal to asymmetric received signal and the proper Gaussian interference to

improper Gaussian interference [20].

The useful signal component in (3.7) comprises of both the actual signal x and the SI

signal x∗. Thus, treating the SI term as mere interference will result in a loss of useful

information. For a given channel and I/Q parameters, the instantaneous signal-to-noise

ratio (SNR) averaged over additive distortions andM signal constellation with E{|xm|2} =

σ2
x and E{x2

m} = σ̃2
x, m = 1, 2, . . . ,M , is given as

Λ =

p

(∣∣∣h̃1

∣∣∣2σ2
x +

∣∣∣h̃2

∣∣∣2σ2
x + h̃1h̃

∗
2σ̃

2
x + h̃2h̃

∗
1σ̃

2∗
x

)
(
p|h|2σ2

t + σ2
r

) (
|µ1|2 + |µ2|2

) . (5.2)

We relax the transmit distortion obtaining reduced complex system and express p in terms

of the average SNR Λ̄ = Eh [Λ] as

p =
σ2
r

λ

[
Λ̄

|ν1|2σ2
x + |ν2|2σ2

x + 2<{ν1ν∗2 σ̃
2
x}

]
. (5.3)

The transceiver IQI and the improper additive noise change the system characteristics and

render the traditional MED receiver as a sub-optimal detection solution. MED can nei-

ther support the SI structure induced by the IQI nor the asymmetric characteristics of the

additive noise.
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5.3 Receiver Design

In this section, we propose an optimal ML receiver for the adopted HWI system model.

We further propose a least complex LMMSE receiver and use the conventional minimum

Euclidean distance receiver for performance comparison.

5.3.1 Optimal Maximum Likelihood Receiver

Given the equiprobable symbols and improper interference, the conventional MED receiver

for Gaussian interference performs sub-optimally as it fails to accommodate the dependent

and non-identical real and imaginary components of the improper noise. Therefore, we

propose an optimal ML receiver for the presented hardware impaired system model. The

aggregated received signal in (3.7) is equivalent to

y =
√
pχm + z; m = 1, 2, . . . ,M (5.4)

where

ζmd =

(
yr −

√
pχmr

)2

σ2
I

+

(
yi −
√
pχmi

)2

σ2
Q

−
2ρ
(
yr −

√
pχmr

) (
yi −
√
pχmi

)
σIσQ

(5.5)

and χm = h̃1xm + h̃2x
∗
m depend on the transmitted symbol m and z is the accumulated

noise component (3.8). For a given channel, IQI estimates [286] and transmitted signal

xm, the real component yr and imaginary component yi of the received signal y are jointly

Gaussian with PDF as given in (5.6),

fyryi|χm (yr, yi|χm) = 1

2πσIσQ

√
1−ρ2

exp −1
2(1−ρ2)

(ζmd ) , (5.6)

where the useful in-phase signal component χmr and quadrature component χmi are
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given, respectively, as

χmr =
(
h̃1r + h̃2r

)
xmr +

(
h̃2i − h̃1i

)
xmi ,

χmi =
(
h̃1i + h̃2i

)
xmr +

(
h̃1r − h̃2r

)
xmi , (5.7)

where h̃kr and h̃ki are the real and imaginary components of h̃k respectively. In addition, xmr

and xmi are the real and imaginary components of the transmitted symbol xm, respectively.

Moreover, the in-phase zr and quadrature component zi of z are zero-mean Gaussian RV

with variances σ2
I and σ2

Q, respectively. σ2
Q = a2

rσ
2
I and σ2

I is written as

σ2
I =

σ2
r

2
+
pσ2

t

2
|h|2. (5.8)

Interestingly, the noise variance depends not only on the IQI parameter and the distortion

variance but also on the transmitted power and channel gain. Therefore, an increase in

the transmitted power marks a proportional increase in the noise variance owing to the

presence of transmit distortions. Using (3.8), the correlation coefficient ρ between zr and

zi simplifies to

ρ =
E (zrzi)

σIσQ

= sin θr. (5.9)

Note that ρ merely depends on the amount of rotational error induced by the receiver IQI.

Considering the improper Gaussian interference, the optimal ML detection is based on

maximizing the following conditional probability

x̂m = arg max
m=1,2,...,M

fyryi|χm (yr, yi|χm) (5.10)

Using (5.6), the ML receiver in (5.10) reduces to the minimization of the argument of

fyryi|χm (yr, yi|χm), i.e., x̂m = arg min
m=1,2,...,M

{ζmd }. Using (5.8) and (5.9), the optimal ML
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receiver is simplified as

x̂m= arg min
m=1,2,...,M

{
(yr−
√
pχmr )2+

1

a2
R

(yi−
√
pχmi )2− 2 sin θR

aR

(yr−
√
pχmr ) (yi−

√
pχmi )

}
.

(5.11)

5.3.2 Minimum Euclidean Distance Receiver

Considering the traditional MED receiver with the assumption of circularly symmetric

complex Gaussian interference

x̂m = arg min
m=1,2,...,M

|y −√pχm|2, (5.12)

where χm = hxm under ideal hardware assumption. The disagreement between (5.11) and

(5.12) is owing to the presence of amplitude translation ar and rotational error θr caused by

the receiver IQI. The amplitude error is responsible for the non-identical real and imaginary

components and the rotational error is accountable for the mutual correlation.

5.3.3 Linear Minimum Mean Square Error Receiver

Linear receivers are popular for the ease of implementation and least complex receiver

design. Therefore, the LMMSE receiver is derived for the adopted HWI system model.

Consider the linear estimator x̂ =c∗y, we aim to design the estimator in order to minimize

the mean square error E
{
‖x̂− x‖2} = E

{
‖c∗y − x‖2}. Given the convex nature of norm

minimization problem, second order sufficient condition renders the stationary point as the

global optimal solution. Thus, the optimal c is given as c̄ = R−1
yy Ryx, where Ryy is the

covariance of the received signal y given in (3.7) and Ryx is the cross-covariance of the

received signal y and the transmitted signal x. Considering the asymmetric transmission,
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the c̄ is derived as:

c̄ =

√
ph1σ

2
x +
√
ph2σ̃

2∗
x

p
(
|h1|2 + |h2|2

)
σ2
x + 2p<{h1h∗2σ̃

2
x}+ σ2

z

, (5.13)

where the aggregate noise variance σ2
z = (p|h|2σ2

t + σ2
r)(|µ1|2 + |µ2|2) from (3.8). Note

that the obtained x̂ is LMMSE estimate of the transmitted symbol xm. Thus, the ultimate

detection relies on finding the closest possible symbol in a reference constellation using

slicers.

The optimal ML receiver serves as the performance benchmark for the conventional

MED receiver, which is considered optimal under the ideal hardware and AWGN assump-

tion. Moreover, the performance analysis of LMMSE receiver in Section 5.7 justifies its

suitability for reduced complexity practical implementation.

5.4 Error Probability Analysis

Symbol error probability analysis has been carried out based on the proposed optimal ML

receiver presented in section 5.3. This work focuses on the derivation of pairwise error

probabilities in higher order modulation schemes for the simplified and tractable analysis

of the adopted system model under HWI. We further analyze the asymptotic behavior of

the derived error probability expression with increasing SNR.

5.4.1 Symbol Error Probability

Symbol error probability (Ps) is defined as the probability of detecting χn given χm was

transmitted with prior probability Pr (χm) for all m 6= n. Thus, Ps is expressed as

Ps ≤
M∑
m=1

M∑
n=1
n6=m

Pr (χm → χn|χm) Pr (χm) (5.14)
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where the term Pr (χm → χn|χm) is the well-known PEP expression. Under the assump-

tion of equal likely transmitted symbols of M−1, (5.14) reduces to

Ps ≤
1

M

M∑
m=1

M∑
n=1
n 6=m

Pr (χm → χn|χm). (5.15)

At high SNR, most error events occur with neighboring symbols, where the probability

of making error with neighboring symbol is higher than that with a farther point which is

not located at minimum distance (dmin) from the transmitted symbol. Thus, we can upper

bound Ps by the PEP between two closest possibilities as Ps ≤ (M − 1) Pr (χm → χn|χm),

where xn is assumed to be the neighbor located at dmin from xm. This upper bound is the

loose union bound as it assumes all neighbors to be located at dmin, which is only valid for

orthogonal modulation schemes and invalid for other modulation schemes. Therefore, we

employ the nearest neighbor union bound (NNUB) for M -ary modulation.

Ps ≤ ψ Pr (χm → χn|χm) (5.16)

where ψ represents the average number of neighbors located at dmin distance to each other.

For example, forM -phase shift keying (PSK) ψ = 2 and forM -QAM square constellation,

it is found to be

ψ =
1

M

(
4x2 + 4

(√
M − 2

)
x3 +

(√
M − 2

)2

x4

)
. (5.17)

Based on the optimal ML receiver in (5.11), PEP is defined by the conditional probability

expressed in (5.18).

Pr(χm→χn|χm)=Pr


(yr−
√
pχmr )

2

σ2
I

+
(yi−
√
pχmi )

2

σ2
Q

− 2ρ(yr−
√
pχmr )(yi−

√
pχmi )

σIσQ
>

(yr−
√
pχnr )

2

σ2
I

+
(yi−
√
pχni )

2

σ2
Q

− 2ρ(yr−
√
pχnr )(yi−

√
pχni )

σIσQ

. (5.18)
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Given that xm was transmitted, it is justified to replace all occurrences of yr with
√
pχmr +zr

and yi with
√
pχmi + zi. Thus, we obtain the following simplified PEP expression

Pr (χm → χn|χm)= Pr

{
η>

pζ2
r

σ2
I

+
pζ2

i

σ2
Q

− 2pρζrζi

σIσQ

}
, (5.19)

where η is obtained by the superposition of zr and zi

η =

(
2ρζi

σIσQ

− 2ζr

σ2
I

)
√
pzr +

(
2ρζr

σIσQ

− 2ζi

σ2
Q

)
√
pzi, (5.20)

One can show that η is Gaussian RV with zero mean and a variance σ2
η that is expressed as

σ2
η = 4

(
1− ρ2

) [pζ2
r

σ2
I

+
pζ2

i

σ2
Q

− 2pρζrζi

σIσQ

]
. (5.21)

Moreover, ζr = χr
m−χr

n and ζi = χi
m−χi

n are the distances between real and imaginary

components of the transmitted and received useful signal component in an error event,

respectively. Consequently, the probability in (5.19), is the cumulative distribution function

(CDF) of the Gaussian RV η and is given by

Pr (χm→χn|χm)=Q


√√√√ 1

4 (1−ρ2)

(
pζr

2

σ2
I

+
pζi

2

σ2
Q

−2pρζrζi

σIσQ

). (5.22)

The instantaneous PEP expression depends on the distance between the transmitted and

received erroneous signal component under Rayleigh fading, IQI and transceiver additive

distortions. It further relies on the average transmit power and statistical characteristics of

the non-identical and dependent I/Q phase improper interference components.

5.4.2 Asymptotic Analysis

Throughout the following discussion, we investigate the system performance of HWIs sys-

tems under high SNR assumption. The dependence of the statistical characteristics of the
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improper interference components (5.8) on the average SNR motivates us to analyze the

asymptotic behavior of the PEP expression with respect to the parameter p. Substituting

(5.8) and (5.9) in (5.22) yields

PEP = Q

(√
a2

rpζ
2
r + pζ2

i − 2arp sin θrζrζi

2a2
r cos2θr (σ2

r + pσ2
t |h|2)

)
. (5.23)

The asymptotic behavior of the instantaneous PEP depicts an irreducible error floor, which

is found from the following limit,

lim
p→∞

PEP = Q

(√
a2

rζ
2
r + ζ2

i − 2ar sin θrζrζi

2a2
rσ

2
t cos2θr|h|2

)
. (5.24)

It is important to note that out of all the aforementioned impairments, transmitter distortions

are mainly responsible for the error floor. Intuitively, increasing SNR also increases the

transmitter distortions, thus rendering it ineffective to reduce the error probabilities. From

(5.23), it is evident that assuming σ2
t = 0 will result in limp→∞ PEP = 0.

5.5 Average Probability of Error

In this section, we analyze the average symbol error probability (SEP) for three different

scenarios; system under transmitter and receiver HWIs, system with only receiver HWIs

and system with only transmitter HWIs.

5.5.1 System with Transmitter and Receiver Hardware Impairments

Consider the generalized system model under transmitter and receiver IQI as well as the

transmitter and receiver additive distortions. The PEP of the underlying system is given

by (5.23). The average SEP (P̄s) of the generalized model is investigated assuming small

θr, where it has been shown experimentally that θr ≤ 50 is a valid assumption for the IQI

rotational errors in [8]. As a result, we can assume sin θr ≈ 0, which reduces the PEP
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expression to

PEP = Q

(√
αh2

r + βh2
i

1 + γ (h2
r + h2

i )

)
, (5.25)

where α = p (a2
r ς

2
1 + ς2

2 )/(2σ2
r a

2
r cos2θr) and β = p (a2

r ς
2
3 + ς2

4 )/(2σ2
r a

2
r cos2θr). In addi-

tion, γ is the scaled ratio of transmitter distortion variance to receiver distortion variance,

i.e., γ = pσ2
t /σ

2
r . Moreover, ςs, s ∈ {1, 2, 3, 4} are obtained using IQI parameters and the

respective modulation scheme characteristics as ς1 = ξr, ς2 = atar cos θt cos θrξi, ς3 =

atcosθtξi and ς4 = ar cos θrξr. They particularly depend on the symbol separation between

two closest possibilities with ξr = (xmr − xnr ) being the separation between the real com-

ponents and ξi = (xmi − xni ) being the separation between the corresponding imaginary

components. Let us denote the argument of the Q-function in (5.25) as

ϑ =
αh2

r + βh2
i

1 + γ (h2
r + h2

i )
. (5.26)

Under the assumption of Rayleigh fading channels, the RV ϑ for a given signal constellation

and IQI parameters has a CDF of Fϑ (ϑ) that is derived in Appendix C as

Fϑ (ϑ)=
1

k1 (ϑ)

∞∑
m=0

2−2mk3(ϑ)2m

[m!]2k2(ϑ)2m+1[2m!−Γ (2m+1, ϑk2(ϑ))] . (5.27)

Using (5.16), P̄s is obtained by averaging the PEP expression in (5.25) with respect to ϑ as

P̄s ≤ ψEϑ

[
Q
(√

ϑ
)]

= ψ

∫ δ

0

Q
(√

ϑ
)
fϑ (ϑ)dϑ. (5.28)

Average PEP Bound

Using the Chernoff bound Q(x) ≤ 0.5exp(−x2/2), yields

P̄s ≤
ψ

2

∫ δ

0

e−
ϑ
2 fϑ (ϑ)dϑ =

ψ

2
e−

δ
2 +

ψ

4

∫ δ

0

e−
ϑ
2Fϑ (ϑ)dϑ. (5.29)
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The equality in (5.29) is obtained after applying integration by parts, which enables us to

represent the presented bound in terms of Fϑ (ϑ). Average PEP bound can be accurately

evaluated using numerical integration techniques such as Gaussian quadrature. Existence

of the definite integral with finite limits motivates us to employ the popular nth− order

Legendre orthogonal polynomial PN(t) [287, (25.4.29-30)]. We obtain the required form

by following parametrization,

P̄s ≤
ψ

2
e−

δ
2 +

δψ

8

∫ +1

−1

s (0.5δ (t+ 1))dt. (5.30)

where s (ϑ) = e−
ϑ
2Fϑ (ϑ). Gaussian quadrature enables us to numerically approximate the

integral in (5.30) with weights ωn and s (ϑ) evaluation at the corresponding instances.

P̄s ≤
ψ

2
e−

δ
2 +

δψ

8

[
N∑
n=1

ωn(tn)s (0.5δ (tn + 1)) +RN

]
, (5.31)

where tn is the nth zero of the N th−order Legendre polynomial PN (t) and the correspond-

ing weights are obtained using [287, (25.4.29)].

ωn(tn) =
2

(1− t2n)
[
PN

(1) (tn)
]2 . (5.32)

The approximation error is given by residual term RN [287, (25.4.30)], which decreases

significantly with the increasing order of the Legendre polynomial and expressed by

RN =
δ2N+1(N !)4

(2N + 1) [(2N)!]3
f (2N) (φ) ;−1 < φ < 1. (5.33)

This numerical integration technique accurately evaluates the intractable integral in (5.29)

as (5.31).
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Average PEP Approximation

The Craig’s formula representation of the Q-function [288, (4.2)] can be employed to ap-

proximate the average probability of error as

P̄s ≤ ψ

∫ δ

0

(
1

π

∫ π/2

0

e
− ϑ

2sin2ϕdϕ

)
fϑ (ϑ)dϑ. (5.34)

Based on uniform convergence, swapping the integrals and employing integration by parts

yields the P̄s as a function of Fϑ (ϑ) as

P̄s ≤
ψ

π

∫ π/2

0

e
− δ

2sin2ϕdϕ+
ψ

2π

∫ π/2

0

∫ δ

0

e−ϑ/(2sin2ϕ)

2sin2ϕ
Fϑ (ϑ) dϑdϕ. (5.35)

The first integral in (5.35) reduces to the complementary error function and the second

term involving double integration leads to an intractable analysis. Therefore, we employ

Gaussian Quadrature to numerically integrate this definite integration as

P̄s ≤
ψ

2
erfc

(√
δ

2

)
+

ψ

2π

∫ π/2

0

∫ δ

0

g (ϑ, ϕ)dϑdϕ. (5.36)

Choosing the following parametrization for numerical integration enables us to employ

nth−order Legendre orthogonal polynomial in the square interval [-1, 1] as

P̄s ≤
ψ

2
erfc

(√
δ

2

)
+
δψ

8

∫ 1

−1

∫ 1

−1

g

(
δ

2
(y + 1) ,

π

4
(x+1)

)
dydx, (5.37)

where y = 2
δ
ϑ − 1 and x = 4

π
ϕ − 1. Eventually the numerical approximation of double

integrals is obtained using Kth−order and Lth−order Legendre polynomial approximations

for integration over dy and dx respectively as

P̄s ≤
ψ

2
erfc

(√
δ

2

)
+
δψ

8

L∑
l=1

K∑
k=1

ωlωkg

(
δ

2
(yk + 1) ,

π

4
(xl + 1)

)
, (5.38)
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where the weights ωk(yk) and ωl(xl) are obtained using (5.32). Moreover, yk and xl are the

kth and lth zeros of the Kth−order Legendre polynomial PK (y) and Lth−order Legendre

polynomial PL (x) respectively. Higher order K and L yield better approximation with

minimal residual errors at the cost of computational overhead.

5.5.2 Zero-Distortion Transmitter

In this subsection, we propose a closed form bound and approximation for the average

PEP expression of the adopted system model under transmitter and receiver IQI along with

the thermal noise at receiver but negligible transmitter distortion. This simplifies the PEP

expression in (5.25) to PEP = Q
(√

%
)

where % = αh2
r + βh2

i . Following similar steps as

in Appendix C, the PDF of f% (%) for the Rayleigh fading channel is given as

f% (%)=
1

λ
√
αβ

e−
%

2λ( 1
α

+ 1
β )I0

{
%

2λ

(
1

α
− 1

β

)}
; % ≥ 0. (5.39)

Thus the average PEP can be evaluated by solving P̄s ≤ ψE%
[
Q
(√

%
)]

.

Average PEP Bound

Employing the Chernoff bound on the Q-function, we obtain

P̄s ≤
ψ

2

∫ ∞
0

e−
%
2 f% (%)d%. (5.40)

The uniform convergence and the interchangeable integral and summation enable us to

evaluate the closed form expression for the P̄s bound as shown in Appendix D obtaining

P̄s ≤
√
αβψ

|β − α|

∞∑
m=0

(2m)!

[m!]222m

[
|β − α|

(α + β + αβλ)

]2m+1

. (5.41)

This yields a closed form upperbound on the average SEP using (5.15) or (5.16).
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Exact Average PEP using Craig Representation

The Craig representation of Q-function yields exact average PEP expression and a close

approximation for P̄s using NNUB as

P̄s ≤
ψ

π

π/2∫
0

∞∫
0

e
− %

2sin2ϕf% (%)d%dϕ. (5.42)

Using similar steps to the presented in Appendix D, we solve the integral over % obtaining

P̄s ≤
2
√
αβψ

π |β−α|

∞∑
m=0

(2m)!

(m!)222m

π/2∫
0

(
|β − α| sin2ϕ

αβλ+(α+β) sin2ϕ

)(2m+1)

dϕ. (5.43)

Furthermore, the Wolfram Mathematica integrator solves the complex integral in (5.43) as

P̄s ≤ 2
√
αβψ

π|β−α|

∞∑
m=0

(2m)!

(m!)222m(3+4m)

(
|β−α|
αβλ

)(2m+1)

F1

(
2m+ 3

2
; 1

2
, 2m+ 1; 2m+ 5

2
; 1, −(α+β)

αβλ

)
(5.44)

Equivalently, P̄s can be represented with Gauss hypergeometric function for easy imple-

mentation as given in (5.45).

P̄s ≤ 2ψ
πλ
√
αβ

∞∑
m=0

(2m)!

(m!)2(3+4m)

(
|β−α|
2αβλ

)2m

Γ
(

1
2

)Γ(2m+ 5
2)

Γ(2m+2) 2
F1

([
2m+ 3

2
, 2m+1

]
, 2m+2, −(α+β)

αβλ

)
(5.45)

Exact Average PEP using Moment Generating Function (MGF)

The lack of correlation between the real and imaginary channel coefficients in % = αh2
r +

βh2
i enables us to compute approximately P̄s using MGF approach. The average PEP is

given in terms of MGF of % as

E% [Q (
√
%)] =

1

π

∫ π/2

0

M%

[
−1

2sin2ϕ

]
dφ. (5.46)
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where M% (s) is expressed as, see Appendix E for derivation,

M% (s) =
1√

1− αs
√

1− βs
. (5.47)

Therefore, the bound on P̄s is given as

P̄s ≤
ψ

π

∫ π/2

0

1√
1 + α

2sin2ϕ

√
1 + β

2sin2ϕ

dφ. (5.48)

The Chernoff, Craig and MGF bounds provide tight bound and approximation on the aver-

age PEP, respectively, which can then be employed to evaluate NNUB on average SEP as

well as average BER for the adopted HWI system.

5.5.3 System with Negligible Transmitter I/Q Imbalance

This section deals with the receiver IQI under the assumption of minimal transmitter IQI.

An example of such scenario is the cellular downlink case when the BTS employs sophis-

ticated signal processing techniques rendering minimal IQI. However, the mobile station

employs homodyne RF front-end architecture to assist compactness and energy efficiency.

In such scenarios, the system only suffers from the receiver IQI.

In the presence of the thermal noise, we further consider two scenarios with and with-

out transmitter distortion to evaluate average PEP. In the first case, system suffers from

receiver IQI as well as non-trivial transmitter and receiver distortions. In this case the aver-

age PEP has the same bound as given in (5.29),-(5.31) and a close approximation as given in

(5.37),(5.38) with Fϑ (ϑ) and the corresponding parameters are given in (C.6)-(C.7). How-

ever, the parameters α and β are now defined as α = p (ξ2
r + cos2θrξ

2
i )/(2σ2

r cos2θr), and

β = p (ξ2
i + cos2θrξ

2
r )/(2σ2

r cos2θr). In the second scenario, when the transmitter exhibits

negligible transmit distortion, the receiver I/Q imbalanced system follows the same closed

form bound as given in (5.41) and exact average PEP in (5.45), with the corresponding



130

parameters α and β.

5.5.4 System with Negligible Receiver I/Q Imbalance

After neglecting IQI at the receiver, the PEP expression in (5.25) reduces to

PEP = Q

(√
α|h|2

1 + γ|h|2

)
= Q

(√
Ω
)
, (5.49)

where α = p
2σ2

r
(τ 2

1 + τ 2
2 ), τ1 = ξr and τ2 = (at sin θt) ξr + (at cos θt) ξi. To evaluate the

average PEP, we first need to investigate the PDF of Ω that is derived in Appendix F as

fΩ (Ω) =
αλ

(α− γΩ)2 e
−λΩ
α−γΩ ; 0 ≤ Ω ≤ α/γ. (5.50)

Average PEP Bound

The average PEP is upper bounded using the Chernoff bound as

P̄s ≤
αλψ

2

α/γ∫
0

e
γΩ2−(α+2λ)Ω

2(α−γΩ)

(α− γΩ)2 dΩ. (5.51)

Again, we employ Gaussian quadrature numerical integration to evaluate the presented

upper bound using Legendre polynomial, which simplifies the average PEP as

P̄s ≤
λψ

γ

+1∫
−1

g (t)dt =
λψ

γ

n∑
k=1

ωkg (tk) +Rn, (5.52)

where the nodes tk are the zeros of nth−order Legendre polynomial and the weights ωk

and the residual term Rn are defined in (5.32) and (5.33) respectively. In addition, the

function g(t) is derived from the integrand in (5.51) by choosing the parametrization t =
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−1 + 2Ωγ/α as

g (t) =
1

(t− 1)2 exp

(
−α (t+ 1)

4γ
+
λ (t+ 1)

γ (t− 1)

)
. (5.53)

Average PEP Approximation

Using the Craig representation of the Q-function, the average error probability of the trans-

mitter only IQI reduces to

P̄s ≤
ψ

π

α/γ∫
0

π/2∫
0

e
− Ω

2sin2φ
αλ

(α− γΩ)2 e
−λΩ
α−γΩdφdΩ. (5.54)

which cannot be evaluated in a tractable way. However, by incorporating similar procedure

to approximate the P̄s bound in (5.54) using numerical integration Gaussian Quadrature

technique by choosing the following parameterization yields

P̄s ≤
α2λψ

8γ

∫ 1

−1

∫ 1

−1

h

(
α

2γ
(u+ 1) ,

π

4
(v + 1)

)
dudv, (5.55)

where u = 2γ
α

Ω − 1 and v = 4
π
ϕ − 1. The numerical approximation of double integrals

in the square region is obtained using Kth− order and Lth− order Legendre polynomial

approximations for integration over du and dv, respectively.

P̄s ≤
α2λψ

8γ

L∑
l=1

K∑
k=1

ωlωkh

(
α

2γ
(uk + 1) ,

π

4
(vl + 1)

)
, (5.56)

where the weights ωk(uk) and ωl(vl) are obtained using (5.32). Moreover, uk and vl are the

kth and lth zeros of the Kth−order and Lth−order Legendre polynomials, respectively.

The average BER can be derived as P̄b ≤ P̄s/log2M assuming gray coding in the

high SNR regime. The average PEP bounds and approximations are given in (5.31) and

(5.38) for the system under dual IQI with transmit distortion respectively. Similarly, the

average PEP bounds and approximations for the dual IQI without transmit distortion are
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given in (5.41) and (5.45) respectively. The same results hold for the system with negligi-

ble transmitter IQI with and without transmit distortion given modified parameters α and

β. Similarly, the average PEP bounds and approximations for the system with negligible

receiver IQI are proposed in (5.52) and (5.56), respectively.

5.6 Transmit Signaling Design

Transmit signaling can be optimized to reduce the probability of error by effectively mit-

igating HWI effects. Practically, the signal constellation can be modified within power

constraints to achieve a lower probability of error. The rotation and translation in-variance

of error probability is a well-known fact. However, this is only true in the presence of

proper additive noise. We propose an asymmetric modulation scheme where effective ro-

tation and optimal scaling of a symmetric signal constellation is performed to mitigate the

HWIs impact in distorting signals and deforming the aggregate noise to improper Gaussian

one. The PEP expression in (5.22) can be presented in a matrix form as follows

Pr (xm → xn|xm) = Q

(√
p

4 (1− ρ2)
xT
mnH̃YH̃Txmn

)
, (5.57)

where xm = [<{xm} ={xm}]T, H̃ and Y are expressed as

H̃=

h̃1r + h̃2r h̃2i − h̃1i

h̃1i + h̃2i h̃1r − h̃2r

 , Y=

 1/σ2
I −ρ/σIσQ

−ρ/σIσQ 1/σ2
Q

 (5.58)

and xmn represent the distance vector between any two information symbols xm and xn

and is written as

xmn =

 <{xm} − <{xn}
={xm} − ={xn}

 . (5.59)

In order to design the rotation and scaling, consider the information bearing signal s =

sr + isi and the vector representation of mth symbol as sm = [<{sm} ={sm}]T. Thus,
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Table 5.1: Rotation angles for maximal symbol separation in one-dimension

Modulation Scheme θ Modulation Scheme θ

4-QAM 26.560 16-QAM 14.03750

8-QAM 26.560 64-QAM 7.00

the suggested rotation and translation transforms the symmetric modulated symbols sm to

asymmetric modulated symbols xm as

xm = A (η) R (θ) sm (5.60)

where, the rotation matrix R with rotation angle θ is:

R (θ) =

 cos θ − sin θ

sin θ cos θ

 (5.61)

Moreover, the translation matrix A is given in (5.62). It is important to highlight that

η ∈ [0 1]. It can be easily derived using Definition 3; where Cx=|σ̃2
x|/σ2

x, and Cx ∈ [0 1]

with |σ̃2
x| = ησ2

x given translation x = A (η) s,

A (η) =

 √1 + η 0

0
√

1− η

 (5.62)

We aim to design the rotation angle θ and scaling η to dampen error probability by ef-

fectively mitigating various HWI effects. Table 5.1 contains the intuitive θ for various

modulation schemes to attain maximum separation between any two adjacent symbols in

one-dimension and can be introduced as x = Rs. Next, we propose several design schemes

for the translation matrix A.
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5.6.1 Special Cases

The existing symmetric signaling schemes induce θ = 0 and η = 0 which render identity

rotational and scaling matrices. The symmetric signaling scheme fails to attain lower error

probability in the presence of improper impairments. Therefore, a sub-optimal approach

for the asymmetric transmission i.e, maximal asymmetric transmission with η = 1 can be

employed. This η renders the following scaling matrix

A =

 √2 0

0 0

 (5.63)

This scheme reduces computational complexity to solve any optimization problem and out-

performs the existing symmetric signaling scheme in some scenarios as discussed in Sec-

tion 5.7. Next, we propose two optimization schemes for the design of optimal translation

matrix.

5.6.2 Maximum Pairwise Error Probability Minimization

In this subsection, we design the scaling matrix A for asymmetric signal transmission to

minimize the maximum PEP. The PEP in (5.57) after the requisite transformation in (5.60)

can be presented as

Pr(sm→sn|sm)=Q

(√
p

4 (1− ρ2)
sT
mnR

TATH̃YH̃TARsmn

)
(5.64)

The following optimization problem, 5-P1, minimize the maximum PEP based on Defini-

tion 2.9 for all possible error events between any two different symbols in a given signal
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constellation:

5-P1 : minimize
η,κ

κ

subject to Pr (sm → sn|sm) ≤ κ, ∀sm 6= sn ∀ m,n

0 ≤ η ≤ 1.

The minimization problem 5-P1 can be equivalently reformulated to the following maxi-

mization problem by disregarding the Q-function in (5.64) for the ease of implementation,

5-P2 : maximize
η,τ

τ

subject to sT
mnR

TATH̃YH̃TARsmn≥τ, ∀sm 6= sn, ∀ m,n

0 ≤ η ≤ 1.

5-P2 is prove to be a concave problem as shown in Appendix G, thus it can be optimally

solved using solvers like CVX.

5.6.3 Maximum Symbol Error Rate Minimization

The asymmetric modulation can also be designed based on another optimization criteria,

where the maximum SEP has to be minimized. To this end, we employ the SEP bound in

(5.15) for the information bearing symbols sm, m ∈ {1, 2, . . . ,M} as

Ps ≤
1

M

M∑
m=1

M∑
n=1
n 6=m

Pr (sm → sn|sm). (5.65)
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The minimization problem can be formulated as in 5-P3 along with the box constraint on

the design parameter η based on Definition 2.9.

5-P3 : minimize
η,τ

τ

subject to
1

M

M∑
m=1

M∑
n=1
n 6=m

Q

(√
p

4 (1− ρ2)
sT
mnR

TATH̃YH̃TARsmn

)
≤ τ ∀sm 6= sn

0 ≤ η ≤ 1

The problem 5-P3 is proven to be convex in Appendix H and thus it can be optimally solved

using any available solver which supports Q-function such as fmincon in MATLAB. The

optimal η renders an optimal scaling matrix A using (5.62). Therefore, symmetric signal-

ing based on the traditional modulation schemes is transformed to asymmetric transmis-

sion using (5.60) to effectively combat HWI effects. The proposed asymmetric transmis-

sion schemes are compared in the following section while keeping the existing symmetric

transmission scheme as a benchmark and an upper-bound on the average error probability

of HWIs.

5.7 Numerical Results

In this section, we numerically investigate the BER or symbol error rate (SER) performance

of the proposed HWIs system model where IQI results in self-interference. Furthermore,

we analyze the performance of the two proposed receivers relative to the conventional

MED receiver in the presence of improper additive noise. Moreover, we investigate the

tightness of the designed bounds and approximations on the average probability of error.

Eventually, we compare various suggested asymmetric transmission schemes to effectively

combat HWIs in order to attain lower error probability. The numerical investigations are

carried out for the HWI systems under dual IQI with or without transmitter distortion as

well as the individual IQI at the transmitter or receiver. Moreover, the results for average
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Figure 5.1: HWI-Aware Receivers

error probability are validated only for gray coded QAM modulation scheme for brevity.

However, same results can be extended to other modulation schemes.

5.7.1 Optimal Receiver

In this subsection, we analyze the performance gain obtained by employing the proposed

HWI-aware optimal ML and sub-optimal LMMSE receivers in-place of the conventional

HWI-unaware MED receiver for various system configurations. As for the system param-

eters, we assume normalized 16-QAM modulation with HWI parameters at=ar= 0.835,

θt=θr= 50, σ2
r = 1, σ2

t = 0.05, λ = 1, the average SNR in 0-36dB range and ψ = 3, unless

otherwise stated.

Firstly, we analyze the average BER of the HWIs system with dual IQI as well as ad-

ditive distortions at both transmitter and receiver as shown in Figure 5.1a. We investigate

average BER versus average SNR for two different symmetric amplitude IQI estimates

at =ar = 0.835 & 1.195. Evidently, the impaired system depicts a high error probability

especially for the lower value of I/Q amplitude scaling. The increasing SNR helps to im-

prove the average BER performance but eventually undergoes saturation. It is important

to highlight that this error floor is due to the presence transmit distortions as discussed in

(5.24). The HWI-aware ML and LMMSE receivers clearly outperform the HWI-unaware

MED receiver, which was the optimal choice for negligible HWIs. The performance gain is
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Figure 5.2: Bounds and Approx on P̄b

particularly significant for higher amplitude errors and higher order SNR. Although the op-

timal ML receiver demonstrates superior performance relative to the LMMSE receiver for

any given SNR and I/Q amplitude error but the LMMSE receiver is a fairly good candidate

for least complex practical receiver design.

Secondly, the performance gain of the optimal receiver is observed for a receiver im-

paired system under receiver IQI and additive distortions at the receiver only. Figure 5.1b

represents the average BER versus average SNR for three different receiver distortion lev-

els σ2
r = 0.2, 0.6 & 1. Evidently, the drastic effect of receiver HWIs significantly decreases

with increasing SNR. Moreover, the HWI-aware optimal ML receiver outperforms sub-

optimal HWI-aware LMMSE receiver and HWI-unaware MED receiver at all distortion

levels, especially at higher SNR. Similarly, the average BER performance of the proposed

receivers of the transmitter impaired system is observed for three different transmit distor-

tion levels σ2
t = 0.001, 0.04 & 0.1 in Figure 5.1c. The average BER depicts an error floor

for significant transmit distortion levels but decreases with increasing SNR for negligible

σ2
t .

Conclusively, the HWI-aware receivers outperform HWI-unaware receiver in all pre-

sented scenarios especially at higher amplitude errors, lower transmitter distortions, and

higher SNR. This signifies the importance of incorporating HWIs in the system model

and receiver design. Moreover, the optimal ML receiver sets the performance benchmark
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for sub-optimal LMMSE receiver. Although the superior performance of ML receiver is

unprecedented, but the LMMSE receiver is suitable for practical implementation with sub-

sidiary performance. Additionally, the transmitter distortions are mainly responsible for

the error floor at higher SNR levels. Increasing SNR amplifies transmit distortion as well

and thus rendering it ineffective to reduce error probability. An important observation is

the quantification of the deteriorating effects of various HWIs. Figure 5.1a demonstrates

that the dual I/Q impairments and distortions are more drastic than the individual impaired

systems in Figure 5.1b and 5.1c. Moreover, the transmitter impairments are far more de-

grading than receiver impairments.

5.7.2 Bounds and Approximations

This subsection deals with the evaluation of Chernoff bounds and numerical integration

approximations on the average probability of error for two system configurations. They

include dual I/Q imbalanced system with negligible transmit distortions and transmitter

impaired system for brevity. We assume the following system parameters, unless otherwise

stated, at=ar= 0.835, θt=θr= 50, σ2
r = 1, σ2

t = 0, λ = 1, ψ = 3 for NNUB, normalized

16-QAM modulation scheme.

Firstly, the average BER is analyzed for IRR ranging from 3.5-27dB (at = ar =

0.2 − 1.0) in a dual I/Q imbalanced system with receiver distortion but negligible trans-

mitter distortion. The bounds and approximations are observed for two different SNR

conditions (20dB and 30dB) in Figure 5.2a. The derived closed form Chernoff bound and

the MGF bound are in great agreement with the average BER trend and become tighter

with increasing IRR. The MGF bound is remarkably tight in the region of interest when

IRR≥20dB. Similarly, Figure 5.2b investigates the similar system with (at = ar = 0.835)

for three different receiver distortion levels σ2
r = 0.1, 0.6 & 1.0. Evidently, lower receiver

distortion guarantees lower probability of error. In addition, we observe fairly tight bounds

for all distortion and SNR levels. Moreover, the NNUB bound on average BER using
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Figure 5.3: Asymmetric Transmission Schemes

closed form P̄s approximation (5.45) closely follows the simulated average BER for IRR =

20dB. Interestingly, the closed form Chernoff bound and Craig’s approximation given by

(5.41) and (5.44), respectively, can be accurately computed by summing few initial terms

exhibiting negligible percentage errors, as given in Table 5.2(a).

Lastly, the derived bounds and approximations are investigated for a transmitter im-

paired system under transmitter IQI and transmitter additive distortions with thermal noise

at the receiver and negligible receiver IQI in Figure 5.2c. The results are analyzed for

three different transmit distortion levels σ2
t = 0.001, 0.01 & 0.1. The Chernoff bound

(5.51) is examined using the proposed Gaussian quadrature numerical integration employ-

ing 30 − order Legendre polynomial. Analysis depicts that employing lower order PN(t)

exhibits promising results for lower SNR ranges. However, for higher SNR ranges, we

need to incorporate a higher order Legendre polynomial to achieve a close bound. Fig-

ure 5.2c depicts that employing 30 − order PN(t) follows the same trend as the simu-

lated average probability of error. In order to achieve a close approximation, 30 − order

PK(u) and 32 − order PL(v) is employed to numerically integrate the P̄s approximation

intractable double integral in (5.54). The approximation shows promising results especially

for medium to high SNR and higher impairment levels.
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Table 5.2: Percentage Error of Gaussian Quadrature Legendre Polynomial Approximation

(a) Dual I/Q: Zero-Distortion Transmitter

Sum Chernoff Bound Craig’s Approx

Terms Equation (5.41) Equation (5.45)

1 2.84898e-16 3.41016e-17

2 6.54392e-24 3.28161e-25

3 1.57825e-31 3.44822e-33

4 3.86638e-39 4.97314e-40

(b) Transmitter Impaired System

Order Chernoff Bound Craig’s Approx

(N,L,K) Equation (5.51) Equation (5.54)

1 4.66701e-01 9.51256 e-01

5 1.33278e-03 2.16892e-02

10 8.65744e-05 2.28766e-03

20 1.95911e-06 3.32592e-04

In order to evaluate the accuracy of the proposed Gaussian quadrature numerical inte-

gration method for intractable Chernoff bound and Craig’s approximation on average SEP,

we derived the percentage error for varying ordered Legendre Polynomials as shown in Ta-

ble 5.2 (b). We assumed the system with negligible receiver IQI as adopted in Figure 5.2c

with 25dB SNR, 0.01 transmitter distortion variance and varying Legendre polynomial or-

ders. It can be safely concluded that 10-20 ordered Legendre Polynomials can accurately

approximate the intractable integrals with negligible percentage error.

5.7.3 Asymmetric Transmission

The drastic effects of HWIs can be partially mitigated by employing optimal detection

scheme. However, we can attain better system performance using asymmetric transmis-

sion scheme to effectively dampen the improper interference. This subsection studies the

effectiveness of various proposed transmit optimization schemes relative to the traditional
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symmetric transmission scheme with or without optimal receiver for various impairments.

We assume medium impairment levels of θt=θr= 50 , aI/Q = 0.5 , σ2
r = 1 , σ2

t = 0.01

, λ = 1 and normalized 4-QAM modulation scheme, unless otherwise specified, in a dual

impaired transmission system.

Firstly, we analyze the average SER for the range of symmetric amplitude errors aI/Q(at=

ar) = 0− 0.9 for two given SNR levels; 10 dB and 20 dB in Figure 5.3a. We compare tra-

ditional symmetric scheme with or without optimal receiver with the three proposed asym-

metric transmission schemes to quantify the error performance gain. Evidently, symmetric

transmission with suboptimal receiver performs far worst than the symmetric transmission

with the optimal receiver, especially for higher SNR and lower amplitude scaling (higher

impairment level). Moreover, the error performance of the adopted system under symmet-

ric transmission improves with increasing aI/Q. On contrary, the asymmetric transmission

schemes depict a significantly lower error probability even for lower aI/Q. The subopti-

mal asymmetric transmission i.e. maximal asymmetric performs equally good as any other

optimized asymmetric transmission for higher impairment levels but renders higher error

probability than symmetric transmission for aI/Q ≥ 0.6. However, the optimal asymmetric

transmission schemes MinmaxPEP and MinmaxSEP equally outperform all other trans-

mission schemes. Thus based on this analysis, one can conclude that the application of

mere optimal receiver with symmetric transmission does not reduce the error probability to

a greater extent but a better performance can be achieved by employing asymmetric trans-

mission schemes along with the optimal receiver. Moreover, Maximal asymmetric trans-

mission is a fairly good choice for highly impaired systems as it performs equally good as

any other optimized asymmetric scheme without inducing additional computational over-

head.

Furthermore, we investigated the average SER for a viable range of transmitter distor-

tions σ2
t = 0.01 − 0.1 for three different SNR values 10 dB, 20 dB and 30 dB in Figure

5.3b. We observe a similar pattern between symmetric signaling with the suboptimal re-
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ceiver and symmetric signaling with the optimal receiver for all distortion levels and SNR

values. However, a different trend is observed for the maximal asymmetric transmission

scheme. It clearly outperforms symmetric signaling scheme at all distortion levels and

renders suboptimal performance as compared to the optimized asymmetric transmission

schemes (MinmaxPEP and MinmaxSEP). Thus, it depicts a trade-off between the error

probability performance gain and computational expenses of the optimization problems.

5.8 Conclusion

In this paper, we demonstrated the significance of incorporating HWIs in accurate system

modeling and analysis. We mainly focused on the detailed modeling of IQI and several

distortion noises at the transceiver. We also proposed an optimal and a sub-optimal linear

receiver which incorporates improper interference characteristics. Both transmitter and re-

ceiver IQI render SI information bearing signal whereas only receiver IQI is responsible for

transforming AWGN to improper Gaussian noise. The transmitter distortion is subject to

channel fading while the receiver added impairment is not. Analytical results are validated

using simulations where the derived Chernoff bounds and numerical integration approxi-

mations are in close agreement with the simulated average BER trend and are significantly

tight for lower impairments levels. Further performance improvement can be achieved

using the proposed asymmetric modulation schemes, which outperform the existing sym-

metric signaling with or without the optimal receiver. Moreover, the maximal asymmetric

scheme can be a fairly good candidate to achieve better performance without rendering any

optimization expenses for highly impaired systems.

A possible extension to this paper would be to consider the impact of aggregated HWIs

on the massive MIMO systems, which is a key concept to attain higher area throughput

in future wireless networks. Interestingly, the studies have shown that the huge degrees of

freedom offered by the massive densification provide robustness to only some of the im-

pairments. For example, [289] proved that the concentrated antennas deployment offers im-
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munity to the hardware distortions but not the phase drifts through closed-form achievable

rate performance analysis. Similarly, [290] demonstrated that the effects of impairments

and noise at the massive-antenna fusion center vanish while the sensor impairment domi-

nates the achievable distributed detection performance, in the limit of an infinite number of

antennas and infinite sensors reporting power budget.
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Chapter 6

When Probabilistic Shaping Realizes Improper Signaling for Hardware

Distortion Mitigation

HWD render drastic effects on the performance of communication systems. They are re-

cently proven to bear asymmetric signatures; and hence can be efficiently mitigated using

IGS, thanks to its additional design degrees of freedom. Discrete AS can practically realize

the IGS by shaping the signals’ geometry or probability. In this paper, we adopt the PS

instead of uniform symbols to mitigate the impact of HWD and derive the optimal maxi-

mum a posterior detector. Then, we design the symbols’ probabilities to minimize the error

rate performance while accommodating the improper nature of HWD. Although the design

problem is a non-convex optimization problem, we simplified it using successive convex

programming and propose an iterative algorithm. We further present a HS design to gain

the combined benefits of both PS and GS. Finally, extensive numerical results and Monte-

Carlo simulations highlight the superiority of the proposed PS over conventional uniform

constellation and GS. Both PS and HS achieve substantial improvements over the tradi-

tional uniform constellation and GS with up to one order magnitude in error probability

and throughput.

6.1 Significance and Contributions

In this chapter, we propose PS as a method to realize improper signaling, which is beneficial

in mitigating the impact of HWD on the BER performance. Motivated by IGS’s theoretical

results in various scenarios [2] and the issues associated with GS, such as high shaping gap
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and coarse granularity, we adopt PS to realize the IGS scheme and combat HWD to assure

reliable communications. In the following, we summarize the main contributions as:

• We derive the optimal MAP detector for a discrete sAS and carry out BER analysis

for the adopted HWD communication system.

• We design the probabilistic shaped AS under power and rate constraints for hardware

distorted system and propose adaptive algorithm that tune the symbol probabilities

for PS to minimize the BER performance.

• We further suggest a hybrid shaped AS scheme that reaps benefits of both PS and

GS and present an adaptive algorithm that tune both signal probability and shaping

parameters.

• We present two algorithms to find the optimal parameters, i.e., symbol probabilities

for PS and additionally shaping parameters for HS design.

• Finally, we present numerical Monte-Carlo simulations to validate the performance

of the proposed techniques and compare the BER and throughput performance of PS,

GS, and HS in AWGN and Rayleigh fading channels.

6.2 System Description

Impropriety incorporation is crucial for the systems dealing with improper signals, noise,

or interference. Such characterization helps in meticulous system modeling, accurate per-

formance analysis, and optimum signaling design. We begin by presenting the transceiver

HWD model and the optimal receiver.

6.2.1 Transceiver Hardware Distortion Model

Consider a single-link wireless communication system suffering from various hardware

impairments. The non-linear transfer functions of various transceiver RF stages result in
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accumulative additive distortion noise as modeled in Chapter 3. We adopt the aggregate

HWD model as presented in (3.2).

y =
√
αgxm + z; m ∈ {1, 2, . . . ,M}, (6.1)

where α is the transmitted power, g∼CN (0, λ, 0) is the slowly varying flat Rayleigh fading

channel, xm is the single-carrier band-pass modulated signal taken from M -ary QAM, M -

ary PSK, or M -ary PAM constellation with a probability mass function pm , pX(xm)

rendering the transmission probability of symbol xm, and p , [p1, p2, · · · , pM ]. Let us

define the set that includes all possible symbol distributions as

S =

{
p : p = [p1, p2, · · · , pM ],

M∑
j=1

pj = 1, pj ≥ 0, ∀j ∈ {1, 2, · · · ,M}

}
. (6.2)

Also, z ,
√
αgη + w is modeled as improper noise, i.e., z ∼ CN

(
0, α|g|2κ+ σ2

w, αg
2κ̃
)
.

Moreover, the variance of zI and zQ are given in (6.3) and (6.4), respectively, as

σ2
I =

α|g|2κ+ σ2
w + α< (g2κ̃)

2
, (6.3)

σ2
Q =

α|g|2κ+ σ2
w − α< (g2κ̃)

2
. (6.4)

Furthermore, the non-zero pseudo-variance σ̃2
z motivates us to evaluate the correlation be-

tween zI and zQ using the correlation coefficient ρz as

ρz =
α= (g2κ̃)√(

α|g|2κ+ σ2
w

)2 − (α< (g2κ̃))2
. (6.5)

Proof of (6.3)-(6.5) is presented in Appendix I. HWD can leave drastic effects on the system

performance as they raise the noise floor. Although, the entropy loss of improper noise

is less than the proper noise but it is difficult to tackle. It requires some meticulously
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designed improper signaling like IGS for effective mitigation. However, IGS is difficult

to implement because of the unbounded peak-to-average power ratio and high detection

complexity [2,96]. Therefore, researchers resort to the finite discrete AS schemes obtained

by GS.

We propose PS as another way to realize AS in order to effectively dampen the deterio-

rating effects of improper HWD. PS aims to design non-uniform symbol probabilities for a

higher order QAM to minimize BER offering more degrees of freedom and adaptive rates.

In the following section, we carry out the error probability analysis of the adopted system

which lays foundation for the proposed PS design.

6.2.2 Optimal Receiver

Conventional systems with Gaussian interference employ least-complex receivers with ei-

ther minimum Euclidean or maximum likelihood detectors. However, such receivers cannot

accommodate the unequal symbol probabilities and improper noise. Therefore, the optimal

detection in the presented scenario can only be achieved by the MAP detector at the ex-

pense of increased receiver complexity. Considering the improper Gaussian HWD and the

non-uniform priors of the constellation symbols, the optimal MAP detection is given by

m̂PS = arg max
1≤m≤M

pX(xm)fYI,YQ|X,g (yI, yQ|xm, g) , (6.6)

fYI,YQ|X,g (yI, yQ|xm, g) =
1

2πσIσQ

√
1− ρ2

z

e


−1

2(1−ρ2z)


(yI−

√
α<(gxm))

2

σ2
I

+
(yQ−

√
α=(gxm))

2

σ2
Q

+

−2ρz(yI−
√
α<(gxm))(yQ−

√
α=(gxm))

σIσQ



.

(6.7)

where fYI,YQ|X,g (yI, yQ|xm, g) is the conditional Gaussian PDF of y representing ML func-

tion given xm and g, as expressed in (6.7) at the top of next page.
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6.3 Error Probability Analysis

Considering the non-uniform priors and improper noise, the error probability analysis is

carried out based on the optimal MAP detector presented in Section 6.2. Symbol error

probability Ps is the accumulated error probability of all symbols with respect to their prior

probabilities and is given as

Ps =
M∑
m=1

pm Pr (e|xm), (6.8)

where Pr (e|xm) is the probability of an error event given symbol xm was transmitted. In

order to yield a tractable and simplified analysis especially for higher order modulation

schemes, Ps can be upper bounded as

Ps ≤
M∑
m=1

M∑
n=1
n 6=m

pmPmn, (6.9)

where, Pmn is the pairwise error probability (PEP), which represents the probability of

deciding xn given xm was transmitted, ignoring all the other symbols in the constellation

[209]. The PEP can be evaluated using the MAP rule in (6.6) as

Pmn = Pr
{
pm fYI,YQ|X,g (yI, yQ|xm, g) ≤ pnfYI,YQ|X,g (yI, yQ|xn, g)

}
. (6.10)

By substituting the conditional probability from (6.7) in (6.10) and after some mathematical

simplifications, the PEP can be written as in (6.11).

Pmn=Pr

2
(
1−ρ2

z

)
ln

(
pm
pn

)
≤

 (yI−
√
α<(gxm))

2
−(yI−

√
α<(gxn))

2

σ2
I

+
(yQ−

√
α=(gxm))

2
−(yQ−

√
α=(gxn))

2

σ2
Q

+
2ρz(yI−

√
α<(gxn))(yQ−

√
α=(gxn))−2ρz(yI−

√
α<(gxm))(yQ−

√
α=(gxm))

σIσQ


 .

(6.11)
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Now, we find the in-phase and quadrature-phase components of the received signal y for a

given transmitted symbol xm as follows

yI =
√
α< (gxm) + zI , (6.12)

and

yQ =
√
α= (gxm) + zQ, (6.13)

respectively. Then, we substitute yI and yQ in (6.11), which can be further simplified

obtaining,

Pmn = Pr

{
ψ ≥ 2

(
1− ρ2

z

)
ln

(
pm
pn

)
+ αγmn

}
, (6.14)

where

γmn ,
ξmn

2
I

σ2
I

+
ξmn

2
Q

σ2
Q

−
2ρzξmnIξmnQ

σIσQ

, (6.15)

with ξmn = g dmn = g (xm − xn) representing the distance between mth and nth symbol

with channel coefficient g, and ψ is obtained by the superposition of zI and zQ as

ψ=2
√
αρz

[(
ξmnQ
σIσQ

−ξmnI
ρzσ2

I

)
zI+

(
ξmnI
σIσQ

−
ξmnQ
ρzσ2

Q

)
zQ

]
. (6.16)

Clearly, ψ is another zero mean Gaussian random variable with variance σ2
ψ expressed as

σ2
ψ = 4

(
1− ρ2

z

)
αγmn. (6.17)

Conclusively, Pmn is the complementary cumulative distribution function of ψ and is given

as

Pmn = Q

2 (1− ρ2
z) ln

(
pm
pn

)
+ αγmn

2
√

(1− ρ2
z)αγmn

 . (6.18)
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Substituting the PEP derived in (6.18) to (6.9) along with the gray mapping assumption

yields the following bound on BER

Pb≤PUB
b ,

1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ
(
βmnln

(
pm
pn

)
+

1

2βmn

)
, (6.19)

where βmn ,
√

1− ρ2
z/
√
αγmn. The BER expression depends on the size of the constel-

lation, prior probabilities of all the symbols, power budget, mutual distances between the

transmitted and received erroneous symbols under Rayleigh fading, and HWD statistical

characteristics.

In contrast to the monotonically decreasing BER for the ideal systems, the BER satu-

rates after a specific SNR in the hardware-distorted transceivers. In this regard, we carry

out the asymptotic analysis of the bit error probability to quantify the error floor as high

SNR. Let us set

Υ , 1− (= (g2κ̃))
2(

|g|4κ2
)
− (< (g2κ̃))2 , (6.20)

the error floor can be upper bounded from (6.19) as in (6.21). We can see that the error

floor depends on the adopted M -ary constellation, channel coefficient, HWD statistical

characteristics, and symbol probabilities.

lim
α→∞

Pb≤
1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

pmQ


2Υ ln

(
pm
pn

)
+

(
2<(gdmn)2

|g|2κ+<(g2κ̃)
+ 2=(gdmn)2

|g|2κ−<(g2κ̃)
−2
<(gdmn)=(gdmn)=(g2κ̃)

(|g|2κ)
2
−(<(g2κ̃))2

)
√

4Υ

(
2<(gdmn)2

|g|2κ+<(g2κ̃)
+ 2=(gdmn)2

|g|2κ−<(g2κ̃)
−2<(gdmn)=(gdmn)=(g2κ̃)

(|g|2κ)
2
−(<(g2κ̃))2

)
.

(6.21)

6.4 Proposed Probabilistic Signaling Design

We aim to design the non-uniform symbol probabilities, which minimize the BER of the

adopted system suffering from HWD. The optimization is carried out given power and rate
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constraints. The rate of the conventional QAM with uniform symbol probabilities and mod-

ulation order Mu is fixed, i.e., R = log2(Mu). However, we seek the maximum benefits of

PS by allowing a higher-order modulation with Mnu > Mu, where Mnu is the modulation

order of the constellation with non-uniform probabilities p. Thus, the rate of this scheme

can be designed such that R , H(p) ≥ log2(Mu), rendering more design flexibility and

hence is capable of reducing the BER. PS is capable of changing the transmission rate

by changing the symbol distribution for a fixed modulation order, unlike uniform signal-

ing, which needs to change the modulation scheme’s order to change the rate for uncoded

communications.

After designing the symbol probabilities, we can implement PS by using distribution

matching at the transmitter to map uniformly distributed input bits toMnu-QAM/PSK sym-

bols [102,103,106]. Moreover, they can be detected using the proposed MAP detector (6.6)

at the receiver that incorporates the prior symbol distribution. In the following, we formu-

late the PS design problem and propose an algorithm to obtain the non-uniform symbol

probabilities followed by some toy examples.

6.4.1 Problem Formulation

The probability vector p , [p1, p2, . . . , pMnu ], containing probabilities of the symmetric

Mnu−QAM/PSK modulated symbols with Mnu > Mu
1, is designed to minimize the upper

bound on the BER derived in (6.19). In particular, we formulate the problem as

6-P1 : minimize
p∈S

PUB
b (p) (6.22a)

subject to
Mnu∑
m=1

|xm|2pm ≤ 1, (6.22b)

H(p) ≥ log2 (Mu) , (6.22c)

1For Mnu = Mu, the distribution should be uniform to satisfy the rate constraint because uniform signal-
ing has the largest entropy.
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where (6.22b) and (6.22c) represent the average power and rate constraints, respectively,

and H(p) is the source entropy, which represents the transmitted rate in terms of bits per

symbol per channel use and is defined as

H(p) ,
Mnu∑
m=1

−pm log2 (pm) . (6.23)

The concave nature of information entropy in (6.22c) renders a convex constraint in p and

the rate fairness is justified based on the trade off between BER minimization and rate

maximization, while satisfying a minimum rate. Therefore, the idea is to employ a higher

order non-uniformly distributed Mnu−QAM/PSK as compared to a lower order uniformly

distributed Mu−QAM/PSK with same energy and at least the same rate to minimize BER.

6.4.2 Optimization Framework

The optimization problem 6-P1 (6.22) is a non-convex optimization problem owing to the

non-convex objective function even though all the constraints are convex. Therefore, we

propose successive convex approximation approach to tackle it. We begin by approxi-

mating PUB
b (p) with its first order Taylor series approximation. First order Taylor series

approximation of a function f (x) around a point x(k) is given as

f̃
(
x, x(k)

)
≈ f

(
x(k)
)

+∇xf
(
x(k)
) (
x− x(k)

)
. (6.24)

Thus, we need to compute∇pPUB
b and evaluate it at p(k) to compute P̃UB

b

(
p,p(k)

)
.

∇pPUB
b =

[
∂PUB

b

∂p1

∂PUB
b

∂p2

. . .
∂PUB

b

∂pMnu

]
. (6.25)
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Algorithm 4 Successive Convex Programming
1: Initialize i← 0, ε←∞ and Set tolerance δ
2: Choose feasible starting point p(i)

3: while ε ≥ δ do
4: Evaluate P̃UB

b

(
p,p(i)

)
5: Solve 6-P1a and obtain p using p(i)

6: p(i+1) ← p
7: Update ε←

∥∥p(i+1) − p(i)
∥∥

8: i← i+ 1
9: end while

10: p∗ ← pi+1

11: P∗b ≤ PUB
b (P∗)

In order to compute ∂PUB
b /∂pt, we rewrite (6.19) as

PUB
b =

1

log2 (Mnu)

Mnu∑
m=1

Mnu∑
n=1
n 6=m

pm

∞∫
Ωmn

e−
u2

2

√
2π
du, (6.26)

where

Ωmn = βmn ln

(
pm
pn

)
+

1

2βmn
. (6.27)

From (6.26) and by applying the Leibniz integral rule, we get

∂PUB
b

∂pt
≤ 1

log2 (Mnu)

Mnu∑
n=1,
n 6=t,
m=t

(
Q (Ωmn)− βmn√

2π
e−

Ω2
mn
2

)
+

1

log2 (Mnu)

Mnu∑
m=1,
m 6=t,
n=t

βmnpm√
2πpn

e−
Ω2
mn
2 .

(6.28)

Now, PUB
b can be approximated from (6.24), (6.25), and (6.28) using first order Taylor

series expansion around an initial probability vector p(k) as

P̃UB
b

(
p,p(k)

)
,PUB

b

(
p(k)
)
+∇pPUB

b

(
p(k)
)(

p−p(k)
)
. (6.29)

Successive convex programming minimizes 6-P1 by iteratively solving its convex approx-
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imation 6-P1a as presented in Algorithm 4.

6-P1a : minimize
p∈S

P̃UB
b

(
p,p(k)

)
(6.30a)

subject to
Mnu∑
m=1

|xm|2pm ≤ 1, (6.30b)

H(p) ≥ log2 (Mu) , (6.30c)

It begins with the initiation of counter i, stopping criteria ε and the stopping threshold δ.

Secondly, we choose some feasible PMF set p(i) ∈ S which satisfies the constraints (6.22b)

and (6.22c). The while loop starts by evaluating the approximation P̃UB
b

(
p,p(i)

)
around

p(i).

The convex problem 6-P1a is solved using the Karush Kuhn Tucker (KKT) conditions

derived in Appendix K to obtain the optimal probabilities for 6-P1a [282]. The solution

obtained in this iteration is updated as p(i+1) and is used to evaluate the stopping criteria

ε←
∥∥p(i+1) − p(i)

∥∥ as shown in Algorithm 4. The loop ends when the change in two

subsequent solution parameters in terms of the `2 norm is less than a predefined threshold

δ. Once the stopping criteria is attained, the solution parameters p(∗) are guaranteed to

render a BER P∗b which will be lower than the bound PUB
b (P∗).

6.4.3 Toy Examples

A comprehensive illustration of probabilistically shaped Mnu = 8-QAM with a 2 bits/sym-

bol rate constraint, corresponding to Mu = 4, is presented in Fig. 6.1a and Fig. 6.1b.

The relation between prior probabilities and different SNR values is presented in Fig. 6.1a.

Clearly, the probability distribution is quite random for lower SNR level such as α = 0 dB.

However, it starts adopting uniform distribution of 0.25 for four of it’s symbols, i.e., s1, s3,

s6, and s8 while zero probabilities for the rest four symbols. This technique provides lower

BER while maintaining 2 bits/symbol rate for a fair comparison with traditional 4-QAM.
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(b) Three HWD levels at α = 0 dB

Figure 6.1: 8-QAM probability distribution at Rate = 2 bits/symbol.

Interestingly, it achieves a lower BER by transmitting half of the symbols which are not

the nearest neighbors. It is important to highlight that the proposed approach achieves this

performance with the same power budget and transmission rate.

Another example illustrates the trend of probabilitic shaping for 8-QAM constellation

at lower SNR level (keeping in mind that it assigns the uniform probabilities to four sym-

bols at high SNR levels). The trend for lower HWD level such as η = 0.11 is quite random.

However, it follows a decreasing probability trend for middle to higher HWD levels. Intu-

itively, it assigns higher probabilities to the symbols with least power and lower probabil-

ities to the symbols with higher powers. This trend decreases the BER while maintaining

the average power constraint.

It is interesting to visualize the corresponding symbol constellations for both α = 0 dB

and α = 30 dB. For α = 0 dB, probabilistic shaped 8-QAM designates six symbols with

significant transmission probabilities as highly probable symbol (HPS) whereas renders

two symbols as least probable symbols (LPS) as depicted in Fig. 6.2a. On the other hand,

PS at α = 30 dB only resorts to transmitting four of it’s symbols, i.e., s1, s3, s6, and s8

(HPS) and discards the rest as depicted in Fig. 6.2b. Notably, this technique assigns lowest

probabilities to the symbols which are mostly affected by the highly improper noise in first
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Figure 6.2: 8-QAM probability distribution at Rate = 2 bits/symbol.

and third quadrant. It is important to emphasize that the distortion power is proportional

to the transmit power. This strengthens distortions at high SNR and leads to the negligible

transmission probabilities for the highly affected symbols. Hence, it is capable of achieving

lower BER while maintaining 2 bits/symbol rate for a fair comparison with traditional 4-

QAM.

6.5 Hybrid Shaping where Conventional meets State-of -the-Art

In this section, we increase the AS design flexibility by allowing joint GS and PS, which

we call it here HS, to improve the underlying communication system performance fur-

ther. Throughout the design procedure, HS transforms the equally spaced uniformly dis-

tributed QAM/PSK symbols to unequally spaced symbols in a geometric envelope with

non-uniform prior distribution. Thus, HS aims to optimize the symbol probabilities (i.e.,

PS) and some spatial shaping parameters for the constellation (i.e., GS).

6.5.1 Hybrid Shaping Parameterization

Apart from the non-uniform priors, consider the asymmetric transmit symbol vm = [vmI vmQ]T

resulting from the GS on the conventional baseband symmetric M -QAM/M -PSK symbol
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xm = [xmI xmQ]T i.e., vm = ARxm as discussed in Chapter 5. The rotation matrix R (θ)

and translation matrix A (ζ) are given in (5.61) and (5.62), respectively, with translation

parameter ζ ∈ (0, 1) and rotation angle θ ∈ (0, µ π/2) for some constant µ. Uniformly

distributed symmetric M -QAM constellation has a rotation symmetry of nπ/2, n ∈ Z+

rendering µ = n to be good choice for GS. However, non-uniformly distributed M -QAM

constellation can only be rotationally symmetric after 2nπ, thus µ = 4n is suitable for

HS. This technique renders non-uniformly spaced symbols in a parallelogram envelop. It

is important to highlight that this transformation preserves the power requirement. Power

invariance of the rotation is a well known fact in the literature [209]. However, the wisdom

behind the structure of A (ζ) is unfolded in the following theorem.

Remark 1. GS parameterization using translation matrix A (ζ) preserves the power in-

variance of a complex random variable and inculcates asymmetry/improperness with the

circularity coefficient ζ .

Proof. The proof is presented in Appendix J. Furthermore, the generalization of the same

concept to the symmetric discrete constellations such as M -QAM and M -PSK is also de-

scribed in Appendix J.

6.5.2 Optimal Receiver

The optimal receiver for hybrid shaped AS is also a MAP detector as derived in (6.6), but

with a modified reference constellation vm in place of xm for all m ∈ {1, 2, · · · ,Mnu}.

More precisely, the detected symbol, m̂HS, is the one that maximizes the posterior distribu-

tion, i.e.,

m̂HS = arg max
1≤m≤Mnu

pV (vm)fYI,YQ|V,g (yI, yQ|vm, g) , (6.31)

where, fYI,YQ|V,g (yI, yQ|vm, g) is similar to (6.7) by replacing all appearances if xm with

vm for all m ∈ {1, 2, · · · ,Mnu}. It is worth noting that non-uniform prior probabilities are

inculcated in the detection process using MAP detector in place of ML detector. Moreover,
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the geometrically shaped symbols are taken from a modified symbol constellation. Hence,

this requires updating the reference constellation for appropriate detection.

6.5.3 Error Probability

HS follows the same BER bound as derived in (6.19) but with modified γmn. It can now be

written using the following quadratic formulation as a function of ζ and θ.

γmn (ζ, θ) = xT
mnR (θ)TA (ζ)TGA (ζ) R (θ) xmn, (6.32)

where xmn is the real composite vector form of ξmn = gdmn given as xmn =
[
ξmnI ξmnQ

]T
and G contains the statistical characteristics of the aggregate noise including in-phase noise

variance, quadrature-phase noise variance, and the correlation between these components.

G =

 1
σ2
I

−ρz
σIσQ

−ρz
σIσQ

1
σ2
Q

 . (6.33)

Thus, the BER of HS can be upper bounded as

PUB
b,HS (p, ζ, θ) =

1

log2 (Mnu)

Mnu∑
m=1

Mnu∑
n=1
n6=m

pmQ

( √
1− ρ2

z√
αγmn (ζ, θ)

ln

(
pm
pn

)
+

√
αγmn (ζ, θ)

2
√

1− ρ2
z

)
.

(6.34)
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6.5.4 Problem Formulation

HS targets the joint design of PS PMF p and GS parameters involving translation ζ and

rotation θ parameter to minimize the BER bound given in (6.34).

6-P2 : minimize
p∈S,0≤ζ≤1,

0≤θ≤2π

PUB
b,HS (p, ζ, θ) (6.35a)

subject to
Mnu∑
m=1

|vm|2pm ≤ 1, (6.35b)

H(p) ≥ log2 (Mu) , (6.35c)

where the average power constraint (6.22b) is updated as (6.35b) to account for the possible

change in the power of the symbols by geometrically shaping the constellation. However,

the proposed rate constraint (6.35c) remains intact. Additionally, there are some boundary

constraints on ζ and θ, respectively.

Intuitively, it is quite difficult to tackle this non-convex multimodal joint optimization

problem. Therefore, we resort to the alternate optimization of PS parameters (p) and GS

parameters (ζ, θ) using sub-problems 6-P2a and 6-P2b, respectively. Problem 6-P2a de-

signs the PS parameters for some given ζ and θ. It is quite similar to the problem 6-P1 and

thus, can be solved using Algorithm 4.

6-P2a : minimize
p∈S

PUB
b,HS (p, ζ, θ) (6.36a)

subject to (6.35b), (6.35c). (6.36b)

On the other hand, the GS optimization problem designs ζ and θ for fixed symbol proba-

bilities p, given as

6-P2b : minimize
0≤ζ≤1,
0≤θ≤2π

PUB
b,HS (p, ζ, θ) . (6.37)
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The optimization problem 6-P2b is a multimodal non-convex problem which is hard to

tackled even by the SCP approach as employed in Section 6.4. The difficulty arises due

to the absence of any constraints which restrict the feasibility region. The feasibility space

enclosed by the boundary constraints is highly insufficient to serve our purpose. Therefore,

we can approximate the solution using any of the following two methods

• Trust region reflective method: This method defines a trust region around a spe-

cific initial point and then approximate the function within that region. The convex

approximation is the first order Taylor series approximation using the gradient. It be-

gins by minimizing convex approximation of the function to obtain a solution. This

solution is the perturbation in the initial point rendering a new point which should

minimize the original function. Otherwise, we need to shrunk the trust region and

repeat the process. Reflections are used to increase the step size while satisfying

box constraints. After each iteration, we receive a new point which renders a lower

objective function than the initial point. This iterative approach leads us to a local

minimum and stops when some specified stopping criterion are met [291, 292].

• Gradient descent: This method is a relatively faster approach to tackle the problem

at hand. It is owing to the fact that it does not involve any approximation and under-

lying optimization. It begins with an initial point and keeps updating the point in the

descent direction using the gradients and a step size until it reaches a local solution

or satisfies some stopping criterion [282].

Interestingly, both of these methods require the gradients of PUB
b,HS (p, ζ, θ) with respect to

ζ and θ. Gradients are used either to approximate the function with it’s first order Taylor

series approximation within a trust region or to find the next point in the descent direction.

The gradients are evaluated and presented in Appendix L.
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Algorithm 5 Alternate Optimization
1: Initialize j ← 0, ε←∞ and Set tolerance δ
2: Choose feasible starting points p(j), ζ(j), and θ(j).
3: Evaluate P

UB(j)
b,HS

(
p(j), ζ(j), θ(j)

)
.

4: while ε ≥ δ do
5: Solve 6-P2a using Algorithm 4 with starting point p(j) and given ζ(j), θ(j) to obtain

p(j∗)

6: Solve 6-P2b with starting points ζ(j),θ(j) and given p(j∗) to obtain ζ(j∗), θ(j∗)

7: p(j+1) ← p(j∗), ζ(j+1) ← ζ(j∗), and θ(j+1) ← θ(j∗)

8: Evaluate P
UB(j+1)
b,HS

(
p(j+1), ζ(j+1), θ(j+1)

)
.

9: Update ε←
∥∥∥P

UB(j+1)
b,HS − P

UB(j)
b,HS

∥∥∥
10: j ← j + 1
11: end while
12: Solution parameters: p∗ ← pj+1, ζ∗ ← ζj+1, θ∗ ← θj+1

13: Objective function: PUB∗
b,HS ← P

UB(j+1)
b,HS

14: Consequence: P∗b,HS ≤ PUB∗
b,HS

6.5.5 Proposed Algorithm

The joint optimization problem 6-P2 can be tackled using the alternate optimization algo-

rithm as presented in Algorithm 5. It solves the sub problems 6-P2a and 6-P2b alternately

and iteratively. It begins with some starting feasible points p(j), ζ(j), and θ(j) and evaluates

P
UB(j)
b,HS

(
p(j), ζ(j), θ(j)

)
as a benchmark. The alternate optimization begins by solving 6-P2a

to minimize PUB
b,HS with respect to p given a pair of ζ and θ. It is achieved by replacing all

entries of xm with vm = ARxm ∀m. p(j∗) is obtained using the framework provided in

Algorithm 4 which solves 6-P1a iteratively. Then, the optimum p(j∗) is used as a given

PMF to obtain the pair ζ(j∗) and θ(j∗) by solving 6-P2b. These optimum parameter values

are updated to attain next initial points. Moreover, P
UB(j+1)
b,HS

(
p(j+1), ζ(j+1), θ(j+1)

)
is also

evaluated to compare the decrease in objective function. The norm of this difference is

stored in ε and the process is repeated until this value drops below a preset threshold δ.

Eventually, the solution parameters are updated in (p∗, ζ∗, θ∗) which yield the minimized

BER upper bound PUB∗
b,HS using HS. Therefore, these HS parameters are capable of rendering

a BER P∗b,HS lower than the bound PUB∗
b,HS.
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(c) HS for Proper Noise
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(f) HS for Improper Noise

Figure 6.3: Different asymmetric signaling designs for proper and improper aggregate in-
terference

Numerical evaluations reveal that the stopping criteria is mostly met in just one itera-

tion. Interestingly, Step 5 and 6 in Algorithm 5 are interchangeable and need to be chosen

carefully. For instance, PS demonstrates better performance at higher HWD levels so it is

intuitive to design the HS by first PS and then GS in order to attain further gain over PS.

Whereas, GS depicts lower BER at lower HWD levels so it is recommended to design HS

by first GS and then PS in order to achieve better performance than GS using the added

DoF offered by PS.

HS can be implemented by choosing the transmit symbols for the translated and rotated

signal constellation, i.e., vm = A (ζ∗) R (θ∗)xm. Furthermore, the symbols are transmitted

according to the optimized p∗ where ζ∗, θ∗ and p∗ are designed using Algorithm 5. Upon

reception, they are detected using the MAP detector as presented in (6.31).
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6.5.6 Illustrative Example

We present a comprehensive example to highlight the design of various distinct asymmet-

ric constellations for a fixed rate of 4 bits/symbol. The red color visualizes constellation

symbols with quite low probabilities. Fig. 6.3 represents different AS schemes assuming

either proper Cη = 0 or highly improper Cη = 0.9 HWDs, respectively. We use 16-QAM

for GS whereas 32-QAM for both PS and HS. The shaping parameters are designed/opti-

mized for a system suffering from high HWD, i.e., κ = 0.99 at 30dB SNR. Fig. 6.3a and

6.3d illustrate equally prior geometrically shaped constellation symbols in the presence of

proper and maximally improper noise, respectively. Fig. 6.3a is a mere rotation of the

original 16-QAM in the presence of proper HWDs whereas Fig. 6.3d also inculcates the

translation rendering a squeezed parallelogram envelop in vertical axis. Next, probabilistic

shaped constellations are presented in Fig. 6.3b and 6.3e for proper and maximally im-

proper distortions, respectively. Evidently, the formation of red symbols around the origin

transforms from a symmetric circle in Fig. 6.3b to an ellipse in 1st and 3rd quadrant in Fig.

6.3e corresponding to the respective symmetric and asymmetric noise. This reveals the

reason behind superior performance of PS as it is capable of assigning negligible transmis-

sion probabilities to the symbols which are mostly affected by the aggregate noise as per

it’s proper/improper characteristics. Furthermore, this probabilistic shaped constellation

undergoes GS to obtain hybrid shaped QAM constellation as shown in Fig. 6.3c and 6.3f

under proper and maximally improper noise, respectively. This transformation allows the

constellation to align itself as per the underlying noise characteristics and further improves

the system performance.

6.6 Numerical Results

Numerical evaluations of the adopted HWD system are carried out to study the drastic

effects of hardware imperfections and the effectiveness of the mitigation strategies. The
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performance of the proposed asymmetric transmission schemes PS and HS is quantified as

opposed to the benchmark NS and conventional GS, with varying EbNo and HWD levels.

EbNo is obtained by normalizing SNR with the transmission rate. Moreover, GS can be im-

plemented by transmitting symbols from a reshaped constellation vm = A (ζ∗) R (θ∗) xm,

where ζ∗ and θ∗ can be obtained by solving P2a given uniform prior distribution. Upon

reception, they are detected using the ML detector which is the simplified form of optimal

MAP detector (6.31) given uniform prior probabilities. This ML detector considers the

reshaped constellation symbols vm as the reference to detect the received symbols.

For most of the numerical evaluations we assume Gray coded square QAM constella-

tions of order Mu = 8, i.e., R = log2(Mu), for NS and GS as benchmarks. For PS and HS

we employ Mnu = 32-QAM with rate at least as high as that of GS, i.e., R ≥ log2(Mu).

Moreover, we consider practical HWD values for the transmitter κt = 0.01 and receiver

κr = 0.12. The pseudo-variances are derived from the κ̃tI = κt/4, κ̃rI = κr/4, and cor-

relation coefficient ρη = 0.9. Intuitively, AWGN channel assumes g = 1 and circularly

symmetric Rayleigh fading channel is generated using λ = 1. Furthermore, the trans-

mission EbNo is taken as 30 dB. The aforementioned values of the parameters are used

throughout the numerical results, unless specified otherwise.

First, we evaluate the performance of various AS schemes for a range of EbNo from

0 dB to 50 dB in an AWGN channel as shown in Fig. 6.4a. We employ Mu-QAM for NS

and GS whereas Mnu-QAM for PS and HS. The BER upper bound (BER-UB) of PS and

HS are given by (6.19) and (6.34), respectively, whereas the BER-UB of NS and GS are

derived from (6.19) and (6.34) by assuming uniform distribution, respectively.

The BER performance improves with increasing EbNo till 30 dB and then undergoes

saturation owing to the presence of HWD. Further increase in bit energy also results in an

increase in the distortion variance, as the system experiences an error floor which can be

deduced from (6.21). Evidently, the proper/symmetric QAM is suboptimal and the BER

performance is significantly improved using AS. Conventional GS is not beneficial at lower
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Figure 6.4: BER Performance for a range of EbNo in AWGN channel.

EbNo values, but it significantly improves the performance for higher EbNo values pertain-

ing to the increased symbol space [98]. On the other hand, the proposed PS is capable of

minimizing the BER for the entire range of EbNo. Substantial gains can be achieved by

taking another step forward and employing HS. Therefore, we can safely conclude that the

best performance can be achieved using PS for EbNo ≤ 15 dB and HS for EbNo ≥ 15 dB.

At 20 dB, the BER reductions for GS, PS, and HS schemes with respect to unshaped con-

stellation are approximately 52.22%, 66.67%, 80%, respectively. The numerical results

in Fig. 6.4a depict close accordance between the derived BER-UBs and the corresponding

MC performance of the various transmission schemes.

For the same system settings, we compare two different parameterization techniques to

achieve asymmetric GS, which is a building block of HS, in Fig. 6.4b. The GS-AR scheme

represents our proposed GS scheme based on the optimal translationA and rotationR. This

scheme induces a power imbalance between in-phase and quadrature components instead

of their mutual correlation [98]. We compare this GS scheme with the well known WLT

scheme referred as GS-WLT. We use the similar parameterization as adopted in [96] for our

BER minimization problem and numerically solve the resultant non-convex optimization

problem 2. The comparison of GS schemes has been extended to hybrid shaping: where
2We omit the derivation and implementation details of GS-WLT and HS-WLT due to the limited space.
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Figure 6.5: Throughput Performance in AWGN channel.

HS-AR and HS-WLT apply the proposed PS scheme to determine non-uniform probabil-

ity distribution but respective GS techniques. Evidently, the candidate schemes perform

equally good at low EbNo values but our proposed AR scheme outperforms WLT scheme

in both GS and HS for relatively higher EbNo values.

Given the simulation settings as in Fig. 6.4a, we analyze system throughput (cor-

rectly received bits/symbol) for a range of EbNo values where the lower bound on system

throughput can be obtained as

T LB (p) =
[
1− PUB

b (p)
]

H(p) (6.38)

The throughput lower-bound (Th-LB) of all the transmission schemes can be calculated

using their respective BER-UBs in (6.38). Fig. 6.5a validates the derived Th-LBs using

MC simulations. It further depicts negligible throughput gain of GS over NS but notice-

able throughput improvement using PS or HS. For instance, 1.5%, 6% and 7% percentage

increase in throughput can be observed using GS, PS, and HS over NS at EbNo = 5 dB. At

very low SNR, all the schemes depict unsatisfactory performance, as the required transmis-

sion rate can be higher than the maximum achievable rate which is related to the channel

capacity. For moderate SNR, the throughput gain of the proposed schemes is quite sub-
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Figure 6.6: HWD mitigation for various AS in different channels.

stantial; nevertheless, it undergoes saturation when EbNo ≥ 20 dB. Interestingly, PS/HS

saturates at 3 bits/symbol following rate fairness constraint with negligible BER whereas

other schemes saturate below 3 bits/symbol depicting significant BER even though the en-

tropy of 8-QAM with uniform distribution is log2(8) = 3.

Later, we analyze the behavior of various AS schemes with increasing distortion levels

and their impact on the system throughput at EbNo = 30 dB. Fig. 6.5b compares the

throughput performance of Mu-QAM NS and GS with Mnu1 = 16-QAM PS and HS as

well as with Mnu2 = 32-QAM PS and HS. System throughput decreases almost linearly

with increasing HWD for all forms of signaling but with different slopes. NS demonstrates

the steepest slope with increasing HWD and all the other AS schemes render gradual slopes.

Quantitative analysis shows the slopes of −0.55, −0.41, −0.28, and −0.24 using NS, GS,

16-QAM PS/HS, and 32-QAM PS/HS, respectively, with increasing HWD. Therefore, PS

and HS present the most favorable results as compared to the GS. Their performance can

be even improved by increasing the modulation order. Another important observation is

the overlapping response of PS and HS especially for higher ordered QAM, which suffices

PS and revokes the need of HS to perform even better.

A similar analysis is undertaken to study the impact of increasing HWD on the system
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Figure 6.7: BER Performance for a range of EbNo

BER performance in an AWGN channel. We assume 8-QAM for NS and GS whereas

16-QAM for PS and HS as depicted in Fig. 6.6a. Expectedly, the BER increases with

increasing HWD levels and AS based systems achieve lower BER by efficiently mitigating

the drastic HWD effects. Undoubtedly, the NS scheme suffers the most, but GS helps

to decrease the BER to some extent. Further compensation can be achieved using the

proposed PS and HS. Surprisingly, GS outperforms PS and HS at the lowest HWD values,

e.g., κ = 0.11, in Fig. 6.6a but PS/HS maintain their superiority for κ ≥ 0.17. Interestingly,

PS/HS are still capable of outperforming GS even for the lowest HWD levels pertaining to

their rate adaptation capability and added DoF using 32-QAM as highlighted in Fig. 6.6b.

We can observe enhanced mitigation offered by the 32-QAM PS/HS as compared to the

16-QAM PS/HS due to the added DoF. Evidently, there is a trade-off between increased

complexity and performance gain, which must be taken into account while choosing Mnu

as per the system capability. For instance, we observe BER compensation of 66% and

77.5% using 32-QAM PS and HS, respectively, whereas BER compensation of 55% and

65% using 16-QAM PS and HS, respectively, at κ = 0.22 HWD level.

Another simulation example depicts the performance of the discussed AS schemes over

a range of EbNo for two distinct scenarios of perfect receiver and perfect transmitter as

presented in Fig. 6.7a. Perfect receiver system as the name specifies includes ideal zero-
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distortion receiver but imperfect transmitter with κt = 0.07 whereas perfect transmitter

system involves ideal zero-distortion transmitter but imperfect receiver with κr = 0.15.

Note that the lower value of κt relative to κr is due to the fact that transmitters employ

sensitive equipment to exhibit low distortions because the transmitter distortions are far

more drastic than the receiver distortions. Interestingly, GS outperforms PS at EbNo ≥

15 dB for the perfect receiver case as opposed to EbNo ≤ 15 dB where PS is still a better

choice. HS outperforms both of them irrespective of the EbNo range classification. At such

low HWD level, the BER percentage reduction of 81.82%, 90.91%, 94.55% is observed

using PS, GS, and HS at 30 dB EbNo. Regarding the perfect transmitter scenario, GS and

PS reverse the trend for higher EbNo level. Now the PS clearly outperforms GS for the

entire range of EbNo and the HS marks its superiority over both of these schemes. At 0.15

HWD level, the EbNo gain of 8 dB, 12 dB, and 13 dB are estimated using GS, PS, and HS

to attain the BER of 10−2.

Finally, the average (ergodic) BER performance of the adopted system with κ = 0.22

HWD level is evaluated over a Rayleigh fading channel for a range of EbNo values as given

in Fig. 6.7b. Evidently, the AS schemes preserve their BER trends and order. Clearly,

average BER decreases with increasing EbNo and then undergoes saturation yielding an

error floor. The derived BER bounds are also validated using MC simulations rendering a

tighter bound for higher EbNo values. GS improves the average BER as compared to the

NS scenario but PS and HS maintain their superior performance. Signaling schemes of GS,

PS, and HS offer a percentage reduction of 54.55%, 63.64%, and 70.45%, respectively, in

the average BER performance at 40 dB EbNo.

In a nutshell, we can conclude that the GS offers significant BER reduction at higher

SNR values as opposed to the PS which offers universal gains. Moreover, the perks of HS

are also prominent for higher SNR and higher M -ary modulation but depicts PS compa-

rable performance at lower SNR values. Therefore, we recommend to employ HS given

high SNR but resort to PS for lower SNR values to save additional computational expense.
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Additionally, GS is a better choice for slightly distorted systems whereas PS/HS are the

optimal choice for moderate to severely distorted systems. Furthermore, we can achieve

improved performance by employing higher-order QAM constellations for PS/HS given

adequate resources. On the other hand, the throughput gains are eminent at considerably

lower SNR values and higher distortion values.

6.7 Conclusion

This work proposes probabilistic and hybrid shaping to realize asymmetric signaling in

digital wireless communication systems suffering from improper HWD. Instinctively, all

forms of asymmetric shaping are capable of decreasing the BER, and this performance

gain improves with increasing SNR and/or increasing HWD levels with respect to NS.

However, PS outperforms GS and performs equally well as HS. We can achieve more than

50% BER reduction with PS/HS over traditional GS. The perks of PS come at the cost of

increased complexity in the design and decoding process. The HS scheme is capable of

improving the system performance in terms of the BER as well as throughput. However,

for less HWD levels and low EbNo, the benefits of HS over PS are limited while requiring

additional complications in optimization, modulation, and detection procedures. Therefore,

PS emerges as the best choice in the trade-off between enhanced performance and added

complexity.
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Chapter 7

Theoretical Analysis and Performance Limits

General analysis of a wireless communication system with improper transmission, interfer-

ence, or noise should at least accommodate the complete SOS for valid theoretical analysis

and performance limits. Improper Gaussian noise or interference are inevitable, however,

the employment of proper or improper Gaussian signaling is questionable. Conventional

information theoretic studies advocated the capacity achieving PGS in the point-to-point

(P2P), BC and MAC [240]. However, recent studies have demonstrated some scenarios

and conditions when PGS gains are inferior to that obtained from the IGS owing to the

additional design freedom [137]. The performance gains are theoretically evaluated by

metrics of interest like achievable rate, outage probability, power efficiency, and DoF. This

section highlights the performance limits obtained by both conventional PGS and appeal-

ing IGS in various system settings. Followed by the design guidelines to fine tune the IGS

transmission parameters in order to exploit the possible performance gains as detailed in

Figure 7.1.

7.1 Achievable Rate

The performance of a wireless communication system can be theoretically quantified as

achievable rate. A rate R is achievable if there exists a sequence of codes such that

the maximal probability of error tends to 0 for sufficiently large block lengths. Recent

contributions have highlighted a more general framework to quantify the achievable rate

in order to accommodate the improper nature of the participating signals arising from
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Figure 7.1: Overview and Configuration of Theoretical Analysis

IGS [20, 83, 159, 172, 176, 178, 188, 190, 192, 193, 293–295], WL precoding of PGS [77,

81, 149, 162, 163, 170, 174, 177, 184], or complex beamforming resulting in dependent real

and imaginary parts [158, 296].

As an illustrative example, consider the most general case of K-user multiple-input

multiple-output (MIMO)-interference channel (IC), where each user intends to communi-

cate with its own RX but results in an interference to other K−1 RXs. Each user transmits

general IGS xk ∈ CM with the distribution CN
(
0,Rxkxk , R̃xkxk

)
∀k = 1, . . . , K from

M transmitting antennas. Thus, the accumulated received signal vector at user k with N

receive antennas is

yk = Hkkxk +
K∑

j 6=k,j=1

Hkjxj + nk, (7.1)

where, nk ∼ CN (0, σ2IN ,0) is the CSC Gaussian thermal noise and Hkj ∈ CNxM is the

quasi-static fading channel from TX-j to RX-k. Based on the augmented representations
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and Schur complement, the differential entropy of yk ∈ CN and interference plus noise

term wk =
∑

Hkjxj + nk are given as H(z) for z = yk and z = wk, respectively [31].

H(z)=log
(

(πe)N |Rzz|
)

+
1

2
log
(∣∣∣I−R−1

zz R̃zzR
−T
zz R̃H

zz

∣∣∣) .
Shannons capacity formula assumes additive Gaussian noise and coded transmission with

codewords drawn from a Gaussian codebook. Therefore, the instantaneous achievable rate

per unit bandwidth (spectral efficiency) at RX-k with IGS can be obtained as [81]

Rk =I (yk; xk) = H(yk)−H(yk|xk) = H(yk)−H(wk)

=
1

2
log

Ry
k
y
k

Rwkwk

= log

∣∣∣∣∣σ2I +
K∑
j=1

HkjRxjxjH
H
kj

∣∣∣∣∣∣∣∣∣∣σ2I +
K∑

j 6=k,j=1

HkjRxjxjH
H
kj

∣∣∣∣∣︸ ︷︷ ︸
,Rk,proper(Rxjxj)

+
1

2
log

∣∣∣I−R−1
ykyk

R̃ykykR
−T
ykyk

R̃H
ykyk

∣∣∣∣∣∣I−R−1
wkwk

R̃wkwkR
−T
wkwk

R̃H
wkwk

∣∣∣ . (7.2)

The achievable rate Rk at RX-k has two components, the first term Rk,proper
(
Rxjxj

)
is

the conventional achievable rate attainable by traditional PGS scheme as it only depends

on covariance Rxjxj . Whereas, the additional term is the consequence of employing IGS

as it is a function of both Rxjxj and R̃xjxj . Therefore, IGS yields another privilege to

appropriately choose/optimize R̃xjxj under the power constraints to yield the second term

in (7.2) strictly positive. Interestingly, this property cannot be exploited in the equivalent

real composite domain analysis [81].

The rate expression obtained for multiuser (MU) MIMO-IC can be easily reduced to

MU single-input single-output (SISO)-IC [293], SISO one-sided interference channel (Z-

IC) [178],single-input multiple-output (SIMO) systems with hardware distortions (HWDs)

[108], MU multiple-input single-output (MISO)-IC [295], MU MIMO-IC [174], MU MIMO-
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broadcast channel (BC) [163], MIMO-interference broadcast channel (IBC) [162], cog-

nitive radio settings [188, 190, 192, 294], point-to-point (P2P) systems with asymmetric

HWIs [20], relaying systems [159], full-duplex systems [83] and other similar interference-

limited scenarios where interference can be treated as Gaussian noise. Various studies

argue that IGS can offer significant achievable rate improvement relative to the PGS. Op-

timizing the covariance and pseudo-covariance matrices allow us to optimize the system

performance to maximize the average achievable rate or achievable sum rate, minimize

achievable rate, or to decide achievable Pareto rate region boundaries [81].

7.1.1 Average Achievable Rate Limits

Average achievable rate or ergodic rate is an insightful performance metric to quantify the

capability of a network to transmit the number of bits per second per Hertz. This section

summarizes the average achievable rate performance gains of IGS over PGS in various

interference limited scenarios arising in cognitive radio schemes [190, 192, 294], multi-

antenna or MU systems [20, 149, 177, 184], and relay systems [83, 158, 159] etc.

In a cognitive radio setting for dynamic spectrum access, the unlicensed secondary

user (SU) coexists with a licensed primary user (PU) and opportunistically utilize its spec-

trum resources to improve the overall spectral efficiency [61,297]. However, this approach

renders undesirable interference on the legit primary network. It is noteworthy that the

primary TX sticks to PGS as it is using its own spectrum being unaware of the secondary

IC [190, 191]. Interestingly, the least entropy loss due to IGS makes it a suitable transmis-

sion scheme for SU as the improper interference on PU is far less detrimental compared

to proper interference. Thus, IGS is the preferred choice for SU to maximize its achiev-

able rate while maintaining PU rate or quality-of-service (QoS) constraints. The average

achievable rate performance gain of SU with IGS over PGS are analyzed in three different

cognitive setups i.e., underlay, overlay and interweave.

• In an underlay cognitive system, IGS is only beneficial when the ratio of the squared
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modulus between the SU-PU interference link and the SU direct link exceeds a given

threshold. Upon meeting this criteria, the SU adopts IGS as optimal signaling and

demonstrates magnified relative performance gains up to 256% over PGS especially

when PU is not heavily loaded [152, 190, 298].

• In an overlay cognitive system, where SU broadcasts a mixture of PGS and IGS to

aid the primary message transmission and minimize the interference effect of SU on

PU respectively. The optimized IGS offers 33.33% performance gain for 30dB SNR

with partial CSI, while meeting PU quality of service (QoS). This gain is conditional

and improves with decreasing primary network direct-link gain [192, 299].

• In an interweave cognitive system, the achievable rates of both the PU and the SU

depend on the activity of the PU and the detection ability of the SU. Employed IGS

yield percentage increase up to 8.26% over PGS with 50% probability of detection

(PoD) and 10% PFA. The gain is significant especially at low sensing and detection

capabilities of the SU, lower PU direct link and higher SU interference on the PU

side [294].

Inspired by the perks of IGS in interference limited environments, various contribu-

tions have reaped IGS benefits in full duplex (FD)/half duplex (HD) multi-hop decode-and-

forward (DF) relay systems by effectively compensating residual self-interference (RSI),

inter-relay interference (IRI), and/or HWDs [83,158,159]. For instance, IGS is proposed in

single antenna DF-FD relay channels to eliminate the self-interference (SI) and increase the

throughput. This scheme with SI-elimination provides significant improvement of 107.14%

over the conventional symmetric signaling without SI-elimination [158]. IGS is further em-

ployed to compensate not only RSI but also improper HWDs in multi-hop DF-FDR system.

IGS parameters can be centrally optimized at one node or distributively optimized at mul-

tiple nodes to maximize the end-to-end (E2E) achievable rate. Centralized and distributed

optimization offer relative performance gains of 166.67% and 80%, respectively. Gain can
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rise up to 355.56% with centralized approach for higher interference-to-noise ratio with

increased communication overhead and system complexity [83]. Moreover, the potential

benefits of IGS are also exploited in two-hop alternate relaying system to relieve IRI and

maximize total achievable rate in the absence of CSI at source. Two detection schemes

are employed based on the IRI level relative to the desired signal level i.e., 1) for low

IRI: single-user decoding (SUD) treating IRI as noise and 2) for strong IRI: successive

decoding (SD) that first decodes IRI and subtracts it from received signal before detec-

tion. Average rate percentage improvement up to 161.54% and 66.67% is achieved with

SUD and adaptive scheme that switches between SUD and SD, respectively. This gain is

especially significant when the source-relay channel is a bottleneck [159].

IGS superiority is also proven in multi-antenna setup to mitigate various HWIs [20,

108]. Interestingly, aggregate impairments specially IQI transform symmetric noise and

transmitted signal to asymmetric noise and received signal, respectively, motivating the

employment of IGS to combat them. Javed et al. proposed optimal IGS and maximal IGS

schemes for tractable and intractable optimization of SIMO and MIMO systems, respec-

tively. Percentage average achievable rate improvement of 7.76% and 3% is depicted in

highly impaired SIMO systems with optimal IGS and adaptive maximal IGS-PGS, respec-

tively. Similarly, the employment of maximal IGS yields up to 10% increase in average

achievable rate of MIMO relative to PGS even in low SNR regime [20].

Other contributions highlight the perks of IGS in single user [177] and MU MIMO-

ICs [149, 184]. Firstly, IGS transmission with uniform- (UPA) or optimal- (OPA) power

allocation strategies is exploited in MIMO P2P channel with interference (P2P-I) to im-

prove the achievable rate. Relative rate gains of OPA-UPA of IGS over PGS are 102-115%

for 1x1, 46-37% for 2 x2, 24-20% for 4x4, and 17-13% for 8x8 in MIMO P2P-I [177].

Secondly, for 2-user (2U) MIMO-IC, transmit covariance matrix is designed based on two

maximal IGS schemes i.e., Improper-LB that provides the SU with the minimal rate, and

Improper-UB that provides the SU with the maximum rate [184]. Percentage relative gain
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of user-1 and user-2 achievable rate is 195.45% increase and 8.7% decrease with Improper-

LB relative to PGS. However, the percentage relative gain of user-1 and user-2 achievable

rate is 10.53% decrease and 209.52% increase with Improper-UB relative to PGS. Interest-

ingly, in an interference limited scenario, if the IGS scheme is beneficial for interferer, it

will be detrimental for the sufferer and vice versa. Lastly, for MU MIMO-IC transmission

rates increase with IGS and transmit coordination and IGS instead of conventional inter-

ference management (IM) with PGS. Lagen et al. claims IGS performance gains over PGS

in terms of mean user throughput are 10.64%, 13.95% and 22.92% with centralized-IM,

decentralized-IM, and no-IM, respectively [149].

7.1.2 Rate Region Analysis

Pareto boundary of the achievable rate region comprises of all the Pareto optimal points,

which are defined as:

Definition 17 (Pareto-Optimal). The rate pair (R1, R2) is called Pareto-optimal if (R̄1, R2)

and (R1, R̄2 ), with R̄1 > R1 and R̄2 > R2, are not achievable [178].

Interestingly, IGS and/or WL processing significantly improves the achievable rate

region in MU interference setup. Various studies evaluated such improved rate regions

whereas many others focused on the boundary of an achievable rate region, called the

Pareto boundary, based on sum rate analysis, rate profile technique (RPT), or minimum

weighted rate maximization [300].

Sum Rate Analysis

Pareto boundary of the rate region can be acquired by maximizing the sum rate when deal-

ing with multiple nodes. Impropriety characterization renders substantial increase in the

pareto boundaries as observed in interference MAC [166,167], Z-IC [176], and X-IC [172].

Apart from the complete boundary characterization, some studies focused on the weighted
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Table 7.1: Achievable Rate Improvement by IGS over PGS in Different Settings

System Type IGS-
TX

Metric Procedure Improvement Ref

Cogni-
tive

Radio

Underlay
P2P SU

Max SU-Rate with
PU-Rate Constraint Maximal IGS up to 256% [190]

Underlay
MAC

S-MAC
Users

Rate Region Boundary
Maximize Sum Rate

Algorithm: Closed-
Form Expressions

R1:133%, R2:117%
up to 200% [188]

Overlay SU Max SU-Rate with
PU-QoS Constraint

Piecewise Closed-
Form Solution

up to 191.7% [192]

Interweave SU up to 8.3% [294]

MIMO

Massive
MU DL BS

Maximize
Sum Rate

Numerical
Evaluation

ZF/MMSE:75%
BD:97% [77]

2U X-IC SU Maximize SU-Rate Maximal IGS
R1:195.5% increase
R2:8.7% decrease [184]

MU
X-IC All Minimize MSE AO

cent-IM:10.6%
decent-IM:13.9%

no-IM:22.9% [149]

LP/WLP
MU X-IC

WL
Users

Maximize WSR
(≡Minimize WMSE) BCD with AO

WLP:133%,
HetTX(1):84.2%

HetTX(K/2):28.9% [174]

Z-IC
Inter-
ferer

Average Sum Rate
Minimum Rate Maximal IGS

Sum rate:55.2%
Min rate:640% [177]

Multicell
BC N/w BS

Maximize WSR
BCD with AO up to 11.8% [163]

HCRAN
IBC

Femto
BSs

WMMSE and
ADMM for AO

WMMSE-IGS:12.5%
WMMSE-PGS:21.7% [162]

MU-
IBC

BS Maximize min rate Path following Algo 30dBm: 37.93% [301]

P2P-I
MIMO

TX
Maximize Rate
Minimize MSE

Majorization
Theory Tools

Rate Gap:1.55
MSE GAP:0.2

Rate Gain:115% [177]

MISO

MU
P2P-IC Users

Pareto Rate Region
Max-Min Rate

SDR with SOCP
and GR

R1:70%, R2:25%
up to 42.8% [295]

2U-BC BS Pareto Rate Region
SO with

Bisection Search
R1:150%,
R2:100% [295]

3U-BC BS Pareto Rate Region
Gradient based
Rate Balancing

R1:100%,
R2/R3:42.86% [155]

Multicell
NOMA BS Max-min Fairness

LMI based Path
following Algorithm

NOMA: 87.50%
OMA:121.05% [302]
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System Type IGS-
TX

Metric Procedure Improvement Ref

SIMO
P2P
HWI TX

Maximize
Achievable Rate

Convex QCQP
using IPM up to 10% [20]

SISO

2U
X-IC

1U Rate Region Closed-form R1:133.7%,R2:86.6% [303]

All
users

Max-Min Fairness
Proportional Fairness

Closed-Form
Solution

up to 83%
up to 633% [172]

Max-Min Rate SDR up to 228.57% [295]
Pareto Rate Region

Max-Min Rate
Sum Rate SDR for QCQP

R1:357%, R2:389%
JO:58.6%, SO:54.8%
JO:21.5%, SO:18.8% [81]

4U
X-IC

Maximize
Sum Rate

Alternating
Minimization up to 35.2% [170]

MU
X-IC

Max-Min
Weighted Rate SDR and GR

2U:221.4%,
3U:304.3% [293]

P2P
Z-IC

Maximize
Sum Rate

Closed-Form
Solution

up to 30.8% [176]

Pareto
Rate Region

R1:83%, R2:150% [178]

R1:30.9%,R2:36.2% [303]
2U BC
NOMA BS Max Sum Rate KKT conditions ∆P = 0.4Pt: 23.60% [150]

MU IBC
3-Cells

Each
BS

Maximize
Sum Rate

Exhaustive
Search

K=5: 13.7%
K=10:17.6%
K=20:20.6% [296]

DF
Relays

Multihop
FD Source

and
Relays

Maximize
E2E Rate SCP for QCLP

Centralized:
up to 355.6%
Distributed:
up to 80% [83]

Dualhop
FD

Throughput
Line Search

Method up to 107% [158]

Alternate
HD Relay Relays

only

Maximize Total
Achievable Rate

Piecewise Closed-
Form Solution

SUD:161.5%
SUD-SD:66.7% [159]
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sum-rate (WSR) maximization achieved by IGS in various system settings like cognitive

radio [188], massive MIMO with IQI [77], X-IC [81, 170, 174, 303], Z-IC [176, 177],

BC [150, 163], and IBC [162, 296].

In underlay cognitive radio scheme, IGS has emerged as a promising candidate to im-

prove the sum rates of the MAC users. Firstly, for primary-MAC (P-MAC) interfered by

a P2P channel, IGS and symbol extensions can improve the achievable rates up to three

times based on the interferer strength [166, 167]. Secondly, underlay 2U secondary-MAC

(S-MAC) exploited IGS to improve average sum rates up to 200% [188]. Moving on to the

large-scale MIMO systems with TX-IQI, Zhang et al. analyzed WLP algorithms based on

ZF (WL-ZF), matched filter (WL-MF), WL-MMSE, and block-diagonalization (WL-BD)

for the downlink (DL) scenario [77]. They argued the achievability of same multiplexing

gains and WSR with WL-ZF and WL-BD in the presence of IQI as their counterparts ZF

and BD in the absence of IQI. However, this performance is attained at the expense of mi-

nor power loss owing to the increased system scale. Interestingly, the WSR analysis of IQI

system with WL-ZF/WL-MMSE and WL-BD depicted percentage increase up to 97.67%

and 75% over ZF/MMSE and BD for single- and multi-antenna users, respectively [77].

Rate region improvement of Z-IC has also been studied extensively [176]. This contri-

bution employs real-composite representation for easy optimization and characterizes only

one point of rate region [176]. Improved sum rates offered by IGS with effective IM in

Z-IC are also widely investigated in 2U SISO Z-IC. PGS is preferred for weak interference

whereas optimal IGS can provide WSR improvements up to 30.8% in strong interference

regime [176].

Sum rate analysis is also extended to X-IC in various multi-user and multi-antenna se-

tups. For instance, Ho et al. explore the Pareto region for the 2U SISO-IC with cooperative

(IGS) as well as non-cooperative (PGS) transmission strategy. They prioritize improper

rank one signals over full-rank signals because of their simplicity, easy implementation
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and close to optimal sum rate [172]. The study focuses on improving the system efficiency

in terms of max-min fairness and proportional fairness while carrying out the rate region

analysis. Evidently, at the max-min fairness, both users share the same maximum possible

rate in Pareto region however at proportional fairness, the aim is to maximize the product

of improvement over the Nash equilibrium. IGS provides remarkable percentage max-min

fairness and proportional fairness improvements up to 83.33% and 633.33%, respectively,

in the medium SNR regime. The rate region improvement is more substantial for decreas-

ing SNR and asymmetric channel i.e., one IC is stronger than the other [172]. On the

other hand, the Pareto region attained with minimum mean square error (MMSE) scheme

is larger than and contains the corresponding region with ZF scheme. On the other hand, for

2U SISO-IC, Zeng et al. propose a joint (JO) and separate (SO) IGS optimization frame-

work which achieves 21.52% and 18.85% WSR improvement, respectively, relative to PGS

scheme [81]. Similarly, Soleymani et al. report average sum rate increase up to 150% in

2U SISO-IC even with imperfect CSI [303]. Moreover, Lameiro et al. illustrate WSR im-

provement up to 35.14% at 60dB SNR with IGS and linear interference alignment (IA) for

4U SISO-IC [170]. The WSR analysis is also extended from MU SISO-IC to MU MIMO-

IC in a transitional heterogeneous (HetTX) setting where some legacy linear transceivers

i.e., linear precoding and linear estimation (LP-LE) coexist with other WL transceivers

i.e., WL precoding and WL estimation (WLP-WLE) [174]. This work addresses WLT

filter design to maximize WSR and presents iterative procedure to solve equivalent min-

imum weighted-mean square error (W-MSE) problem. Transition from LP-LE to WLP-

WLE, HetTX(1)-WLE (1 LP,K − 1 WLP), and HetTX(K/2)-WLE (K/2 LP,K/2 WLP)

achieve the percentage improvements up to 133.33%, 84.21%, and 28.95%, respectively.

Interestingly, this performance gain increases with increasing number of users, increas-

ing aggregate interference levels or decreasing number of antennas. Surprisingly, the WL

transceivers with no interference coordination performed worse than the linear transceivers

with full coordination among users [174].
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Apart from IC, WSR maximization problem is also extensively studied for BC and

IBC [150, 162, 163, 296]. IGS offers significant sum-rate maximization for the downlink

non-orthogonal multiple access i.e., non-OMA (NOMA) with imperfect successive inter-

ference cancellation (SIC). In a 2U SISO-BC NOMA setup, IGS optimization based on

Karush-Kuhn-Tucker (KKT) conditions renders 23.60% and 18.71% sum-rate improve-

ment when the power difference between two users is 40% and 20% of the total power

(Pt), respectively [150]. Similarly, increasing number of users, receiver antennas and trans-

mission power of the base-station (BS) offer considerable WSR gain of 11.84% with WL

design in MU MIMO-BC [163]. In contrast to the IC and BC, few studies focused on ana-

lyzing the potential benefits of IGS in the combined IBC [162, 296]. For instance, Shin et

al. propose a new IA strategy based on IGS and MU diversity (MUD) for 3-cell SISO-IBC

where each BS covers K users per cell. The percentage WSR improvement of 13.68%,

17.65%, and 20.56% are achieved with the proposed strategy relative to conventional IA

strategies for K = 5, K = 10 and K = 20 users, respectively, at 20dB SNR [296]. WSR

maximization problem in MIMO-IBC (e.g., heterogeneous cloud radio access network (H-

CRAN)) is a non-trivial extension of MIMO-IC [174] and MIMO-BC [165]. Thus, Lin et

al. propose a distributed beamforming algorithm for separate optimization. This algorithm

outperforms existing WMMSE with IGS and PGS in terms of WSR by 12.5% and 21.74%,

respectively [162].

Rate Profile Technique

Rate region boundary can also be established using RPT instead of maximizing the sum

rate. This technique also advocates impropriety incorporation to render improved pareto

boundaries in numerous interference-limited setups like underlay MAC [188], Z-IC [178,

303], X-IC [81, 295, 303, 304], and BC [155, 295].

Lameiro et al. extended their work in underlay P2P cognitive system [190] to under-

lay MAC setup in order to study the improved rate region by IGS. The IGS transmitting
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unlicensed S-MAC coexists with PGS transmitting licensed primary link. The numerical

results for 2U S-MAC with zero-forcing (ZF) decoding present the rate improvements up

to 117% and 133% for SU-2 and SU-1, respectively. IGS guarantees rate improvement if

the sum of IC gains is above a certain threshold and surprisingly, the relative gain increases

with increasing number of users [188].

Rate region improvement of Z-IC has also been studied extensively [178]. The contri-

bution [178] employs augmented complex representation for more insightful analysis and

characterizes entire rate region boundary. Lameiro et al. emphasize the conditional opti-

mality of IGS in SISO Z-IC that attains 83.33% and 150% percentage increase in the rates

of user-1 (R1) and user-2 (R2), respectively, at the maximum sum rate point on Pareto

boundary [178]. Likewise, Soleymani et al. claim 30.95% and 36.25% increase in R1 and

R2, respectively, in a 2U SISO Z-IC with IGS transmission under imperfect CSI [303].

The perks of IGS are not only limited to Z-IC but also extend to X-IC. By far, 2U

SISO-IC is the mostly studied X-IC for the employment of IGS with some substantial

results [81, 295, 303, 304]. For instance, Soleymani et al. claim 86.67% and 133.77%

increase in R2 and R1, respectively, with IGS in a 2U SISO X-IC under imperfect CSI

of the interfering links [303]. Moreover, they also propose a practical IGS scheme i.e.,

maximal IGS (which does not require any optimization) for 2U SISO-IC with Rayleigh

fading. They again present substantial increase in Ergodic rate region as well as sum-rate

with IGS under strong interference [304]. Similarly, Zeng et al. present significant increase

in the Pareto rate region of 2U SISO-IC as IGS improves up to 388.89% and 357.14%

rates for user-2 and user-1, respectively [81]. Additionally, for a given the optimal rank-1

transmit covariance matrices, rank-1 pseudo-covariance matrices are proven optimal for

achievable rate region in MU MISO-IC. Percentage improvements of R1:25% and R2:70%

are attained for 2U MISO-IC [295].

IGS can render effective interference suppression in BCs when interference is treated

as noise. For instance, 2U MISO-BC can achieve up to R1:100% and R2:150% rate im-
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provement [295]. Similarly, for a 3U MISO-BC, IGS offers R2/R3:42.86% and R1:100%

increase relative to PGS [155].

Minimum Achievable Rate

IGS transmission can also be optimized in order to maximize the minimum achievable

rate of the system. Such contributions analyzed MU SISO-IC [81, 293], MU MISO-IBC

[302], MU MISO-IC [295], MU MIMO Z-IC [177], MU MIMO-IC [300], and MU MIMO-

IBC [301].

Firstly, average max-min rate improvement of 228.57% and 42.86% is reported in 2U

SISO-IC with joint optimal and 3U MISO-IC with suboptimal optimization, respectively

[295]. Similarly, percentage improvements up to 58.62% and 54.83% in average max-min

rate based on the JO and SO, respectively, are observed in 2U SISO-IC [81]. Furthermore,

numerical results revealed up to 221.43% and 304.26% improvement in 2U and 3U SISO-

IC, respectively. The performance gains further improved with increasing SNR and number

of users [293].

Secondly, IGS under OMA or NOMA is reported to exhibit almost two-fold gain in

users minimum throughput, combating both intra-cell and inter-cell interference, in a MU

multi-cell broadcast network. The proposed IGS design algorithms based on linear matrix

inequality (LMI) optimization result upto 87.50% and 121.05% improvement in worst user

rate relative to PGS in 4U, 3-cell MISO-IBC under NOMA and OMA schemes, respec-

tively [302].

Lastly, the IGS benefits to maximize the minimum user rate are also reaped in MU

MIMO ICs. For instance, IGS offers up to 640% improvement in min-rate performance of

2U MIMO Z-IC [177]. Moreover, a hardware impaired MU MIMO-IC depicts more than

80% improvement in fairness rate with IGS over PGS in a 10U setup [300]. Similarly, a

path following IGS optimization algorithm yields up to 37.93% max-min rate improvement

at 30dBm in a MIMO-IBC with 3 cells and 6U/cell [301].
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In a nutshell, various contributions presented rigorous analysis and substantial results

to demonstrate significant achievable rate improvements for different interference limited

scenarios as summarized in Table 7.1.

7.2 Outage Probability

Several researchers resort to more conceptual analysis such as outage probability, i.e., the

probability of the event when the system performance falls below a pre-defined threshold.

Such abstracted analysis sacrifices the model depth for simplicity leading to simple ex-

pressions that characterize high-level network behavior, highlight general trade-offs, and

facilitate network design. Outage probability can be quantified in terms of rate outage,

SNR outage, secrecy outage and error outage etc. Of all these, rate and secrecy outage are

focused as they suitably reflect the IGS system operation quality.

7.2.1 Rate Outage Probability

ROP is generally defined as the probability of the event Pr{Rate < Threshold}. Various

contributions have demonstrated substantial decrease in the Rate Outage Probability (ROP)

when IGS transmission is adopted as opposed to PGS. These studies analyzed various

systems including but not limited to cognitive radio [187, 191], multi-antenna [108] and

relay systems [179] suffering from external interference or internal HWIs.

The utility of IGS at SU in underlay cognitive radio setting is supported by the claim

that it decreases SU ROP by 77.5% while meeting PU QoS and SU power constraints. The

performance gain of IGS increases as the interference-to-noise ratio (INR) of the SU to

the PU increase for a certain SU target rate [191]. In another spectrum sharing scenario

with coexisting FD PU and HD SU, IGS offers up to 91.43% reduction in the ROP when

the allowable INR at the PUs exceed a certain threshold and the SU follows a maximum

allowable target rate [187]. Gaafar et al. extended their work to mitigate RSI in FDR using

IGS under Nakagami-m fading. The observed percentage decrease in ROP of IGS relative
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Table 7.2: Outage Probability Reduction with IGS Relative to PGS

System Tech Desc IGS TX Metric Procedure Improvement Ref

Multiple
Antennas SIMO HWDs Single TX

Minimize
Rate Outage

Closed-Form
Solution

SISO:85%
SIMO:100% [108]

DF
Relays FDR Dual-hop Relays

Minimize
E2E Outage

Coordinate
Descent

MPGS: 90%
OPGS: 68.18% [179]

Cognitive
Radio
Setting

Underlay
HD-PU

SU only
Minimize

Rate Outage

Closed-Form
Solution up to 77.5% [191]

FD-PU
Algorithm

Design up to 91.43% [187]
Eaves-
dropper

Minimize
Secrecy Outage Numerically up to 95% [189]

to PGS with maximal power allocation (MPGS) and PGS with optimal power allocation

(OPGS) is 90% and 68.18%, respectively, with 5W power budget at relay. Unlike PGS,

IGS maintained a fixed performance even with increasing RSI [179].

Furthermore, Javed et al. demonstrated the effectiveness of IGS transmission to effi-

ciently combat the drastic effects of asymmetric HWDs on SIMO systems. IGS parameters

were optimized to maximize instantaneous achievable rate and consequently reduce ROP

up to 100% and 85% for the adopted SIMO [108] and SISO [79] system, respectively. The

ROP gain in imperfect hardware system is especially significant with increased distortion

levels and more receiver streams NR for any given threshold rate.

7.2.2 Secrecy Outage Probability

A secrecy outage is the probability of event when the mutual information of the desired

link (A→B) is lower/equal to that of the undesired link (A→E) i.e., Pr{IAB − IAE <

Threshold}. Consider the underlay cognitive setup with primary network link source-

destination (S→D) and a secondary link Alice-Bob (A→B) in the presence of an eaves-

dropper Eve (E). Alice adopts IGS scheme in order to reduce the Secrecy Outage Prob-

ability (SOP). It is evident from the fact that IGS demonstrate lower differential entropy
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Figure 7.2: Percentage Reduction in Outage Probability with IGS

than PGS. Thus, an improper interference will be less harmful on the achievable rates rel-

ative to a regular proper interference when interference is treated as noise. Therefore, this

allows Alice to transmit with higher power and reap higher achievable rates without vio-

lating S→D licensed link. Nonetheless, SOP reduction is a trade-off between impropriety

and power of the transmitted signals. Oliveira et al. claim to be the first to establish IGS

superiority in physical layer security of cognitive setup. They present closed formulation

for the SOP and revealed up to 95% lower SU-SOP with IGS [189].

All of these contribution support the advantageous trend of IGS in reducing outage

probability of the adopted systems suffering from interference or improper noise as high-

lighted in Table 7.2 and Figure 7.2.

7.3 Power Efficiency

Interestingly, IGS allows achieving the desired QoS while spending less power at the TXs

owing to the additional tunable parameter. This leads to power efficient solutions for var-

ious MU, multi-antenna, and relay setups. IGS transmission with and without symbol

extensions for MAC interfered by a P2P channel renders up to 32% and 40% power sav-

ing ratios, respectively [166]. Likewise, IGS optimization offers up to 19.38%, 8.47% and

3.5% energy efficiency with 4, 5 and 6 transmitting BS antennas in a MU MIMO-IBC with

3 cells and 6Us per cell [301].
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IGS is further incorporated for joint rate-energy optimization in multi-antenna heteroge-

neous two-tier networks where users are subject to TX noise, MU interference and RSI. Al-

though these impairments are detrimental for achievable rate, they are beneficial for energy

harvesting because they carry RF energy [186]. Energy harvesting of 4µwatts/channel-use

is achieved with 0.5bits/channel-use achievable rate in FD D2D 2U pairs coexisting with

HD MU-BC in a cellular network. Similarly, for a single-carrier MISO BC the decrease in

transmit power requirements by IGS over optimal PGS is 1dB, 3dB and 12dB for 2,4 and

6 users, respectively [155].

IGS is beneficial to improve the power efficiency of one-way DF-FD MIMO relay [182]

and two-way AF-FD MIMO relay [181] for MU interference networks. MU network with

MIMO-FDR is not only prone to inter-user interference and transceiver noise but also self-

interference due to MIMO-FDR relay operation. Optimal IGS at the sources and relay

requires 0.95dB minimum sum-power requirement relative to 1.2dB, 1.6dB and 1.75dB for

OPGS, PGS-ZF and PGS-MRC, respectively, under QoS demand of 1 bit/channel-use by

two-pair MIMO relay network. Power efficiency attained by IGS scheme improves with the

increasing interference levels and TX noise for the entire range of rate demands. Interest-

ingly, only IGS scheme is capable of meeting high rate demands by single real streaming

whereas PGS fails to do so even with infinite transmission powers [182]. Additionally,

AF FD MIMO relay system enhances power efficiency through SNR balancing or transmit

power minimization using WL transmit strategies. By fine-tuning non-circularity of WL

complex transmitted signals significant performance gains up to 150% percentage increase

in average minimum SINR and 5dBW less average minimum relay transmit power relative

to linear precoding schemes [181]. The WL gain increases with increasing number of pairs

but decreases with increasing number of relay antennas. Although IGS offers significant

power/energy efficiency gains over PGS, the relative energy efficiency benefits are less than

rate benefits [300].
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7.4 Degrees of Freedom

Apart from the discussed metrics, IGS is also beneficial to improve the achievable DoF in

a given interference scenario including but not limited to X-IC [169, 170], BC [164]and

IBC [296]. For instance, Lameiro et al. illustrated improved DoF ≈ 4/3 (requiring min-

imal symbol extensions) with IGS and linear IA for 4U SISO-IC [170]. Similarly, Yang

et al. demonstrated achievable DoF of 0.5 more than the outer bound of DoF of MIMO

X-IC when spatial IA and ZF framework are employed along with the IGS [169]. More-

over, in MIMO-BC system with WL transceivers IGS per-user transmit signals outperform

PGS counterpart under QoS constraints without time-sharing [164]. IGS guarantees faster

convergence of effective DoF to its upper bound relative to PGS for a given rate require-

ment [164]. Extension to 3-cell SISO-IBC new IA strategy based on IGS and MUD re-

vealed 1.5 DoF (1 by IGS + 0.5 by MUD) whereas higher cells required symbol extensions

to achieve proportional DoFs [296].

7.5 IGS Signaling Design

Theoretical analysis of the IGS revealed tremendous payoffs in various MU scenarios such

as the X-IC [81, 172, 174, 305], Z-IC [175–178], BC [173, 306], cognitive radio networks

[190–192, 294], HWI systems [12, 35, 84, 108] and relay channels [83, 159, 179]. The vast

majority of them assumed Gaussian codebooks for more efficient IM [96]. IGS scheme

requires optimization of the following parameters based on the underlying presentation.

• Transmit covariance and pseudo-covariance matrices with complex representation

which reduces to power and circularity coefficient for small-scale systems.

• Augmented covariance matrix with complex augmented representation

• Composite covariance matrix with real-composite representation

These parameters are optimized in order to maximize some performance metric like ergodic
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rate, minimum rate, sum rate, or Pareto rate region. They can also be fine-tuned to minimize

ROP, SOP, or MSE etc. This section includes the guidelines and insights of the popular

design problems with celebrated optimization techniques.

7.5.1 Closed Form Solutions

The convexity of the IGS parameter optimization problem depends on the objective func-

tion as well as constraints. Few objective functions like complete characterization of Pareto

boundary in SISO Z-IC and SISO-IC (by restriction to rank-1 transmit covariance matri-

ces) [172, 178] and maximizing sum-rate in SISO Z-IC [176] yield closed form solutions.

Alternately, other optimization problems produce piece-wise closed form solutions. Con-

sider an overlay cognitive radio [192] or interweave cognitive radio [294] setting which

involve licensed primary and unlicensed secondary link. The conventional PU is transmit-

ting PGS whereas the SU employs optimized IGS to maximize its achievable rate Rs while

meeting PU QoS requirements Rp (ps, Cx) ≥ Rmin (Rp is the achievable rate of the PU).

The optimization problem is similar to 7-P1 and tunes IGS transmission parameters of SU

i.e., transmit power ps and circularity coefficient Cx.

7-P1 : max
ps,Cx

Rs (ps, Cx)

s. t. Rp (ps, Cx) ≥ Rmin,

0 ≤ ps ≤ ps,max,

0 ≤ Cx ≤ 1.

SU achievable rate is maximized under PU QoS constraint such that the interference from

SU can be limited. This ensures a minimum achievable rate for the PU to maintain QoS.

Moreover, ps is constrained under the transmission power budget ps,max and Cx range de-

cides the transmission to be anywhere between proper and maximally improper. Likewise,

maximizing total achievable rate in alternate HD-DF relay system [159] is equivalent to
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7-P1 with maximum power transmission eliminating any primary rate constraint and can

also be solved as piece-wise closed form solution.

Another form of 7-P1 is the ROP minimization problem 7-P2 in cognitive radio setup.

The SU optimizes IGS transmission parameters ps and Cx to minimize its ROP i.e., Pout,s (ps, Cx) =

Pr{Rs (ps, Cx) ≤ Rmin} while maintaining PU QoS Pout,p (ps, Cx) ≤ Pout,th [191].

7-P2 : min
ps,Cx

Pout,s (ps, Cx)

s. t. Pout,p (ps, Cx) ≤ Pout,th,

0 ≤ ps ≤ ps,max,

0 ≤ Cx ≤ 1.

Interestingly, problems similar to 7-P2 can also be solved in closed form by investigating

the monotonic trend of the objective function with respect to the optimization variables.

7.5.2 Convex Optimization

The closed-form solutions of the convex optimization problems are attractive but not always

achievable. For instance, the achievable rate maximization problem 7-P3 of SIMO P2P sys-

tem with transceiver HWIs reformulates as a quadratic-constraint quadratic programming

(QCQP) problem. The IGS transmission parameters enclosed in s = [<{σ̃2
x} ={σ̃2

x} σ2
x ]

T

are efficiently optimized using interior point method (IPM) pertaining to the convex quadratic

constraints [20].

7-P3 : max
s

RSIMO-IGS (s)

s. t. A1s 6 b,

sTA2s 6 0,
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where A1 = diag [0 0 1]T and b = [0 0 PT]T signify the transmission power constraint

whereas A2 = diag [1 1 − 1]T tracks the magnitude of transmit pseudo-covariance. Thank-

fully, the complexity of convex optimization problems is polynomial in the problem dimen-

sion. However, such fancy convex optimization problems which yield elegant solutions are

occasional.

7.5.3 Non-Convex Optimization

Most of the IGS design problems are non-convex in nature and require exponential efforts.

Interestingly, all non-convex problems are not hard but lack convexity owing to their inap-

propriate formulation. As a matter of fact, many non-convex optimization problems admit a

convex reformulation using relaxation approaches like semi-definite relaxation (SDR) and

sequential convex programming (SCP). Moreover, for separable problems, alternate opti-

mization is preferred over separate optimization if the underlying sub-problems are convex.

Furthermore, line-search methods with gradient descent or Newton method converge to a

local solution for unconstrained optimization. However, the NP-hard class of non-convex

problems requires a different treatment.

Semi-Definite Programming

The joint optimization of covariance Rxkxk and pseudo-covariance R̃xkxk matrices to achieve

the Pareto-optimal rates emerges is a non-convex problem like 7-P4 in case of 2U Gaussian

SISO-IC [81].

7-P4 : max
Rxkxk

,R̃xkxk
,R

R

s. t. Rk ≥ αkR, ∀k

0 ≤ Tr (Rxkxk) ≤ Pk, ∀k

Rxkxk
� 0, or 0 ≤ |C̃xk |2 ≤ C2

xk
∀k
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where αk is the target ratio between user k’s achievable rateRk and the sum-rate of all users

R. Zeng et al. suggests SDR to transform non-convex QCQP (as in 7-P4) to quasi-convex

semi-definite programming problem which can either be solved using bisection search or

Gaussian Randomization (GR) procedure based on the achievable rank-1 constrained so-

lution [81]. The extension of this problem to MU SISO-IC is a sequence of non-convex

minimum weighted rate maximization problems which cannot be solved optimally. Thus,

SDR technique along with GR provides an efficient approximation to jointly optimize the

transmission parameters [293].

The non-convex Pareto rate-region boundary characterization problem of interfering

MAC setup can also be transformed from quadratic to linear form using SDP. Moreover,

SDR of rank constraints convexifies the problem at hand which can then be solved using

IPM. This problem is equivalent to 7-P4 except that the objective is to maximize RΣ in

place of auxiliary variable R and the first constraint is replaced by the individual link ca-

pacity constraint i.e., αqRΣ ≤ Lq∀q. The solution of the relaxed problem can then be

projected into the feasible set of the original problem using GR [166].

Another important problem is the sum-power minimization in MIMO FDR for MU in-

terference networks with QoS demands of the communicating pairs. IGS design to tackle

RSI and IQI with minimal power requirement leads to an SDP optimization problem with

non-convex constraint set. Therefore, linearization of the second concave function in dif-

ference of concave (DC) programming problem using Fenchels inequality [282] is sug-

gested [182].

Sequential Convex Programming

Transmit parameters of the source and participating relays can be optimized in a Multi-

hop DF-FDR system to improve E2E achievable rate by efficiently mitigating RSI and

HWDs. Javed et al. propose maximum allowable power transmission σ2
m = Pt along with

the optimized pseudo-variances σ̃2
m for all transmitting nodes to promote fairness [83].
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Considering the achievable link rate between nodes m and n as Rnm (σ̃2
m, σ̃

2
n), 7-P5 aims

at maximizing the minimum link rate, i.e.,

7-P5 : maximize min
n

{
Rnm

(
σ̃2
m, σ̃

2
n

)}
subject to 0 ≤

∣∣σ̃2
m

∣∣ ≤ σ2
m, ∀m.

The joint optimization 7-P5 turned out to be a max-min fractional programming problem

which can be solved in two different ways.

1. Generalized Dinkelbach algorithm (GDA) [307] can transform non-linear fractional

programming to non-linear parametric programming and SCP can transform the re-

sultant DC problem to QCQP convex optimization problem [153]

2. Alternately, the logarithmic properties can transform fractional programming prob-

lem to DC problem and eliminate GDA step. However, SCP is inevitable to solve

further [83].

SCP for DC programming approximates second concave to its first-order Taylor series

expansion and solves the resultant convex problem iteratively.

Alternate Optimization (AO)

Joint optimization of transmission parameters is not always manageable therefore some

researchers suggest AO method to iteratively improve the approximate solution of max-

imizing WSR problems. For instance, Lagen et al. propose block coordinate descent

(BCD) algorithm for AO in MU MIMO-IC with heterogeneous (some LT and WLT) de-

ployment [174] and decentralized processing [149]. They emphasize WLP of the informa-

tion symbols bk from kth-user i.e., xk = T1,kbk + T2,kb
∗
k and WLE from the received

vector yk at kth-user i.e., b̂k = RH
1,kyk + RH

2,ky
∗
k. The goal is to design these precoding

T1,k,T2,k and estimation matrices R1,k,R2,k for all users to maximize WSR by equiva-
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lently minimizing W-MSE with weights µk, i.e.,

7-P6 : min
T1,k,T2,k

R1,k,R2,k

∑
k∈K

µk
2

log2 |EkF
∗
k|

s.t. Tr
(
T1,kT

H
1,k + T2,kT

H
2,k

)
≤ Pk ∀k,

where, Ek is the MSE matrix and Fk = Ek − ẼkE
−∗
k Ẽ∗k. Similarly, WLP and WLE de-

sign to maximize WSR for the MU MIMO-BC was attained by equivalently minimizing

W-MSE 7-P6 with BCD and AO [163]. Intuitively, this approach renders suboptimal sta-

tionary point solutions of precoding and estimation matrices through iterative computation.

Additionally, the transmit characteristics of DF-FDR are also optimized using coordinate

descent algorithm with AO owing to the monotonic objective function in the individual

optimization variables [179]. Furthermore, Lameiro et al. also relied on alternating min-

imization algorithm to design IA precoders and decoders with IGS to provide achievable

DoF bounds in 4U SISO-IC [170].

Separate Optimization (SO)

Alternating optimization is the preferred choice with iterative convergence especially if the

sub-problems are convex for the subset of optimization variables by treating the remain-

ing variables as constants. Otherwise, we resort to SO. The separate tuning of transmit

covariances Rxkxk and pseudo-covariances R̃xkxk for k = 1, 2 can be carried out in two

ways [81].

1. Exclusive optimization

2. Optimizing Rxkxk assuming zero R̃xkxk and then obtaining R̃xkxk with given Rxkxk .

As an illustration, 7-P4 for 2U SISO-IC can also be dealt using SO. The covariance opti-

mization problem emerges as a linear feasibility problem necessitating bisection algorithm

for its efficient solution. However, pseudo-covariance optimization with fixed Rxkxk is a
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set of feasibility problems and thus can be solved as a finite number of second-order cone

programming (SOCP) problems [81].

Similarly, the joint optimization of non-convex 7-P4 for MU Gaussian MISO-IC and

MISO-BC does not yield a global optimal solution. Therefore, Zeng et al. propose SO of

Rxkxk and R̃xkxk . Rxkxk by solving feasibility problem with R̃xkxk = 0 using bisection

algorithm. Whereas, R̃xkxk is obtained with fixed Rxkxk by solving equivalent minimum

weighted sum-rate maximization (WSR-Max) [295].

Line Search Methods (LSM)

Dualhop DF-FDR systems can adopt improper signaling by finding the optimum weights to

maximize the minimum SNR between the two hops under the perfect SI nulling constraint.

The parameterization of the adopted problem renders one-dimensional optimization prob-

lem which can be efficiently solved using LSM [158].

Algorithms for NP-Hard Optimization

Unfortunately, all non-convex problems cannot be relaxed or convexified, rendering a class

of NP-hard optimization problems. In computational complexity theory, these problems

are informally ”at least as hard as the hardest problems in NP”. Generally, WSRMax prob-

lems are proven to be NP-hard [308]. Surprisingly, some subclasses of the general NP-hard

problem can still be solved in polynomial time [309]. Whereas, others are solved using sub-

optimal/approximation algorithms e.g., game-theory based algorithm [310], interference

pricing based algorithm [311], gradient descent algorithm [312] with line search methods

for unconstrained optimization [158], iterative weighted MMSE based algorithm [313],

monotonic optimization frameworks [314, 315], graph theory for combinatorial optimiza-

tion [316] and SDR for solving non-convex QCQPs with GR by restricting to rank-1 solu-

tions [295]. To summarize, some NP-hard problems can be efficiently solved by combining

multiple techniques with certain restrictions or by breaking the problem into sub-problems
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and then employing suitable optimization technique to solve each sub-problem.

Here we present an example of such a scenario employing separate optimization and

then WMMSE algorithm and alternating direction method of multipliers (ADMM) are used

to solve two subproblems, respectively. The non-convex NP-hard WSR maximization in

MIMO-IBC poses a huge challenge and cannot be straightforwardly solved using any of

the aforementioned techniques. Such problem can be dealt by the separate optimization of

transmission parameters where covariance matrices are designed (assuming zero pseudo-

covariance) using WMMSE algorithm. Next, target is to design the pseudo-covariance

matrices using the pre-designed covariance matrices. This non-convex quadratic program-

ming problem can neither be solved using SDR nor with SCP (as they do not warrant a

unique and globally optimal solution). Thus, ADMM-based multi-agent distributed algo-

rithm is suggested to solve an AO sub-problem [162]. However, the global optimal solution

of AO sub-problem only guarantees the convergence to a stationary solution of the overall

problem. This problem is a classical example of employing both separate and alternate

optimization to solve a NP-hard problem.

7.5.4 Intractable Optimization Framework

Unfortunately, some complicated system configurations result in the intractable optimiza-

tion problems with no definite framework. Therefore, we have to resort to the brute-force

attack with exhaustive search. Such exhaustive search comes at the cost of factorial time

complexity and may not be desirable. Thus, a fairly simple but suboptimal procedure is to

adopt Maximal IGS conditional to IGS superiority.

Exhaustive Search (ES)

IGS parameters can be fine tuned using ES in the feasible domain. For example, the param-

eters of WLP in downlink [77] and WL RX for uplink [82] in multi-cell massive MIMO

systems can be chosen using ES. Similarly, exhaustive user scheduling algorithms com-
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bined with IGS in SISO IBC can improve its sum-rate performance [296]. Moreover, the

Pareto-optimal transmit covariance matrices for SINR balancing to improve the worst-user

rate in the 2U SISO-IC case are also obtained exhaustively [185]. Although, ES leads to a

near-optimal solution but it comes at the expense of factorial time complexity [317–319].

Therefore, a rule of thumb is to employ ES when nothing else works.

Maximal IGS (MIGS)

MIGS is usually adopted either to ease optimization overhead or to overcome intractable

optimization issues. For instance, Javed et al. propose adaptive scheme which switches

between PGS and maximal IGS in multi-antenna systems under HWIs based on some

switching criterion [20]. However, MIGS is rarely the optimal improper signaling choice

e.g., Lameiro et al. argues that maximal IGS is the optimal signaling for SU transmission

while operating in IGS favorable domain in an underlay cognitive radio network [190].

They further advocated MIGS in underlay MIMO cognitive radio networks in order to re-

strict the SU interference to protect interference temperature constraint of the PU [320].

MIGS dominance over conventional PGS can be evaluated using majorization theory tools

(MTT). Extension of MIMO P2P-I to two-tier HCN (with multiple MIMO Z-ICs) [177]

and multi-antenna systems (specifically 2U MIMO-IC) [184] exploit MTT to demonstrate

the superiority of MIGS [321]. Furthermore, MTT also help to demonstrate that the eigen-

value spread of augmented covariance matrix is greater for improper signals and becomes

maximum for maximal improper signals [36].

7.5.5 Summary and Insights

The applicability and effectiveness of the most popular optimization frameworks is pre-

sented in this subsection. However, the theoretical analysis of IGS in more complicated sys-

tems and scenarios opens the research areas for other efficient, optimal, and fast-converging

optimization techniques.
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7.6 IGS Detection and Estimation

In the engineering sciences, the three main branches of statistical signal processing are

estimation, detection, and signal analysis [31]. Therefore, various contributions have ad-

dressed these issues related to IS as enumerated in Fig. 7.3.

7.6.1 Detection

The problem of detecting the presence of improper complex random signal s(t) from the

observed complex signal r(t) under additive noise n(t) is carried out by a simple hypothesis

test

H0 : r(t) = n(t), H1 : r(t) = s(t) + n(t)

Improper Signal in Proper Noise

The detection of an improper signal is based on a finite-dimensional log-likelihood ratio

which can be designated as a cascade of an estimator and a correlator. For a zero-mean

complex Gaussian signal s(t), Schreier et al. propose the detection based on improper

version of Karhunen-Loève (K-L) expansion [63]. The performance metric in terms of

deflection yields double performance gain when pseudo-covariance is taken into account,

generalizing the 3-dB gain of coherent processing over non-coherent processing [63]. On

the other hand, for improper complex second-order cyclostationary random signal s(t),

Yeo et al. suggest properizing frequency shift vectorizer to exploit periodic and symmetric

correlations of the complex envelope in the frequency domain. The probability of miss is

significantly reduced by the joint utilization of cyclostationarity and impropriety [61].

General Possible Improper Signal in Improper and Colored Noise

Another interesting scenario is the detection of possible improper complex-valued signal

common among two or more sensors, in the presence of possible improper and colored
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noise. Tugnait et al. propose GLRT using asymptotic distribution of a frequency-domain

sufficient statistic, based on the discrete Fourier transform of an augmented measurement

sequence. Interestingly, they present 133.33% and 70.91% increase in the PoD of improper

signals in improper noise relative to that in proper noise at -10dB and -7.5dB SNR, respec-

tively, while achieving 0.1 PFA [156].

Impropriety and Gaussianity Detection

Let us now consider the case when the presence of complex random signal is known but we

would like to evaluate if it is improper and/or Gaussian signal or not. Novey et al. address

this problem of detecting possible improper Gaussian signal z = x+ iy using GLRT based

on complex generalized Gaussian distribution (CGGD) [322] i.e.,

p (z, c,Rzz) =
β(c)√
|Rzz|

exp
{
−α (c)

(
zHR−1

zz z
)}c

, (7.3)

where, β (c) = Γ (2/c) /πΓ (1/c)2 and α (c) = cΓ (2/c) /2Γ (1/c) with Gamma function

Γ (.) and shape parameter c. This problem involves two detection mechanisms, 1) Non-
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circularity 2) Non-Gaussianity detection based on the following two binary hypothesis tests

[323]

Non-circularity Non-Gaussianity

H0 : Rzz = σ2
zI, H0 : c = 1,Rzz = σ2

zI,

H1 : Rzz 6= σ2
zI. H1 : c 6= 1,Rzz 6= σ2

zI.

The adjusted-GLRT detector [324] performs fairly good as CGGD [323] for Gaussian data

(c = 1) but inferior to CGGD for sub-Gaussian (c = 1.5) and super-Gaussian data (c =

0.25). For instance, PoD of 0.75 with CGGD is reported relative to 0.3 with adjusted-GLRT

for super-Gaussian data [323].

Real-time Impropriety Detection

Sometimes the static detection of improper signals is inadequate as the underlying appli-

cations may require real-time identification of improperness. Thus, Jelfs et al. propose

collaborative adaptive filters trained by the complex least mean square (LMS) algorithms

to detect and track improperness in real-time unlike competing static detectors [46].

Discussion

The detection process of improper signals varies under the presence of proper, improper, or

colored noise. Once detected, the interest may reside in the evaluation of DoI as well as the

underlying distribution (dictated by the shape parameter). Apart from this static detection,

contributions have successfully dealt with the problem of impropriety detection in real-time

applications.
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7.6.2 Estimation

While detection problems merely identify the presence or absence of improper complex

signal, estimation problems include estimating the value of a parameter, or vector of param-

eters, from a sequence of measurements. Several engineering applications require complex-

valued estimations, such as training neural networks [37], passive radar tracking [325], tar-

get tracking [326], power systems frequency estimation [29] and fault diagnosis [327] etc.

From communication theory perspective, extraction of the transmitted information signal x

from the received observations y after undergoing a system, namely channel, is sometimes

carried out using estimation based on the likelihood p (y/x). This conditional probability

relies on the prior probabilities as per Baysian approach whereas other estimation tech-

niques may not require priors e.g., Frequentists approach treats x as a vector of unknown

constants [31].

Considering the problem of estimating y from complex observations vector x, linear

estimation aims to design u such that ŷ = uHx minimizes linear MSE. Alternately, WLE

aims to design v and w such that ŷ = vHx + wHx∗ minimizes WL-MSE [39]. MSE of

the real data can be accurately carried out by linear estimators whereas WL estimators are

generally optimum for complex data. Few relaxations from this rule, which prefer one

estimator over the other, are highlighted for a broader picture:

• For jointly circular observations and trivial correlation between observations and es-

timandum, WL estimators reduce to SL estimators [31]

• For joint circularity between observations however correlated observations and esti-

mandum, WL-MSE still offers better estimates than linear MSE [328]

• For NC observations, it is possible to design v and w such that y is uncorrelated with

x. This implies zero estimation with the SL procedure and perfect estimation with

the WL procedure even when the MSE is zero [328]
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• For maximally improper i.e., x = ϕx∗ with probability 1, WLE is unnecessary as x

and x∗ carry the same information regarding proper/improper y [31]

• The WL-MMSE estimate of a real signal from a complex signal is always real

whereas the LMMSE estimate is generally complex [329]

This section further characterizes estimation problems of different signals with different

types of noise using SL and WL estimators based on MMSE criterion.

Discrete Stationary Signal in Multiplicative Noise

Estimation problem of discrete second-order stationary signals can be efficiently solved us-

ing WL recursive algorithms. Interestingly, WL predictor proposed by Navarro et al. offers

significant performance gains. These benefits increase with the increasing improperness of

observations and stabilize at a certain value [330].

Cyclostationary Signal in Stationary Noise

Blind estimation is a key concept to facilitate spectral efficiency by eliminating the need

of pilot transmission. Napolitano et al. propose a blind algorithm to estimate amplitude,

phase, relative time delay, and frequency shift of each user transmitting NC signals in a

multiple access system. The presented algorithm, based on the cyclostationarity properties,

not only provides mean-square consistent estimates of the unknown parameters but is also

robust to stationary noise and non-stationary narrowband interference [331].

Non-stationary Improper Signal in additive white Gaussian noise (AWGN)

Next is the estimation of non-stationary improper complex zero-mean random signal in

AWGN. Schreier et al. suggest WL-MMSE estimator using improper version of K-L ex-

pansion to address this problem. Interestingly, this procedure yields perfect estimates ren-

dering arbitrarily large performance gain over SL estimator in the presence of improper
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noise. Moreover, WL-MMSE estimation of an improper complex signal in uncorrelated

noise can render twice performance advantage over LMMSE estimation at diminishing

noise levels [31].

Multiple Mode Adaptive Estimation in NC Noise

The improper stochastic hybrid system with discrete and continuous states can be estimated

using WL multiple model adaptive estimation (MMAE) algorithms. These algorithms are

based on augmented Kalman filters which are matched to different modes of the hybrid

system. WL-MMAE utilizing pseudo-covariance not only converges faster but also of-

fers up to 30% less MSE than their counterparts [130]. Mohammadi et al. also extended

their work to distributed estimation using diffusion strategies, when a system is observed

distributively using an agent/sensor network [66].

Improper Signal in Colored Noise

Estimation of a random improper signal in the presence of colored noise having an addi-

tive white part is carried out with Hilbert space theory yielding 10% less MSE with WL

estimator as compared to SL estimator [136].

Proper Signal in WL Channel

Underlying channel also impacts the performance of the MSE estimators, irrespective of

the correlations between data. For instance, Trampitsch demonstrates the superiority of

WL-MMSE over LMMSE for white Gaussian data with complex AWGN. This lead is

observed either due to the WL characteristics of the underlying channel even in the absence

of correlations between the data or for highly correlated data in a SL channel [233].
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WL Quadratic Estimation in Fourth-order White Noise

For complex NC case, a scalar complex y can also be estimated from a measurement x us-

ing the WL quadratic estimator as ŷ = c+gHx+xHHx, where c is chosen as−Tr
(
RyyH

)
to ensure zero-mean ŷ if the observations are also zero-mean. Interestingly, the WL part of

WLQ-MMSE is not the same as WL-MMSE. Moreover, the better estimation obtained by

WLQ-MMSE relies on the complete statistical information up to fourth order [31].

Discussion

The performance of various estimators can be distinguished using complementary MSE

analysis which quantifies the DoI of the SL and WL estimation errors [67]. In a nutshell,

the main difficulty in the state estimation comes from structural uncertainty which arises

from the lack of knowledge of the true behavior of observations and noise in the under-

lying system. Therefore, a generalized approach in terms of WL estimators is preferred

to accommodate all possibilities and uncertainties. However, this may come at the cost of

over-fitting and slower convergence owing to the increased dimensions [39].

7.6.3 Source Separation

Separating one source from a mixture of noisy sources can be carried out using source

extraction or source filtering.

Source Extraction

Source extraction aims to recover the original sources from their linear (or non-linear) mix-

tures in both noisy and noise-free environments. Moreover, blind source separation (BSS)

does so with neither explicit knowledge of the sources nor the linear mixing process. Such

source extraction is crucial in diverse areas like biomedical engineering, communications,

radar, and sonar etc.
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Only few contributions cater for the signals with NC PDFs in the source extraction

process. For instance, Javidi et al. propose second-order complex domain blind source ex-

traction algorithms permitting normalized MSE prediction, at the output of a WL predictor,

to be the extraction criterion. Interestingly, the presented framework is suitable for both cir-

cular or NC sources with possible improper noise. An important application of BSS is the

removal of useful artifacts from the corrupted EEG signals [41]. Another extension of BSS

i.e., independent component analysis (ICA), which assumes the statistical independence of

the underlying unknown source signals, is the most popular way to separate sources. Some

important separability/identification results from the complex ICA based on the circularity

coefficients include [39]:

• For the real-valued case, identification is only possible in the absence of two Gaus-

sian sources having proportional covariance matrices in the mixture. Moreover, the

knowledge of sample correlation also allows the segregation of Gaussian sources.

• For the complex case, a mixture of improper Gaussian sources with distinct circu-

larity coefficients can be separated using the strong uncorrelating transform even

without sample correlation.

• Two Gaussian sources are non-identifiable in a mixture if both of their covariance

and pseudo-covariance matrices are proportional to each other.

• A unique maximally improper source in the mixture of sources can be perfectly sep-

arated.

Source Filtering

As opposed to extraction, another important phenomenon is the filtering of NC complex

signals which can be achieved using various adaptive algorithms based on the WL model-

ing. Few of these algorithms are:
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• Augmented affine projection algorithm [18]

• WL least mean squares to minimize MSE [39]

• WL least stochastic entropy algorithm [39]

• Complex augmented least-mean kurtosis algorithm [332]

• Incremental augmented complex LMS [25]

• Complex-valued Gaussian sum filter [333]

Discussion

Source extraction, especially BSS, is mainly dependent on the structure/distribution of the

mixing sources. For instance, two Gaussian sources with proportional augmented covari-

ance matrices or two improper Gaussian sources with similar circularity coefficients cannot

be separated. Coming over to the filtering process, the performance of source filters can be

quantified using different metrics such as mean square deviation, mean square error, predic-

tion gain, and convergence rate, etc. which mainly depends on their adaptive or batch-wise

implementation.
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Chapter 8

Practical Realization and Implementation

Overwhelming theoretical performance advantages of IGS in various interference-limited

system configurations motivated the researchers to propose the practical improper dis-

crete realization i.e., asymmetric signaling. Finite discrete constellations are the preferred

choice for implementation over Gaussian signals owing to their robustness, reduced detec-

tion complexity and bounded peak-to-average power ratio [96]. Therefore, the design of

new family of asymmetric constellations is imperative for practical realization which is the

counterpart of the standard proper discrete constellations i.e., symmetric signaling. Such

asymmetric signaling along with the appropriate signal recovery mechanism can signifi-

cantly reduce the error probability as discussed in the studies presented in Fig. 8.1.

8.1 Asymmetric Signal Design

Apart from the inherently asymmetric signaling schemes likeM -PAM, OQPSK and GMSK,

what are the possible ways to induce asymmetry in a symmetric discrete constellation like

M -QAM and M -PSK? What should be the design objective? How to optimize the design

parameters such as transmit power and circularity quotient to meet our objectives? How

to generate optimal asymmetric signaling given a certain power constraint and circularity

coefficient? Will the generated signaling be capable of achieving superior performance

as demonstrated by the theoretical bounds? This section intends to address all of these

concerns and highlights the major contributions in this regard. The asymmetric signal-

ing is designed to achieve improper Gaussian capacity except for the 1.53dB shaping loss
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Figure 8.1: Practical Implementation of IS: From Realization to Recovery and Analysis

between IGS capacity and the envelop of capacity curves with sufficiently largeM -ary con-

stellations [96]. Moreover, they are optimized to reduce the EP of the constrained systems.

Asymmetric signaling may arise from conventional symmetric signaling in the following

ways:

1. Probabilistic Shaping (PS): Non-uniform probability distribution of the alphabet-

s/symbols

2. Geometric Shaping (GS): Equally or unequally spaced (due to correlated and/or un-

equal power distribution between quadrature components of the signals) symbol con-

stellation in a distinct geometric envelop

3. Orthogonal/Non-Orthogonal Sharing: Assigning unequal orthogonal/non-orthogonal

resources to users in a MU environment

4. Hybrid Signaling (HS)
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5. Deep Learning

Asymmetry provides new tools for the constellation design and can be considered as choices

much as symbol separation, the number of bits transmitted per symbol, or power. Interest-

ingly, the introduction of asymmetry into the signal set offers another design freedom which

neither affects the bandwidth nor the power requirements of the system [139]. Surprisingly,

the digital modulation schemes yield cyclostationary signals with periodic mean, auto co-

variance and auto complementary-covariance functions. Thus, improved performance can

be attained by utilizing this cyclostationary property besides impropriety [178, 334, 335].

In the following, we highlight the famous shaping techniques and procedures to design

appropriate asymmetric signaling for a given application.

8.1.1 Probabilistic Shaping

Given a fixed number of symbols and the symbol locations, an asymmetric constellation

can be obtained by adjusting the symbol probabilities [100]. Therefore, PS maps equally

distributed input bits into constellation symbols with non-uniform distribution [101]. In-

tuitively, manipulating symbol probabilities and deviation from uniform distribution will

result not only in some entropy loss but also added complexity in the encoding/decoding

process. Despite this implementation penalty, the attained performance gains are totally

worth it. So, what should be the ideal non-uniform probability distribution and how can we

attain it? Intriguingly, the Gaussian probability distribution is the ultimate goal to approach

the channel capacity bounds but this comes with a number of practical problems. Therefore,

multiple transformations are presented to tackle this issue including prefix codes [196,197],

many-to-one mappings combined with a turbo code [198], distribution matching [199,202]

and cut-and-paste method [200]. Coded modulation scheme with PS aims to remove the

shaping gap and coarse mode granularity problems [202]. Interested reader can read [132]

for the design guidelines of asymmetric signaling in the coherent Gaussian channel with

equal signal energies and unequal a priori probabilities. Probabilistic amplitude shaping is
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another concept that can only be used for square QAM, which greatly limits its applica-

tion [203].

8.1.2 Geometric Shaping

Geometric shaping can be characterized in two distinct ways. First, uniformly spaced sym-

bols within distinct geometric envelop. Second, non-uniformly spaced symbols pertaining

to either non i.i.d quadrature components or intentional asymmetric placement in rectilin-

ear constellations. GS requires unconventional partitioning without any loss in entropy.

Isaka et al. emphasize unconventional signal set partitioning for asymmetric constellations

to achieve unequal error protection capability with multilevel coding and multistage de-

coding [141]. Nonetheless, moving some symbols close to each other may result in more

erroneous symbol decisions depending on the underlying application [100]. GS can be

realized using the following well-known methodologies.

Widely Linear Transformation

WLT is the most popular way of transforming proper signaling to improper one in order

to exploit the additional freedom offered by complementary covariance matrix [336]. The

extension of WLP from Gaussian code books to discrete constellations is paving the way

for its practical utilization in different applications. The simplest design of asymmetric

constellations with complex symbols v = vI + ivQ from standard symmetric discrete con-

stellation with symbols x = xI + ixQ for a given circularity coefficient κ and circularity

angle φ can be attained by the following WLT

v =

√
1

2
(1 + α)x+

√
1

2
(1− α) expiφ x∗, (8.1)

where, α =
√

(1− κ2) and φ ∈ [0, π/2]. The optimal κ and φ can transform a given M -

ary symmetric constellation to M -ary asymmetric constellation [96]. This transformation
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Figure 8.2: Celebrated 16-QAM Lattice Structures

has been proven helpful in various applications e.g., WL digital beamforming is employed

in massive antenna arrays suffering from IQI in RF chain. Therefore, WL extension of the

well-established minimum variance distortionless response beamformer forM -QAM mod-

ulation is a promising candidate for complex Gaussian interference, unwanted mirror beam

and RF imperfections suppression [69]. Furthermore, adaptive algorithms by combining

WL processing and set-membership filtering techniques are proven to improve sensor ar-

ray processing when the signals under study are second-order NC such as BPSK modulated

signals [337]. Likewise, WLP in spatially multiplexed MIMO-FBMC system with OQAM

provides lower BER as compared to LP at high SINR [338]. MU two-way MIMO-AF re-

lay system exploits the NC transmitted signals like BPSK using WLP to achieve improved

system performance with minimal relay power [181]. Furthermore, single user and MU

MIMO communications systems employing asymmetric modulation like M -ary ASK and

OQPSK depict superior performance with improved ZF and MMSE precoders without loss

of spectrum efficiency [339].

Lattice Packing

Numerous studies have supported the concept of efficient modulation technique by packing

a particular lattice structure in some geometric shape [197, 340]. Lattice packing is a two-

fold procedure. Firstly, lattice structure is chosen from the square, rhombic, triangular or

hexagonal lattices [341, 342]. A square and rhombic lattice is the periodic arrangement of

discrete constellation points/symbols at the corners of the square (as depicted in Fig. 8.2a)
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and rhombus shape [341]. Unlike these quadrilaterals, triangular lattice has constellation

points at the vertexes of contiguous equilateral triangles. This lattice is sometimes referred

as hexagonal lattice owing to the hexagonal Voronoi decision region around internal lattice

points as shown in Fig. 8.2b [342]. Square QAM (SQAM) is preferred for the simple ML

detection mechanism whereas triangular QAM (TQAM) is preferred for power efficiency

[342, 343]. Park et al. report the asymptotic power gain of 0.5799dB with TQAM over

SQAM, identical peak-to-average-power ratio for significantly large constellation size M

and a significant reduction in EP with tolerable detection complexity in an AWGN channel

[343]. Therefore, hexagonal QAM (HQAM) is preferred for various applications, including

advanced channel coding [344], multi-antenna systems [345], multicarrier systems [346],

physical-layer network coding [347], and optical communications [348].

Next step is the distribution of lattice around origin, which can be packed in square,

cross, elliptical, circular, rectangular, or parallelogram envelops [197, 340, 349]. For in-

stance, Fig. 8.3a and 8.3b depict square and cross packing of the square lattice, respec-

tively. However, Fig. 8.3c-8.3f pack hexagonal lattice in elliptical, circular, rectangular,
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and parallelogram envelops, respectively. Asymmetric constellations formulated by the el-

liptical packing are based on the geometric interpretation of the circularity quotient [57].

Accordingly, the modulus and phase of its principal square-root depict the eccentricity and

angle of orientation of the ellipse defined by the covariance matrix. Thus, vanishing eccen-

tricity implies zero circularity quotient (symmetric case) whereas maximum eccentricity

implies that the circularity quotient exists on the unit complex circle [57].

Recently, Fernández et al. suggest elliptical packing of the hexagonal lattice to realize

optimal asymmetric constellations for a certain circularity coefficient [340]. The optimal

constellation is the overlap between the translated hexagonal lattice and the rotated el-

lipse (as per circularity quotient). The idea is to capture exactly M -constellation points in

the intersection area and then apply WLT to transform it to quasi-hexagonal constellation

rendering the required circularity coefficient. They are optimal as they yield lowest EP

under average power constraint in an AWGN channel especially at high SNR and large

constellation size. Authors claim significant SNR gains resulting from this design scheme

as compared to WL transformation for two reasons: shaping loss and packing loss [340].

Shaping loss of WL transformed constellations is around 1.53dB with respect to the IGS

which is equivalent to proper squareM -QAM constellation. This limitation is addressed by

the hexagonal lattice which offers 0.6dB gain over a rectangular one with the same bound-

ary being the densest lattice in 2D [197]. On the other hand, packing loss is pertinent to the

parallelogram envelope of WLT asymmetric constellation in place of the optimal elliptical

envelope.

Beamforming/Precoding

Numerous other transformations are based on the fine tuning of the basic constellation

parameters to achieve minimum EP with a given power budget. For instance, Zhang et

al. propose asymmetric 4-PSK constellation design with TCM by calculating the optimum

angle α ∈ [0, π] (with α = π/2 yielding the symmetric 4 PSK) that minimizes the EP
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bound [350]. Similarly, Subramaniam et al. introduce asymmetry in 8-PSK to increase

the minimum product distance reducing error events in TCM [351]. For colored noise

compensation, Taubock prefers optimally rotated rectangular symbol constellations over

common quadratic QAM in order to minimize capacity loss and SEP [74].

Unlike the contributions which propose modulation specific designs, [35] and [305]

propose asymmetric constellation design based on the minimum Euclidean distance aim-

ing at minimizing the maximum PEP or SER irrespective of the underlying modulation

scheme. Nguyen et al. optimize the precoding matrices of all users in order to minimize the

maximum PEP or SER in MU SISO-IC. Alternately, precoding matrices can be designed in

order to minimize the sum MSE, maximum MSE, minimize interference leakage or max-

imize SINR. However, the schemes based on minmax-MSE perform inferior to minmax

PEP/SER especially for higher modulation transmission with higher interference [305].

Moreover, Javed et al. design asymmetric modulation for HWI transceiver systems by sep-

arately optimizing the rotation and translation matrices which jointly formulate the transmit

precoding matrix [35]. Likewise, pairwise optimization algorithm transforms conventional

constellations like 8PSK star-8QAM, set-partitioning-8QAM and circular-8QAM to asym-

metric optimal constellation in order to minimize the BER [352].

In general, researchers mainly rely on maximizing the minimum Euclidean distance of

the constellation (dmin) as it is the building block of various performance metrics like mu-

tual information, MMSE and SEP. They all have asymptotic behavior which is proportional

to the Gaussian Q-function Q
(√

SNRdmin/2
)

[96].

8.1.3 Orthogonal/Non-Orthogonal Sharing

Another form of asymmetry, which can be induced to attain added benefits, is through the

non-uniform allocation of orthogonal resources like time slots and frequency bands. For

instance, asymmetric time sharing is assumed to be a potential candidate in future gener-

ation of wireless communications for enhanced performance in some interference limited
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scenarios. On the other hand, some NOMA schemes like sparse carrier multiple access that

is going to be an essential part of 5G communications for many excellent properties i.e.,

shaping and diversity gain by sparse codebooks, resilient to inter-user interference, and ro-

bust to codebook collision can also be considered as a form of asymmetric signaling [353].

8.1.4 Hybrid Signaling

We characterize the joint employment of any two or more types of asymmetric signal-

ing schemes as hybrid signaling. There is an ongoing debate on the superiority of one

type of asymmetric scheme over the other depending on the underlying application and

employed modulation schemes. Both PS and GS were successfully employed in optical

communications [198]. From one perspective, PS outperforms circular based GS in terms

of shaping gain for the same number of constellation points [101]. However, another point

of view is the superior performance of GS 16-QAM constellations over its PS counter-

part [354]. A striking way out of this debate is to employ hybrid probabilistic and geomet-

ric shaping (PS/GS) concept to bridge the gap to the Shannon limit [355]. Albeit hybrid

PS/GS is popular in optical communications but this concept is yet to find its standings in

the wireless communication systems. In contrast to the PS, where redundancy improves

power efficiency, Hybrid PS/GS capitalize on redundancy by introducing a transmitted sig-

nal structure that improves Euclidean distance and reduces SER [101]. Hybrid PS/GS of

any two-dimensional signal constellation outperform the probabilistically shaped as well as

regular constellations with universal distribution matchers for asymmetric M -QAM [356]

and multi-dimensional coded modulation format using amplitude-phase shift keying for

single-stage [101] and multi-stage [357] nonlinearity compensation. Other optimal strate-

gies involving the combined PS/GS to shape circular 64-QAM constellation attain 1dB sen-

sitivity gain and 28% gain in transmission reach over compared to conventional 64-QAM

in both linear and nonlinear regime of wavelength division multiplexed systems [358].

To conclude, dense hexagonal packing with optimal circular boundaries yields around
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1dB improvement over PAM in a band-limited channel [197]. Moreover, source coding

with non-uniform probabilities provide more than 1dB gain which is alternately achievable

using higher dimensional modulation in an uncoded system. Furthermore, channel coding

with simple block/trellis coding can render coding gains of the order of 3dB [197].

8.1.5 Deep Learning

Although communications field has matured over time, however there are scenarios when

the accurate mathematical modeling and rigorous analysis seems unattainable or intractable.

Such scenario may arise while modeling and equalizing various types of channels and hard-

ware imperfections. Equivalently, the optimal signaling design and detection schemes is

another major challenge. To address this concern, machine learning especially its branch

deep learning has demonstrated some promising results. For instance, a communication

system can be trained as an auto-encoder treating TX, channel and RX as one deep neu-

ral network. The auto-encoder learns appropriate symbol representations of information

messages to tackle channel imperfections i.e., noise, distortion, and fading, etc. in order to

attain small error PoD. Interestingly, the performance enhancement is achieved when the

auto-encoder learns asymmetrical constellation in 2U IC setting [359].

8.2 Asymmetric Signal Recovery

Communication systems with asymmetric transmission and/or improper noise require ap-

propriate treatment in terms of equalization, estimation, filtering and detection to account

for the induced improperness. Therefore, WL processing models are incorporated to de-

sign several estimation [31], filtering [37], and detection [360] algorithms. WL processing

is utilized in communication systems that apply asymmetric constellations e.g., [65, 339,

361–363] , and/or encounter improper noise, e.g., [75]. Additionally, it is exploited in

linear-dispersion STBC, e.g., [360, 364, 365], and, recently, in IC and BC [164, 172].
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8.2.1 Equalization

In band-limited, high data rate digital communication systems, equalizers flatten the chan-

nel frequency response in order to minimize channel distortion on the transmitted informa-

tion symbols. Asymmetric transmission, improper noise/interference, and/or frequency-

selective channel necessitate the employment of WL-equalizers in place of SL-equalizers.

For example, real-valued data transmission over complex-valued frequency-selective chan-

nels producing ISI necessitates MMSE based WL equalizers for RXs with or without de-

cision feedback [65]. Besides this, STBC transmission with conventional equalizers and

decoders require equal receiver and transmitter antennas for detection. However, this kills

the main purpose of STBC to achieve pure transmit diversity. Employment of MMSE based

WL equalizers with/without decision feedback can overcome this restriction to further en-

hance the achievable data rates [365]. Multicarrier systems with finite impulse response

(FIR) linear precoders and asymmetric constellations offer an intrinsic source of redun-

dancy, which aids in efficient design of WL-ZF universal equalizers for immaculate symbol

recovery in FIR-channel with narrowband interference [339].

8.2.2 Estimation

Estimation involves approximating/estimating the value of an entity from a sequence of

observations or measurements. Conventional linear estimation aims at designing u to

approximate y from a set of observations stacked in x using the linearly combination

ŷ = uHx. Still it fails to exploit the information hidden in the correlation between the ob-

servations and their complex conjugate. Thus, WLE designs v and w to better approximate

y as ŷ = vHx + wHx∗. WLE is advantageous in various applications in signal process-

ing [36, 366], communications [59], power systems [53], biomedical engineering [48] and

renewable energy [37]. WLE can be carried out using various variants like WL-MMSE esti-

mation [328], WL minimum variance distortionless response (WLMVDR) estimation [26],

[27], [29], [77], and the WL-LMS algorithm. The practical application of these estimators
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in modern digital communication systems with asymmetric constellations and/or improper

noise/interference are overwhelming. The important class of space-time block-codes for

MIMO channels i.e., linear dispersion codes is constructed from linear combination of in-

put symbols and their complex conjugates. Linear dispersion codes like orthogonal, quasi-

orthogonal and V-BLAST codes utilize WL-MMSE estimates of transmitted symbols as

the sufficient statistics for ML detection of these symbols [360]. IQI aware WL-MMSE

RX with channel estimation and data detection capability outperforms its linear counter-

part in uplink multicell massive MIMO systems. It jointly suppresses MU interference,

pilot contamination, and IQI while performing closely to the MMSE RX in a perfect sys-

tem without IQI [82]. A linear RX cannot reap the maximum benefit from WL precoding in

a MU MIMO-BC. Therefore, WL estimator is required to maximize the weighted sum-rate

with limited power budget of the participating base station [163].

8.2.3 Filtering

Filtering separates any entity or group of entities from a mixture/amalgam based on their

distinct characteristics. Analogous to other signal recovery schemes, optimal WL filtering

is superior to SL filtering in the NC context. It is widely used in applications such as detec-

tion [367], prediction [95], modeling [55], interference cancellations like co-channel inter-

ference (CCI) [368] and narrow-band interference (NBI) and equalization for SISO [59,65],

MIMO [365], and DS-CDMA systems [369, 370]. Asymmetric complex nature of BPSK

signals has motivated researchers to apply WL filtering at the RX for improved detec-

tion [55]. Moreover, co-antenna interference in the generalized MIMO systems (transmit-

ting complex conjugates along with actual data) can be effectively attenuated using an itera-

tive RX with WL filters. In such linear space time mappings, WL filter also accounts for the

non-circularity arising inherently within an iterative RX [371]. Additionally, multiple CCI

cancellation in PAM/QAM modulated SIMO is achieved using WL filtering for demodu-

lation. Surprisingly, interference cancellation ability of WL-ML RXs is only dependent on
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interferer modulation type and RX antennas but irrespective of modulation scheme of the

desired signal [372]. Similarly, fully WL-MMSE filter opens new perspectives for intra-

network and external interferences management for 4th generation radio communication

cellular networks using the Alamouti scheme [373]. WL array RXs are also considered

optimal for the demodulation of BPSK, MSK, and GMSK Signals under improper interfer-

ences. Effective single antenna interference cancellation can be attained for these modula-

tion schemes in GSM cellular networks using WL filtering [59]. Furthermore, Hellings et

al. suggest block-Hankel-skew-circulant structured matrices for appropriate processing of

WL filters and asymmetric signaling in MIMO IC [374].

8.2.4 Detection

Unlike the IGS and impropriety detection, asymmetric detection involves the recovery

of the transmitted signals inheriting asymmetric structure from asymmetric transmission

and/or asymmetric noise/interference. The gains of such WL detection are two folds: 1)

It accounts for the asymmetric characteristics for improved detection. 2) It efficiently sup-

presses the effects of asymmetric noise/interference. These perks cannot be attained by

the conventional detectors neglecting SOS. For example, WL structures for blind MUD in

synchronous DS/CDMA systems can effectively suppress both narrowband and wideband

multiple-access interference [140]. Similarly, WL RX for OQPSK modulated DS/CDMA

system employing least-mean square algorithm efficiently mitigates both symmetric/asym-

metric interference [60]. Furthermore, asynchronous DS/CDMA systems employing BPSK

requires a new family of MMSE detectors to jointly suppress multi-access and external in-

terference by fully exploiting the SOS through poly periodical processing [56]. Direct

application of WL processing may not be suitable in some scenarios e.g., MIMO FBM-

C/OQAM. Therefore, a two step RX; first with linear and later WL processing may help

in removing the intrinsic interference which keeps us from taking the full advantage of

WL-MMSE RX [375].
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Discussion

WL extension of various RXs may or may not be helpful in attaining optimum performance

depending on the type of application, employed modulation/coding schemes and degrading

noise/interference. For instance, WL matched filter solution does not take account noise

and is still linear solution [36]. Alternately, optimum ML detection and WL-MVDR esti-

mation only requires adjustments for improper noise/interference and is irrespective of the

symmetric/asymmetric transmission. Whereas, other detectors like WL-MMSE, WL-ZF,

and WL-LMS filtering may require the propriety characterization of the transmitted signals

as well as received noise. Importantly, the performance gains of WL model diminish when

the underlying system is linear [36].

8.3 Error Probability Analysis

EP is a tangible measure used to fairly judge the performance of communication systems.

EP captures prime system details (e.g., modulation scheme, RX type, symbol constella-

tion, etc.) and is considered the most revealing metric about the communication system

performance [288]. It is the probability of receiving the erroneous information and can be

studied through pairwise EP (PEP), bit EP (BEP), symbol EP (SEP), and frame/block EP

(FEP) etc. In the context of wireless networks, EP has mainly been studied and conducted

for symmetric transmission and additive white proper Gaussian noise. This section summa-

rizes the contributions that tackle EP analysis for asymmetric constellations with/without

improper noise/interference in various system configurations.

8.3.1 Multiuser Direct Sequence Multiple Access Systems

Various trellis-coded systems with asymmetric PSK transmission outperform their coun-

terparts with symmetric PSK signaling. For example, the performance of the DS spread-

spectrum multiple access (SSMA) system employing trellis coded modulation (TCM) with
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asymmetric signal constellations outperforms its competitor symmetric signal constella-

tions by 58.02% for 3U DS/SSMA system and offers 1dB SNR reduction at 1e-10 BER.

Similarly, WL MUD offers perks over SL MUD in a DS/CDMA system with QPSK mod-

ulation suffering from BPSK NBI. BER reduction of 100% and 96% is observed by WL-

MUD RX w.r.t conventional matched filter and L-MUD, respectively, for the first user out

of 6 CDMA users. Alternately it offers EbNo gains of 2dB at 1e-5 BER w.r.t L-MUD

RX [140].

8.3.2 Coded Communication Systems

Interestingly, deep learning for the physical layer suggests the joint optimization of TX and

RX components by modeling a communications system as an auto-encoder and training

it using stochastic gradient descent. This approach to minimize block error rate (BLER)

outperforms all the existing well-known schemes by yielding the asymmetric modulation as

the optimum one. Surprisingly, for a communications system employing BPSK modulation

and a Hamming code, the trained auto-encoder outperforms the uncoded and coded scheme

with hard decision (HD) by 98.64% and 96.25%, respectively. It further offers EbNo gain

of 2dB at 8e-4BLER and 1.5dB at 3e-4BLER over uncoded and coded scheme with HD,

respectively. The gains further increase with increasing the batch size while reducing the

learning rate during training. Unanticipated asymmetric learned constellations of auto-

encoder performs equally good as the coded scheme with ML detector without any prior

knowledge [359]. Similarly, for a 2U IC, the auto-encoder and time-sharing have identical

BLERs for (1, 1) and (2, 2), the former yields significant gains of around 0.7dB for (4, 4)

and 1dB for (4, 8) at a BLER of 1e-3. O’Shea et al. further claim that auto-encoder with

RTN can outperform differential BPSK with ML estimation and Hamming (7,4) code in a

multipath fading environment.

Asymmetric TCM (ATCM) provides better SNR gains over the traditional symmetric

TCM (STCM) for very low data rate systems especially with small number of users in high
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SNR and less drastic fading circumstance [376]. Similarly, asymmetric 8-PSK signal sets

in 4-state and 8-state rate 2/3 TCM outperforms symmetric 8-PSK TCM owing to the in-

crease in the minimum product distance. ATCM reduces BER up to 20%, 76.67% and 50%

relative to STCM for Rayleigh, Rician and light shadowed Rician (S-Rician) channels, re-

spectively. Moreover, an improvement of about 0.3-0.4dB around BER 1e-5 is observed

over the Rayleigh and shadowed Rician channels. Whereas, it reduces to 0.2-0.3dB for the

Rician channels. Subramaniam et al. claim that the improvement of 0.2-0.4dB signifies 5-

10% savings in power, owing to the enlarged minimum product distance and free Euclidean

distance by the ATCM [351]. Another approach to design ATCM is to minimize BER

(or BER bound) instead of maximizing the free Euclidean distance. Zhang et al. present

75% and 55% reduction in BER with 2-state and 4-state ATCM relative to STCM. Further-

more, the optimum ATCM achieves 0.5dB SNR gain at 1e-5 BER and 0.1dB SNR gain at

1e-7 BER with 2-state code and 4-state codes, respectively [350]. Moreover, asymmetric

signals with non-uniform spacing outperform symmetric signals with uniform spacing in

the trellis-coded systems. For instance, two-state trellis-coded optimum asymmetric 4PSK

offers 99.83% less BER and 0.5dB EbNo gain at 1e-5 BER as compared to its symmetric

counterpart. Additionally, two-state trellis-coded asymmetric 4-AM 98.33% less BER and

1dB EbNo gain at 1e-5 BER as compared to its symmetric counterpart [139]. Divsalar et al.

emphasize that the asymmetric signaling does not affect power or bandwidth requirements

of the system. Thus, rendering BER performance gains at little or no cost.

8.3.3 Multiple Antenna Systems

Conventional iterative RXs which are optimal for the symmetric modulations, such as M -

QAM and M -PSK, are suboptimal for the asymmetric modulations, such as M -ary ASK,

OQPSK (for which E
[
ssT
]
6= 0) in uncoded MIMO systems. Therefore, Xiao et al. pro-

posed a novel iterative RX with various decoding strategies like ZF, MMSE and SIC etc.

Accommodating the asymmetric behavior of the 4-ASK and OQPSK signal constellations
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offer BER percentage decrease up to 99.25% and 99.58% with ZF RX and 97.78% and

97.50% with MMSE RX, respectively. In other terms, the proposed scheme SNR gains

of 8dB at 2e-3 and 12dB at 1.5e-3 with ZF RX and 6dB at 2e-4 and 8.5dB at 3.5e-5 with

MMSE RX, respectively, with 4-ASK and OQPSK modulations in 4x4 uncoded MIMO

system. The percentage decrease in BER with 4-ASK modulation employing MMSE based

novel iterative RX in 4x3, 4x4 and 4x5 uncoded MIMO system is 98.9%, 98% and 94%,

respectively. Interestingly, accounting for asymmetry not only achieves superior perfor-

mance and faster convergence than the conventional systems but renders equivalent effect

of increasing receive diversity order [377].

Co-antenna interference suppression in generalized MIMO systems with linear disper-

sion codes like V-BLAST achieve up to 30% less frame error rate with WL detector (WLD)

as compared to SL detector with iterative RX. Furthermore, it renders 0.3dB SNR gain at

2e-2 FER [371].

WL filtering is beneficial for effective demodulation of PAM/QAM modulated SIMO

systems suffering from multiple data-like CCIs. Kuchi et al. argue the tradeoff between

diversity advantage and interference cancellation in a flat Rayleigh fading channel. Inter-

estingly, WLF offers SER reduction up to 83.53%, 98.15%, 80% and 42% for desired-CCI

combinations of 1x1 QPSK-BPSK, 1x1 BPSK-BPSK, 1x1 BPSK-PAM+QAM and 1x2

BPSK-2BPSK, respectively. In other words, the respective SNR gain of these four exam-

ples are given by 7dB at 8e-4 SER, 12dB at 1.3e-1 SER, 4dB at 1.4e-3 SER and 3dB at

1e-3 SER, respectively. Compelling WL RX with N -antennas is capable of rejecting any

combination of M1 PAM and M2 QAM interferers satisfying M1 + 2M2 < 2N , whereas

SL RX can only reject up to M1 +M2 interferers with M1 +M2 < N [372]. In a nutshell,

WL RX can handle more CCIs relative to SL RX while maintaining a certain SER.
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8.3.4 Multi-carrier and Single-carrier Systems

WL processing with asymmetric transmission is advantageous in both multi-carrier and

single-carrier systems. For example, WL-MMSE is beneficial over LMMSE for unique

word (UW)-OFDM systems with ASK modulation which introduces asymmetry in the sys-

tem. Interestingly, WL-MMSE yields up to 97.4% and 94.5% less BER relative to LMMSE

for 8-ASK modulation over AWGN and IEEE indoor channels, respectively. Additionally,

it offers SNR reduction of 1dB at 2e-5 BER for 16-ASK modulation and 3dB at 1e-6 BER

for 4-ASK modulation over AWGN and IEEE indoor channels, respectively [233]. Filter

bank multicarrier (FBMC) scheme to combat frequency selective fading in MIMO systems

employing OQAM modulation require WL processing to account for NC transmitted sig-

nals. Caus et al. present two conditions i.e., number of streams (S) ≤ NR ≤ 3, NT ≥ NR

and Coherence BW >> Subcarrier Spacing, when linear processing is superior to WL

processing. Otherwise, linear processing gives an error floor and thus, WL processing is

the preferred choice in terms of BER, especially in low noise. Intuitively, for a NR = 2,

NT = 3 and S = 2 MIMO system, WL processing to minimize the sum MSE outperforms

it’s counterpart by 91.25% and 99.9% when the underlying channel follows international

telecommunication union (ITU): Pedestrian A guidelines (PAG) and Vehicular A guide-

lines (VAG), respectively. Moreover, the respective SNR gains are obtained as 2.5dB at

8e-6 BER and 5dB at 5e-4 BER, respectively, at high SNR regime [338]. Alternately,

Cheng et al. suggest two step RX based on linear and WL processing to reap the benefits

of both domains. First step cancels intrinsic interference that prevents to reap maximum

benefit from WL processing and second step employs WL-MMSE RX to cater for RSI. This

technique renders 97.6% and 99.6% BER reduction with partial and complete interference

cancellation in first step, respectively, in 4x4 MIMO FBMC/OQAM system. Equivalently,

the respective SNR gains are 9dB and 10.5dB at 2.5e-3 BER [375]. Similarly, MIMO single

carrier (SC) block transmission suffering from inter-symbol interference (ISI) and data-like

CCI requires WL filters with feed forward (FF) and noise prediction feedback (NP-FB) at-
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tributes to outperform its linear counterparts. Both suboptimal and optimal SC frequency

domain equalizers with WL filters are proposed for OQPSK modulated data and CCI. Sur-

prisingly, WL filters outperform SL filters by 98.50% and 99.67% with optimal equalizer

and by 97.10% and 99.75% with low-complexity suboptimal equalizer in the presence and

absence of CCI, respectively. Moreover, both equalizers offer EbNo gains of around 20dB

at 6e-2 and 8dB at 1e-5 with and without CCI, respectively, for a 2x2 MIMO SC block

transmission with a cyclic prefix [151].

8.3.5 Systems with Frequency Selective Channels

equalization schemes based on WL processing outperform their linear counterparts in fre-

quency selective channels (FSC) with underlying ASK, OQAM, BMSK type modulation

schemes. Gerstacker et al. propose FIR filters for WL-MMSE equalization without and

with decision feedback , termed as MMSE-WLE and MMSE-WDFE, respectively. The

novel MMSE-WLE and MMSE-WDFE RXs provide BER reduction up to 96.07% and

56% at 20dB EbNo relative to their linear counterparts MMSE-LE and MMSE-DFE, re-

spectively. Alternately, they offer respective EbNo gains of 5dB and 0.7dB at 1e-4 BER

for real-valued transmission over complex ISI channel [65]. On the other hand, if the zeros

of the channel are far from unit circle then WLP can only offer small-to-moderate gains.

Gerstacker et al. further extended their findings of WLE to STBC over frequency selective

channels. Numerical examples show BER reduction of 93.5%, 72.5% and 74.29% with

2x1 STBC WLE employing 8PSK, 2x1 STBC WDFE employing BPSK and 2x2 STBC

WDFE employing 8PSK relative to SISO-LE, SISO-DFE and 1x2 SIMO-DFE over rural

area (RA), hilly terrain (HT) and typical urban area (TU), respectively [365].

8.3.6 Systems with Improper Noise

Similarly for general improper Gaussian noise (IGN), Alsmadi et al. present an optimal

detector for MIMO system with space shift keying (SSK) RX. The accommodation of im-
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proper nature of the additive noise in optimal detection results in the average EP percentage

reduction up to 0%, 20%, 32% and 44% for RXs affected by proper Gaussian noise, non-

identical uncorrelated IGN , identical correlated IGN and non-identical correlated IGN,

respectively, relative to the traditional ML detector considering PGN. Moreover, respective

SNR gains are given by 0dB, 1dB, 2dB and 3dB at 5e-3, respectively [19].

8.3.7 Hardware Impaired Systems

Evidently, HWI systems under IQI and additive distortions alter the symmetry of the signals

under study. Thus, accounting for the induced asymmetry in the detection process presents

benefits in terms of average BER reduction up to 8.33%, 38.64% and 52.78% for low, mod-

erate and high transmit distortion levels, respectively. Alternately, it renders SNR gain up to

10dB at 1.2e-1, 9dB at 4.4e-2 and 4dB at 1.7e-3, respectively, for the three aforementioned

transmit distortion cases [378]. Asymmetric signaling is favorable in suppressing improper

accumulated noise and self-interference resulting from the hardware imperfections like IQI

and non-linear distortions. Thus, Javed et al. suggest to employ asymmetric QAM to min-

imize maximum PEP or SEP. The proposed asymmetric transmission renders up to 84%

and 97.8% reduced average SER with respect to symmetric transmission with ML detector

at 10dB and 20dB SNR, respectively. Additionally, asymmetric transmission attains the

same SER performance (8e-3) with 10dB SNR as that of symmetric modulation with 20dB

SNR [35]. Moreover, Canbilen et al. advocate the effectiveness of optimal MLD which

incorporates the asymmetric characteristics over suboptimal MLDs in a dual-hop AF relay

system suffering from IQI. They claim 37.50%, 95.48% and 55.56% reduction in average

SEP at 30dB SNR when the system is subject to RX only, TX only and both TX-RX IQI.

This reduction exhibits 2dB, 3.5dB and 3dB SNR gain at 1e-2 average SEP for RX only,

TX only and both TX-RX IQI systems [379].
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8.3.8 Multiuser Interference Channel

Asymmetric signaling is also beneficial in MU IC when interference is treated as noise.

Thus, Nguyen et al. optimize the precoding matrices in MU SISO ICs to minimize maxi-

mum pairwise EP (PEP) and symbol error rate (SER) [305]. They present the advantageous

asymmetric signaling under both AWGN and cellular networks with or without channel

coding. Asymmetric signaling offers 100% and 99% decrease in SER with minmax-

PEP/minmax-SER objectives relative to symmetric signaling with power control for 3U

SISO IC in AWGN and cellular setup, respectively. Furthermore, it renders 5dB SNR

gain at 8e-2 BER in a cellular setup with 3-edge users employing low-density-parity-check

(LDPC) coding with QPSK modulation [305].

In a nutshell, the generalized approach to account for system asymmetry instead of

an unrealistic symmetry assumption equip system designers with appropriate tools and

additional design freedom to achieve lower EP, depending on the considered application,

as emphasized in Table 8.1.
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Table 8.1: Error Probability Reduction with Appropriate Modeling (Signaling, Filtering,
Estimation or Detection)

System Transmitter Detector Competitor
Percentage
Reduction SNR Gain Ref

Generalized
MIMO

16-QAM
with V-Blast

WLD
iterative

RX

WL filter
versus

SL filter 30% 0.3dB at 0.02 FER [371]
Multicarrier

Transmission
(UW-OFDM)

M -ASK
modulation

WL-
MMSE

WL-MMSE
versus

LMMSE

AWGN: 97.4%
IEEE indoor

channel: 94.5%
1dB at 2e-5 BER
3dB at 1e-6 BER [233]

4- and 8-state
TCM schemes

Asymmetric
8-PSK

Viterbi
decoder

ATCM
versus
STCM

Rayleigh: 20%
Rician: 76.67%
S-Rician: 50%

0.3dB at 1e-5 BER
0.4dB at 1e-5 BER
0.2dB at 1e-5 BER [351]

2- and 4-state
TCM schemes

Asymmetric
4-PSK

2 states: 75%
4 states: 55%

0.5dB at 1e-5 BER
0.1dB at 1e-7 BER [350]

2-16 states
trellis
coding

Asymmetric
M -PSK,
M -AM

Asymmetric
versus

Symmetric
Signaling

4PSK:99.83%
4AM:98.33%

0.5dB at 1e-5 BER
1dB at 1e-5 BER [139]

DS/SSMA
trellis coding

Asymmetric
M -PSK 3U: 58.02% 1dB at 1e-10 BER [376]

MU IC

Asymmetric
M -PSK

or M -QAM

Symbol
-by-

Symbol
AWGN: 100%
Cellular: 99%

-
5dB at

8e-2 max(BER) [305]
Phase

estimation
without pilot

Asymmetric
8-PSK

Coherent
detection 97.50% 3dB at 1e-2 SEP [100]

Uncoded
MIMO
systems

M -ASK,
QPSK/
OQPSK

ZF RX
ASK: 99.25%

OQPSK: 99.58%
8dB at 2e-3 BER

12dB at 1.5e-3 BER [377]

MMSE
RX

ASK: 97.78%
OQPSK: 97.50%

6dB at 2e-4 BER
8.5dB at 3.5e-5 BER [377]

Deep learning
for commun.

system

Learned coded
modulation by
auto-encoder

Neural
networks

Autoencoder
versus

Conventional
Uncoded: 98.64%

Coded:96.25%
0.7dB at 1e-3 BLER
1dB at 1e-3 BLER [359]

DS/CDMA
systems

QPSK
modulation

MMSE
MUD

L-MUD
versus

WL-MUD
MF: 100%

L-MUD: 96%
-

2dB at 1e-5BER [140]

Frequency
selective
channels

ASK, OQAM
or BMSK WL-

MMSE
LE

versus
WLE

MMSE-LE:96.07%
MMSE-DFE:56%

5dB at 1e-4BER
0.7dB at 1e-4BER [65]

STBC
with M -PSK
modulation

RA SISO-LE: 93.5%
HT SISO-DFE:72.5%

TU SIMO-DFE:74.29%

7dB at 2e-3 BER
2dB at 1e-3 BER

2.3dB at 7e-4 BER [365]

SIMO with
multiple

CCIs

PSK data
with PAM/
QAM CCI

WL
ML
RX

WL RX
versus

Usual RX

Desired CCI
QPSK-BPSK: 83.53%
BPSK-BPSK: 98.15%

BPSK-PAM+QAM: 80%
BPSK-2BPSK: 42%

7dB at 8e-4 SER
12dB at 1.3e-1 SER
4dB at 1.4e-3 SER
3dB at 1e-3 SER [372]
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HWI AF
Relaying

QAM with
Optimal power

allocation MED
and

MLD

Optimal versus
suboptimal
detectors

RX only IQI: 37.50%
TX only IQI: 95.48%
TX& RX IQI: 55.56%

2dB at 1e-2ASEP
3.5dB at 1e-2ASEP
3dB at 1e-2ASEP [379]

HWI
System

Asymmetric
GPSK, QAM

Asymmetric
versus

Symmetric
10dB SNR: 84%

20dB SNR: 97.8% 10dB at 8e-2 SER [35]

Grey coded
M -QAM

modulation Optimal MLD
with IGN

versus
regular MLD

with PGN

σ2
t = 0.001: 8.33%

σ2
t = 0.010: 38.64%
σ2

t = 0.100: 52.78%

10dB at 1.2e-1 BER
9dB at 4.4e-2 BER
4dB at 1.7e-3 BER [378]

MIMO
System

under IGN
SSK

modulation
ML
RX

PGN: 0%
n.id IGN: 20%

correlated IGN:32%
correlated and
n.id IGN: 44%

0dB at 5e-3 EP
1dB at 5e-3 EP
2dB at 5e-3 EP
3dB at 5e-3 EP [19]

MIMO with
data like

CCI and ISI
in FSC

SC block
transmission
of OQPSK

WL-
MMSE
with FF,
NP-FB

Linear versus
WL FF and

NP-FB
filters

w/ CCI: 98.50%
w/o CCI: 99.67%

20dB at 6e-2 BER
8dB at 1e-5 BER [151]

w/ CCI: 97.10%
w/o CCI: 99.75%

20dB at 6.2e-2 BER
8dB at 1e-5 BER [151]

MIMO
FBMC
systems

FBMC
modulation

based on
offset QAM

MSE
RX

SL versus WL
processing

ITU:PAG: 91.25%
ITU:VAG: 91.9%

2.5dB at 8e-6 BER
5dB at 5e-4 BER [338]

LP and
WLP

MMSE versus
WL-MMSE

Partial IC: 97.6%
Full IC: 99.6%

9dB at 2.5e-3 BER
10.5dB at 2.5e-3 BER [375]
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Chapter 9

Applications

Previously, we discussed various scenarios and sources which arise impropriety in the sys-

tem. This impropriety can be exploited to achieve performance gain in numerous diverse

fields including but not limited to medicine, communication, geology and computer vision.

The existing impropriety exploitation and/or introduced impropriety utilization have wide

applications in data analysis, signal processing and communications [31,36,137,172]. Intu-

itively, asymmetric signaling and WL processing are the concepts that go hand in hand [58]

and are beneficial in the various settings as demonstrated in Figure 9.1.

9.1 Data Analysis

Impropriety incorporation and appropriate processing provide tremendous advantages in

data analysis and characterization. Key data analysis tools such as ICA and principal com-

ponent analysis (PCA) demonstrate enhanced performance owing to NC characterization

[135, 380, 381]. Other miscellaneous data analysis techniques with impropriety incorpora-

tion successfully categorize seismic, oceanographic and weather data sets [36, 382, 383].

9.1.1 Independent Component Analysis

ICA is a relatively new statistical and computational technique for revealing hidden factors

that underlie sets of random variables, measurements, or signals. It particularly aims at the

blind recovery of the source signal from the observations [135]. Many complex ICA algo-

rithms either assume that the underlying sources are circular or rely on a magnitude-only



233

Biomedical
Signal 

Processing

ST

PU SU
PU

SU

Macro-Cell

Femto-Cell

Pico-Cell Full-Duplex
 Relay

Wind
 Sensor

Seismic 
Sensor

Weather 
Sensor

Oceano-
graphy 
Sensor

Signal Processing Center

Image
Processing

Pattern 
Recgnition

Data Analysis

Data 
Mining

Acoustic 
Signal

Processing

PT

PT

ST PU

SU
PT

ST

Overlay 
Cognitive Radio

Interweave 
Cognitive Radio

Underlay 
Cognitive Radio

Eavesdroppers

Sensing 
and Detection

 Communication 
Network

Illegitimate links

Interference links

Self-Interference 

Two-Way link

Backhaul link

Legitimate links

ECG/EEG

fMRI

Figure 9.1: Applications of Impropriety in Data Analysis, Signal Processing and Commu-
nication Networks

model. However, this greatly limits the performance of ICA [32]. Thus, NC character-

ization enabled ICA has found real-world applications in various diverse fields such as

medicine, economics, and data mining [40, 380, 384, 385].

Biomedical Data Analysis

Human brain functioning can be thoroughly examined using complex-valued fMRI data

which measures the electrical and magnetic activity of the human brain [380]. However,

fMRI poses tremendous challenges for data analysis techniques, including the design of ro-
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bust yet flexible framework to capture the richness of human brain activities [384]. Adap-

tive noncircular ICA algorithms can effectively address these challenges rendering vast

applications [40, 135]. For instance, feature extraction in electrocardiograms and fMRI

data analysis lead to the improved neural activity estimation [31–33]. Moreover, real-time

brain-computer interfacing relies on the extraction of eye muscle activity: electrooculo-

gram (EOG) from electroencephalogram (EEG) recordings [41]. EEG records electrical

potentials at various locations on the scalp and can render immense WL predictability by

using blind source extraction algorithms like ICA. Furthermore, a robust ICA technique is

also proposed to extract atrial activity in atrial fibrillation electrocardiograms (ECGs) [386].

Econometric and Data Mining

One major concern in econometric is the identification of underlying independent causes

of a phenomenon, e.g., economic indicators, interest rates, and psychological factors of the

exchange rates. These causes are quite insightful and can be identified by the decomposi-

tion of the financial time series analysis using appropriate ICA algorithms [380]. Another

diverse application of such data analysis tool is in data mining, such as latent variable de-

composition, multivariate time series analysis and prediction, extracting hidden signals in

satellite images, text document data analysis, and weather data mining [135, 385].

9.1.2 Principal Component Analysis

PCA transforms correlated observed variables into a subset of uncorrelated variables, that

account for total variance. PCA identifies patterns in data based on the correlation be-

tween features and thus it is less stringent than ICA [380]. PCA is a classical technique

in statistical data analysis for pattern recognition [387–390], feature extraction [391, 392],

data compression [393, 394], data reduction [395–397], data visualization [398], noise re-

duction [399, 400], factor analysis [401, 402], model selection [381], rank reduction [55],

dimensionality reduction [403], etc. Classical PCA for real-valued systems relies on SOS
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i.e., variance maximization. A staright forward extension to the proper complex-valued

systems i.e., circular PCA (cPCA) relies on Hermitian covariance matrix [17]. However, a

more general extension to the complex systems which can be circular/NC is based on:

• Both covariance and pseudo-covariance estimates to maximize likelihood function in

complex representation rendering NC PCA (ncPCA) [404].

• The augmented covariance matrices yielding WL PCA (wlPCA) for direct extension

from the cPCA [405].

• The real-composite covariance matrices resulting composite real PCA (crPCA) [403].

Aforementioned forms of general complex PCA exhibit their own merits and demerits

based on the underlying applications and their linear/non-linear models.

Rank, Dimensionality and Data Reduction

Rank reduction finds balance between model bias and model variance to reconstruct sig-

nals from noisy observations. It can be achieved using PCA with eigen analysis of complex

vectors. WL transformations take full advantage of SOS when compared to SL transfor-

mation. The wlPCA offers concentrated signal variance in first few principal components

relative to ncPCA for rank reduction [55]. Interestingly, crPCA demonstrates its superi-

ority in dimensionality reduction owing to the finer granularity and lower computational

complexity than that of wlPCA [403]. PCA is widely used as a preliminary step for data

reduction in various biomedical applications e.g., to extract and differentiate biomechani-

cal features of gait waveform data related to knee osteoarthritis [395], in order selection for

complex NC fMRI data [384], in data analysis for complementary DNA microarray exper-

iments [396] and for genome data analysis in bioinformatics [397]. PCA offers numerous

other applications including data visualization for biplot graphic display of matrices [398]

and data compression of meteorological parameters obtained from high-resolution infrared

spectra [394].
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Feature Extraction and Pattern Recognition

Feature selection selects a subset of the original features, whereas feature extraction con-

structs a new feature subspace based on the feature set information. Feature extraction of

image sequences by PCA can be later used for classification and recognition process in

quality control applications [391] and fast iris recognition [392], respectively. Moreover,

PCA is inevitably useful in pattern recognition like handwritten digits recognition [387],

face recognition [389] and automated diagnosis of cardiac health using principal compo-

nents of segmented ECG beats [390].

Model Selection, Digital Filtering and Data Denoising

Some complex mixing models i.e., DoA estimation, BSS and NC signal detection cannot

employ wlPCA owing to their linear models. Thus, ncPCA is particularly advantageous for

applications like model selection which aim to determine the subspace order and the num-

ber of noncircular signals. Furthermore, it is capable of detecting circular and noncircular

signals and estimating signal subspace [381]. ncPCA is preferred for scenarios with high

SNR, large number of samples and high degree of noncircularity. On the other hand, non-

linear component analysis requires WL PCA with complex kernel (wlPCA-ck) [406] for

the design of digital filters and regression frameworks [407]. Furthermore, statistical PCA

ia also employed for data denoising especially for image denosing on multi-exponential

MRI relaxometry [399] and signal denoising in stock market trading [400].

Conclusively, non-circularity exploitation in complex PCA is particularly significant

when the underlying entities are improper.

9.1.3 Complex Least Mean Square Analysis

LMS extenstion to the complex domain i.e., complex-LMS (CLMS) with non-circularity

incorporation leads to variants like augmented CLMS (ACLMS) and complementary CLMS.

These analysis techniques can be employed for adaptive estimation with numerous appli-
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cations in system identification [366], real-time impropriety detection [46], communica-

tions [408], signal processing [409], renewable energy [410], power systems [29,411], and

medicine [412].

CLMS algorithm for SL estimation with general second-order noncircular (improper)

Gaussian input is found useful in identifying system coefficients which formed a strictly

linear FIR channel [366]. Moreover, collaborative adaptive filters trained by the CLMS can

detect and track improperness in real-time unlike competing static detectors [46]. Addition-

ally, multiple access interference in DS-CDMA systems can be efficiently supressed using

WL LMS algorithms [408]. Interestingly, ACLMS algorithm renders lower steady-state

mean-squared error than conventional CLMS in adaptive beamforming for multi-port an-

tenna arrays [409, 413]. Furthermore, ACLMS usefulness in wind modelling and forecast-

ing is unprecedented in renewable energy domain [410, 414]. Similarly, the approximate

uncorrelating transform improved adaptive frequency estimations using ACLMS in three-

phase power grid systems [411]. Last but not the least, a hybrid filter with standard CLMS

and ACLMS algorithms can discriminate between discrete states of brain consciousness

i.e., coma and quasi-brain-death using nonlinear features in EEG [412].

9.1.4 Miscellaneous

Numerous other data analysis techniques which incorporate complete SOS of the complex

improper observation data lead to the improved estimations of seismic traces [382], wind

measurements [25, 36], and oceanographic velocity measurements [415].

WL complex auto-regressive processing of the seismic signals helps to capture essential

data characteristics like elliptical oscillations [45]. Other climate and seismology applica-

tions with improper complex-valued stochastic models can be efficiently simulated using

circulant embedding [416]. Compressive sensing of weather sensor network application

can effectively exploit the asymmetrical features for energy estimation to cool down a given

structure [383].



238

9.2 Signal Processing

Augmented and WL processing have demonstrated remarkable performance gains in dif-

ferent signal processing domains, e.g., signal estimation [31, 417], filtering [37], and de-

tection [360]. Therefore, it is a leading competitor rendering vast applications in neuro-

science, image processing, pattern recognition, and computer vision [336, 380].

9.2.1 Array Processing

The merits of impropriety adaptation in array processing algorithms are widely studied

in [418–422]. For example, coherent processing (incorporating complementary covari-

ance) for detection and estimation enjoys a 3dB gain over non-coherent processing [63].

Similarly, estimation accuracy is substantially enhanced by employing NC signal constel-

lations in 1-D and 2-D DoA estimation [64]. Furthermore, such enhanced DoA estimation

and identification methods for mixed circular and NC sources also improve the resolution

capacity [423].

9.2.2 System Identification and Feature Extraction

Superior system identification can be achieved using WL adaptive estimation of general

IGS using augmented complementary least mean square analysis [366, 417]. Similarly,

impropriety incorporation is crucial in blind source identification or accurate estimation

and then separation or equalization in NC mixing arrangements like acoustic sources and

fault diagnosis [39, 51, 135, 424]. Additionally, noncircular ICA has demonstrated huge

feature extracting potential in neuro-science, image processing, and vision research where

we aim to find features that are as independent as possible [380].
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9.2.3 Pattern Recognition and Image Processing

Major signal processing tasks such as compression, denoising, classification, feature ex-

traction, image processing, and pattern recognition require sophisticated generalized mod-

els [380]. These problems can be efficiently solved using a statistical generative model

based on NC ICA or require statistical measures like Bhattacharyya coefficient/distance

and Kullback-Leibler divergence for appropriate modeling. These measures are well de-

fined for the real signals or proper complex signals. However, their extension to more

generalized scenarios of improper complex-valued Gaussian densities has enabled superior

and reliable performance in the aforementioned applications [336]. Similarly, target detec-

tion in multi-band spectral images suffering from improper Gaussian noise is only possible

with the advancement in impropriety literature [248].

9.3 Communication Systems

Communication systems can reap tremendous benefits from the asymmetric signaling in

various interference limited scenarios. In this way, enhanced system performance in terms

of improved achievable data rates and more reliable communication with lower EP can be

achieved without exhausting the already saturated resources.

9.3.1 Cellular Networks

Improper/asymmetric signaling techniques are implemented in GSM [425, 426] and 3GPP

networks [427,428]. Similarly, in mobile MU communications, non-circularity characteri-

zation can render better tradeoff between power consumption and spectral efficiency [36]

9.3.2 Cognitive Radios

To address the sparse temporal and spatial utilization of spectrum bands, cognitive radio

settings permit a secondary network to opportunistically utilize the spectrum resources of
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a licensed primary network [61]. Secondary network senses the network availability and

transmits under primary network QoS constraints. Cognitive radio settings are broadly

categorized as underlay, overlay and interweave. Underlay cognitive system limits the

transmission power of secondary network to maintain licensed users’ QoS [191]. Overlay

cognitive enjoys part of spectrum resources for its transmission while assisting primary net-

work transmission. This scheme maintains primary network QoS through assistance with

minimal interference and its own QoS by effectively canceling primary interference at its

RX [192]. Lastly, interweave setting utilizes unused spectrum holes for its transmission as

long as it is available [294]. Interestingly, efficient interference management by IGS per-

mits secondary network to effectively utilize spectrum resources and enhance their system

efficiency while maintaining primary network QoS with PGS. It is evident from the fact

that improper interference from secondary network to primary network is way less deterio-

rating than its counterpart proper interference. Surprisingly, the gains reaped by secondary

network with IGS transmission over PGS transmission are conditional. For instance, SU

rate improvement with IGS is only feasible if the fraction of the squared modulus between

the SU-PU interference link and the SU direct link surpass a threshold in underlay [190]

and overlay cognitive radio paradigm [192]. Moreover, for underlay MAC, IGS is optimal

if the accumulative IC gains exceed a certain threshold [188]. On the other hand, with ad-

equate detection capabilities SU can employ IGS with maximum power to unconditionally

improve its rate while satisfying PU QoS [294]. Apart from the traditional role of IGS

to enhance data rate or reduce EP in communication systems, it can also be employed to

enhance the secrecy performance. Consequently, unlicensed user achieves lower SOP with

IGS employment in cognitive radio setup [189].

9.3.3 Full Duplex Systems

The performance of full duplex systems with simultaneous transmission and reception is in-

variably limited by the inherent self-interference (SI). This can be efficiently mitigated with
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the optimal asymmetric signaling transmission for in-band full-duplex capable transceivers

with [187] or without [154] spectrum sharing, SISO [179] and MIMO [182, 429] full du-

plex relaying. as well as heterogeneous multi-tier network involving cellular and D2D

full duplex communications [186]. Improper transmission is even more beneficial for the

joint compensation of SI and hardware imperfections in full duplex HWI systems. For in-

stance, asymmetric transmission is capable of suppressing SI along with transmitter power

amplifier nonlinear distortion and transceiver IQI [78] and asymmetric hardware distor-

tions [83]. Besides full-duplex relaying, WL processing is also rewarding for other relay

networks including two-way AF-MIMO relayed MU systems [181] and multi-layered relay

systems [180]. Surprisingly, IGS is also favorable for the alternate relaying systems which

mimic as full-duplex systems [159].

9.3.4 Hardware Impairments Mitigation

Improper/asymmetric signaling is a promising candidate for the compensation of various

hardware imperfections including asymmetric hardware distortions in receive diversity sys-

tems [108] and IQI in space-time coded transmit diversity systems [430]. Severe perfor-

mance losses caused by the IQI (which leads to improper received signals) can be effi-

ciently compensated by WL RX for uplink multi-cell massive MIMO [82], WL precoding

for Large scale MIMO [77], WL beamforming of linear antenna arrays [431], and massive

antenna arrays [69], and circularity based compensators for wideband direct-conversion

RXs [68] and OFDM based WLAN transmitters [70]. Improper transmission is also rec-

ognized to jointly compensate multiple HWIs such as additive hardware distortions and

transceiver IQI in single antenna [35] and multi-antenna systems [20]. Interestingly, im-

pairments in I/Q modulators are also accurately modelled using widely non-linear model

using compressed sensing [80]. Moreover, the expectation maximization based ML chan-

nel estimation in multicarrier scenarios under phase distortion namely, phase noise and

carrier frequency offset holds true for both proper and improper signaling [432].



242

9.3.5 Phase Estimation

In the absence of pilot training sequence, conventional symmetric signaling employ dif-

ferential coding scheme for phase estimation. On contrary, asymmetric signaling can do

the needful without differential coding hence saving around 3dB loss in SNR at 1e-2 SER.

However, the performance gain up to 97.50% reduced SEP along with the absolute phase

estimation comes at some cost. It is very small reduction in entropy and/or minimum

distance owing to the unequally probable symbols and/or unequal symbol spacing, respec-

tively, introducing asymmetry in the constellation [100].

9.3.6 Interference Channels

An interesting question is the suitability of improper signaling and WL filters when the

system under study is proper (i.e., information and noise signals are proper). Among many

others, Cadambe et al. in their pioneering work demonstrated the superiority of IGS in

interference alignment scenarios [168, 433] counter intuitive to the PGS and linear filter-

ing optimality in P2P communications [434]. Performance gains are also reported for a

variety of interference-limited settings spanning SISO Z-IC [176,178], MIMO Z-IC [177],

MIMO P2P [169,175], MU SISO X-IC [170–172,185,293,305], MU MISO IC [173,295],

MU MIMO IC [81, 174], MIMO-BC [163, 164, 295, 306], MIMO-IBC [161, 162], cogni-

tive MAC with primary P2P [188], cognitive P2P with primary MAC [166], MU diver-

sity systems [296], multicarrier systems [363, 375, 435], multi-antenna systems [184], and

single-/multi- antenna NC interference cancellation [59, 373]. Other forms of interference

i.e., co-channel interference [151, 372], intra- and intersystem multiple access interference

in radio navigation satellite services [436], and wideband multiple access and narrow band

interference in CDMA systems [56, 140] can also be suppressed using improper character-

istics. The application of the analysis to HCN multi-tier deployment with one macro eNode

BS and multiple small eNode BS render large gains with guaranteed rate improvement for

all SeNBs [177]. Additionally, IGS with symbol extension can outperform PGS for inter-
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ference alignment within the context of linear precoding schemes where all interference is

treated as noise [143, 168].

9.3.7 Noisy Channels

For MU Gaussian MIMO P2P, MAC, BC and IC with proper Gaussian per-user input sig-

nals, proper noise is the worst case for the rates under any constraint on the noise co-

variance matrices [437]. However, there are instances when noisy channels render im-

proper/asymmetric signatures. The treatment of improper complex noise is carried out in

various systems including CDMA [75, 438], discrete multitoned systems [74] and spectral

image target detection [248]. Asymmetric noise characterization is necessary for appropri-

ate estimation [329], detection [133, 156, 439], filtering [333], processing [137, 334], and

compensation [19].

9.3.8 Trelli’s Coding

A common perception is the optimality of the symmetric discrete signal constellations for

both coded and uncoded communication systems. Although this holds true for the un-

coded transmission, but may stand false for the coded systems [139]. Various contributions

have supported this statement by designing asymmetric signal constellations to obtain a

performance gain with trellis coding. Trellis-based detection is essential to close the gap

between suboptimum DFE and optimum but computational complex MLSE. Trellis-based

detection with WL preprocessing enables better suppression of noise and ISI for improper

transmission in frequency selective channels [65]. Moreover, Divsalar et al. proposed

joint design of n/(n + 1) trellis codes and 2n+1-point asymmetric signaling, with same

bandwidth requirement as an uncoded 2n-point symmetric signal constellation. The joint

treatment depicts significant improvement in minimum free Euclidean distance of the TCM

which corresponds to maximum reduction in EbNo for a given BER [139]. Similar studies

aim to design TCM parameters not only to increase the effective length but also the mini-
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mum product distance of the code with Rayleigh or Rician fading channels. Interestingly,

the later asymmetric TCM scheme offers gains without additional bandwidth or power

requirements [351]. Other contributions optimize asymmetric constellations to target min-

imal BER of TCM systems over Gaussian channels unlike the conventional criterion of

maximizing the free Euclidean distance [350]. Equivalently, asymmetric signal constella-

tion with Trellis coding outperforms conventional symmetric signaling in terms of BER in

DS/SSMA systems [376].
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Chapter 10

Conclusion

This chapter summarizes the main contributions and signifies the lessons learned during the

challenges faced in this work. It also conveys some concluding remarks and way forward

for the future research work.

10.1 Summary

This report addresses the three-fold lacking and limitations of the existing literature i.e.,

1) Inaccurate complex analysis 2) Inappropriate propriety characterization and 3) Ideal

hardware assumption in wireless communication system modeling. It identifies numer-

ous inherent and induced sources of impropriety in various disciplines of science to draw

a motivation for the accurate modeling and analysis. The main focus of the report is on

the accurate aggregate hardware impairment modeling, it’s meticulous impropriety char-

acterization, explicit analysis, appropriate signaling design, and efficient adaptive practical

implementation.

We presented the comprehensive and exhaustive technical framework of the complex

and quaternion stochastic data models followed by their complete impropriety characteri-

zation, testing, and appropriate treatment in terms of the transformations and operations.

Then, we developed an accurate statistical model for communication links with non-ideal

transceiver blocks, which captures the asymmetric property of the aggregate hardware im-

pairments. Later on, we presented a case study of multihop decode-and-forward full-duplex

relay systems suffering from HWDs and RSI. Compelled by improper nature of the un-
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desired interference and inspired by the beneficial IGS, we adopted IGS to improve the

end-to-end achievable rate using both joint and distributed optimization approaches. How-

ever, given the inevitable problems arising in the practical implementation of IGS such

as unbounded peak-to-average power ratio and complicated detection process, we adopt

asymmetric signaling as the finite discrete counterpart of IGS. This is achieved using the

structural or/and stochastic shaping of the M -ary QAM constellation which is capable of

improving the error performance and throughput of the underlying system even in the pres-

ence of improper HWIs. The performance of the proposed geometric, probabilistic, and

hybrid shaping schemes to realize asymmetric signaling are analyzed, compared and vali-

dated using the Monte-Carlo simulations.

Afterwards, we surveyed the literature on impropriety characterization and elaborated

the existing work from theoretical analysis and performance limits to practical realiza-

tion and implementation. Theoretical analysis covers the achievable rate, outage probabil-

ity, power efficiency, and DoF analysis followed by the broad IGS design, detection, and

estimation guidelines. On the other hand, practical realization encompasses the detailed

asymmetric signal design and recovery techniques. It also quantifies the improved error

performance of multi-user direct sequence multiple access systems, coded communication

systems, multiple antenna and multi-carrier systems, frequency selective and multi-user

interference channels, and systems suffering from improper noise or HWIs.

This study is particularly significant owing to its vast applications in the diverse do-

mains of data analysis, signal processing and communications. We have presented few ap-

plications in the fields of medicine, acoustics, geology, oceanography, economics, bioinfor-

matics, forensics, image processing, computer vision, communication systems and power

grids. This applications endorse the importance of propriety characterization for appropri-

ate modeling, accurate analysis and targeted treatments.
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10.2 Inferences

We can infer the following conclusions from the research carried out for this dissertation.

• Theoretically speaking, IGS is the preferred choice over PGS in an interference-

limited scenario. Its effectiveness is proven in the multi-hop decode-and-forward

full-duplex relaying (MH-DF-FDR) systems under residual self-interference (RSI)

and hardware distortions (HWD). We have presented, analyzed and illustrated two

realization schemes namely joint and distributed optimization schemes. Distributed-

IGS is further categorized as per the cluster size as well as its relative position in

the system network. These distinct forms of IGS-scheme can be adopted as per

suitability in the underlying system configurations. For a small system configuration

with fewer hops joint-IGS is the preferred choice. However, for a larger-hops system,

the joint-IGS renders sub-optimal results pertaining to the inevitable processing and

round-trip delays back and forth from the central-node at the cost of increased system

complexity and communication overhead. Therefore, distributed-IGS is the preferred

approach for large system configurations. Furthermore, distributed-IGS with bigger

odd-cluster along with the optimal cluster placement is the preferred choice as per

the acquired simulation results. In a nutshell, all forms of IGS are proven to be

promising candidates for next generation networks that can significantly improve the

overall achievable rate under various HWD and RSI levels, which have asymmetric

signatures on the useful signal.

• Beyond HWDs, we demonstrated the significance of incorporating multiple HWIs in

accurate system modeling and analysis. We mainly focused on the detailed modeling

of I/Q imbalance and several distortion noises at the transceiver. We also proposed an

optimal and a sub-optimal linear receiver which incorporates improper interference

characteristics. Both transmitter and receiver I/Q imbalance render SI information

bearing signal whereas only receiver I/Q imbalance is responsible for transforming
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AWGN to improper Gaussian noise. The transmitter distortion is subject to channel

fading while the receiver added impairment is not. We carried out the appropriate

error probability analysis which can accommodate the correlated and power variant

noise components. The derived Chernoff bounds and numerical integration approxi-

mations of the average error probability are in close agreement with the simulated av-

erage BER trends, particularly for the lower impairments levels. To this end, system

reliability can be enhanced using the accurate model, analysis and optimal detection

procedures. Further performance improvement can be achieved using the proposed

asymmetric modulation schemes, which outperform the existing symmetric signal-

ing with or without the optimal receiver. Moreover, the maximal asymmetric scheme

can be a fairly good candidate to achieve better performance without rendering any

optimization expenses for highly impaired systems.

• Probabilistic and hybrid shaping are proposed as yet other ways to realize asymmetric

signaling in digital wireless communication systems suffering from improper HWD.

Instinctively, all forms of asymmetric shaping are capable of decreasing the BER, and

this performance gain improves with increasing SNR and/or increasing HWD levels

with respect to NS. However, PS outperforms GS and performs equally well as HS.

We can achieve more than 50% BER reduction with PS/HS over traditional GS. The

perks of PS come at the cost of increased complexity in the design and decoding

process. The HS scheme is capable of improving the system performance in terms

of the BER as well as throughput. However, for less HWD levels and low EbNo,

the benefits of HS over PS are limited while requiring additional complications in

optimization, modulation, and detection procedures. Therefore, PS emerges as the

best choice for asymmetric signaling in the trade-off between enhanced performance

and added complexity.
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Figure 10.1: Lessons Learned and Way Forward

10.3 Lessons Learned

This section focuses on the challenges and limitations in getting the maximum benefit from

impropriety and asymmetry concepts. These limitations open new research directions in

numerous fields, especially communication theory as categorized in Fig. 10.1.

The importance of complete SOS cannot be advocated more, but this is just the be-

ginning. It completes the analysis for Gaussian distribution; however, others may require

higher-order statistics and rotational invariance characteristics for their complete descrip-

tion. It may bring added benefits at the expense of increased computational cost in terms

of resources such as time and energy.

10.3.1 Data Representations

To summarize, three different yet interchangeable data representations with their own mer-

its are presented. Studies advocate complex representation for easy and compact analy-

sis, real composite representation for straightforward geometrical interpretations, and aug-

mented representation for complete characterization, transformation, and analysis. More-

over, real-composite can identify improperness but fails to provide the DoI, unlike the rest

of the two representations. DoI is used to identify the extent of impropriety and quantify
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the entropy loss. Notably, circularity implies propriety whereas impropriety implies non-

circularity but not vice versa. Propriety can vary from generalized to strict whereas circu-

larity of a RV may range from marginal, weak, strong to total circularity. It is important to

identify the extent of properness using propriety tests in order to apply the simplified form

of processing as properness is only preserved under SL or affine transformation. Impropri-

ety incorporation requires extended definitions of differential entropy and joint distribution

for a RV e.g., Gaussian RV (2.38)-(2.48).

10.3.2 Inherent Impropriety

Exploiting the inherent impropriety in various configurations such as non-circular mod-

ulation, linear time-space coding, iterative receiver, improper interference and hardware

impairments in communication and improper empirical data in fluid dynamics etc. can

reap numerous benefits. For instance, it can pay significant rewards in the diverse fields

like system fault identification in power systems, feature extraction and enhance estimation

of EOG, EEG, ECG, and fMRI in biomedical engineering, quantum OCT in optics, speech

recognition in acoustics, seismic and wind fields estimation in geophysics, and ocean-

current spectra in oceanography etc. Impropriety incorporation is essential for appropriate

modeling, analysis and optimum performance. Considering wireless communication sys-

tems, augmented representation is crucial for accurate SNR, achievable rate, and outage

analysis.

10.3.3 Imposed Impropriety

The substantial performance improvement can be achieved by imposing impropriety in var-

ious interference-limited communication scenarios. To summarize the comparative study

carried out in Table IV, underlay cognitive setup reaps the maximum benefit of IGS when

compared to overlay and interweave cognitive setups. Similarly, IGS is proven to be more

beneficial, with a substantial increase in achievable rate, in IC relative to BC in a MIMO
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setup. SISO and SIMO follow the same trend for achievable rate whereas MISO reverses

this trend by offering more rate-region improvement for BC and IBC relative to the IC.

Furthermore, IGS has an added advantage of suppressing RSI in FD relaying and thus ren-

dering higher achievable rates when compared to the HD relay mode. As per the IGS merits

in outage analysis, multiple antenna systems depict lower outage than single-antenna sys-

tems. Moreover, percentage improvement relative to maximal PGS is far more than the

optimal PGS in dual-hop DF-FDR. Also, the FD underlay cognitive mode renders lower

rate outage than its HD counterpart whereas significant secrecy outage improvement is

observed in the presence of an eavesdropper.

10.3.4 Design, Detection, and Estimation

System performance gains can only be attained by the appropriate design of IGS as per the

underlying application. The enumerated design guidelines and tools signify the importance

of problem identification. For instance, simple convex problems can either be solved in

closed form or using algorithms like IPM. Alternately, for non-convex problems, semi-

definite relaxation or sequential convex programming can help to convexify and find the

approximate solution. Other times, it is difficult to solve a joint optimization problem.

It is then recommended to employ alternate optimization like ADMM if the problem is

convex for the subgroups of variables. If this condition fails, then separate optimization is

a better alternate with suboptimal solution. For minimal dimensions, line search or even

exhaustive search can give promising results whereas other algorithms are needed for NP-

hard problems. Eventually, resorting to maximal IGS in place of conventional PGS can

also be beneficial for other intractable optimization problems. As for the detection, the

presence or DoI of an improper signal can be identified in the presence of proper, improper,

or colored noise. Estimation is required to approximate the value of such improper signal at

any instance. Furthermore, the separation, filtering and feature extraction of such sources

can also be of great interest which can be efficiently carried out using BSS, ICA and PCA
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etc.

10.3.5 Practical Realization

Out of the theoretical discussion, the practical realization is of utmost interest. The crux

of the matter is that evaluation of the superiority of one form of asymmetric signaling

over the other is critical yet tricky. Thus, hybrid signaling can reap tremendous payoffs in

terms of improved achievable rates, energy efficiency, DoF and reduced outage and error

probabilities at the expense of increased computation complexity in the modulation and

detection phase. Error probability analysis depicts significant performance enhancement

by asymmetric signaling in trellis coded systems especially with DS/SSMA scheme. Apart

from the coded systems, uncoded MIMO with iterative receiver or with CCI and ISI in

frequency selective channels reap the maximum benefit with asymmetric signaling. WL

extension of various asymmetric signal recovery methods like equalization, estimation,

filtering, and detection outperform their SL counterparts when dealing with asymmetric

systems. Interestingly, asymmetric signaling can open new dimensions for user separation

based on their asymmetric characteristics.

In a nutshell, the impropriety characterization in data analysis and signal processing

renders numerous applications in medicine, economy, geology, oceanography, data min-

ing, data denoising, data compression, dimensionality reduction, array processing, feature

extraction, pattern recognition, and image processing etc. Focusing on the communica-

tion systems, the improper signaling has played a vital role in improving the system per-

formance in cellular networks, cognitive radio setups, full-duplex communication, multi-

antenna, multi-user and multi-cell setups. Additionally, it can effectively compensate the

drastic effects of hardware impairments, interference and noisy channels. Although the

journey from improper signaling to asymmetric signaling is quite appealing, it comes with

few challenges and limitations as discussed next.
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10.4 Challenges and Way Forward

Throughout this article, we have discussed the advantages of exploiting or incorporating

non-circularity and impropriety. However, this performance comes with few challenges in

terms of applicability, suitability, and practicality, etc which need further investigations. In

this subsection, we discuss these limitations and suggest some way forward.

10.4.1 Impairment Modeling and Incorporation

A possible extension to this paper would be to consider the impact of aggregated HWIs

on the massive MIMO systems, which is a key concept to attain higher area throughput

in future wireless networks. Interestingly, the studies have shown that the huge degrees of

freedom offered by the massive densification provide robustness to only some of the im-

pairments. For example, [289] proved that the concentrated antennas deployment offers im-

munity to the hardware distortions but not the phase drifts through closed-form achievable

rate performance analysis. Similarly, [290] demonstrated that the effects of impairments

and noise at the massive-antenna fusion center vanish while the sensor impairment domi-

nates the achievable distributed detection performance, in the limit of an infinite number of

antennas and infinite sensors reporting power budget.

10.4.2 System Identification

Improper/asymmetric signaling techniques are already implemented in GSM and 3GPP

networks [172]. Now we need to systematically scrutinize all the applications/systems/s-

cenarios in numerous diverse fields where impropriety characterization can beat the tradi-

tional processing. It is noteworthy that not all the systems benefit from improper/asym-

metric signaling and even if they do, the advantages may be conditional. In wireless com-

munications, the thorough examination to determine the superiority conditions of improper

signaling or WL processing over proper signaling or SL processing is as crucial as sys-
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tem scrutinizing itself. As an example, MIMO-BC with proper Gaussian noise can achieve

sum rate capacity under a sum power constraint with dirty paper coding and PGS in place

of IGS [58, 440]. Similarly, IGS in combination with WL transceivers is beneficial in

MIMO-BC under specific scenarios which are not yet understood [441]. Moreover, the

perks of IGS over PGS for SU transmission are conditional in underlay and overlay cogni-

tive setups [190, 192]. On the other hand, IGS is the all time favorite in other interference

limited, hardware impaired or improper/non-circular noise based systems [81,82,108,155]

Therefore, a major challenge is to assess the usefulness of improper transmission in the

underlying system which is not straightforward. Nonetheless, we would like to highlight

a broader guideline as proper/symmetric signaling is the preferred choice in the noise lim-

ited regime whereas improper/asymmetric signaling is favorable in the interference limited

regime [172]. Similarly, circular models are favored with small number of samples, low

signal-to-noise ratio, or minimal degree of non-circularity [39].

10.4.3 Transmission Design

Considering the favorable scenarios, when impropriety can reap benefits, the majority of

the studies advertise the employment of IGS transmission which is practically not feasible.

Thus, we need to resort to discrete asymmetric transmission, which poses new challenges.

The main challenge is choosing the optimal asymmetric signaling scheme based on the un-

derlying system. For example, probabilistic shaping is widely applied in optical commu-

nications, whereas geometrical shaping is recently introduced for wireless communication

systems. Performance superiority of one over the other in a particular application is yet

to be investigated. Therefore, we advocate the employment of hybrid signaling in order to

meet the upcoming demands of the communication systems for the internet-of-things era.

Conclusively, hybrid geometrical and probabilistic asymmetric constellation designs can

return significant performance merits while closely approaching Shannon limits.
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10.4.4 Parameter Optimization

The next challenge is the optimization of the opted asymmetric signaling to fine tune

transmission parameters, e.g., prior probabilities for probabilistic shaping, optimal ro-

tation/translation, lattice and envelope for geometric shaping, non-uniform allocation of

orthogonal/non-orthogonal resources, or some/all of these for hybrid signaling. The in-

tricate search for an optimal solution is especially complicated by the significant number

of feasible transmission strategies, mainly for a large number of participating users and/or

antennas [176]. For instance, joint optimization of transmission parameters is doable for

SISO-IC but we have to resort to suboptimal solutions when it comes to MISO- and MIMO-

IC [81, 295]. Similarly, maximal IGS is adopted owing to the intractable optimization in

MIMO hardware impaired systems [20]. In fact, either there is a lack of optimization tools

for non-convex or NP-hard structural problems, or the existing algorithms render subopti-

mal solutions with excessive computational surcharge. Thus, low complexity algorithms

with the near-optimal performance are required to fill the gap opened by the lack of opti-

mal solutions in the complex systems [176]. Consequently, the search for least-complex

near-to-optimal optimization strategy is an open research area.

10.4.5 Joint and Disjoint Design

Another conflict is the choice of cooperative or non-cooperative signaling in cases like

multi-antenna, multi-user and multi-cell configurations. Non-cooperative signaling may

render suboptimal performance whereas cooperative scheme requires the global knowledge

of system parameters to yield optimal performance. This may lead to excessive communi-

cation overhead besides increased computational cost. For example, the performance com-

parison of multi-hop DF FDR communication under HWIs with distributed optimization

framework reveals enhanced performance gains with increasing cluster size. The maximum

gain is achieved with joint optimization of all nodes, however, this performance comes at

the expense of increased complexity, communication overhead and processing delays. As
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a general guideline, distributed optimization approach is the favorable choice for large sys-

tems whereas joint optimization is preferred for relatively small systems. Another concern

is the unavailability or inaccurate estimation of few system parameters on IGS performance.

For example, can IGS gains surpass PGS in large scale MU and/or multi-antenna systems

in the absence of instantaneous CSIT? [304]. Future research may address the limitation

arising from the imperfection or lack of instantaneous/average system parameters while

tuning improper transmission parameters.

10.4.6 Performance Analysis

Accurate analysis is the key to design appropriate system parameters which can attain the

expected system performance. Most of the studies employ complex representation relying

on the covariance matrices for SNR analysis. Adopting such representation in the analy-

sis ignores the correlation between the entities and their respective conjugates. Therefore,

we suggest the employment of complex augmented covariance matrices to evaluate SNR

and subsequent SNR outage performance. For instance, the accurate rate analysis and

rate outage with augmented representations is advocated for multi-antenna ICs [81]. Sim-

ilarly, error probability analysis should exploit the improper noise characteristics which

is particularly emphasized in a hardware imapired system configuration [35]. Neverthe-

less, another limitation is the lack of numerical tools for exact performance analysis. The

design of improper/asymmetric signaling parameters highly depends on the objective func-

tion which can be maximizing achievable rates like average achievable rate, achievable sum

rate, minimum achievable rate or achievable rate region, minimizing outage probabilities

like rate outage, SNR outage, or secrecy outage, or minimizing error probabilities. Thus,

the accurate analysis of these performance metrics will dictate the optimality of improp-

er/asymmetric transmission. For instance, the asymmetric system design is mostly based

on the derived bounds instead of exact EP analysis, which yields loosely fitted model pa-

rameters [350]. Thus, tools are inevitably required to derive exact EP based on accurately
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estimated parameters.

10.4.7 Time-Sharing

Most of the studies focused on the perks of improper/asymmetric signaling in the absence

of time sharing (TS). Comparison study between PGS and IGS in the MIMO-BC when TIN

at high SNR reveals different trends with or without TS. In the absence of TS, gains due

to IGS occurs both in systems with enough antennas at the base station and in overloaded

systems. Whereas, if TS is allowed then IGS cannot bring any gains in a system with

enough antennas at the BS as opposed to overloaded system where it is still advantageous.

Similarly, IGS with TS is yet to find it’s standings in a MU multicell MIMO IBC [301].

Likewise, the superiority of IGS over PGS to enlarge rate region in SISO Z-IC with TS

is subject to the underlying assumptions. IGS is only beneficial under short-term average

power constraints, whereas it cannot bring any gains under the long-term average power

constraints [442]. Although improper rate TS can outperform proper rate TS for SISO

Z-IC, the investigation of this trend in a general SISO-IC is an open research problem.

Nevertheless, situation is altogether different with three or more users where IGS is bound

to bring the benefits even with TS owing to the added DoF [443]. Therefore, the superiority

examination of IGS in a TS context under certain assumptions is an open research area in

various interference-limited systems [301, 441].

10.4.8 Realization

The realization of the optimal asymmetric complex signaling along with the appropriate

detection mechanism (to cater for the induced asymmetry) is also one the challenges the

obstruct the journey from IGS to asymmetric signals. Undoubtedly, the asymmetric modu-

lation does not work in isolation in modern communication setups. Interestingly, the survey

of asymmetric discrete constellation with Trellis coding clarifies that the coding and modu-

lation schemes are sometimes interrelated and hence cannot be treated independently [139].
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Moreover, the optimal detection should exploit the non-i.i.d. noise components e.g., max-

imum a posterior detection in a HWI system outperforms regular ML or minimum Eu-

clidean distance detection [35]. Similarly, asymmetric model of the aggregate HWIs in

a wireless communication system will help in accurate system analysis and design [20].

Such appropriate modeling will also dictate the requisite resources to tackle and deal with

the interference challenges. For example, asymmetric HWIs generate more errors requiring

special buffer management approaches in wireless networks to maintain QoS [444, 445].

Efficient buffering and queue management schemes are inevitably required to tackle the

latency issues in delay-sensitive applications [446]. Consequently, the appropriate realiza-

tion of the system containing asymmetric signatures is immensely important to achieve the

target performance.

10.4.9 Implementation Cost

The existing infrastructure employs SL transceivers, and thus the up-gradation to WL

transceivers is a sequential process [174]. Last but not least is the evaluation of the tradeoff

between performance gains and computational/implementation complexity. Performance

gains in terms of increased capacity, reduced outage, and minimized EP are attained at

the cost of added communication overhead to transfer system parameters, computational

complexity to find a near-to-optimal solution, and implementation complexity to practi-

cally realize/detect the asymmetric transmission. Another intriguing concern is the power

saving affair as emphasized in [139], i.e., introducing asymmetry does not affect the power

or bandwidth needs of the systems. Nevertheless, a fair comparison is required to inspect

whether the power saved by exploiting additional design freedom offered by asymmetric

constellation is greater than the computational power spent on its fine tuning or not?

These are few challenges and limitations which need dedicated efforts for comprehen-

sive treatment and effective realization in order to attain the maximum benefit from the

rising asymmetry concept.
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10.4.10 Recommendations

• We highlight the significance of incorporating hardware impairments to accurately

model and efficiently design the future system configurations. It is crucial for the

precise system analysis and exact system performance investigation. This thesis can

form a basis for any study that aims to study the statistical hardware impairments

system model and the developed analytical expressions can serve as performance

metric to investigate practical system performance.

• Our work strongly emphasize the need to revise the existing literature and various

performance metrics such as achievable rate, system outage and error probability

analysis especially for the future generation of interference limited networks.

• Various numerous optimization problems have been studied for the joint optimiza-

tion of various parameters to attain improved system performance. However, they

improve one or other aspect of the system performance rendering a trade-off between

different performance metrics. Therefore, we suggest Pareto analysis to achieve op-

timal system performance and efficiently utilize the given resources.

• In addition, the proposed adaptive scheme lays emphasis on the development of sim-

ilar alternate sub-optimal solutions which can improve system performance while

reducing computational overhead and system complexity.

• Eventually, the degrading effect of various hardware impairments becomes signifi-

cant at higher data-rates and SNR values. Therefore, more effort needs to be placed in

the design of highly sensitive and accurate RF transceiver blocks including HPA/LNA,

ADC/DAC , BPF and LOs. Highly synchronized oscillators are inevitable for the

mitigation of self interfering signals resulting from IQ imbalance.
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10.5 Concluding Remarks

The journey from proper signaling to improper signaling and then from improper Gaus-

sian to asymmetric discrete constellation is captured and summarized in this work. Various

complex data representations, their complete SOS characterization and appropriate pro-

cessing models are presented for comprehensive illustration. Furthermore, some intrinsic

sources of impropriety as well as the vast applications of asymmetric signaling in various

diverse fields i.e., medicine, communication, geology and computer vision are elaborated.

This review article takes readers from the theoretical achievable bounds to practical real-

ization of impropriety concepts. One of the notable contribution of this work is the per-

formance comparison of improper signaling versus traditional proper signaling in terms of

achievable rate, system outage and EP in numerous system configurations. The comparison

captures all the necessary details including maximum achievable percentage improvement,

transceiver types, design metric, employed strategies and optimization procedure etc. We

believe that this survey along with the presented challenges and future research directions

will not only compel readers to incorporate propriety concepts but also increase the activity

in this critical realm.
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[54] R. Arablouei, S. Werner, and K. Doğançay, “Adaptive frequency estimation of three-
phase power systems with noisy measurements,” in IEEE Intern. Conf. Acoustics,

Speech, and Signal Process. (ICASSP). Vancouver, BC, Canada: IEEE, May 2013,
pp. 2848–2852.

[55] P. J. Schreier and L. L. Scharf, “Second-order analysis of improper complex random
vectors and processes,” vol. 51, no. 3, pp. 714–725, Mar. 2003.

[56] S. Buzzi, M. Lops, and A. M. Tulino, “A new family of MMSE multiuser receivers
for interference suppression in DS/CDMA systems employing BPSK modulation,”
vol. 49, no. 1, pp. 154–167, Jan. 2001.

[57] E. Ollila, “On the circularity of a complex random variable,” vol. 15, pp. 841–844,
Nov. 2008.

[58] C. Hellings and W. Utschick, “Block-skew-circulant matrices in complex-valued
signal processing,” vol. 63, no. 8, pp. 2093–2107, Apr. 2015.

[59] P. Chevalier and F. Pipon, “New insights into optimal widely linear array receivers
for the demodulation of BPSK, MSK, and GMSK signals corrupted by noncircular
interferences-application to SAIC,” vol. 54, no. 3, pp. 870–883, Mar. 2006.

[60] A. Mirbagheri, K. N. Plataniotis, and S. Pasupathy, “An enhanced widely linear
CDMA receiver with OQPSK modulation,” vol. 54, no. 2, pp. 261–272, Feb. 2006.

[61] J. H. Yeo and J. H. Cho, “Optimal presence detection of improper-complex second-
order cyclostationary random signal for spectrum sensing in cognitive radio,” in



266

GLOBECOM Workshops (GC Wkshps). Houston, TX, USA: IEEE, Dec. 2011,
pp. 959–963.

[62] S. M. Alamouti, “A simple transmit diversity technique for wireless communica-
tions,” vol. 16, no. 8, pp. 1451 – 1458, Oct. 1998.

[63] P. J. Schreier, L. L. Scharf, and C. T. Mullis, “Detection and estimation of improper
complex random signals,” vol. 51, no. 1, pp. 306–312, Jan. 2005.

[64] F. Roemer and M. Haardt, “Efficient 1-D and 2-D DOA estimation for non-circular
sources with hexagonal shaped ESPAR arrays,” in Intern. Conf. Acoustics, Speech,

and Signal Process.(ICASSP), vol. 4. Toulouse: IEEE, May 2006, pp. IV–IV.

[65] H. Gerstacker, R. Schober, and A. Lampe, “Receivers with widely linear processing
for frequency-selective channels,” vol. 51, no. 9, pp. 1512–1523, Sep. 2003.

[66] A. Mohammadi and K. N. Plataniotis, “Distributed widely linear multiple-model
adaptive estimation,” IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 3, pp. 164–
179, Sep. 2015.

[67] Y. Xia and D. Mandic, “Augmented performance bounds on strictly linear and
widely linear estimators with complex data,” vol. 66, no. 2, pp. 507–514, Jan. 2018.

[68] L. Anttila, M. Valkama, and M. Renfors, “Circularity-based I/Q imbalance compen-
sation in wideband direct-conversion receivers,” vol. 57, no. 4, pp. 2099–2113, Jul.
2008.

[69] A. Hakkarainen, J. Werner, K. R. Dandekar, and M. Valkama, “Widely-linear beam-
forming and RF impairment suppression in massive antenna arrays,” J. Commun.

and Netw., vol. 15, no. 4, pp. 383–397, Aug. 2013.

[70] Z. Li, Y. Xia, W. Pei, K. Wang, Y. Huang, and D. P. Mandic, “Noncircular mea-
surement and mitigation of I/Q imbalance for OFDM-Based WLAN transmitters,”
vol. 66, no. 3, pp. 383–393, Mar. 2017.

[71] M. Mokhtar, A. Gomaa, and N. Al-Dhahir, “OFDM AF relaying under I/Q imbal-
ance: Performance analysis and baseband compensation,” vol. 61, no. 4, pp. 1304–
1313, Apr. 2013.

[72] J. Li, M. Matthaiou, and T. Svensson, “I/Q imbalance in AF dual-hop relaying:
Performance analysis in nakagami-m fading,” vol. 62, no. 3, pp. 836–847, Mar. 2014.

[73] P. J. Schreier and L. L. Scharf, “Stochastic time-frequency analysis using the analytic
signal: Why the complementary distribution matters,” vol. 51, no. 12, pp. 3071–
3079, Dec. 2003.



267

[74] G. Taubock, “Complex noise analysis of DMT,” vol. 55, no. 12, pp. 5739–5754,
Dec. 2007.

[75] Y. C. Yoon and H. Leib, “Maximizing SNR in improper complex noise and applica-
tions to CDMA,” vol. 1, no. 1, pp. 5–8, Jan. 1997.

[76] E. Bjornson, M. Matthaiou, and M. Debbah, “A new look at dual-hop relay-
ing:Performance limits with hardware impairments,” vol. 61, no. 11, pp. 4512–4525,
Nov. 2013.

[77] W. Zhang, R. C. de Lamare, C. Pan, M. Chen, J. Dai, B. Wu, and X. Bao, “Widely
linear precoding for large-scale MIMO with IQI: Algorithms and performance anal-
ysis,” vol. 16, no. 5, pp. 3298–3312, May 2017.
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APPENDICES

A Computational Complexity of the Joint Algorithm

For a MH-DF-FDR system accommodating a source and k relays, the total number of op-

timization variables in joint optimization are N1 = 2k + 2, considering two optimization

variables (real and imaginary component of the transmit pseudo-variance) per transmitting

node. Moreover, the number of inequalities representing constraints of the joint optimiza-

tion problem is defined as M1 = 2(k + 1), involving two constraints (power and rate con-

straints) per transmitting node, as given in 4-P6. In addition, F1 = N1(1 +M1) +N2
1M1 is

the cost of evaluating the first and second derivatives of the objective and constraint func-

tions in the joint algorithm. The computational complexity of the joint algorithm can be

simplified as follows:

O
(
ISCP

1

(
N2

1k + αmax
(
N3

1 , N
2
1M1, F1

)))
(A.1)

Where, α is assumed to be between 10 and 100 for the interior point method [282]. Con-

sidering N2
1k ≤ αmax (N3

1 , N
2
1M1, F1), we can simplify the complexity expression as

O
(
αISCP

1 max
(
N3

1 , N
2
1M1, F1

))
(A.2)

Using N3
1 = N2

1M1 = 8k3 + 24k2 + 24k + 8 and F1 = 8k3 + 28k2 + 34k + 14, depicts

F1 = max (N3
1 , N

2
1M1, F1). Thus, the complexity reduces to O

(
αISCP

1 F1

)
. Considering
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the dominant term in F1 renders the desired complexity of order O
(
αISCP

1 k3
)
.

B Computational Complexity of the Distributed Algorithm

Equivalently, the computational complexity of the distributed algorithm with cluster size

Γ, the total number of optimization variables N2 = 2Γ − 2, the number of inequalities

representing constraints M2 = 2(Γ − 1) and the costs of evaluating the first and second

derivatives of the objective and constraint functions F2 = N2(1 + M2) + N2
2M2 can be

simplified to O
(
αISCP

2 max (N3
2 , N

2
2M2, F2)

)
. Following the similar steps as in Appendix

A with F2 = max (N3
2 , N

2
2M2, F2) and using F2 = 8Γ3 − 20Γ2 + 18Γ − 6, yields the

complexity of order O
(
αISCP

2 Γ3
)
.

C Derivation of Fϑ (ϑ)

Consider the Rayleigh fading channel where real and imaginary components of the chan-

nel coefficient are distributed as hj ∼ CN (0, λ/2, 0); j ∈ {r, i}. This implies h2
j to be

distributed as unnormalized chi-square variable with first degree of freedom i.e. fh2
j

(x) ∼
1√
πλx

e
−x
λ ;x ≥ 0;. Using (5.26), the CDF of ϑ is defined as Fϑ (ϑ) = Pr

{
αh2

r +βh2
i

1+γ(h2
r +h2

i )
≤ ϑ

}
which can also be represented as the probability of the event

Fϑ (ϑ)=Pr
{

(α− γϑ)h2
r + (β − γϑ)h2

i ≤ ϑ
}

=Pr {S ≤ ϑ} (C.1)

PDF of (α− γϑ)h2
r is evaluated using careful transformations.

(α− γϑ)h2
r ∼

1√
πλ (α− γϑ)x

e
−x

(α−γϑ)λ ; x ≥ 0 (C.2)
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Similarly, the distribution of (β − γϑ)h2
i is identical to (C.2) and can be obtained by replac-

ing α with β in (C.2) pertaining to iid channel coefficients. Next, we convolve the derived

PDFs under the assumption of uncorrelated real and imaginary channel coefficients. Then

employing Mathematica integrator to compute the convolution, we obtain

fS (s) =
1

k1 (ϑ)
e−sk2(ϑ)I0 {sk3 (ϑ)} ; s ≥ 0 (C.3)

where, k1 (ϑ) = λ
√

(α− γϑ) (β − γϑ), k2 (ϑ) = λ(α+β−2γϑ)

2[k1(ϑ)]2
, k3 (ϑ) = λ(β−α)

2[k1(ϑ)]2
and I0 {x}

is the zero-order modified Bessel function, which has the following power series represen-

tation [447]

I0 {x} =
∞∑
m=0

x2m

[m!]222m
. (C.4)

From (C.1), the distribution function Fϑ (ϑ) is given as

Fϑ (ϑ) =
1

k1 (ϑ)

ϑ∫
0

e−sk2(ϑ)I0 {sk3 (ϑ)} ds, (C.5)

Eventually, substituting t = sk3 (ϑ) and the power series representation of I0 {t} yields

Fϑ (ϑ) =
1

k1(ϑ) k3(ϑ)

ϑk3(ϑ)∫
0

e
−t k2(ϑ)

k3(ϑ)

∞∑
m=0

t2m

[m!]222m
dt (C.6)

where δ = max (α, β) /γ and 0 ≤ ϑ ≤ δ. Based on the uniform convergence [448],

swapping the order of integral and summation yields the closed form distribution function

Fϑ (ϑ) as

Fϑ (ϑ)=
1

k1 (ϑ)

∞∑
m=0

2−2mk3(ϑ)2m

[m!]2k2(ϑ)2m+1[2m!−Γ (2m+1, ϑk2(ϑ))] . (C.7)
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where Γ (a, x) is the upper incomplete gamma function [287, (6.5.12)].

D Chernoff Bound on Average PEP

Substituting f% (%) from (5.39) to (5.40) yields

P̄s ≤
ψ

2λ
√
αβ

∫ ∞
0

e−
%

2λ(λ+ 1
α

+ 1
β )I0

{
%

2λ

(
1

α
− 1

β

)}
d% (D.1)

Substituting t = % (β − α) / (2λαβ) yields

P̄s ≤
√
αβψ

|β − α|

∫ ∞
0

e−
t(α+β+αβλ)
|β−α| I0 {t}dt (D.2)

Using the power series representation of I0{t} from (C.4) in (D.2) and swapping integra-

tion and summation based on the uniform convergence yields

P̄s ≤
√
αβψ

|β − α|

∞∑
m=0

1

(m!)222m

∫ ∞
0

e−
t(α+β+αβλ)
|β−α| t2mdt (D.3)

Finally, we utilize the well-known integral substitution as given in (D.4) to comprehend

(D.3). ∫ ∞
0

xne−axdx =
n!

an+1
(D.4)

Thus, (D.3) reduces to (D.5) and we can obtain the desired closed form expression as given

in (5.41) after some trivial simplifications.

P̄s ≤
√
αβψ

|β − α|

∞∑
m=0

(2m)!

(m!)222m

(
αβ (α + β + αβλ)

|β − α|

)−(2m+1)

(D.5)



302

E Moment Generating Function of %

Let % = Θr + Θi where Θp = kpĥ
2
p with p ∈ {r, i}, kr = α

2
and ki = β

2
. Thus, ĥ2

p is a

chi-square RV χ2 (1) and the MGF of Θp is given as MΘ (s) = 1√
1−kps

. Furthermore, the

independent Θr and Θi dictate M% (s) = MΘr (s) xMΘi (s) as given in (5.47).

F Derivation of fΩ (Ω)

Using (5.49), the CDF of Ω is FΩ (Ω) = Pr
{

α|h|2

1+γ|h|2 ≤ Ω
}

= Pr
{

(α− γΩ) |h|2 ≤ Ω
}

.

Rayleigh fading channel assumption yields f|h|2 (x) = λe−λx. This implies (α− γΩ) |h|2 ∼

Exp [(α− γΩ) /λ] Thus, FΩ (Ω) = 1 − e
−λΩ
α−γΩ , that can be differentiated giving fΩ (Ω) as

given in (5.50).

G Optimality of Problem 5-P2

Considering D ∈ C2x2 and D = H̃YH̃T . Clearly Y is a symmetric positive definite

matrix owing to the positive trace Tr (Y) = 1/σ2
I + 1/σ2

Q and the positive determinant

|Y| = (1− ρ2) /σ2
I σ

2
Q. This implies that D is also a symmetric positive definite matrix.

Assuming qmn = Rsmn , the constraint becomes

sT
mnR

TATH̃YH̃TARsmn = qT
mnA

TDAqmn = (1 + η)×

(q1
mn)

2
D11 + (1−η) (q2

mn)
2
D22 + 2

√
1−η2q1

mnq
2
mnD12

(G.1)



303

where q1
mn and q2

mn are the first and second element of vector qmn respectively. They

represent the distance between the real and imaginary components of symbols m and n in

a rotated signal constellation respectively. Conclusively, (G.1) demonstrates the concave

nature of the 5-P2 in η.

H Optimailty of Problem 5-P3

Considering the constraint in 5-P3,

f (η) = Q
(√
h (η)

)
= Q

√psTmnR
TAT H̃YH̃TARsmn

4 (1− ρ2)

 (H.1)

where h (η) is proven to be concave in η in Appendix G. Furthermore,
√
h (η) is also

concave owing to the positive nature of h (η). The composite function in (H.1) is proven to

be convex as

f ′′ (η) = Q′′
(√

h (η)
)((√

h (η)
)′)2

+Q′
(√

h (η)
)(√

h (η)
)′′

(H.2)

where, Q′′
(√

h (η)
)
≥ 0 and Q′

(√
h (η)

)
≤ 0 owing to convex decreasing nature of

Q (x) in R+. Moreover,
(√

h (η)
)′′
≤ 0 yields f ′′ (η) ≥ 0 proving convex constraints and

5-P3 optimality.

I Statistical Characterization of Aggregate Noise

The superposed Gaussian distributions render the accumulative noise z ∼ CN (0, v, ṽ),

where v = α|g|2κ + σ2
w and ṽ = αg2κ̃. Exploiting the relation between the v, ṽ and the

variances of σ2
I = E{z2

I}, σ2
Q = E{z2

Q} and their mutual correlation rzIzQ = E {zIzQ},
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we get

v = E
{
|z|2
}

= σ2
I + σ2

Q. (I.1)

ṽ = E
{
z2
}

= σ2
I − σ2

Q + i2rzIzQ . (I.2)

Their inter relation enables us to evaluate σ2
I , σ2

Q, and rzIzQ from v and ṽ as

σ2
I =

v + ṽI
2

=
α|g|2κ+ σ2

w + α< (g2κ̃)

2
, (I.3)

σ2
Q =

v − ṽI
2

=
α|g|2κ+ σ2

w − α< (g2κ̃)

2
, (I.4)

rzIzQ =
ṽQ
2

=
α= (g2κ̃)

2
. (I.5)

Finally, (I.3)-(I.5) allow us to find the correlation coefficient between zI and zQ as

ρz =
rzIzQ
σIσQ

=
α= (g2κ̃)√(

α|g|2κ+ σ2
w

)2 − (α< (g2κ̃))2
. (I.6)

J Translation within power budget

In this appendix we present the proof of Remark 1. It is straightforward to prove that the

translation v = Aw does not change the variance/power but only introduce asymmetry/im-

properness. Considering the transformation caused by the translation v =
√

1 + ζwI +

i
√

1− ζwQ, the power/variance is given by

σ2
v = (1 + ζ)σ2

wI
+ (1− ζ)σ2

wQ
. (J.1)
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Using the symmetric nature of r.v. w i.e., σ2
wI

= σ2
wQ

, it is clear that σ2
v = σ2

w. On the other

hand, the pseudo-variance can be calculated as

σ̃2
v = (1 + ζ)σ2

wI
− (1− ζ)σ2

wQ
+ i2

√
1− ζ2E {wIwQ}. (J.2)

Again, the symmetry implies E {wIwQ} = 0. Thus, the circularity coefficient can be

derived from (J.2) i.e., |σ̃2
v |/σ2

v = ζ .

The same concept can be extended to the symmetric discrete constellations with uni-

form prior probabilities. Considering the transformation caused by the translation vm =
√

1 + ζxmI + i
√

1− ζxmQ, the power of the transformed constellation is given by

P =
1

M

(
(1 + ζ)

M∑
m=1

x2
mI + (1− ζ)

M∑
m=1

x2
mQ

)
. (J.3)

Using the symmetric property of the original discrete constellation
M∑
m=1

x2
mI =

M∑
m=1

x2
mQ, it

is clear that the power is preserved as P = 2
M

M∑
m=1

x2
mI . Moreover, the non-zero pseudo-

variance is given by

P̃ = ζP +
2i

M

√
1− ζ2

M∑
m=1

xmI xmQ. (J.4)

Again, the symmetry implies
M∑
m=1

xmIxmQ = 0. Thus, the circularity coefficient can be
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Table K.1: First Order Necessary KKT Conditions

Index KKT Conditions Satisfied with Reason
1 : Mnu ∇pL (p∗, λ∗)=0, ∀m ∇pL (p∗, λ∗1, λ

∗
2, λ
∗
3)=0 Saddle point of dual problem

Mnu+1 λ∗1

(
Mnu∑
m=1

|xm|2p∗m − 1

)
=0

Mnu∑
m=1

|xm|2p∗m = 1, λ∗1 ≥ 0 Maximum power transmission

Mnu+2 λ∗2

(
Mnu∑
m=1

p∗m − 1

)
=0

Mnu∑
m=1

p∗m = 1, λ∗2 ≥ 0 Equality constraint

Mnu+3 λ∗3 (log2 (Mu)− H(p∗))=0 H(p∗) = log2 (Mu), λ∗3 ≥ 0 BER-Rate tradeoff

derived from (J.4), i.e., |P̃ |/P = ζ .

K KKT Conditions

The convex non-linear constraint problem 6-P1a can be efficiently solved using the first

order necessary KKT conditions. We begin by writing the Lagrangian function L as

L (p, λ1, λ2, λ3)=P̃UB
b

(
p,p(k)

)
+λ1

(
M∑
m=1

|xm|2pm−1

)
+λ2

(
M∑
m=1

pm−1

)
+λ3(log2 (Mu)−H(p)) ,

(K.1)

where the Lagrange multipliers are λ1, λ2, λ3 ≥ 0. Next. we evaluate the gradient of the

(K.1) with respect to the optimization variables in p

∇pL =

[
∂L
∂p1

∂L
∂p2

. . .
∂L
∂pMnu

]
, (K.2)

where the partial derivative of L with respect to pm is given by

∂L
∂pm

=
∂PUB

b

(
p(k)

)
∂pm

+λ1|xm|2 +λ2 +λ3

(
1

ln(2)
+log2 (pm)

)
, ∀ 1 ≤ m ≤Mnu (K.3)

Suppose that there is a local solution p∗ of 6-P1a and the objective function P̃UB
b

(
p,p(k)

)
along with the constraints (6.22b) and (6.22c) are continuously differentiable. Then, there
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exists a Lagrange multiplier vector λ∗, with components λi, where i ∈ (1, 2, 3), such that

the necessary first order KKT conditions (as presented in Table K.1) are satisfied at (p∗, λ∗).

Interestingly, the KKT conditions are satisfied with

∇pL (p∗, λ∗1, λ
∗
2, λ
∗
3) = 0, (K.4)

M∑
m=1

|xm|2p∗m = 1, (K.5)

M∑
m=1

p∗m = 1, (K.6)

H(p∗) = log2 (Mu) . (K.7)

owing to the maximum transmission power preference, equality constraint and BER -Rate

trade-off , respectively. Thus, theMnu+3 solution parameters
(
p∗1, p

∗
2, . . . , p

∗
Mnu

, λ∗1, λ
∗
2, λ
∗
3

)
can be efficiently obtained by solving equations (K.4)-(K.7) using Levenberg-Marquardt

algorithm [449].

L Gradient for Optimization

The gradient of the upper bound on BER w.r.t GS parameters is given as

∇GPUB
b =

[
∂PUB

b

∂ζ

∂PUB
b

∂θ

]
=

1

log2 (M)

M∑
m=1

M∑
n=1
n 6=m

∆mn

[
∂γmn
∂ζ

∂γmn
∂θ

]
, (L.1)

where ∆mn is the common part in both partial derivatives.

∆mn =
pmγ

−3/2
mn

2
√

2π

√
1− ρ2

z

α
e−

Ω2
mn
2

(
ln

(
pm
pn

)
− 1

2β2
mn

)
. (L.2)



308

Moreover, the partial derivative of γmn with respect to the translation parameter ζ is given

as
∂γmn
∂ζ

=
ξ̄2
mnI

σ2
I

+
2ρz ξ̄mnI ξ̄mnQ

σIσQ

ζ√
1− ζ2

−
ξ̄2
mnQ

σ2
Q

, (L.3)

where, ξ̄mnI = ξmnI cos(θ) − ξmnQ sin(θ) and ξ̄mnQ = ξmnI sin(θ) + ξmnQ cos(θ). Fur-

thermore, the partial derivative of γmn with respect to the rotation parameter is evaluated

as

∂γmn
∂θ

= 2
1 + ζ

σ2
I

(
ξmnI cos(θ)− ξmnQ sin(θ)

) (
−ξmnI sin(θ)− ξmnQ cos(θ)

)
+

+2
1− ζ
σ2

Q

(
ξmnI sin(θ) + ξmnQ cos(θ)

) (
ξmnI cos(θ)− ξmnQ sin(θ)

)
+

− 2ρz
σIσQ

√
1− ζ2

(
ξmn

2
I cos(2θ)− ξmn2

Q cos(2θ)− 2ξmnIξmnQ sin(2θ)
)
. (L.4)



309

M Papers Published and Submitted

Journal Papers

Published

• Sidrah Javed, Osama Amin, Basem Shihada and Mohamed-Slim Alouini, “A Journey

from Improper Gaussian Signaling to Asymmetric Signaling”, IEEE Commun. Surveys

Tuts., vol. 22, no. 3, pp. 1539-1591, Apr. 2020.

• Sidrah Javed, Osama Amin, Basem Shihada and Mohamed-Slim Alouini, “Improper

Gaussian signaling for hardware impaired multihop full-duplex relaying systems”, IEEE

Trans. Commun., vol. 67, no. 3, pp. 1858-1871, Mar. 2019.

• Sidrah Javed, Osama Amin, Salama S. Ikki, and Mohamed-Slim Alouini, “Asym-

metric modulation for hardware impaired systems - Error probability analysis and receiver

design”, IEEE Trans. Wireless Commun., , vol. 18, no. 3, pp. 1723-1738, Feb. 2019.

Submitted

• Sidrah Javed, Ahmed Elzanaty, Osama Amin, Basem Shihada and Mohamed-Slim

Alouini, “When Probabilistic Shaping Realizes Improper Signaling for Hardware Distor-

tion Mitigation”, submitted to IEEE Trans. Commun., Sept. 2020.



310

Conference Papers

• Sidrah Javed, Osama Amin, Salama S. Ikki, and Mohamed-Slim Alouini, “On the

achievable rate of hardware-impaired transceiver systems,” in Proc. IEEE Global Com-

mun. Conf. (GLOBECOM). Singapore: IEEE, Dec. 2017, pp. 1-6.

• Sidrah Javed, Osama Amin, Salama S. Ikki, and Mohamed-Slim Alouini, “On the

optimal detection and error performance analysis of the hardware impaired systems,” in

IEEE Global Commun. Conf. (GLOBECOM). Singapore: IEEE, Dec. 2017, pp. 1-7.


	Examination Committee Page
	Copyright
	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Overview
	Background and Limitations
	Sources of Impropriety
	Communications
	Power Systems
	Medicine
	Optics and Acoustics
	Oceanography and Geophysics

	Motivation
	Impairment Modeling and Characterization
	Improper Characterization
	Adaptive Asymmetric Signaling
	Remarks

	Literature Review
	Impairments Model Incorporation
	Error Probability Analysis of the Improper Systems
	Improper Characterization
	Adaptive Asymmetric Signaling
	Deductions

	Objectives and Contributions
	Organization and Road map
	Notations

	Technical Framework
	Stochastic Data Modeling
	Complex Random Vectors
	Quaternion Random Vectors
	Summary and Insights

	Propriety versus Circularity
	Complex Random Vectors
	Quaternion Random Vectors
	Summary and Insights

	Transformations and Operations
	Complex Random Vectors
	Quaternion Random Vectors
	Summary and Insights

	Entropy and Probability Density Functions 
	Complex Random Vectors
	Quaternion Random Vector
	Summary and Insights

	Testing for Impropriety
	GLRT for Complex Random Vectors
	GLRT for Quaternion Random Vectors
	Summary and Insights


	Hardware Impairment Modeling
	Transceiver Hardware Distortion Model
	Transceiver I/Q Imbalance Model

	Hardware Impaired Multihop Full-Duplex Relaying Systems
	Significance and Contributions
	FDR under HWD System Model
	Achievable Rates
	HWD- and RSI-Aware Signaling Design
	Joint Optimization
	Distributed Optimization
	Complexity Analysis

	Numerical and Simulation Results
	Effect of RSI and HWD 
	Number of Participating Relays 
	Impact of Cluster size and Placement in Distributed Algorithms

	Conclusion

	Asymmetric Signaling for HWI Systems
	Main Contributions
	System Description
	Receiver Design
	Optimal Maximum Likelihood Receiver
	Minimum Euclidean Distance Receiver
	Linear Minimum Mean Square Error Receiver

	Error Probability Analysis
	Symbol Error Probability
	Asymptotic Analysis

	Average Probability of Error
	System with Transmitter and Receiver Hardware Impairments
	Zero-Distortion Transmitter
	System with Negligible Transmitter I/Q Imbalance
	System with Negligible Receiver I/Q Imbalance

	Transmit Signaling Design
	Special Cases
	Maximum Pairwise Error Probability Minimization
	Maximum Symbol Error Rate Minimization

	Numerical Results
	Optimal Receiver
	Bounds and Approximations
	Asymmetric Transmission

	Conclusion

	When Probabilistic Shaping Realizes Improper Signaling for Hardware Distortion Mitigation
	Significance and Contributions
	System Description
	Transceiver Hardware Distortion Model
	Optimal Receiver

	Error Probability Analysis
	Proposed Probabilistic Signaling Design
	Problem Formulation
	Optimization Framework
	Toy Examples

	Hybrid Shaping where Conventional meets State-of -the-Art 
	Hybrid Shaping Parameterization
	Optimal Receiver
	Error Probability
	Problem Formulation
	Proposed Algorithm
	Illustrative Example

	Numerical Results
	Conclusion

	Theoretical Analysis and Performance Limits
	Achievable Rate
	Average Achievable Rate Limits
	Rate Region Analysis

	Outage Probability
	Rate Outage Probability 
	Secrecy Outage Probability 

	Power Efficiency
	Degrees of Freedom
	IGS Signaling Design
	Closed Form Solutions
	Convex Optimization
	Non-Convex Optimization
	Intractable Optimization Framework
	Summary and Insights

	IGS Detection and Estimation
	Detection
	Estimation
	Source Separation


	Practical Realization and Implementation
	Asymmetric Signal Design
	Probabilistic Shaping
	Geometric Shaping
	Orthogonal/Non-Orthogonal Sharing
	Hybrid Signaling
	Deep Learning

	Asymmetric Signal Recovery
	Equalization
	Estimation
	Filtering
	Detection

	Error Probability Analysis
	Multiuser Direct Sequence Multiple Access Systems
	Coded Communication Systems
	Multiple Antenna Systems
	Multi-carrier and Single-carrier Systems
	Systems with Frequency Selective Channels
	Systems with Improper Noise
	Hardware Impaired Systems
	Multiuser Interference Channel


	Applications
	Data Analysis
	Independent Component Analysis
	Principal Component Analysis
	Complex Least Mean Square Analysis
	Miscellaneous

	Signal Processing
	Array Processing
	System Identification and Feature Extraction
	Pattern Recognition and Image Processing

	Communication Systems
	Cellular Networks
	Cognitive Radios
	Full Duplex Systems
	Hardware Impairments Mitigation
	Phase Estimation
	Interference Channels
	Noisy Channels
	Trelli's Coding


	Conclusion
	Summary
	Inferences
	Lessons Learned
	Data Representations
	Inherent Impropriety
	Imposed Impropriety
	Design, Detection, and Estimation
	Practical Realization

	Challenges and Way Forward
	Impairment Modeling and Incorporation
	System Identification
	Transmission Design
	Parameter Optimization
	Joint and Disjoint Design
	Performance Analysis
	Time-Sharing 
	Realization
	Implementation Cost
	Recommendations

	Concluding Remarks

	References
	Appendices

