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The intestine is an important organ of the human body, and its internal structure always needs to be observed in clinical
applications so as to provide a basis for accurate diagnosis. However, due to the limited intestinal data obtained by a single
institution, deep learning cannot effectively train the intestines, and the effect is not satisfied. For this reason, we propose a
distributed training method to carry out federated learning to alleviate the situation of patient sample data shortage, not shared
and uneven data distribution. And the blockchain is introduced to enhance the interaction between networks, to solve the
problem of a single point of failure of the federated learning server. Fully excavate the multiscale features of samples, to
construct a fusion enhancement model and intestinal segmentation module for accurate positioning. At the local end, the
centerline extraction algorithm is optimized, with the edge as the main and the source as the auxiliary to realize centerline
extraction.

1. Introduction

The intestine is an important organ of the cavity. At present,
imaging-based detection of the intestine is the mainstream
method. It is welcomed by physicians and patients because
of its convenience and noninvasiveness. In order to more
accurately obtain the internal conditions of the intestine, a
large number of processing technologies have been derived,
such as virtual colonoscopy [1], virtual valgus [1], and virtual
flattening [2].

Due to the particularity of medical imaging, it is profes-
sionalism and privacy. In order to make full use of the net-
work to obtain better data analysis under the premise of
ensuring privacy, a connection between local domain servers
has been established in this case. Representative works in
data transmission include knowledge-driven model [3, 4],

which extracts features based on the analysis of known data
and presents data transmission in the form of probability.
This type of model is more effective for known data features.

Distributed network structure [5, 6], based on the char-
acteristics of decentralized data distribution, constructs a
network structure to extract data from different data sources,
and its network structure directly affects the data transmis-
sion effect. Dynamic data fusion enhances data [7, 8], which
uses a variety of methods to obtain information of different
dimensions of data and extracts statistical characteristics of
data to enhance data transmission performance. In terms
of data privacy, representative works include data coding
[9, 10], encoding the data according to the data characteris-
tics and decoding it through the secret key. In multisource
data enhanced encryption [11, 12], the use of multisource
means to obtain information to assist data encryption.
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Partial data sharing [13, 14], according to the actual needs,
only partial data or feature level sharing is provided to
achieve data privacy protection.

In the aspect of computer-aided intestinal detection, it
mainly focuses on intestinal segmentation and intestinal
centerline extraction. Representative works on intestinal
segmentation mainly include human-computer interaction
model [15, 16], which guides computer segmentation by
marking the start and end points or part of the area by
the physician and modifies the computer segmentation
effect. The boundary focusing model [17, 18] constructs a
constraint function to approach the boundary successively,
and the effect is better for the area where the boundary of
the image is more obvious. The 3D model [19, 20] con-
structs the spatial structure according to the three-
dimensional geometric structure of the organ to realize
the overall extraction of the organ. However, this model
has a large amount of calculation data and consumes a lot
of calculation resources.

In medical anatomical models [21, 22], with the contin-
uous development of medical technology, we have a more
in-depth understanding of the tissue structure of organs
and construct a morphological constraint model to extract
the tissue structure. The deep learning model [23, 24] con-
verts the image segmentation problem into a probability
problem, learns data with labeled information, and achieves
target segmentation. In the aspect of intestinal centerline
extraction, local model [25, 26], the idea of segmentation is
introduced to segment the intestinal tract, find the central
point locally, and connect it to form the centerline. The
global model [27, 28] extracts the centerline based on the
constraints of intestinal connectivity and medical
morphology.

In summary, although some progress has been made
in the research based on intestinal data, facing the distri-
bution of intestinal data and the current situation of vari-
ous hospitals, the main problems of centerline extraction
are (1) uneven distribution and privacy of image data;
(2) insufficient interaction of deep learning network
parameters. (3) the centerline extraction algorithm based
on source and supplemented by edge has high data calcu-
lation redundancy.

Based on the above three deficiencies, this paper pro-
poses a new intestinal centerline extraction algorithm. (1)
Establish a federated learning framework, and establish a
data learning mechanism under the condition of ensuring
the privacy of the data sets. (2) Introduce the blockchain
mechanism, to enhance data interaction, and solve the single
point of failure of the federated learning server. (3) Optimize
the existing centerline extraction framework and put for-
ward the idea of focusing on edges and supplemented by
sources to realize centerline extraction.

2. Algorithm

Through the above analysis, we build an algorithm flow
under the framework of federated learning (as shown in
Figure 1). First, fully mine the image data under the pre-
mise of ensuring data privacy, introduce the blockchain

mechanism, to enhance data interaction, solve the single
point of failure of the server, and then, extract the com-
plete area of the intestine. At the client, a centerline
extraction algorithm based on edge and supplemented by
source is proposed to finally realize the virtual endoscopy
of the intestine.

2.1. Network Framework. Federated learning (FL) refers to a
machine learning setting in which multiple clients collabo-
rate to train a model under the coordination of a central
server, and its structure is shown in Figure 2. Federated
learning enables multiple organizations to achieve AI collab-
oration without sharing data, so as to ensure the privacy and
security of user data. The traditional federated learning is
implemented under the coordination of a central server.
Each participant only uses locally owned data to train a
machine learning model, obtain model parameters, and send
updated model parameters to the central server. Then, the
central server aggregates the model parameters received
from different devices and distributes the aggregated model
parameters to each local device after updating, and the local
device uses the aggregated parameters to update the local
model.

Blockchain has the advantage of decentralization, that
is, instead of using a central organization to establish
the trust relationships between distributed nodes, it stores
data in network nodes and updates it in real time. All
nodes in the blockchain network participate in the main-
tenance together. According to the sequence of the gener-
ation time of the blockchain, the blockchain is connected
to form a data bar. As long as not all participating nodes
in the network crash at the same time, they can run all
the time.

Through the above analysis, we realize the intestinal
segmentation of abdominal CT images based on the con-
struction of a client-server system. Suppose that each med-
ical institution is taken as a client, the blockchain network
is used to construct the server side, and all the data of
each medical institution are jointly trained to train a seg-
mentation model. The server is responsible for maintain-
ing the global parameter model and coordinating the
model training of the client. The structure is shown in
Figure 3.

2.2. Configuration of Client and Server. For client model
training, suppose that the client device set is D = f1, 2⋯
NDg. Let the data set sample owned by the ith client device
be Di = f1, 2⋯Nig. The set of blockchain node devices is
M = f1, 2,⋯NMg. The client device Di uploads the local
model update to the Mj connected to it. The loss function
of the corresponding target is

E =
1
NS

〠
ND

i=1
〠
Sk∈Si

f k wð Þ, ð1Þ

where f kðwÞ is the loss function of deep learning. The client
layout follows the federal learning settings, and each client
model is trained by random gradient descent method.
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Approximate Newton method is used to aggregate the model
updates of all client devices:
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where w is the global update parameter, which sends w and
▽f to the server. When the nodes in the blockchain generate
new blocks, the client downloads the new blocks and
updates them.

In server parameter aggregation, each client device has a
server associated with it, and the server device connected to
the client device serves as a node to form a blockchain, when
the server receives the parameters (w,▽f ) uploaded by each
client and the local calculation time T . In order to ensure the
authenticity of node exchange local model update, the block
is divided into two parts. The first part stores the address of
the previous block pointer, the block generation rate λ, and
the output value of the proof-of-work mechanism (PoW).
The size is designed as h + δND, where h represents the
length of the head, and δ represents the size of the overall
model update. The second part stores the updated data
(w,▽f ). When each block fill reaches a predetermined size
or exceeds the waiting time, it is transmitted.

POW randomly generates a hash value by changing its
input until the generated hash value is less than the target
value. When a qualified hash value is found, its candidate
block generates a new block. κ indicates the difficulty of
POW. The newly generated block is propagated to all nodes.
All nodes receiving the generated block must stop the cur-
rent operation and add the new block to the local ledger.

If another node successfully generates a block within the
propagation delay of the first generated block, the node may
mistakenly add the second generated block to their local led-
ger, which becomes a fork. The existence of a bifurcation sit-
uation may cause some devices to apply an incorrect global
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Figure 1: Flow chart of intestinal centerline extraction.
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Figure 3: Framework based on federated learning and blockchain.

3Wireless Communications and Mobile Computing



model update to their next local model update. Once bifur-
cation occurs, we will restart a new round of iteration.

The blockchain network also introduces a reward mech-
anisms to client devices and servers. The data reward of the
client device is received from its associated server, and the
amount is directly proportional to the data sample size Ni.
When a node generates a block, the mining reward is
obtained by the blockchain, and the number of mining
rewards is proportional to the total sample of its associated
equipment.

The specific steps of the whole operation process are as
follows:

(1) Local device parameter update: device Di calculates
parameters wt,l through Ni iterations

(2) Local model parameter upload: device Di is ran-
domly connected with node Mi; build blocks of data

(3) Cross-validation: the parameters of each node are
updated, and all local model updates obtained from
the connected local device or other nodes are veri-
fied. The verified local model updates are stored in
the candidate block of the node until the candidate
block reaches h + δND or exceeds the maximum
waiting time T

(4) Block generation process: each node runs POW until
it finds the target situation or the generated block
broadcasted by other nodes

(5) Block propagation: let Ma represent the first node to
achieve the target. To avoid bifurcation, we set a spe-
cific frame to indicate whether the bifurcation occurs
or not. If the bifurcation occurs, we will start from
the first step

(6) Global model download: local device Di downloads
the new generation block from the node of the vector
machine

(7) Global model update: local device Di updates param-
eters through the aggregation result of local device
parameter update in the new block until the condi-
tion ∣wl −wl−1 ∣ ≤ε is met

2.3. Intestinal Segmentation and Centerline Extraction
Model. We build a deep learning network model as shown
in Figure 4. We need to enhance the abdominal CT image.
The DeeplabV3+ network model implements feature extrac-
tion, but the hollow convolution of multiple expansion rates
can easily cause a checkerboard effect, resulting in the loss or
segmentation of small intestines, the problem of discontinu-
ity. For this reason, the HRnet network model extracts more
detailed information in the feature map, which is helpful for
the segmentation of small targets. However, the network
model has the problem of complex structure and large
amount of parameters.

We propose a multiscale fusion enhanced network archi-
tecture. The structure is independent of the ASPP model as a
separate path. In the process of feature extraction, the high-

resolution information is fully preserved, and the learning
ability of the model for detail features is improved. At the
same time, the structure of the network model is simplified,
and the computing efficiency is improved.

Xception Module in DeeplabV3+ is used to replace Bot-
tleneck in HRNet network model. Xception Module contin-
uously deepens the network model through residual learning
unit, extracts rich features, and uses deep separable convolu-
tion to replace the standard convolution in Bottleneck.
Under the condition of ensuring the accuracy, the model
parameters are reduced, and the operation cost is reduced.

The number of residual structure is adjusted from 4 to 2.
The residual learning unit of Bottleneck and Xception Mod-
ule contains three convolution layers, but the purpose of the
first and third convolution layers of Bottleneck is through
1 × 1 convolution to adjust the dimensions of output fea-
tures. Xception Module uses three convolution layers to
extract features. In order to avoid feature redundancy or
overfitting and reduce the number of repeated residual
structures, 2 is selected.

HRNet single-input and single-output network structure
is transformed into three-input and three-output network
structure. The feature extraction and exchange unit uses
Xception Module to extract the features repeatedly in the
same resolution branch. After extracting the features, multi-
scale fusion and enhancement are performed on the output
feature maps of the three branches in order to realize the
repeated extraction and exchange of features and obtain
more abundant context information. In the process of fea-
ture extraction, HRNet needs to downsample to generate
low-resolution feature extraction branches. Three middle
layer features of DCNN are used as the input of multiscale
fusion enhancement network to remove high-resolution
branches and continuously downsample to generate low-
resolution branches.

The multiscale fusion enhancement network consists of
two identical feature extraction and exchange units. Each
cell contains three independent branches to extract informa-
tion of different scales. The resolution of the second branch
is half of that of the first branch, and the channel number of
the feature map is twice of that of the first branch; the reso-
lution of the third branch is half that of the second. The
steps are as follows: (1) the feature images with different res-
olutions are input into the multiscale fusion enhancement
network. (2) In the first feature extraction and exchange
unit, feature extraction is carried out, and then, information
exchange of different feature graphs is realized through fea-
ture fusion. Three characteristic images with different reso-
lutions can be obtained.

In order to make the network model have a larger
receptive field in the process of feature extraction, enhance
the context semantic information while maintaining high-
resolution features, and extract small-scale target segmen-
tation accuracy, a deep learning model with small-scale
target segmentation ability is constructed by embedding
multiscale fusion enhancement network into DeeplabV3+
network model.

The steps are as follows: (1) the original image is input
into DCNN to extract the initial features. (2) The initial
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features of DCNN output are input into ASPP module. Mul-
tiscale feature maps obtained are stitched and fused then,
and the number of channels is adjusted to 256. (3) The out-
put features of the three convolution layers in the middle of
DCNN are extracted as the input of the multiscale fusion
enhancement network. The output feature maps of the three
branches obtained are stitched and fused then, and the num-
ber of channels is adjusted to 128. (4) The output of multi-
scale fusion enhancement network and ASPP module is up
sampled four times and fused with the shallow splicing of
corresponding levels in DCNN. The number of output chan-
nels of shallow features is 48. (5) The fused feature is up
sampled 4 times to get the feature image with the same res-
olution as the original image. (6) Through convolution, the
number of channels of output features is adjusted to the
number of categories to be segmented, and the predicted
segmented image can be obtained by activating Softmax
function.

On the basis of DeeplabV3+, the network constructs
multiple fusion enhanced network. The shallow features
extracted by DCNN are extracted by multiscale feature
extraction and repeated information fusion. Multiple feature
extraction can make the model obtain more comprehensive
information on different scales. The same key points on dif-
ferent scale feature maps help the model to predict different
semantic meanings more accurately, while repeated infor-
mation fusion helps the model to obtain high-resolution

detail features. The multiscale fusion enhancement network
enhances the key features of different scale features and
high-resolution detail features, making full use of multiscale
information and shallow information to improve the seg-
mentation accuracy.

2.4. Intestinal Centerline Extraction. To realize the extraction
of the intestinal centerline, as shown in Figure 5, the main
idea is to keep the data that the centerline extraction plays
a key role. The source distance field can reflect the distance
between the points of binary image and the source point.
The initial node is defined as P. The source distance can be
expressed as: D =min fdðp, qÞ +DðqÞ∣∈ðThe nodes with
known source distance in the 26 neighborhood of PÞg. The
point corresponding to the minimum value is assigned as
the current node, and the center can be extracted by travers-
ing. However, this method has a large amount of calculation
data. We introduce the maximum spanning tree (MST)
algorithm to obtain the centerline extraction results. We
use the search direction and step size theory to describe
the algorithm. The search direction is the node with the larg-
est boundary distance between adjacent nodes connected to
all nodes in the tree.

Firstly, the boundary distance field of intestinal data is
calculated and transformed into bidirectional weighted
graph. Each pixel point represents the vertex of the graph.
26 neighborhood of voxel represents the edge. Each side
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Figure 4: Intestinal extraction network.
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has two directions, and the boundary distance value of the
point pointing to the edge is taken as the weight. Specify
the starting point as the root node. The concept of spanning
tree in connected graph is used, and the vertex with the larg-
est weight is connected to the tree until all the points are
connected. The path from the specified end point along the
spanning tree to the starting point is the centerline.

From the MST algorithm flow, the layer with low center
degree is connected into the tree, and this part of data can-
not work for the centerline extraction, because there will
be data redundancy. Therefore, we adopt a path search strat-
egy with edge as the main and source as the auxiliary and
improve the performance of the algorithm by reducing a
large number of redundant data.

3. Experiment and Result Analysis

The experimental data are from CT abdominal data col-
lected by Siemens equipment. A total of 403 sets of intestinal
CT data (1624 pieces of DICOM data) are obtained by label-
ing the area of the intestine by professional doctors and
labeling the centerline based on endoscopic images. To bet-
ter demonstrate the intestinal structure, we can show them
from axial position, sagittal position, and coronary position,
respectively. As shown in Figure 6, the intestine is shown as
connected closed tubular structure. There is volume effect in
the intestine (as shown in Figure 6(a)). The intestinal cavity
is large and hovers in the abdomen (as shown in
Figure 6(b)). The intestine runs through the whole area of
the abdomen (as shown in Figure 6(c)).

We distribute 403 sets of data on 10 clients as shown in
Figure 7. In order to simulate the real situation, we randomly
distribute the data. The specific distribution is as follows: the
largest amount of data is 78 on the eighth client, and the
smallest is 10 on the third client.

3.1. Network Effectiveness Evaluation. In order to verify the
performance of the federated learning algorithm proposed
in this paper, we compare traditional federated learning
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Figure 7: Data distribution.

Table 1: Experiment results.

Algorithm Dice Sen Spec

Cen-training 68.2 70.1 95.2

Traditional FL 65.3 67.2 93.4

Ours 67.8 67.3 94.8
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and centralized training with our algorithm. We introduced:

Dice =
2 × TP

2 × TP + FP + FN
,

Sen =
TP

TP + FN
,

Spe =
TP

TP + FP
,

8>>>>>><
>>>>>>:

ð3Þ

where TP represents the number of pixels that are correctly
predicted as positive samples, and TN represents the num-
ber of pixels that are correctly predicted as negative samples.
FP represents the number of pixels that were incorrectly pre-
dicted as positive samples, and FN represents the number of
pixels that were incorrectly predicted as negative samples.

It can be seen from Table 1 that in the Dice index, the
result of the algorithm proposed in this paper is slightly
lower than the result of centralized training, but the differ-
ence is not big. However, the algorithm we proposed adopts
the blockchain system to solve the single point of failure
problem of the federated learning server. The blockchain
guarantees the security of the data to a certain extent. It is
in line with actual application requirements, and the data
stored by different clients is fully used.

The corresponding ROC curve is shown in Figure 8. The
effect of the centralized training algorithm is the best. This is
because the data is local and the data does not need to be
interacted. Traditional federated learning has the worst
effect. This is because the data is unevenly distributed, and
the interaction between the data is not taken into
consideration.

Figure 9 shows the change in Dice of the algorithm dur-
ing the convergence process. It can be seen that after the
blockchain is introduced to the central server, the accuracy
loss is small. And in the initial stage of training, the effect
is significantly better than the traditional federated algo-
rithm. Because the devices are trained in parallel, the weight
of each device is the same, so the average is updated during
the update, and the learning efficiency is slightly lower than
that of the data-based training method. Compared with tra-
ditional federated learning, the convergence speed of the
algorithm proposed by us is higher.

In the case of the same signal-to-noise ratio, the effect is
shown in Figure 10. In general, the completion delay of
learning is inversely proportional to the signal-to-noise ratio.
The larger the signal-to-noise ratio, the larger the amount of
useful information received by the device, so the shorter the
learning completion time. The block generation rate and the
learning completion delay are concave, that is, under the
same SNR, at the beginning, a low generation rate indicates
that PoW is difficult, and the block generation time is long.
The learning completion delay decreases as the block gener-
ation rate increases after reaching a certain level; the greater
the block generation rate, the occurrence of bifurcation
problems must be considered, which will lead to the time
cost of repeated cycles of the process. For a larger block gen-
eration rate, the frequency of bifurcation events is high,
which enhances the delay of learning completion.
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Table 2: Comparison of image segmentation algorithms.

Algorithm AOM AVM AUM CM

DT 0.67 0.41 0.34 0.64

3D 0.72 0.37 0.26 0.70

FCN 0.79 0.31 0.23 0.75

UNET 0.82 0.25 0.21 0.79

Ours 0.85 0.23 0.17 0.82
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In the case of possible equipment failures, we count the rela-
tionship between the number of local equipment and the learn-
ing completion delay, and the results are shown in Figure 11.
The red line indicates that the miner is faulty, and the blue line
indicates that there is no fault. Gaussian noise is added to each
miner’s aggregate local model update to simulate failure.

3.2. Intestinal Segmentation Algorithm. In order to verify the
performance of the proposed segmentation network, we run
the algorithm on the local computer and introduce the follow-
ing indicators to measure the performance of the algorithm:

AOM =
Rs ∩ Rg

Rs ∪ Rg

AVM =
Rs − Rg

Rs

AUM =
Rg − Rs

Rg

CM =
1
3

AOM + 1 − AVMð Þ + 1 − AUMð Þf g

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4Þ

where Rg is the gold standard and Rs is the segmentation

result. AOM and CM are directly proportional to the segmen-
tation result, while AVM and AUM are inversely proportional
to the segmentation result.

The segmentation effects of different algorithms are
shown in Table 2. The double-threshold method [29] manu-
ally sets two thresholds to deal with the influence of volume
effect and realize intestinal segmentation. The effect of this
method has a great relationship with the selection of thresh-
old and does not consider the difference of internal data in
the same group, so the effect is not good. 3D model [19]
builds a model based on the connected structure of intestinal
closure to realize intestinal extraction. FCN algorithm [30]
transforms the full connection layer of traditional CNN
into convolution layer, extracts deeper features, and
improves the segmentation accuracy. UNET network [31]
contains local texture information, which makes the seg-
mentation accuracy better. Our algorithm constructs mul-
tiscale enhancement module and semantic segmentation
module, and the segmentation effect is the best from the
local and semantic level.

3.3. Effect Display. In the algorithm proposed in this paper,
the intestinal segmentation effect is shown in Figure 12.
Figure 12(a) is displayed as bright and dark areas on the

(a) (b)

(c)

Figure 12: The intestinal segmentation effect.
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image due to the incomplete emptying of the intestine; in
this case, the traditional threshold method cannot effectively
segment it. As shown in Figures 12(b) and 12(c), because the
intestines hover in the abdomen of the human body, there
will be multiple connected areas of the intestine in a single

frame image, and the traditional threshold algorithm cannot
segment it effectively. Our algorithm builds a deep learning
module and proposes a network structure enhanced by mul-
tiscale fusion to achieve a complete segmentation of the
intestine.

(a) The 100th image (b) The 150th image

(c) The 200th image

Figure 13: 2D centerline display.

Figure 14: 3D centerline display.
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In order to intuitively show the extraction effect of intes-
tinal centerline, we show it from 2D and 3D levels (as shown
in Figure 13), where red is the area where the centerline is
located. It can be seen that the centerline cannot be deter-
mined from 2D level alone. As shown in Figure 14, the intes-
tine is tubular structure. Based on our proposed edge based
and source assisted algorithm, the centerline can be better
extracted.

4. Conclusion

For the purpose of solving the problem of uneven distribu-
tion of intestinal medical imaging data, which leads to insuf-
ficient model training, we propose federated learning and
blockchain algorithms to fully mine data features and
enhance the interaction between networks. In this way, the
existing deep learning framework is optimized; a multiscale
fusion enhanced network is proposed to realize the accurate
segmentation of intestinal tract. And to solve the problem of
multiple intestinal region segmentation on a single-frame
image, we proposed a centerline extraction algorithm with
edges as the main source and supplemented by the source,
which shows the effectiveness of this algorithm through 3D
display as well.
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