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CHAPTER 1 

General introduction 

 

Camera trapping for wildlife studies 

Automatic camera traps revolutionised ecological inference about wildlife populations over the past 

decades due to their ability to continuously, simultaneously, and cost-efficiently survey animals in 

their natural environment over extensive periods of time and large areas with relatively low 

requirements of manpower (Kucera & Barrett 2011) . Even elusive, cryptic and rare species can be 

surveyed with their help, in some cases providing initial baseline data for species with virtually 

unknown ecology (Mathai et al. 2017). 

The data camera traps collect are not only aesthetically appealing, but offer intriguing insights into 

the ecology and behaviour of wildlife, typically medium to large sized mammals. Consequently, the 

use of camera traps and publications about camera trapping surveys has seen a sharp increase over 

the past decades (see Figure 1.1 and McCallum 2012). Applications of camera trapping data are 

found in species management, conservation and ecological research. In the latter, inference ranges 

from the individual level (e.g. movement parameters; Royle et al. 2014) through population and 

metapopulation level (e.g. occupancy status, local abundance and population density, changes of 

occupancy over time; Karanth 1995; Nicholson & Van Manen 2009; Sollmann et al. 2012; Wilting et 

al. 2012; Mohamed et al. 2013) to community level inference as in species inventories, species 

interaction studies or community ecology (MacKenzie et al. 2006; Burton et al. 2012; Sunarto et al. 

2013; Sollmann et al. 2017). Further applications of camera traps are in behavioural studies, e.g. for 

species activity patterns, the monitoring of denning behaviour or behavioural patterns that are 

difficult to infer from individual observations (Cutler & Swann 1999; Sunarto et al. 2013; Ancrenaz et 

al. 2014). 

In the days when analog photography was the only available technology for camera trapping studies 

the amount of data was limited by technological constraints such as the maximum number of 

exposures available on film and consequently the manpower needed to keep cameras functional 

(Kays & Slauson 2008; Kucera & Barrett 2011). With the advent of digital photography in the 2000s 

and its application in camera trapping, the amount of data collected in camera trapping studies 

increased rapidly and began to pose a whole new challenge in terms of data management compared 

to film equipment used earlier, which is by now virtually non-existent in camera trapping. For 
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illustration, in a typical camera trapping study involving dozens to hundreds of cameras that are 

deployed for weeks to months, hundreds of thousands or even millions of images can be collected 

(e.g. Swanson et al. 2015), making manual data management impractical and efficient data 

management imperative. Fortunately, standardised storage of metadata in the images captured by 

camera traps, most essentially date and time, allows for their automated extraction. Consequently, 

various software toolboxes have been developed to facilitate the management and automatic data 

extraction from large amounts of camera trapping data, each with their own standards for data 

storage (Harris et al. 2010; Fegraus et al. 2011; Sundaresan et al. 2011; Sanderson & Harris 2013; 

Krishnappa & Turner 2014; Tobler 2014; Ivan & Newkirk 2015; Zaragozí et al. 2015; Bubnicki et al. 

2016; Hendry & Mann 2017).  

Concomitantly to the rise of digital photography in camera trapping, the R language (R Core Team 

2017) has become the de-facto standard environment for statistical analysis of ecological data, with 

some of the most highly developed tools for a multitude of ecological analyses of camera trapping 

data being native to R (e.g. Fiske & Chandler 2011; Laake 2013; Efford 2015; Meredith & Ridout 

2016). The absence of a toolbox for camera trap data management in R was the incentive to develop 

an R package to fill this gap. The aim of its development was to seamlessly connect camera trap data 

acquisition and management with downstream analytical tool in the same environment. This R 

package is called camtrapR, was first released in July 2015 on CRAN (Niedballa et al. 2015a) and 

updated continuously afterwards. The development of camtrapR fell in a time in which there was a 

spate of development in camera trap data management software (see above), clearly illustrating the 

need for software that is capable of processing the large amounts of images that are typically 

collected in today’s camera trapping studies. The R package camtrapR described in chapter 2 

harnesses the power of the R language to efficiently manage and analyse camera trapping data 

(Niedballa et al. 2016). 

Occupancy modelling using camera trapping data 

One of the main applications of camera trapping data is their use for occupancy modelling. 

Occupancy models were first proposed by MacKenzie et al. (2002) and have been extended and 

steadily increased in popularity ever since. The main strength of occupancy models is that they 

explicitly account for imperfect detection, the possibility of not detecting a species that is in fact 

present. Imperfect detection is inevitable in wildlife studies in general and camera trapping studies in 

particular. Not accounting for imperfect detection can very severely affect model results and bias 

inferences (Gu & Swihart 2004; MacKenzie et al. 2005; Sollmann et al. 2013).  
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Figure 1.1: The increase of scientific publications related to camera trapping between 2000 and 2016 returned by Google 

Scholar for the search term: "Camera trap" OR "Trail camera" OR "Photo trap". 

 

Occupancy models address imperfect detection explicitly by separating the ecological process from 

the imperfect detection process. The ecological process is the occupancy state of a site, i.e. the site 

being either occupied or unoccupied. Detections are conditional on this occupancy state and only 

possible if the site is occupied. An observation or detection model is applied to link observations to 

the unobserved (latent) state variable, which is occupancy (for details see Chapter 4). In that sense 

occupancy models classify as hierarchical models (Kéry & Royle 2015).  

In order to estimate detection probabilities, occupancy models require repeated samples from the 

sampling sites. In the context of camera trapping, sampling sites are camera trap stations, and 

repeated samples are obtained by subdividing the survey period at each station into discrete time 

intervals (usually a few days) to obtain a pattern of detection / non-detection during these repeated 

samples over the course of the survey duration, from which detection probabilities can be inferred. 

Occupancy models can furthermore account for varying detection probability (e.g. due to habitat 

characteristics or temporally changing environmental conditions) and parameter estimates are 

unaffected by missing sample occasions (MacKenzie et al. 2006).  

The simplest case of occupancy models are single-species, single season models. These can be 

expanded to multi-season models, two-species or community occupancy models (MacKenzie et al. 

2006). Single-species single-season models can provide estimates of occupancy and detection 

probabilities of a single species while accounting for imperfect detection and factoring in the 

influence of environmental characteristic on occupancy and detection probability estimates 
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(MacKenzie et al. 2002). Single-species multi-season model allow the estimation of extinction and 

(re-)colonisation rates from repeated surveys during several seasons, e.g. in metapopulation studies 

(MacKenzie et al. 2003; Hamel et al. 2013). Two-species occupancy models are used to assess 

interactions between species, expressed as changes in occupancy probability of a species in the 

presence of another species (MacKenzie et al. 2004; Richmond et al. 2010; Lazenby & Dickman 2013; 

Rota et al. 2016). Community occupancy models allow for inferences about species richness, 

individual and community responses to habitat characteristics (Burton et al. 2012; Sollmann et al. 

2017). 

All of these different types of occupancy models can take into account covariates on detection and 

occupancy probabilities. These covariates are most commonly time-invariant habitat characteristics, 

but detection probabilities may also depend on time-variant covariates such as weather conditions. 

Habitat can be characterised either via ground surveys, which are often labour-intensive and limited 

in their spatial coverage and consequently don’t allow extrapolation to larger areas or continuous 

monitoring through time. In addition, ground surveys inevitably lead to disturbance and interference 

with natural processes on the ground, possibly biasing results. Thus, an increasingly popular 

alternative to ground surveys which overcomes many of their limitations is the use of remote sensing 

technology for habitat characterisation and the generation of covariates for occupancy models 

(Turner 2014; Bush et al. 2017; Steenweg et al. 2017). Remote sensing covariates hold potential for 

extrapolation of species distribution models to unsampled areas and monitoring of changes in 

habitat structure over time without physical interference at these sites. 

The application of remote sensing data in occupancy modelling 

Since the first satellite-based remote sensing surveys of the earth’s surface in the early 1970s, the 

use of remote sensing technologies revolutionised earth observation and the way ecologists gather 

and make use of spatial data in a similar way to the revolution which the use of automatic camera 

traps meant for the observation of cryptic and elusive wildlife species (Leimgruber et al. 2005; 

Williams et al. 2006). Remote sensing means measuring properties of objects without making 

physical contact, and here refers to spaceborne and airborne earth observation. While airborne 

remote sensing offers more detail due to greater proximity and can be adapted more specifically to 

the needs of an individual study, satellite data are more readily available, cheaper (often available for 

free), and provide a wider and more consistent spatial and temporal coverage of the study area. 

Earth observation satellites are equipped with a plethora or different instruments for a multitude of 

scientific purposes. Amongst these, optical sensors are the most accessible, widely available and 

suitable data source for land cover mapping, which is highly relevant for the analysis of species 
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distribution data. While older satellites such as Landsat had a moderate spatial resolution of 30 

metres per pixel, more recent generations of sensor offer higher resolution and thus make much 

more detailed habitat mapping possible (available sensors range from 5-m RapidEye data to < 1 m in 

commercial satellites such as WorldView-4 (RapidEye AG 2012)). Higher resolution, however, is not 

invariably favourable because it comes with a number of drawbacks, namely much larger data 

volumes, smaller swath width (smaller spatial extent of images), excessive image detail which 

complicates image analysis and classification, and frequently high costs associated with image 

acquisition. Consequently, there is a trade-off to be made between using lower-resolution data and 

running the risk of missing crucial habitat features, and high-resolution data which are more difficult 

to work with, in many cases expensive, and may not cover the entire study area. 

The potential applications of remote sensing in the realm of wildlife ecology are manifold, with land 

cover mapping and ecosystem monitoring, land cover change detection or terrain description being 

prominent examples (Karanth et al. 2009; Pettorelli et al. 2011; Sunarto et al. 2012; Carter et al. 

2013; García-Rangel & Pettorelli 2013). They offer repeated temporal and extensive spatial coverage 

of the earth’s surface, allowing continuous monitoring and spatial extrapolation of point processes 

observed on the ground (e.g. at camera trap stations; Bush et al. 2017).  

Yet, remote sensing data require validation by means of in-situ (ground) surveys. These in-situ 

surveys are crucial to link remotely sensed data to processes and patterns on the ground and guide 

interpretation of remote sensing data (Asner et al. 2010; Langner et al. 2012). Such in-situ surveys 

also allow for measurements that are difficult or impossible to obtain using remote sensing 

techniques, e.g. tree diameters or floristic information. But at the same time they can be logistically 

challenging, are expensive, and limited in spatial scope. Hence, both in situ and remote sensing 

surveys have their benefits and drawbacks and support one another in terms of thorough habitat 

characterisation. 

The concept of scale in ecology 

In all of these applications, both of remote sensing and in situ habitat surveys, observed landscape 

patterns are scale-dependent, drawing attention to the widely-known and much-debated concept of 

scale in ecology, and how it may affect inference from occupancy models that utilise remote sensing 

covariates (Wiens & Milne 1987; Wiens 1989; Wu 2004). The impact of scale on ecological inferences 

is a long-known phenomenon and has received much coverage in scientific literature. In the words of 

Wiens (1989), “[...] different patterns emerge at different scales of investigation of virtually any 

aspect of any ecological system”. As a consequence, not accounting for scaling relationships may lead 

to biased or even wrong conclusions about the system under investigation.  
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Ecological scale consists of two constituents, extent and grain (Turner et al. 1989). Generally 

speaking, extent is the overall area studied while grain is the size of an individual unit of observation. 

It is impossible to detect any element smaller than the grain size, and generalisation beyond the 

study extent is only possible if scale-independence of processes and patterns is assumed, which is 

uncommon (Wiens 1989). In the context of remote sensing, extent is the area surveyed and grain is 

the spatial resolution of the data, meaning the pixel size in satellite imagery and derived data. In in-

situ surveys, extent equally refers to the area surveyed, and grain could, for example, be the size of 

subplots within a vegetation plot for which data are aggregated. 

The question of scale is related to the question of how animals perceive their environment. In the 

context of connecting remote sensing to species occurrence data, the questions raised are 1) how 

the immediate and wider surroundings of a location (i.e., different extents/radii around that location) 

influence species occupancy patterns, and 2) what spatial resolution (grain size, pixel size) is 

adequate to describe habitat characteristics that influence species occurrence, i.e., do habitat 

covariates derived from high-resolution remote sensing data yield higher explanatory value than 

those from lower-resolution data? To investigate how this concept of scale affects inference from 

occupancy models based on camera trapping data, in chapter 3 we compared the effect of varying 

extents and grain sizes in habitat covariates derived from remote sensing data and in situ surveys in 

terms of their explanatory power (Niedballa et al. 2015b). 

Detecting species interactions in camera trapping data 

The potential applications of camera trapping data are by far not limited to occupancy modelling. 

While the inference of spatial interactions between species can be achieved with two-species 

occupancy models as mentioned above, these models are only sensitive to observable patterns in 

spatial distributions, thus assuming that interactions between species impact the spatial occurrence 

of species, e.g. via exclusion of a species from sites where a competitor or predator is present (in the 

case of avoidance). Nevertheless, an alternative, more subtle form of avoidance between species 

may involve temporal avoidance rather than spatial avoidance, with species partitioning time instead 

of space to avoid encounters and interactions while still co-occurring at the same localities. These 

temporal interactions between species cannot be detected with two-species occupancy models 

because the occupancy state (the state variable of occupancy models) is not affected by and also not 

sensitive to temporal avoidance. 

In the case of avoidance between species (due to predation risk or competition), temporal avoidance 

may take different forms. The first is the temporary avoidance of a site after a dominant species or 

individual was present (e.g. a predator or stronger competitor). Alternatively, species may shift their 
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activity periods relative to one another in an effort to segregate temporally and thus reduce the 

chances of encounters and potentially detrimental interactions. Both of these interactions were 

observed in wildlife data, e.g. between sympatric intraguild competitors or in predator-prey 

relationships (e.g. Harmsen et al. 2009; Monterroso et al. 2014; Parsons et al. 2016). Both of these 

types of temporal interactions are avoidance strategies and ultimately behavioural adaptations 

aimed at increasing fitness by reducing predation risk or the risk of disadvantageous interactions 

(Schuette et al. 2013). 

Because of its more subtle nature and the randomness in species detections in camera trapping, the 

inference of temporal interactions between species is a challenging task, yet rewarding in terms of 

ecological insights gained (e.g. Hayward & Slotow 2009; Tambling et al. 2015; Wang et al. 2015). 

Notwithstanding the ecological interest and despite a number of methods that were suggested and 

applied (Harmsen et al. 2009; Ridout & Linkie 2009; Parsons et al. 2016), the detection of temporal 

interactions from camera trapping data has received little methodological scrutiny compared to two-

species occupancy models. The main obstacle for a comparative assessment of different methods for 

detecting temporal interactions between species is the unknown and unobserved true state of the 

system. The only way to overcome this obstacle and arrive at an unbiased assessment of the 

different methods is to simulate data and apply the methods to these simulated data, which was 

done in chapter 4. 

Structure of the dissertation 

The overarching aim of this work was to facilitate the handling of and improve inferences from 

camera trapping studies by firstly providing a new toolbox for camera trap data management, 

secondly exploring the utility of high-resolution remote sensing data in camera trap-based species 

occupancy models, and thirdly assessing and comparing methods for detecting temporal interactions 

between species from camera trapping data. The results are presented in the form of three 

manuscripts in chapters 2 to 4: 

1) Modern camera trapping is a very data-intensive discipline and therefore requires thorough data 

management. Chapter 2 (“camtrapR: an R package for efficient camera trap data management”) 

describes the R package camtrapR which provides a camera trap data management workflow within 

the widely-used R environment. It seamlessly connects camera trap data acquisition and 

management with ecological analyses provided by a multitude of other R packages and software 

tools. 
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2) Chapter 3 (“Defining habitat covariates in camera-trap based occupancy studies”) deals with the 

incorporation of high-resolution remote sensing data into camera trap based occupancy models and 

the arising questions of ecological scale. Using six sample species from Sabah, Malaysian Borneo, the 

manuscript explores the influence that spatial resolution (pixel size of land cover data) and the extent 

of patches around camera trap localities have on inferences of habitat associations from single-

species occupancy models. It shows that high-resolution land cover data can have considerably more 

model support than lower resolution land cover data, suggesting their application in occupancy 

models is justified and may lead to improved inferences. Remote sensing data for habitat 

characterisation can further reduce field effort by serving as a surrogate for labour-intensive in-situ 

measures. The manuscript thus demonstrates the utility of high-resolution land cover data in species 

occupancy models and confirms the decades-old yet frequently ignored notion that ecological scale 

still matters when using state-of-the-art methods. 

3) Chapter 4 (“Assessing spatiotemporal interactions between species from camera trapping data”) 

explores the use of camera trapping data for inferring temporal interactions between species. More 

specifically, it investigates the properties of different statistical tests for detecting two types of 

temporal interactions between species: 1) spatiotemporal avoidance, i.e. temporary avoidance of a 

site by a subordinate species after a dominant species was present, and 2) temporal segregation, i.e. 

shifts in activity patterns between species which lead to reduced activity overlaps. Both of these 

strategies can serve to avoid encounters or interference between species, thus facilitating co-

existence between species. In a simulation study, we compared four methods for detecting 

spatiotemporal avoidance: linear models, U-test, a permutation test and a test based on randomly 

created records; and assessed a permutation test for detecting temporal segregation. All tests were 

generally robust and suitable for detecting temporal interactions. Linear models had highest power 

and greatest flexibility for detecting spatiotemporal avoidance. The results can guide practitioners in 

their choice of methods and furthermore provide a flexible and extensible framework for simulation 

and exploration of temporal species interactions in camera trapping data. 

Chapter 5 is a general discussion which summarises the results of the dissertation and discusses 

them in the wider context of camera trapping and quantitative wildlife ecology.  
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Summary 

1. Camera trapping is a widely applied method to study mammalian biodiversity and is still gaining 

popularity. It can quickly generate large amounts of data which need to be managed in an 

efficient and transparent way that links data acquisition with analytical tools. 

2. We describe the free and open-source R package camtrapR, a new toolbox for flexible and 

efficient management of data generated in camera trap-based wildlife studies. The package 

implements a complete workflow for processing camera trapping data. It assists in image 

organization, species and individual identification, data extraction from images, tabulation and 

visualization of results and export of data for subsequent analyses. There is no limitation to the 

number of images stored in this data management system; the system is portable and 

compatible across operating systems. 

3. The functions provide extensive automation to minimize data entry mistakes and, apart from 

species and individual identification, require minimal manual user input. Species and individual 

identification are performed outside the R environment, either via tags assigned in dedicated 

image management software or by moving images into species directories. 

4. Input for occupancy and (spatial) capture–recapture analyses for density and abundance 

estimation, for example in the R packages unmarked or secr, is computed in a flexible and 

reproducible manner. In addition, survey summary reports can be generated, spatial 

distributions of records can be plotted and exported to GIS software, and single- and two-species 

activity patterns can be visualized. 

5. camtrapR allows for streamlined and flexible camera trap data management and should be 

most useful to researchers and practitioners who regularly handle large amounts of camera 

trapping data. 

Key-words 

biodiversity surveys and monitoring, occupancy models, spatial capture-recapture models, detection 

history, data management, photo-trapping, camera-trapping, wildlife studies 
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Introduction 

Camera trapping is a powerful and widely used method for the rapid assessment of mammalian 

biodiversity, particularly in challenging environments (Tobler et al. 2008; Sunarto et al. 2013; Burton 

et al. 2015). A multitude of ecological analyses utilize camera trap data, including estimation of 

occupancy probabilities (MacKenzie et al. 2002) or abundance, density and demographic rates with 

capture–recapture (Karanth 1995; Silver et al. 2004) and spatial capture–recapture models (Efford 

2004; Royle et al. 2009; Gardner et al. 2010). These methods are implemented in R packages [e.g. 

unmarked (Fiske & Chandler 2011), secr (Efford 2015) or RMark (Laake 2013)] and stand-alone 

computer programs [e.g. program mark (White & Burnham 1999) or presence (Hines 2006)]. 

Efficient use of these analytical tools requires efficient and systematic management of the large 

numbers of images that can be generated in short periods of time. A variety of approaches using 

different software have been developed for that purpose (Harris et al. 2010; Fegraus et al. 2011; 

Sundaresan, Riginos & Abelson 2011; Sanderson & Harris 2013; Krishnappa & Turner 2014; Tobler 

2014; Zaragozí et al. 2015; McShea et al. 2016; Ivan & Newkirk 2016; see the latter and Table S2.1 for 

a comparison of approaches). These software approaches have different foci and offer different sets 

of features. In developing camtrapR, we aimed at incorporating and expanding upon these 

capabilities within a unified camera trap data management tool. In addition to functionalities already 

available (e.g. automatic import of images, generation of reports and input files for subsequent 

analyses), camtrapR (i) uses the increasingly popular R language, (ii) is free and fully open-source, 

(iii) is fully compatible with Windows, MacOS and Linux, (iv) reads and allows the user to create 

arbitrary image metadata tags, (v) supports different methods for identifying species and individuals 

and (vi) has mapping and GIS export capabilities. 

Here, we describe camtrapR, the first toolbox for the management of camera trap data available 

for the R community. Our R package provides a flexible and coherent workflow for efficient camera 

trap data organization, exploration and processing in the R statistical language, which seamlessly 

connects data acquisition with downstream analytical tools. We outline the camtrapR workflow for 

organizing camera trap images as well as extracting, exploring and visualizing the resulting data and 

illustrate its use with a sample data set from a camera trapping study conducted in Sabah, Malaysian 

Borneo (Mohamed et al. 2013). Detailed vignettes, help files, sample data and analyses are available 

in the camtrapR package available on CRAN (https://cran.r-project.org/web/packages/camtrapR/). 
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Functionality 

The camtrapR standard workflow can be divided into five main functionalities, listed here and 

described in sequence below. 

1. Image organization and management: Setting up a directory structure for storing raw 

camera trap images and optionally renaming images by station identity (station ID), date and 

time. 

2. Species/individual identification: Species and individual identification by metadata tagging in 

image management software or drag and drop of images into directories. Functions for 

checking species lists with taxonomic databases, verifying identification and appending 

species names to files are provided. 

3. Image data extraction: Tabulation of species records and extraction of image metadata. 

4. Data exploration: Visualization of spatial species occurrence patterns (including export to gis 

software), single- and two-species activity patterns. 

5. Data export: Preparation of input files for subsequent analyses in occupancy and (spatial) 

capture–recapture frameworks. Generation of survey summary reports. 

Table 2.1 provides a list and a short description of all functions in the camtrapR package. The 

functions of the package are described below and in more detail in the package help files and 

vignettes. 

Package description 

Overview 

The camtrapR package, now in version 0.99.1, is written in the R language (R Core Team 2015) and 

was first released on CRAN in July 2015. It can be used under R version 3.1 (R Core Team 2015) and 

higher on Windows, MacOS and Linux. The key functions of the package make use of the free 

command line software ExifTool (Harvey 2015) via system calls to extract metadata from camera trap 

images in JPEG format. camtrapR provides extensive automation of processes, performs rigorous 

consistency checks on input data and has no inherent limitation in terms of the image number held in 

the data management system. 

camtrapR was designed for studies utilizing arrays of camera trap stations, each consisting of one 

or more (often two) camera trap units (termed cameras for sake of simplicity). Cameras within a 

station are set in relative proximity to each other compared to between-station distances. 

 



Chapter 2: camtrapR – an R package for efficient camera trap data management 

22 

Table 2.1: List of camtrapR functions.  

Functionality Function Description 

Image organisation and 

management 

createStationFolders Create directories for storing raw camera trap images 

timeShiftImages Apply time shifts to JPEG images 

imageRename Copy and rename images based on station ID and image 

creation date 

 appendSpeciesNames Add or remove species names from image filenames 

Species / individual 

identification 

checkSpeciesNames Check species names against the ITIS taxonomic 

database 

 createSpeciesFolders Create directories for species identification 

 checkSpeciesIdentification Consistency check on species identification 

 getSpeciesImages Gather all images of a species in a new directory 

Image data extraction recordTable Create a species record table from camera trap images 

 recordTableIndividual Create a single-species record table from camera trap 

images with individual IDs 

 exifTagNames Return metadata tags and tag names from JPEG images 

(for use in recordTable functions) 

 exiftoolPath Add the directory containing exiftool.exe to PATH 

temporarily 

Data exploration and 

visualisation 

detectionMaps Generate maps of observed species richness and species 

detections by station 

 activityHistogram Plot histograms of single-species activity 

 activityDensity Plot kernel density estimations of single-species activity 

 activityRadial Radial plots of single-species activity  

 activityOverlap Plot two-species diurnal activity overlap and compute 

activity overlap 

Data export cameraOperation Create a camera operation matrix 

 detectionHistory Species detection histories for occupancy analyses 

 spatialDetectionHistory Detection histories of individuals for spatial capture-

recapture analyses  

 surveyReport Summarise a camera trapping survey 

 

Image Organization and Management 

Image organization begins with saving raw images into camera trap station directories (e.g. 

myStudy/rawImages/stationA). Station directories may contain camera subdirectories (e.g. 

myStudy/rawImages/stationA/camera1) if more than one camera was used at a station. The function 

createStationFolders can create these directories. 
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Date and time of images can be changed using the function timeShiftImages, for example if internal 

camera date and/or time values were set incorrectly, reset accidentally, or if users wish to 

synchronize camera pairs. It uses the date/time shift module of ExifTool. 

If desired, all images can be renamed automatically with station ID, camera ID, date and time with 

the function imageRename.  

Image Metadata and Metadata Tagging 

Digital images contain metadata in standardized Exif format, for example date and time, geotags, 

camera settings, ambient data, trigger event number and many more. In addition, users can assign 

information to images via custom metadata tags in image management software, for example 

species or individual identification, sex, behaviour, group size counts or group membership of 

individuals. These metadata tags become part of the images and are portable without depending on 

a relational database structure. Both types of metadata can be extracted, tabulated and used 

subsequently, for example for data filtering prior to analyses. The package vignettes contain a 

performance estimate for metadata extraction using ExifTool. 

We recommend the free and open-source software DigiKam (www.digikam.org) for tagging because 

it provides a customizable, hierarchical tag structure and has powerful filtering, querying and batch-

tagging capabilities. Adobe Lightroom and Adobe Bridge are also suitable. 

Species Identification 

Species identification is a laborious but most crucial step in the workflow because all analyses rely on 

correct species identification and many models are sensitive to false positives (Miller et al. 2011). It is 

also the only task that cannot be automated readily (both in this and other software packages), as 

automatic identification tools are currently still too unreliable and need reference data for all species 

potentially present in the study area (Yu et al. 2013; but see McShea et al. 2016). camtrapR 

supports two different ways of identifying species: (i) by assigning species tags to images in image 

management software, and (ii) by moving images into species directories [drag and drop, an 

approach also used by Harris et al. (2010) and Sanderson & Harris (2013)]. 

Users are free to use any species names (or abbreviations or codes) they wish. If scientific or 

common species names are used, the function checkSpeciesNames can check them against the ITIS 

taxonomic database (www.itis.gov) and returns their matching counterparts (utilizing the R package 

taxize (Chamberlain & Szöcs 2013) internally), making sure species names and spelling are 

standardized and taxonomically sound, and thus making it easier to combine data sets from different 

studies. 
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To improve reliability of species identification, multiple observers can replicate species assignment (if 

metadata tags are used for species identification). In order to reconcile their species assignments, 

and because of the scope for incorrect species assignment even by one observer, the function 

checkSpeciesIdentification finds conflicting species assignments from multiple observers and assesses 

temporal proximity between images assigned to different species within the same station. 

After species identification, the function appendSpeciesNames optionally appends species names to 

file names. The function getSpeciesImages can create a species image report by copying all images of 

a focal species into a separate species directory (e.g. myStudy/speciesImages/Malay Civet), thus 

facilitating checks on species identification or gathering images for expert identification. If species 

identification changes at a later point (e.g. after expert identification), these images can easily be 

copied back into the image directory structure and functions can be rerun. 

Individual Identification 

Individual identification is a prerequisite for spatial (as well as traditional, non-spatial) capture–

recapture analyses. After identifying images to species level and collecting images of the focal 

species, individual identification is performed in the same way as species identification described 

above, using either metadata tags or directories for individual identification. 

 

 

Table 2.2: Example record table. Station is the camera trap station ID, Species are Leopard Cat Prionailurus bengalensis 

(PBE) and Malay Civet Viverra tangalunga (VTA). “delta.time…” denotes lag between a record and the last record of the 

same species at the same station (in seconds, minutes, hours and days). Columns Directory and FileName were omitted. 

Station Species DateTimeOriginal Date Time delta.time.mins delta.time.hours delta.time.days 

StationA PBE 2009-04-21 00:40:00 2009-04-21 00:40:00 0 0·0 0·0 

StationA PBE 2009-04-22 20:19:00 2009-04-22 20:19:00 2619 43·6 1·8 

StationA PBE 2009-04-23 00:07:00 2009-04-23 00:07:00 226 3·8 0·2 

StationA PBE 2009-05-07 17:11:00 2009-05-07 17:11:00 21182 353·0 14·7 

StationA VTA 2009-04-10 05:07:00 2009-04-10 05:07:00 0 0·0 0·0 

StationA VTA 2009-05-06 19:06:00 2009-05-06 19:06:00 38279 638·0 26·6 
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Image Data Extraction 

After species identification, the function recordTable organizes species records in a table containing 

(at the minimum) station IDs, species names, date and time of records (see Table 2.2). The function 

recordTableIndividual offers analogous capabilities for individually identified animals. In order to use 

the capabilities of camtrapR on record tables from prior work (created manually or with other 

software), these data sets can easily be converted into the simple data format provided by the 

recordTable functions. 

Both functions can extract custom and manufacturer-specific metadata tags from the images. 

Because metadata tag names are generally unknown, the function exifTagNames returns metadata 

tags and tag names, thereby helping users to identify the relevant tags they wish to include in the 

tables. 

A filter for temporal independence between images of the same species at the same station is 

implemented (argument minDeltaTime, in minutes). If set to 0, the recordTable functions return all 

records. Any higher number will only return records that were taken at least minDeltaTime minutes 

after the last record of the same species/individual at the same station or, alternatively, 

minDeltaTime minutes after the last independent record of the same species/individual. All functions 

for downstream analyses depend on the results of recordTable/recordTableIndividual and thus on 

the argument minDeltaTime. 

Camera Trap Station Information 

A simple data frame is used to store information about camera trap stations and, if applicable, 

individual cameras (see Table 2.3). It contains station/camera IDs, geographic coordinates, setup and 

retrieval dates, and possibly station-level covariates. It can be created in standard spreadsheet 

software and imported into R. Periods in which cameras malfunctioned (once or repeatedly) can be 

defined. Both format and names of date and coordinate columns can be specified by the user. 

Based on setup, retrieval and malfunctioning dates, the function cameraOperation computes a day-

by-station camera operation matrix, coding whether stations were operational, partly operational, 

not operational (malfunctioning) or not set up. The camera operation matrix reflects the daily 

trapping effort per station, that is the number of active cameras per station and day. Depending on 

their placement, multiple cameras within a sampling point can increase the probability of detecting 

an animal. If cameras are set up directly opposite each other, they may be considered one 

operational unit. If they are set up further apart, it may be desirable to count them as two units  
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Table 2.3: Example camera trap station table. Station is the camera trap station ID, utm_y and utm_x are station 

coordinates. setup_date and retrieval_date are the dates the stations were set up and retrieved. Problem1_from and 

Problem1_to define malfunctioning dates. 

Station utm_y utm_x detup_date retrieval_data Problem1_from Problem2_from 

StationA 604000 526000 02/04/2009 14/05/2009   

StationB 606000 523000 03/04/2009 16/05/2009   

StationC 607050 525000 04/04/2009 17/05/2009 12/05/2009 17/05/2009 

 

accumulating effort independently. Therefore, the camera operation matrix can return either the 

number of operational cameras (if effort is accumulated independently) or an indicator for station 

operability (if effort is not accumulated independently). The camera operation matrix is used in 

creating detection histories for occupancy and spatial capture–recapture analyses (see description of 

the functions detectionHistory and spatialDetectionHistory below). 

Data Exploration and Visualization 

camtrapR can plot maps of species records (number of observed species by station and number of 

independent detections by species; see Figure 2.1) with the function detectionMaps. The function 

allows shapefile export for use in gis software. Single-species activity patterns can be visualized in 

three different ways: as histograms of hourly activity, activity kernel density estimations and radial 

plots (functions activityHistogram, activityDensity and activityRadial). Two-species activity overlaps 

(Ridout & Linkie 2009) are estimated and plotted with the function activityOverlap. These functions 

use code from the packages overlap and plotrix (Meredith & Ridout 2014; Lemon et al. 2015). 

Data Export for Occupancy Analyses 

Occupancy models are used to gain insight into species habitat associations while accounting for 

imperfect detection. The function detectionHistory computes species detection/non-detection 

matrices for use in occupancy models, for example in package unmarked (Fiske & Chandler 2011) or 

program presence (Hines 2006) by combining the record table created with the function recordTable 

and the camera operation matrix created with the function cameraOperation. In the detection/non-

detection matrices, rows represent stations and  
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Figure 2.1: Example maps created with the function detectionMaps. A) Number of observed species, B) Number of 

independent observation of an example species. 

columns survey occasions. Survey occasions consist of one or more days. The matrix cell becomes 1 if 

a species was detected at a station during an occasion, 0 in case of non-detection, and NA if the 

station was not operational. Users have complete freedom over occasion start dates and time, 

occasion length (in days) and the length of the trapping period per station. Occasions can begin on a 

fixed date, the day the first station was set up or each station's individual setup date (optionally with 

a buffer between the setup date and the beginning of the first occasion). 

Trapping effort by station and occasion can be returned alongside species detection histories for use 

as a covariate/offset on detection probability. Incomplete occasions (occasions in which cameras 

were only partly operational) may contain records in the detection/non-detection matrix if effort is 

returned. Otherwise, any incomplete occasion will cause corresponding detection matrix cells to be 

NA. 

Data Export for (Spatial) Capture–Recapture Analyses 

Spatial capture–recapture methods use repeated detections of marked individuals of a species at an 

array of sampling locations (camera trap stations) to estimate species density while accounting for 

imperfect detection and movement of individuals about their home ranges (Efford 2004; Royle & 

Young 2008; Royle et al. 2014). In order to prepare species data for spatial capture–recapture 

analyses, the function spatialDetectionHistory can build capthist objects as defined in the secr 

package (Efford 2015), containing information about where (station) and when (occasion) individuals 

were detected. The camera trap station table, the camera operation matrix and the record table are 

combined for that purpose. The record table needs to contain individual IDs (see sections 'Individual 

Identification' and 'Image Data Extraction') and may contain individual covariates (from metadata 
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tags). The stations' geographic coordinates and station-level covariates are read from the camera 

trap station table. The camera operation matrix provides information about station operation dates 

and trapping effort. In creating the capthist objects, we provide the same flexibility regarding 

occasion length and starting time as in the function detectionHistory. Trapping effort (trap usage) can 

also be returned in the capthist object. For non-spatial capture–recapture analyses, the function can 

also return an RMark data frame, containing only individual-by-occasion information without the 

spatial component. 

Creating a Survey Report 

The function surveyReport summarizes camera trapping surveys. It returns station operation and 

image date ranges, the number of trap days (total and by station), observed numbers of species and 

the number of independent observations by species and station. A zip file containing essential data 

and tables, detection maps and activity plots can be generated. It also contains an example script for 

reproducing all of these and for creating the input for occupancy analyses. The summary report and 

zip file can further be used for data sharing and archiving, for example in online repositories such as 

the Knowledge Network for Biocomplexity (KNB; https://knb.ecoinformatics.org/). 

Conclusion 

camtrapR is the first R package to bridge the gap between camera trap data acquisition and the 

well-developed downstream analytical tools by providing a workflow for camera trap data 

management, exploration and preparation of subsequent analyses. Its main advantages are 

flexibility, ease of use, extensive automation of many of the otherwise labour-intensive tasks, and 

compatibility with software for further analyses of camera trapping data. 

camtrapR offers a standardized camera trap data management, and we expect it to be most useful 

to researchers and practitioners who regularly handle large numbers of camera trap images and wish 

to generate input for activity, occupancy and/or (spatial) capture–recapture analyses with minimal 

manual effort. We will keep improving and extending camtrapR functionalities and welcome both 

feedback and collaborations to further increase the usefulness to its users. 
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Supporting Information 
Supplementary Table S2.1: Comparison of software for camera trap data management. Only full workflow solutions that create input files for subsequent analyses are shown. Adapted from 

Ivan & Newkirk (2016) 

Feature Renamer + CamTrap CameraBase eMammal CPW Photo Warehouse camtrapR 

Website http://www.snapfiles.co

m/downloads/denrenam

er/dldenrenamer.html; 

http://esapubs.org/archi

ve/bulletin/B091/002/su

ppl-1.htm 

http://www.atrium-

biodiversity.org/tools/cam

erabase/ 

http://emammal.si.edu/ http://cpw.state.co.us/lear

n/Pages/ResearchMammal

sSoftware.aspx 

https://cran.r-

project.org/web/packages

/camtrapR/ 

Operating system Windows Windows Windows, MacOS Windows Windows, MacOS, Linux 

Single relational platform No Yes No Yes No 

Data storage local local cloud local local 

Storage capacity unlimited c. 2,000,000 unlimited c. 800,000 - 2,000,000 unlimited 

Automatic import1 No Yes Yes Yes Yes 

Taxonomic checks on 

species names  

No No Yes No Yes 

Image recognition2 No No Yes No No 

Assign multiple species No3 No4 Yes Yes Yes 

Double observer ID No No Yes Yes Yes 
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Feature Renamer + CamTrap CameraBase eMammal CPW Photo Warehouse camtrapR 

Batch ID No Yes Yes Yes Yes 

Crowd source ID5 No No No Yes Yes 

Assign individual IDs No Yes Yes Yes Yes 

Assign and tabulate 

custom image tags 

No Sex only No Comments only Yes6 

Extract and tabulate Exif 

metadata tags7 

No Date/Time Date/Time Date/Time Any 

Record active days8 Yes Yes No Yes Yes 

Filter, query data No Yes Yes Yes Yes 

Auto-generate input files Yes9 Yes10 Yes11 Yes12 Yes13 

Auto-generate reports Yes Yes Yes Yes Yes 

Mapping species records No Yes No No Yes 

Direct GIS export No No No No Yes14 

Free software Yes Yes No Yes Yes 

Open source software Yes No15 No No15 Yes 

Usable without coding 

skills 

No Yes Yes Yes No 
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1 Photos and associated metadata can be imported to database structure automatically without the need to manually enter or manipulate data 

2 automatic species identification 

3 Multiple species or number of individuals can be assigned to each photo if the user copies photos to multiple folders 

4 Multiple species can be assigned to each photo if the user imports photos multiple times, once for each species present 

5 Identification of sub-datasets by different users 

6 metadata tags assigned in image management software, e.g. digiKam or Adobe Bridge can be extracted and tabulated 

7 e.g. ambient temperature or air pressure (depending on camera model), or custom metadata tags 

8 Allows users to record and/or manage the days over which each camera was active and operating properly. 

9 Software produces input files for use in Program PRESENCE; limited to a single occasion length (10 days).  

10 Software produces input files for Programs MARK (closed capture), CAPTURE, PRESENCE, R ‘RMark’ (occupancy), DENSITY, and ESTIMATES. 

11 Software produces input files for Program PRESENCE and R ‘unmarked’ and produces output graphs from R ‘overlap’, and R ‘vegan’.  

12 Software produces input files for Programs MARK, PRESENCE, DENSITY, R ‘secr’, and R ‘overlap’.  

13 Software produces input files for R ‘unmarked’, R ‘secr’, R ‘RMark’, R ‘overlap’, programs MARK, PRESENCE, DENSITY. 

14 Software can save a point shapefile of camera trap station locations with the number independent species observations as attributes. 

15 Microsoft Access® database 

 

 



Chapter 3: Defining habitat covariates in camera-trap based occupancy models 

36 

CHAPTER 3 

Defining habitat covariates in camera-trap based occupancy studies 

 

JÜRGEN NIEDBALLA1*, RAHEL SOLLMANN1,2, AZLAN BIN MOHAMED1, JOHANNES BENDER1, 

ANDREAS WILTING1 

 

Scientific Reports 5 (2015): 17041 (https://doi.org/10.1038/srep17041) 

1)  Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany  

2) North Carolina State University, Department of Forestry and Environmental Resources, Campus Box 8008, 

Raleigh, NC 27695-7646, USA  

Current address: US Forest Service, Pacific Southwest Research Station, 1731 Research Park Drive, Davis, CA 

95618, USA 

 

* corresponding author: niedballa@izw-berlin.de 

 

 

Author’s contribution statement 

JN, RS and AW conceived the ideas for this manuscript. AM and AW collected the field data in Sabah, 

Borneo. JB conducted the land cover classification. JN conducted the statistical analyses and wrote 

the manuscript. RS and AW commented the manuscript extensively. All authors read and agreed on 

the manuscript.  



Chapter 3: Defining habitat covariates in camera-trap based occupancy models 

37 

Defining habitat covariates in camera-trap based occupancy studies 

JÜRGEN NIEDBALLA1*, RAHEL SOLLMANN1,2, AZLAN BIN MOHAMED1, JOHANNES BENDER1, ANDREAS WILTING1 

 

1)  Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany  

2) North Carolina State University, Department of Forestry and Environmental Resources, Campus Box 8008, 

Raleigh, NC 27695-7646, USA  

Current address: US Forest Service, Pacific Southwest Research Station, 1731 Research Park Drive, Davis, CA 

95618, USA 

 

Abstract 

In species-habitat association studies, both the type and spatial scale of habitat covariates need to 

match the ecology of the focal species. We assessed the potential of high-resolution satellite imagery 

for generating habitat covariates using camera-trapping data from Sabah, Malaysian Borneo, within 

an occupancy framework. We tested the predictive power of covariates generated from satellite 

imagery at different resolutions and extents (focal patch sizes, 10–500 m around sample points) on 

estimates of occupancy patterns of six small to medium sized mammal species/species groups. High-

resolution land cover information had considerably more model support for small, patchily 

distributed habitat features, whereas it had no advantage for large, homogeneous habitat features. A 

comparison of different focal patch sizes including remote sensing data and an in-situ measure 

showed that patches with a 50-m radius had most support for the target species. Thus, high-

resolution satellite imagery proved to be particularly useful in heterogeneous landscapes, and can be 

used as a surrogate for certain in-situ measures, reducing field effort in logistically challenging 

environments. Additionally, remote sensed data provide more flexibility in defining appropriate 

spatial scales, which we show to impact estimates of wildlife-habitat associations. 

Introduction 

Understanding the distribution and habitat associations and of wildlife species is a key topic in 

ecology, and important for their conservation (Guisan et al. 2013). Studying wildlife habitat 

associations requires appropriate definition of environmental covariates at spatial scales that are 

relevant to the species under study (Mayor et al. 2009). A variety of approaches and methods have 

been developed to generate potential explanatory variables for species distribution models. These 

include both information collected in-situ, such as measurements of vegetation, disturbances or 

terrain collected at and around the survey locations (Mohamed et al. 2013), and information based 
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on remote sensing or airborne land cover analyses (Burton et al. 2012; Gould et al. 2012; Vierling et 

al. 2013).  

Data from in-situ habitat surveys are reliable, can provide information not readily available from 

remote sensing (e.g. ground cover, floristic or phenological information) and can serve for ground 

truthing remote sensing data. These surveys can, however, be logistically challenging, costly, time-

consuming and physically demanding, depending on the terrain conditions, the habitat information 

of interest, and the spatial scale at which data are to be collected. 

Advantages of remote sensing data include extensive data coverage over large regions, also allowing 

for extrapolation and mapping predicted distributions, a wide spectrum of available data sets 

(Kanagaraj et al. 2013) and user-friendly GIS software to extract information from data layers. 

Nevertheless, spatial resolution of remote sensing data is often a limiting factor for identification of 

smaller land cover features, with spatial resolutions ranging from 1-km resolution carbon stock data 

(Saatchi et al. 2011), to 250 m resolution MODIS or land cover data (Miettinen et al. 2012), 30-m 

Landsat imagery and derived data (Hansen et al. 2013) to high-resolution (<1m) satellite imagery. 

Typical satellite based imagery is further restricted to the top vegetation layer, providing no 

information on three-dimensional vegetation structure or features below canopy cover. Studies using 

high-resolution airborne LiDAR data (down to <1m resolution and allowing for three-dimensional 

imaging) have overcome these problems and shown that fine-scale variations in habitat structure can 

influence species distributions (Goetz et al. 2010; Palminteri et al. 2012). These highly sophisticated 

data are, however, expensive to obtain and difficult to analyse, and thus unavailable to many wildlife 

studies.  

Thus, both in-situ and remote sensing derived covariates have their advantages and disadvantages, 

but only few studies compared their usefulness in wildlife distribution and habitat modelling (Betts et 

al. 2006). The choice of the suitable type of covariates used is mostly governed by knowledge of or 

hypotheses about the ecology and life histories of species of interest. If little or nothing is known, 

variables characterising the environment in general terms or proxy measures can be used.  

Moreover, it is well known that ecological patterns and processes are scale-dependent (Levin 1992; 

Rahbek 2005), and an adequate definition of spatial scale is important when modelling species-

habitat associations (Wiens 1989; Holland et al. 2004). 

In an ecological context, scale is the spatial (or temporal) dimension of an object or process, 

characterized by grain and extent (Turner et al. 1989; Wiens 1989; Schneider 2001). Here, grain is the 

spatial resolution of remote sensing data (i.e., pixel size of a raster data set), and extent is 
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characterized by focal patches of different sizes, i.e. circular areas of different radii surrounding the 

sampling points (Thornton et al. 2010).  

Not determining the appropriate spatial scale (either grain or extent) may lead to failure to detect 

species habitat associations. Ideally, the definition of spatial scale is based on ecological reasoning 

(Mazerolle & Villard 1999). If known, average species home range sizes or inference from related 

species can help in defining the appropriate spatial extent. If no information is available, various 

extents can be compared via model selection procedures (Lechner et al. 2012). 

Here, we used camera-trapping data from Sabah, Malaysian Borneo, in an occupancy framework, 

one of the most common methods to study species-habitat association while accounting for 

imperfect species detection (MacKenzie et al. 2002, 2003, 2006), to 1) assess the sensitivity of 

occupancy models to the spatial resolution (grain size) of land cover data; and 2) investigate what 

focal patch size (extent) of remotely-sensed land cover information and in-situ habitat variables 

around camera traps is most relevant to occupancy patterns of small to medium sized mammals. Our 

analysis aims to draw attention to scale sensitivity of model results, assess the usefulness of high-

resolution land cover data, evaluate the need for in-situ habitat surveys, and thereby increase the 

efficiency and ecological relevance of future wildlife-habitat association studies.  

Methods 

Study sites 

This study was conducted in three commercial forest reserves in central Sabah on Malaysian Borneo: 

Deramakot Forest Reserve (DFR; 551 km², 5°14’-28’N, 117°20’-38’E), Tangkulap-Pinangah Forest 

Reserve (TFR; 501 km², 5°17’-31’N, 117°03’-20’E) and Segaliud Lokan Forest Reserve (SLFR; 5°20’-

39’N, 573 km², 117°25’-39’E; Figure 3.1). The reserves are comprised of lowland rainforest (altitude 

between 50 - 250 m) and have all been selectively logged at least once. Because of more intensive 

and destructive logging in the past, TFR and SLFR show higher degrees of forest disturbance than 

DFR, where reduced impact logging was adopted in 1995 and certification by the Forest Stewardship 

Council followed in 1997 (Lagan et al. 2007; Kitayama 2013; Mohamed et al. 2013). 
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Figure 3.1: Map of the study site in Sabah, Malaysian Borneo. 

Camera-trapping 

We set up 47, 64, and 55 camera-trap stations covering areas of 123 km², 122 km², and 114 km² in 

DFR, TFR, and SLFR, respectively (Figure 3.1). Setups approximated a systematic array with random 

origin, adjusted to logistical circumstances, to achieve representative coverage of the study areas. 

DFR was sampled between September 2008 and January 2009, TFR between April and September 

2009, and SLFR between January and April 2010. Camera stations were spaced approximately 1.4 km 

apart; each station consisted of 2 heat-in-motion sensor triggered camera-traps (models Expert and 

Capture; Cuddeback, De Pere, Wisconsin) facing each other (for details see Mohamed et al. 2013). 

Occupancy modelling 

We used species detection information from camera-trapping in combination with occupancy 

modelling to investigate the effects of spatial resolution and extent of habitat covariates. Occupancy 

models use species detection/non-detection data from repeated visits to a collection of sampling 

sites to estimate the probability of species occurrence and its relationship with environmental 

covariates while accounting for imperfect species detection (MacKenzie et al. 2002, 2003, 2006). 

They consist of two components that explicitly model the ecological process (i.e. occupancy of sites) 
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and the observation process (Royle & Dorazio 2008). The true occupancy state at site i, zi (1 if 

present, and 0 otherwise) is considered a Bernoulli trial with probability of occupancy Ψi : 

zi ∼ Bernoulli(Ψi). Since non-detection of a species at a sampling site can either be caused by true 

absence or by failure of detection, repeated visits over k occasions to sampling sites are used to 

estimate detection probability pik conditional on occupancy. Observations yik are also assumed to be 

a Bernoulli trial with yik|zi ~ Bernoulli(pik zi). Thus pik = 0 where zi = 0, i.e., the species is not present.  

Both occupancy probability Ψ at a site i and detection probability p can be modelled as linear 

functions of covariates xi using logit link functions, e.g.: 

logit(Ψi) = β0 + β1 xi and logit(pi) = γ0 + γ1 xi, 

where β0 and γ0 denote the intercepts andβ1 and γ1 single regression coefficients (MacKenzie et al. 

2006). To define sampling occasions, we divided the total sampling period for each study site into 6-

day sampling intervals, resulting in 7 occasions in DFR and TFR and 8 in SLFR (Mohamed et al. 2013). 

For each species, we constructed a site-by-occasion detection/non-detection matrix with values of 1 

if the species was detected at a given site on a given occasion, 0 if not and NA if the cameras were 

not operational. 

We implemented occupancy models (MacKenzie et al. 2006) in R 3.1.1(R Core Team 2014) using 

package “unmarked” version 0.10-3 (Fiske & Chandler 2011). For every species, we first selected the 

most suitable model for detection probability p using the camera position (on/off road) and forest 

reserve (in all combinations) as detection probability covariates while holding occupancy probability 

constant across sites (i.e. we used no covariates to model occupancy probability , Table S3.1). These 

models will be termed ‘constant occupancy models’ for the sake of simplicity. Model selection was 

based on Akaike’s Information Criterion (AIC, Burnham & Anderson 2002). Conditional on the best 

detection model we then evaluated the effect of different covariates at varying spatial resolutions 

and extents on species occupancy, as described below. 

We generally assessed the effects of covariates on occupancy probabilities with one occupancy 

covariate per model. Therefore, model rankings and inferences were not affected by correlations 

between related covariates. 

Study species 

We built occupancy models for six relatively small mammal species covering different taxonomic 

clades and ecological groups: Banded Civet Hemigalusderbyanus (n = 35 records), Long-tailed 

Macaque Macacafascicularis (n = 76), Malay Civet Viverratangalunga (n = 610), Moonrat Echinosorex 

gymnura (n = 140), Greater and Lesser Chevrotain Tragulus napu and T. kanchil (n = 561), and Thick-
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spined Porcupine Hystrix crassispinis (n = 42). As Greater and Lesser Chevrotain are difficult to 

distinguish with certainty on camera trap photographs, we pooled both species and jointly analysed 

them.  

Occupancy models assume spatial independence among sampling sites. Malay Civet (Colón 2002), 

Long-tailed Macaque (Wheatley 1980) and Chevrotains (Matsubayashi et al. 2003) have average 

home range diameters smaller than our average camera trap station spacing of 1.4 km; we assume 

that the same is true for the Banded Civet, Thick-spined Porcupine and Moonrat, because of their 

smaller size compared to the Malay Civet, and because the latter two are not carnivorous. 

Habitat covariates 

We mapped land cover using multispectral classifications of RapidEye high-resolution (5 m) satellite 

imagery. We used seven images (Catalog-IDs: 10606784, 10606821, 9290487, 9290518, 6890479, 

10129761, 6890524) acquired between 07/2011 and 09/2012 as data base for this analysis. The 

RapidEye data products were supplied by the RapidEye Science Archive program (Project-ID 654) and 

delivered in orthorectified L3A-format (RapidEye AG 2012). 

To reduce scene-to-scene variability, radiometric corrections were applied as recommended for 

multi-temporal and multi-sensor data applications (Lu et al. 2002; Chander et al. 2009). The image-

based atmospheric corrections included ‘dark object subtraction’ and conversion to exoatmospheric 

(top-of-atmosphere) reflectance (Chavez 1996; RapidEye AG 2012; Vanonckelen et al. 2013). By 

applying pixel-based maximum-likelihood land cover classifications, nine different land cover types 

were identified (Figure 3.1). Clouds and cloud shadows were eliminated consulting a Landsat-based 

classification (Langner et al. 2012). All images used for land cover classification were processed with 

ERDAS Imagine 2013 (Hexagon Geospatial, Norcross, GA, USA).The overall accuracy of the 

classification as estimated from 211 ground control points was 82.4 %. 

Based on this land cover classification we calculated four habitat covariates: distance from every 

camera trap station to the nearest oil palm plantation (D.PLANT) and to the nearest water pixel 

(D.WATER), ‘forest score’ (FS) and land cover heterogeneity (HET). The first two covariates were used 

to assess the sensitivity of occupancy models to spatial resolution and the latter two to test the 

sensitivity of occupancy models to different focal patch sizes. 

FS is the weighted mean of land cover percentages within extracted areas, the weights are integer 

numbers assigned to each land cover class ranking forest quality. Thus, FS is an index of the degree of 

forest cover and quality in the surroundings of camera traps. Bare areas, grassland, oil palm 
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plantations and water were assigned 0, shrub 1, forest 2, dense and primary forest 3, allowing FS to 

range from 0 to 3. Lower numbers indicate higher disturbance of the forest. 

Heterogeneity was calculated using Pielou’s evenness index, which is defined as the ratio between 

the actual and the highest possible Shannon diversity of members of an assemblage (Pielou 1966; 

Farina 1997; Mairota et al. 2013). Values can range from 0 to 1, with 0 if a collection consists of only 

one class and 1 in case of perfect evenness between classes. In our context it can be interpreted as 

heterogeneity of land cover, because the more numerically similar the percentages of land cover 

classes in an area are, the more heterogeneous is land cover. 

The ecological reasoning behind the choice of these covariates is that all animals depend on water to 

some degree and therefore access to water is a basic requirement (Rondinini et al. 2011). Distance to 

oil palm plantations quantifies a potential edge effects can be interpreted as a proxy for human 

disturbance (Brodie et al. 2014). Forest score and heterogeneity are both metrics to characterize the 

habitat and describe the forest quality and disturbance. 

In addition to habitat covariates derived from the high-resolution remote sensing data, we included 

one in-situ measured covariate into our analyses. At each camera trap station, canopy closure (CC) 

was recorded every 50 m using a spherical densiometer along 3 line transects of 250 m in the 

direction of 0°, 120° and 240°, and the data were pooled by camera trap station. Due to logistic 

constraints, not all transects could be carried out along the entire 250 m and mean effective transect 

length was 184 m ± 84 m. We computed CC covariates as the mean of CC values at distances of up to 

50, 100 and 150m from the camera trap stations. 150 m was chosen as the maximum distance 

because 95 % of all stations had at least one transect of at least that length. CCis related to forest 

disturbance: less disturbed forests are expected to have a more closed canopy, i.e. higher values of 

CC (Mohamed et al. 2013).  

Goal 1: Sensitivity of occupancy models to spatial resolution of remotely sensed land cover 

information 

The 5 m land cover classification was resampled to lower resolutions commonly found in other 

remote sensing data (30-m Landsat; 90-m ASTER; 250-m MODIS) using the majority method (i.e. by 

assigning each new raster cell the most common pixel value within its extent) in ArcGIS 10.1 (ESRI, 

Redlands, CA, USA). For all 4 resolution levels we computed the distance from every camera trap 

station to the nearest oil palm plantation (D.PLANT) and to the nearest water pixel (D.WATER) 

(D.PLANT5, D.PLANT30 and so on, Figure 3.2). The oil palm plantations represent a large continuous 

habitat feature, for which distances remained largely constant across spatial resolutions (Figure 3.2C, 
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D), whereas water resources were patchily distributed across our study areas and many water 

resources were smaller than the pixel sizes of the coarser resolutions. As a result, distance to water 

increased with the coarser resolutions (Figure 3.2B); 30 m resolution resulted in the loss of very small 

ponds and streams while representing rivers well; at 90 m, most small ponds disappeared from the 

land cover map, medium rivers were represented in a discontinuous yet recognizable way and only 

large rivers were a continuous band of pixels, and at 250 m resolution even the largest river, Sungai 

Kinabatangan, was discontinuous, small and medium rivers and ponds mostly disappeared (Figure 

3.2A).  

 

 

Figure 3.2: Maps and violin plots for distance to water (A,B) and distance to oil palm plantations (C,D) by pixel resolution 

(grain size) for three commercial forest reserves in Sabah, Malaysian Borneo 
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Conditional on the best constant occupancy models, we performed AIC-based model selection of 

occupancy covariates D.PLANT and D.WATER computed at 4 spatial resolutions for every species to 

assess the sensitivity of occupancy models to the spatial resolution of land cover information. 

Goal 2: Sensitivity of occupancy models to focal patch sizes around camera-traps 

We computed ‘forest score’ (FS) and land cover heterogeneity (HET) from the surroundings of the 

camera trap stations using circles with radii of 10 m, 50 m, 100 m, 150 m, 250 m and 500 m 

(corresponding to focal patches of 0.03 ha, 0.8 ha, 3.1 ha, 7.1 ha, 16.9 ha, 78.5 ha). We chose 10 m as 

the minimum radius to achieve a sample size of at least 10 pixels per station, and 500 m as the 

maximum radius to avoid overlap between circles around neighbouring camera trap stations. 

Further, we built occupancy models using the in-situ collected information on CC at 50, 100 and 150 

m around each camera trap. 

We compared the six focal patch sizes (10 m, 50 m, 100 m, 150 m, 250 m and 500 m radii) of FS and 

HET land cover covariates and three focal patch sizes for in-situ CC measurements (50 m, 100 m, 

150 m) to each other and their respective constant occupancy models using AIC-based model 

selection in order to find a radius at which habitat covariates had the highest predictive power for 

our set of species. We chose a consensus radius among those radii that were available for all 

covariates (50, 100, 150 m) using an ad hoc approach: We calculated the cumulative ΔAIC for each 

radius over all six species. A lower cumulative ΔAIC indicates that a given radius is, on average, closer 

to the top model than one with a higher cumulative ΔAIC.  

Goodness of model fit 

Because AIC is only a relative measure of model quality, we conducted goodness of fit tests 

(MacKenzie & Bailey 2004) for each species’ global model, with covariates based on the consensus 

radius, using the R package AICcmodavg (Marc J. Mazerolle 2015). We found no evidence for lack of 

fit (bootstrapped p values > 0.1 and variance inflation factors < 1.5 in all global models, 

Supplementary Table S3.7) and therefore refrained from converting AIC to qAIC for model selection. 

Results 

Goal 1: Sensitivity of occupancy models to spatial resolution of land cover information 

For all species, occupancy models using D.PLANT as single covariates were not influenced by the 

spatial resolution of land cover information. Regression coefficients and standard errors were very 

similar (±0.02) for spatial resolutions from 5 to 250 m, AIC values of individual models were virtually 

constant with ΔAIC < 0.2, and AIC weights hardly differed across resolutions (see Table 3.1 for the 

Long-tailed Macaque and Supplementary Table S3.2 for other species).  
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In contrast, D.WATER models differed substantially by pixel resolution, particularly in species that 

exhibited strong association with this covariate. The effect was most pronounced in Long-tailed 

Macaque, which had a very strong (β1 = -3.59 ± 0.92) and highly significant negative association with 

distance to water at high resolution, i.e., occupancy probability Ψwas higher closer to water 

resources. AIC increased drastically and significance of regression coefficients decreased gradually 

with lower resolutions (Table 3.1). The Thick-spined Porcupine showed a significant negative 

association with D.WATER at all resolutions, but the effect on occupancy was strongest at 90-m 

resolution (see Supplementary Table S3.3). Only the Chevrotain showed a positive association with 

D.WATER, but only the coarse (250 m) resolution had more support than the constant occupancy 

model. 

 

 

Table 3.1: Results of occupancy models for Long-tailed Macaque using distance to large continuous (distance to oil palm 

plantation) and small patchy (distance to water) remote sensed habitat features at different spatial resolutions as covariate, 

estimated from camera-trapping data collected between 2008 and 2010 in three commercial forest reserves in Sabah, 

Malaysian Borneo. 

Pixel size AIC ΔAIC wAIC β1* SE CV p-value** 

Distance to oil palm plantation 

90 331.48 0 0.250 -0.72 0.29 0.4 0.012 

5 331.5 0.02 0.247 -0.72 0.29 0.4 0.012 

30 331.5 0.02 0.247 -0.72 0.29 0.4 0.012 

250 331.55 0.07 0.241 -0.72 0.29 0.4 0.012 

- 337.05 5.57  0.015 - - - - 

Distance to water 

5 301.13 0 0.997 -3.59 0.92 0.26 <0.001 

30 312.86 11.73 0.003 -2.32 0.64 0.28 <0.001 

90 330.35 29.22 0 -0.96 0.39 0.41 0.014 

250 335.41 34.28 0 -0.49 0.27 0.55 0.074 

- 337.05 35.92 0 - - - - 
ΔAIC: relative difference in AIC to top model, wAIC = AIC model weights, β1 = regression coefficient, SE = regression 
coefficient standard error, CV = coefficient of variation of β1 (SE / |β1|), – denotes constant occupancy model. 
* Positive regression coefficients indicate positive association with distance to features, i.e. negative association to features. 
Negative regression coefficients indicate negative association with distance to features, i.e. positive association to features. 
**Bold font indicates significance at the 0.05 level 
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Table 3.2: Results of occupancy models for Long-tailed Macaque using remote sensing information and in-situ canopy 

closure at different focal patch sizes as covariates on occupancy, estimated from camera-trapping data collected between 

2008 and 2010 in three commercial forest reserves in Sabah, Malaysian Borneo. 

Radius AIC ΔAIC wAIC β1* SE CV p-value** 

Remote Sensing – Forest Score 

10 332.48 0 0.5 -0.68 0.27 0.4 0.013 

50 334.61 2.13 0.173 -0.55 0.27 0.49 0.041 

100 335.61 3.13 0.105 -0.56 0.32 0.57 0.086 

150 336.04 3.56 0.084 -0.56 0.36 0.64 0.116 

250 336.8 4.32 0.058 -0.52 0.39 0.75 0.185 

- 337.05 4.57 0.051 - - - - 

500 338.1 5.62 0.03 -0.27 0.28 1.04 0.339 

Remote Sensing - Heterogeneity 

50 329.7 0 0.455 1.03 0.38 0.37 0.007 

10 330.87 1.17 0.253 1.02 0.42 0.41 0.014 
100 330.92 1.22 0.247 0.83 0.32 0.39 0.009 
150 335.66 5.96 0.023 0.5 0.28 0.56 0.075 
- 337.05 7.35 0.012 - - - - 
250 338.33 8.63 0.006 0.22 0.26 1.18 0.402 
500 338.97 9.27 0.004 0.07 0.25 3.57 0.771 

In-situ - Canopy Closure 
50 326.53 0 0.754 -1.1 0.37 0.34 0.003 
100 329.18 2.65 0.201 -1.07 0.42 0.39 0.01 
150 332.33 5.8 0.042 -0.91 0.42 0.46 0.032 
- 337.05 10.52 0.004 - -  - 
ΔAIC: relative difference in AIC to top model, wAIC = AIC model weights, β1 = regression coefficient, SE = regression 
coefficient standard error, CV = coefficient of variation of β1 (SE / |β1|), – denotes constant occupancy model. 
* Positive regression coefficients indicate positive association with distance to features, i.e. negative association to features. 
Negative regression coefficients indicate negative association with distance to features, i.e. positive association to features. 
**Bold font indicates significance at the 0.05 level 
 

Goal 2: Sensitivity of occupancy models to focal patch sizes around camera-traps 

Generally, for FS and HET as well as CC, smaller focal patch sizes (i.e. smaller radii) had lower AIC 

values than larger radii in species whose occurrence was associated with the respective covariates 

(Table 3.2 for the Long-tailed Macaque and Supplementary Tables S3.4-S3.6 for other species). 

Particularly for the Long-tailed Macaque, the species with the strongest associations with the 

covariates, the effect of focal patch size was pronounced, with smaller radii having more predictive 

power for occupancy than larger radii. Based on cumulative ΔAIC, we chose 50 m as the consensus 

radius for all covariates (Table 3.3). 
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Discussion 

Species habitat associations and preferences are multi-factorial processes aimed at maximizing 

fitness (Chalfoun & Martin 2007) that integrate information and involve decisions made at various 

interacting spatial and temporal scales. To account for this complexity, analysis of habitat 

associations needs to be carried out at different spatial scales (Orians & Wittenberger 1991; Mayor 

et al. 2009). This is commonly achieved by analysing hierarchical selection of habitat use (e.g. at 

landscape, macrohabitat and microhabitat scale; Saab 1999; Williams et al. 2002; Mayor et al. 2009) 

or by comparing multiple focal patch sizes (Holland et al. 2004; Thornton et al. 2010). Both 

approaches aim to find relevant spatial extents, but at the same time are often influenced by the 

available resolution (grain size) or, in case of in-situ measures, availability of habitat covariates. 

Our analysis showed that the effect of grain size differed by the type of land cover feature. In the 

case of large continuous habitat features such as oil palm plantations a higher resolution did not 

improve the predictive power of the covariate, as distances to these large continuous features did 

not depend on resolution (Figure 3.2). Analogous examples to oil palm plantations would be all kinds 

of large land cover features that have a well-defined linear border such as other large-scale 

agriculture or urban areas, but also natural habitat edges or large lakes and coastlines. We expect 

that finer scale processes, such as movement or activity patterns, might be more sensitive to the 

resolution of habitat edges than the relatively coarse process of occupancy. In addition, higher 

resolution land cover data may have an advantage if the feature edge is less regular than in the 

present case. 

In contrast to large land cover features, water resources were very localised, interspersed within a 

matrix of different land cover types and other fine-scale features in our study sites. Therefore, many 

of the small water resources were not visible in coarser resolution land cover data (Figure 3.2B). In 

the set of analysed species the Long-tailed Macaque is known to be closely associated with water  

resources, namely rivers (Rodman 1991). Our results supported the strong association with water, 

but we further found that even small water bodies were important for occupancy of the species, as 

models with a higher resolution (i.e., accounting for small water sources) had much more support 

than low resolution models. Very little is known about the association of the other species with 

water, but similar to the Long-tailed Macaque, our results showed that the Thick-spined Porcupine 

had a significantly negative association with distance to water at all resolutions, i.e. occurred more 

frequently near water. In contrast to the Long-tailed Macaque, a 90-m resolution had the highest 

predictive power, which might indicate that this species is associated with larger rather than small 

water bodies. The estimated positive association of Chevrotains with distance to water was only 
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found in the model with the lowest resolution, whereas all other resolutions led to models with less 

support than the constant occupancy model. If Chevrotains really avoided water, however, we would 

expect this pattern to be found in the higher resolutions too, similar to the results for the Thick-

spined Porcupine. Therefore, we think that this finding is either an artefact of the majority method 

used for the resampling or a spurious relationship caused by a correlation of distance to water at 

coarse resolution to a habitat feature not considered in our analysis. 

Analogous to localised water resources, we expect a similar effect of grain size on the predictive 

power of habitat covariates for other small habitat features such as individual trees in savannahs, 

grass patches or clearings in forests, individual houses, small-scale agriculture, burnt areas, dump 

sites or small roads/skid trails, i.e. features that, although present in the landscape, are not visible at 

coarser resolutions (i.e. at larger grain sizes), because they are smaller than one pixel. 

In addition to distance-based covariates, habitat association studies often use patch characteristics 

around the survey locations. As ecological patterns and processes are scale-dependent (Rahbek 

2005) adequate definition of the focal patch sizes is important (Wiens 1989; Holland et al. 2004). 

Earlier studies already showed that home range size and other ecological parameters are highly 

important for defining the focal patch sizes and therefore, if possible, the definition of focal patch 

sizes should be species specific (Mayor et al. 2009). 

 

 

 

Table 3.3: Cumulative ΔAIC for occupancy models containing covariates at different focal patch sizes (extent) across six 

species/species groups, estimated from camera-trapping data collected between 2008 and 2010 in three commercial forest 

reserves in Sabah, Malaysian Borneo. 

Extent (m) Forest Score Heterogeneity Canopy closure 

10 17.02 22.99 - 
50 13.33 7.17 7.15 

100 15.32 18.68 9.60 

150 18.63 23.82 11.19 

250 21.31 25.69 - 

500 17.67 33.02 - 
‘Extent’ refers to the radius around camera-trap stations from which covariate values were extracted. Cumulative ΔAIC was 

calculated for each radius over all six species. A lower cumulative ΔAIC indicates that a given radius is, on average, closer to 

the top model than one with a higher cumulative ΔAIC. 
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Often very little is known about the spatial ecology of the species of concern and therefore, species-

specific focal patch sizes are difficult to define a priori. The possibility to test different focal patch 

sizes in order to define the adequate spatial extent for covariates and to adjust these to the spatial 

ecology of different species is agreat advantage of remote-sensed covariates, highlighted by our 

study. This is particularly important in multiple-species data sets like those derived from camera-trap 

studies.  

In this study we focused on species with small home-ranges, mainly to avoid spatial autocorrelation 

between camera-traps. For this set of species we found that smaller focal patches of land cover 

metrics and in-situ covariates (with a radius of 50 m) usually explained species occupancy patterns 

better or at least as good as larger patches. Smaller focal patches closely resemble the plots that are 

routinely used in vegetation assessments (Langner et al. 2012), and it is extremely unlikely that in-

situ covariates could be collected at focal patch sizes larger than 1 ha (corresponding approximately 

to the 50-m consensus radius identified in the present study) in challenging field conditions. Thus, 

our data indicate that for small species sampling squared plots around camera-traps would 

potentially have provided a more representative picture of the habitat conditions relevant for species 

occurrence compared to three 4-m wide 250-m long line transects and at the same time would have 

been easier to sample and more suitable for ground truthing remote sensing data.  

Even for the species with small home ranges used in the present study, the focal patch size of 0.8 ha 

(corresponding to a 50-m radius around camera-trap locations) represents only a small fraction of 

their home-ranges (Wheatley 1980; Colón 2002; Matsubayashi et al. 2003). We expect that for wider 

ranging species focal patch sizes smaller than the average home range would also have higher 

predictive power than home range based patches, especially in point survey based studies such as 

camera-trapping. We consider it unreasonable to assume that, for species with larger ranges, 

detections at a point can provide information about an area the size of an average home range.  

The in-situ covariate canopy closure had high predictive power for two out of six species, but it was 

positively correlated with the remote sensing covariate forest score (Spearmans ρ = 0.58 and 

p < 0.001 between CC50 and FS50), indicating that remote sensing data can serve as a surrogate for 

canopy closure and potentially other in-situ variables. It should be noted, however, that these 

measures refer to different aspects of forest quality and may affect species occurrence via different 

mechanisms.  

In addition, generating land cover classifications based on remote sensing data requires ground 

control points for ground truthing satellite imagery, i.e. vegetation plots that may include 

measurements of canopy cover or canopy closure. These plots can easily be placed around survey 
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locations, if these represent the available land cover types. It is unnecessary, though, to perform 

ground truthing at all survey locations when using remote sensed covariates, consequently reducing 

overall field efforts.  

Some habitat information, however, cannot be obtained without ground surveys. These can include 

human impacts like hunting (wire snares, camp sites, fire places or bullet cases) or harvesting of non-

timber forest products. Proxies like distance to villages or roads derived from remote sensing data 

can potentially help to circumvent the need for ground based data in some circumstances, but 

relationships between anthropogenic impacts and remote sensed proxies need to be verified 

(Shepard Jr. et al. 2012). Apart from human impacts some natural features such as salt-licks, soil 

types, fruiting trees or dead wood can also only be assessed on the ground. Whether in-situ 

information is needed thus depends on the research questions at hand. 

Our results highlight the great potential high-resolution satellite imagery and derived landscape 

metrics offer for identifying species habitat associations with localised fine-scale land cover features 

in heterogeneous landscapes. Considering the predictive power of smaller focal patches and the 

advantages of high-resolution remote sensing information about certain habitat features in 

occupancy models, we expect that very high-resolution imagery of new satellites (grain sizes < 1m, 

e.g. WorldView, GeoEye or Quickbird) could further improve our ability to study species habitat 

association. Even though three-dimensional and canopy structural LiDAR data (Vierling et al. 2013) 

have great advantages over satellite imagery, we expect that due to the high costs of LiDAR data 

(Hummel et al. 2011), high-resolution remote sensing data will remain the main affordable data 

source for many wildlife studies and may be a compromise for studying fine-scale habitat variation 

with low costs and relative ease of use. Such satellite data also offer the opportunity to predict 

species occupancy and distribution to non-sampled areas and to evaluate changes in the distribution 

over time in wildlife monitoring. 

In summary, we showed that both spatial resolution and spatial extent of habitat covariates 

influence camera-trap based occupancy models. Remote sensed land cover information and derived 

metrics provide more flexibility than in-situ data to tackle these issues, and can be a surrogate for, or 

at least complement, the labour-intensive on-the-ground habitat assessment. This is particularly 

beneficial in challenging environments such as tropical rainforests, ecosystems that are known for 

their rich biodiversity and number of endemic, threatened and little studied vertebrate species. 
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Supporting Information 
S 3.1: Best constant occupancy models with covariates on the detection component while holding occupancy constant 

(based on AIC) for six mammal species/species groups, estimated from camera-trapping data collected between 2008 and 

2010 in three commercial forest reserves in Sabah, Malaysian Borneo. γ1(SE) are estimates of regression coefficients for 

detection probability covariates with their standard errors on the logit scale; 2.5% and 97.5% CI are confidence interval 

bounds. Occupancy probability ψ is held constant within each model. 

Species Parameter* γ1(SE) 2.5% CI 97.5% CI p-value** 

Banded Civet Roads 

TFR/SLFR 

-1.06 (0.521) 

-3.22 (0.648) 

-2.09 

-4.49 

-0.04 

-1.95 

0.04 

<0.001 

Long-tailed Macaque Roads 

SLFR 

1.18 (0.532) 

-1.98 (0.631) 

0.14 

-3.22 

2.22 

-0.74 

0.02 

0.002 

Malay Civet Roads 

TFR 

0.822 (0.158) 

-0.797 (0.169) 

0.51 

-1.13 

1.13 

-0.47 

<0.001 

<0.001 

Moonrat TFR/SLFR -0.66 (0.288) -1.22 -0.10 0.02 

Chevrotain TFR/SLFR -0.732 (0.158) -1.04 -0.42 <0.001 

Thick-spined Porcupine Roads 

TFR/SLFR 

-1.046 (0.557) 

-1.444 (0.668) 

-2.14 

-2.75 

0.05 

-0.14 

0.06 

0.03 

*Roads = effect of camera-trap position on/off-road on detection probability p (positive coefficient signifies higher p on 

roads, negative coefficient higher p off roads);  

TFR: Tangkulap (TFR) has different detection probability than both Segaliud Lokan (SLFR) and Deramakot (DFR)(negative 

coefficient signifies lower p in TFR compared to DFR and SLFR) 

SLFR: SLFR has different detection probability than both TFR and DFR (negative coefficient signifies lower p in SLFR 

compared to TFR and DFR) 

TFR/SLFR: TFR and SLFR both show a different detection probability than DFR (negative coefficient signifies lower p in TFR 

and SLFR as compared to DFR) 

**Bold font indicates significance at the 0.05 level 
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S 3.2: Results of occupancy models using distance to oil palm plantation at different spatial resolutions as covariate; 

estimated from camera-trapping data on six mammal species/species groups, collected between 2008 and 2010 in three 

commercial forest reserves in Sabah, Malaysian Borneo. ΔAIC: relative difference in AIC to top model, wAIC= AIC model 

weights, β1 = regression coefficient, SE = regression coefficient standard error, CV = coefficient of variation of β1 (SE / |β1|), 

– denotes constant occupancy model. 

Species Pixel size AIC ΔAIC wAIC β1*  SE CV p-value** 

Banded Civet 

250 195.80 0 0.248 1.38 0.65 0.47 0.034 

90 195.81 0.01 0.246 1.38 0.65 0.47 0.035 

5 195.83 0.03 0.243 1.37 0.65 0.47 0.035 

30 195.83 0.03 0.243 1.37 0.65 0.47 0.035 

- 200.83 5.03  0.020 - - - - 

Long-tailed 
Macaque 

90 331.48 0 0.250 -0.72 0.29 0.4 0.012 

5 331.50 0.02 0.247 -0.72 0.29 0.4 0.012 

30 331.50 0.02 0.247 -0.72 0.29 0.4 0.012 

250 331.55 0.07 0.241 -0.72 0.29 0.4 0.012 

- 337.05 5.57  0.015 - - - - 

Malay Civet 

- 1344.11 0 0.383 - - - - 

250 1345.91 1.8 0.155 0.13 0.30 2.31 0.66 

5 1345.93 1.82 0.154 0.13 0.30 2.31 0.673 

30 1345.93 1.82 0.154 0.13 0.30 2.31 0.671 

90 1345.94 1.83  0.153 0.12 0.30 2.5 0.681 

Moonrat 

- 629.62 0 0.403 - - - - 

5 631.61 1.99 0.149 0.02 0.18 9 0.913 

30 631.61 1.99 0.149 0.02 0.18 9 0.912 

90 631.61 1.99 0.149 0.02 0.18 9 0.916 

250 631.61 1.99  0.149 0.02 0.18 9 0.932 

Chevrotain 
(Greater & Lesser) 

5 1304.20 0 0.227 0.38 0.21 0.55 0.066 

90 1304.20 0 0.227 0.38 0.21 0.55 0.066 

30 1304.21 0.01 0.226 0.38 0.21 0.55 0.067 

250 1304.27 0.07 0.220 0.38 0.21 0.55 0.069 

- 1305.84 1.64  0.100 - - - - 

Thick-spined 
Porcupine 

30 250.70 0 0.231 -0.53 0.30 0.57 0.079 

5 250.71 0.01 0.231 -0.53 0.30 0.57 0.079 

90 250.80 0.1 0.220 -0.52 0.30 0.58 0.083 

250 250.89 0.19 0.211 -0.51 0.30 0.59 0.086 

- 252.22 1.52  0.108 - - - - 
* Positive regression coefficients indicate positive association with distance to features, i.e. negative association with 
features. Negative regression coefficients indicate negative association with distance to features, i.e. positive association 
with features. 
**Bold font indicates significance at the 0.05 level 
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S 3.3: Results of occupancy model using distance to water at different spatial resolutions as covariate; estimated from 

camera-trapping data on six mammal species/species groups, collected between 2008 and 2010 in three commercial forest 

reserves in Sabah, Malaysian Borneo. ΔAIC: relative difference in AIC to top model, wAIC= AIC model weights, β1 = 

regression coefficient, SE = regression coefficient standard error, CV = coefficient of variation of β1 (SE / |β1|), – denotes 

constant occupancy model. 

Species Pixel size AIC ΔAIC wAIC β1* SE CV p-

Banded Civet 

90 198.49 0 0.532 0.71 0.38 0.54 0.062 
- 200.83 2.34 0.165  -  - - - 

30 201.09 2.6 0.145 0.44 0.36 0.82 0.22 

5 201.87 3.38 0.098 0.33 0.36 1.09 0.354 

250 202.83 4.34 0.061 -0.03 0.48 16 0.948 

Long-tailed 

Macaque 

5 301.13 0 0.997 -3.59 0.92 0.26 <0.001 
30 312.86 11.73 0.003 -2.32 0.64 0.28 <0.001 

90 330.35 29.22 0 -0.96 0.39 0.41 0.014 

250 335.41 34.28 0 -0.49 0.27 0.55 0.074 

- 337.05 35.92 0  -  - - - 

Malay Civet 

- 1344.11 0 0.331  -  - - - 
30 1344.85 0.74 0.229 0.32 0.32 1 0.309 

5 1345.47 1.36 0.167 0.23 0.31 1.35 0.46 

250 1345.83 1.72 0.140 0.15 0.29 1.93 0.607 

90 1345.93 1.82 0.133 0.13 0.31 2.38 0.686 

Moonrat 

- 629.62 0 0.374  -  - - - 
250 630.84 1.22 0.203 -0.16 0.18 1.12 0.384 

90 631.54 1.92 0.143 -0.05 0.18 3.6 0.778 

30 631.58 1.96 0.141 0.04 0.17 4.25 0.83 

5 631.62 2 0.138 0.01 0.17 17 0.976 

Chevrotain 

(Greater & Lesser) 

250 1300.83 0 0.844 0.59 0.26 0.44 0.02 
- 1305.84 5.01 0.069  -  - - - 

90 1307.22 6.39 0.035 0.16 0.21 1.31 0.449 

30 1307.73 6.9 0.027 0.06 0.19 3.17 0.745 

5 1307.81 6.98 0.026 0.03 0.19 6.33 0.882 

Thick-spined 

Porcupine 

90 243.04 0 0.604 -1.37 0.54 0.39 0.011 
30 245.75 2.71 0.156 -1.08 0.46 0.43 0.019 

250 245.88 2.84 0.147 -0.96 0.4 0.42 0.016 

5 246.93 3.89 0.086 -0.99 0.46 0.46 0.03 

- 252.22 9.18 0.006  -  - - - 

* Positive regression coefficients indicate positive association with distance to features, i.e. negative association with 
features. Negative regression coefficients indicate negative association with distance to features, i.e. positive association 
with features. 
**Bold font indicates significance at the 0.05 level 
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S 3.4: Results of occupancy models using forest score (index of forest quality, ranging from 0 = bare land/oil palm plantation 

to 3 = dense forest) extracted for different focal patch sizes (radius) around camera traps, as covariate; estimated from 

camera-trapping data on six mammal species/species groups, collected between 2008 and 2010 in three commercial forest 

reserves in Sabah, Malaysian Borneo. ΔAIC: relative difference in AIC to top model, wAIC= AIC model weights, β1 = 

regression coefficient, SE = regression coefficient standard error, CV = coefficient of variation of β1 (SE / |β1|), – denotes 

constant occupancy model. 

Species radius AIC ΔAIC wAIC β1* SE CV p-value** 

Banded Civet 

500 197.16 0 0.55 -1.76 0.92 0.52 0.055 
250 200.12 2.96 0.125 -1.34 0.95 0.71 0.161 

10 200.63 3.47 0.097 0.62 0.43 0.69 0.152 
- 200.83 3.67 0.088 - - - - 

50 201.23 4.07 0.072 0.57 0.46 0.81 0.215 
150 202.63 5.47 0.036 -0.5 1.64 3.28 0.759 
100 202.81 5.65 0.033 -0.1 0.75 7.5 0.892 

Long-tailed 

Macaque 

10 332.48 0 0.5 -0.68 0.27 0.40 0.013 
50 334.61 2.13 0.173 -0.55 0.27 0.49 0.041 

100 335.61 3.13 0.105 -0.56 0.32 0.57 0.086 
150 336.04 3.56 0.084 -0.56 0.36 0.64 0.116 
250 336.80 4.32 0.058 -0.52 0.39 0.75 0.185 

- 337.05 4.57 0.051 - - - - 
500 338.10 5.62 0.03 -0.27 0.28 1.04 0.339 

Malay Civet 

10 1339.60 0 0.552 -0.72 0.32 0.44 0.024 
50 1341.91 2.31 0.173 -0.57 0.30 0.53 0.054 

100 1343.04 3.44 0.099 -0.5 0.30 0.60 0.091 
- 1344.11 4.51 0.058 - - - - 

150 1344.13 4.53 0.057 -0.41 0.29 0.71 0.168 
250 1344.90 5.3 0.039 -0.33 0.29 0.88 0.269 
500 1346.03 6.43 0.022 -0.07 0.26 3.71 0.773 

Moonrat 

100 626.41 0 0.322 0.44 0.20 0.45 0.029 
50 626.55 0.14 0.301 0.43 0.20 0.47 0.03 

150 628.22 1.81 0.13 0.35 0.20 0.57 0.076 
10 628.59 2.18 0.108 0.32 0.19 0.59 0.087 

- 629.62 3.21 0.065 - - - - 
250 630.59 4.18 0.04 0.19 0.19 1 0.318 
500 630.95 4.54 0.033 0.15 0.18 1.20 0.414 

Chevrotain 

(Greater & 

Lesser) 

100 1297.52 0 0.309 0.63 0.21 0.33 0.003 
150 1298.04 0.52 0.239 0.63 0.22 0.35 0.005 
500 1298.60 1.08 0.18 0.62 0.22 0.35 0.005 

50 1299.11 1.59 0.139 0.57 0.20 0.35 0.005 
250 1299.36 1.84 0.123 0.58 0.22 0.38 0.008 

- 1305.84 8.32 0.005 - - - - 
10 1306.09 8.57 0.004 0.25 0.19 0.76 0.189 

Thick-spined 

Porcupine 

500 248.96 0 0.42 -0.77 0.42 0.55 0.067 
250 251.67 2.71 0.109 -0.48 0.38 0.79 0.204 
150 251.70 2.74 0.107 -0.45 0.31 0.69 0.155 

10 251.76 2.8 0.104 -0.42 0.28 0.67 0.125 
50 252.05 3.09 0.09 -0.4 0.27 0.68 0.146 

100 252.06 3.1 0.089 -0.4 0.28 0.70 0.159 
- 252.22 3.26 0.082 - - - - 

* Positive regression coefficients indicate positive association with features. Negative regression coefficients indicate 
negative association features. 
** Bold font indicates significance at the 0.05 level 
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S 3.5: Results for occupancy models using heterogeneity (index of habitat heterogeneity), extracted for different focal patch 

sizes (radius) around camera traps, as covariate; estimated from camera-trapping data on six mammal species/species 

groups, collected between 2008 and 2010 in three commercial forest reserves in Sabah, Malaysian Borneo. ΔAIC: relative 

difference in AIC to top model, wAIC= AIC model weights, β1 = regression coefficient, SE = regression coefficient standard 

error, CV = coefficient of variation of β1 (SE / |β1|), – denotes constant occupancy model. 

Species radius AIC ΔAIC wAIC β1* SE CV p-value** 

Banded Civet 

50 198.99 0 0.393 -0.97 0.61 0.63 0.112 
500 200.70 1.71 0.167 0.52 0.39 0.75 0.188 

- 200.83 1.84 0.156 - - - - 
250 201.69 2.7 0.102 0.57 0.78 1.37 0.465 
100 202.65 3.66 0.063 -0.23 0.55 2.39 0.676 

10 202.73 3.74 0.061 0.17 0.53 3.12 0.745 
150 202.82 3.83 0.058 -0.05 0.49 9.8 0.921 

Long-tailed 
Macaque 

50 329.70 0 0.455 1.03 0.38 0.37 0.007 
10 330.87 1.17 0.253 1.02 0.42 0.41 0.014 

100 330.92 1.22 0.247 0.83 0.32 0.39 0.009 
150 335.66 5.96 0.023 0.5 0.28 0.56 0.075 

- 337.05 7.35 0.012 - - - - 
250 338.33 8.63 0.006 0.22 0.26 1.18 0.402 
500 338.97 9.27 0.004 0.07 0.25 3.57 0.771 

Malay Civet 

50 1337.90 0 0.866 0.74 0.29 0.39 0.011 
- 1344.11 6.21 0.039 - - - - 

10 1344.46 6.56 0.033 0.3 0.23 0.77 0.179 
150 1345.80 7.9 0.017 0.16 0.28 1.75 0.586 
500 1345.90 8 0.016 0.13 0.27 2.08 0.642 
250 1346.01 8.11 0.015 0.09 0.29 3.22 0.752 
100 1346.08 8.18 0.015 0.05 0.27 5.4 0.855 

Moonrat 

100 624.73 0 0.495 -0.49 0.19 0.39 0.012 
150 626.05 1.32 0.256 -0.44 0.19 0.43 0.023 
250 627.91 3.18 0.101 -0.36 0.19 0.53 0.062 

50 628.87 4.14 0.063 -0.3 0.18 0.6 0.102 
- 629.62 4.89 0.043 - - - - 

10 630.56 5.83 0.027 0.2 0.19 0.95 0.312 
500 631.61 6.88 0.016 0.02 0.18 9 0.922 

Chevrotain 
(Greater & Lesser) 

250 1304.42 0 0.344 -0.36 0.20 0.56 0.068 
- 1305.84 1.42 0.169 - - - - 

100 1306.11 1.69 0.148 -0.26 0.20 0.77 0.197 
150 1306.76 2.34 0.107 -0.2 0.20 1 0.301 

10 1307.12 2.7 0.089 -0.17 0.21 1.24 0.417 
50 1307.45 3.03 0.075 -0.12 0.19 1.58 0.539 

500 1307.67 3.25 0.068 -0.08 0.19 2.38 0.679 

Thick-spined 
Porcupine 

50 250.28 0 0.418 -0.48 0.24 0.5 0.048 
- 252.22 1.94 0.158 - - - - 

150 252.75 2.47 0.122 -0.32 0.27 0.84 0.232 
10 253.27 2.99 0.094 -0.24 0.24 1 0.32 

250 253.35 3.07 0.09 -0.24 0.26 1.08 0.356 
500 254.19 3.91 0.059 -0.05 0.25 5 0.851 
100 254.21 3.93 0.059 -0.03 0.26 8.67 0.907 

* Positive regression coefficients indicate positive association with features. Negative regression coefficients indicate 
negative association features. 
*Bold font indicates significance at the 0.05 level  

  



Chapter 3: Defining habitat covariates in camera-trap based occupancy models 

63 

S 3.6: Results for occupancy models using canopy closure, collected in-situ along transects around camera traps and 

averaged across transects of different length (radius), as covariate on occupancy; estimated from camera-trapping data on 

six mammal species/species groups, collected between 2008 and 2010 in three commercial forest reserves in Sabah, 

Malaysian Borneo. ΔAIC: relative difference in AIC to top model, wAIC= AIC model weights, β1 = regression coefficient, 

SE = regression coefficient standard error, CV = coefficient of variation of β1 (SE / |β1|), – denotes constant occupancy 

model. 

Species radius AIC ΔAIC wAIC β1* SE CV p-
value** 

Banded Civet 

- 200.83 0 0.311 - - - - 

50 200.95 0.12 0.293 0.79 0.57 0.72 0.165 

150 201.51 0.68 0.221 0.7 0.59 0.84 0.236 

100 201.98 1.15 0.175 0.54 0.56 1.04 0.335 

Long-tailed 
Macaque 

50 326.53 0 0.754 -1.1 0.37 0.34 0.003 

100 329.18 2.65 0.201 -1.07 0.42 0.39 0.01 

150 332.33 5.8 0.042 -0.91 0.42 0.46 0.032 

- 337.05 10.52 0.004 - - - - 

Malay Civet 

- 1344.11 0 0.372 - - - - 

50 1344.82 0.71 0.261 -0.34 0.32 0.94 0.29 

100 1345.44 1.33 0.192 -0.25 0.32 1.28 0.438 

150 1345.61 1.5 0.176 -0.21 0.31 1.48 0.502 

Moonrat 

- 629.62 0 0.467 - - - - 

100 631.51 1.89 0.182 0.06 0.18 3 0.735 

150 631.58 1.96 0.176 0.04 0.18 4.5 0.834 

50 631.59 1.97 0.175 -0.03 0.18 6 0.856 

Chevrotain 
(Greater & Lesser) 

150 1288.66 0 0.6 0.83 0.20 0.24 <0.001 

100 1290.16 1.5 0.283 0.80 0.20 0.25 <0.001 

50 1291.93 3.27 0.117 0.77 0.20 0.26 <0.001 

- 1305.84 17.18 0 - - - - 

Thick-spined 
Porcupine 

- 252.22 0 0.37 - - - - 

50 253.30 1.08 0.216 -0.28 0.30 1.07 0.344 

100 253.30 1.08 0.216 -0.28 0.29 1.04 0.342 

150 253.47 1.25 0.199 -0.25 0.28 1.12 0.387 

* Positive regression coefficients indicate positive association with features. Negative regression coefficients indicate 
negative association features. 
**Bold font indicates significance at the 0.05 level 

S 3.7:Results of the Goodness-of-fit tests for each species’ global model as computed by the mb.gof.test function from the R 

package AICcmodavg with the consensus radius of 50 m for Forest Score, Heterogeneity and canopy closure and distance to 

water and distance to oil palm plantation computed at 5-m resolution. 

Species p-value* Variance inflation factor 
Banded Civet 0.182 1.3 
Long-tailed Macaque 0.108 1.44 
Malay Civet 0.112 1.13 
Moonrat 0.104 1.36 
Chevrotain (Greater & Lesser) 0.117 1.15 
Thick-spined Porcupine 0.241 1.05 
* p-values < 0.05 indicate lack of fit 
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Abstract  

Understanding spatiotemporal patterns of species interactions is of fundamental interest to 

behavioural and community ecology. Observer-independent, unbiased methods such as camera 

trapping facilitate the study of interactions in challenging habitats, but analyses are hampered by a 

lack of suitable approaches with well-defined properties. We present a flexible and expandable 

framework to simulate and explore spatiotemporal species interactions which can improve methods 

to detect spatiotemporal interactions. We simulated a two-species system with two types of 

(spatio)temporal interactions, spatiotemporal avoidance (of a site by a species after the presence of 

another species) and temporal segregation (shifts in daily activity patterns), across a range of activity 

patterns and interaction strengths. For spatiotemporal avoidance, we compared different time 

intervals between species records using linear models, Mann-Whitney U-test, a permutation test and 

a test based on randomly generated records. For temporal segregation, we applied a permutation 

test. We assessed the statistical power (the ability to detect an existing effect) and robustness (the 

ability to detect no effect when none is present) of all tests. Power for detecting spatiotemporal 

avoidance between species was strongly affected by interaction strength and highest for linear 

models, and reliable above 50 records per species. Reliably detecting strong temporal segregation 

required fewer records but depended heavily on the underlying activity pattern. All tests were robust 

even at low sample sizes, above a minimum of 10 records per species. Linear models were most 

suitable to analyse spatiotemporal avoidance and can easily correct for confounding effects of other 

sources of variation in interactions.  

Introduction 

Investigating biotic interactions is a central topic in ecology (Kissling et al. 2012; Wisz et al. 2013). 

Species interactions can take various forms, ranging from mutually detrimental, to antagonistic 

(detrimental to one species and beneficial to the other) to mutualistic (beneficial to both partners). 

Detrimental and antagonist interactions may vary considerably in their intensity and include 

exploitation competition, interference competition, predation, harassment and kleptoparasitism, 
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amongst others (Palomares & Caro 1999; Caro & Stoner 2003; Arim & Marquet 2004; St-Pierre et al. 

2006; Vanak et al. 2013). Possible adaptations to avoid the negative consequences of detrimental 

interactions include the suite of morphological, physiological and behavioural traits responsible for 

niche partitioning, which can minimise the impact of detrimental interactions and promote co-

existence between species (Di Bitetti et al. 2010). Behavioural partitioning of niches can occur in 

space, e.g. by avoidance of sites that are occupied by a competitor, a predator or pathogen, or by 

habitat partitioning along environmental gradients (e.g. terrain, proximity to resources, habitat 

structure). Niches can also be partitioned temporally or spatiotemporally, e.g. by the adjustment of 

activity patterns to avoid interaction with other species, or by temporarily avoiding sites after the 

presence of a predator or competitor (Kronfeld-Schor & Dayan 2003; Schuette et al. 2013; Karanth et 

al. 2017).  

It is often difficult to measure species interactions directly, particularly for cryptic or rare species and 

in dense habitats such as tropical rainforests where direct observations are challenging. Amongst 

observer-independent and hence unbiased methods, telemetry studies can provide information on 

spatiotemporal species interactions (Downs et al. 2015; Long 2015), but are not always feasible and 

often suffer from low sample sizes. Camera trapping is a widely used and cost-effective alternative in 

many habitats difficult to access, but only offers the detection of species or individuals at point 

localities without detailed movement information. Detecting species interactions from camera 

trapping data therefore requires different methods than telemetry studies.  

Spatial species interactions can be investigated from camera trapping data using two-species 

occupancy models, in which the detection or occupancy probability of a species depends on the 

detection of or occupancy by another species (MacKenzie et al. 2004; Richmond et al. 2010). While 

two-species occupancy models use spatial information, the precise time stamps recorded in camera 

trap images are not used to directly assess (spatio)temporal interactions in these models. 

For directly assessing (spatio)temporal interactions several methods and measures have been 

developed and applied. One group of methods estimates to what extent a subordinate species 

temporarily avoids a site that was recently visited by a dominant species (e.g. Harmsen et al. 2009; 

Parsons et al. 2016; Karanth et al. 2017). Such avoidance behaviour can be mediated by olfactory 

cues (Apfelbach et al. 2005). These methods measure spatiotemporal interactions, and we will refer 

to these interactions as spatiotemporal avoidance here. The second, more commonly used method 

assesses temporal species interactions.  Here the temporal overlap in activity between two species is 

estimated to assess if the activity patterns may be shifted to avoid encounters (e.g. Ridout & Linkie 

2009; Linkie & Ridout 2011; Foster et al. 2013; Lynam et al. 2013; Ross et al. 2013; Farris et al. 2015; 
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Sunarto et al. 2015). Often, multiple camera trap stations are pooled in this method, thus omitting 

the spatial component and consequently assessing temporal interactions only. We will refer to these 

interactions as temporal segregation here. Such a shift in activity patterns could be the result of 

avoiding the dominant species by a subordinate species, a consequence of competition between 

species or it may reflect other aspects of the species’ ecology, such as differences in physiological 

adaptation to diurnal rhythms of ambient conditions (Haim & Fourie 1980; Fuller et al. 2010). 

Despite the common use of camera trap based methods to assess these species interactions, there is 

no comparative assessment available on how suitable these methods are to detect such interactions. 

We therefore simulated camera trap data to assess the ability of these methods to correctly identify 

species interactions for a wide range of activity patterns. Simulations allowed us to overcome the 

main obstacle in field data, the unknown (latent) true state of the study system that generates the 

observations by explicitly specifying the system properties (Peck 2004).  

The aim of this study was to assess different measures and statistical tests for detecting the two 

types of species interactions: spatiotemporal avoidance, expressed as differences in the time 

intervals between detections of the interacting species at camera trap stations, and temporal 

segregation, expressed as shifts in activity patterns between two species. We compared the tests in 

terms of their statistical power and robustness under different interaction (avoidance) strengths and 

for the most commonly found daily activity patterns, cathemeral, diurnal, nocturnal and crepuscular. 

Specifically, we assessed whether and under which circumstances spatiotemporal avoidance of a 

dominant species by a subordinate species and temporal segregation can be detected, how many 

species records are needed for a reliable detection and which method is the most powerful and 

robust. 

Methods 

Outline of the study system 

We simulated the interactions of a dominant species A and a subordinate species B. We assumed the 

dominant species A is unaffected by the presence of subordinate species B, whereas subordinate 

species B has two possibilities to avoid an interaction with species A. It may either avoid a site after 

species A was present, expressed as a reduced probability of recording the subordinate species B 

after the dominant species A was recorded.  In this case, we assumed a subsequent linear recovery of 

the chance that species B visits the site (spatiotemporal avoidance). Alternatively, species B may shift 

its diurnal activity peaks relative to species A to reduce activity overlap and thus reduce the chance 

to encounter species A (temporal segregation).  



Chapter 4: Assessing spatiotemporal interaction 

The activity patterns of both species was chosen to be uniform (flat), unimodal (with one activity 

peak per day), or bimodal (two peaks per day). Uniform activity patterns are representative of 

cathemeral species (absence of a fixed activity rhythm). Unimodal and bimodal activity patterns are 

more common, the former being typical of diurnal or nocturnal species

species (Ridout & Linkie 2009; Levy 

2013; Monterroso et al. 2013; Ross 

 

 

Figure 4.1: Types of (spatio)temporal interactions examined. A) Spatiotemporal avoidance: the top row shows the 
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4: Assessing spatiotemporal interaction between species from camera

The activity patterns of both species was chosen to be uniform (flat), unimodal (with one activity 

day), or bimodal (two peaks per day). Uniform activity patterns are representative of 

cathemeral species (absence of a fixed activity rhythm). Unimodal and bimodal activity patterns are 

more common, the former being typical of diurnal or nocturnal species, the latter of crepuscular 

(Ridout & Linkie 2009; Levy et al. 2012; for examples see e.g. Foster et al.

2013; Ross et al. 2013; Farris et al. 2015; Ikeda et al. 2016)

o)temporal interactions examined. A) Spatiotemporal avoidance: the top row shows the 

probability weights for realising records of a dominant species during an example of 10 simulated survey days, with realised 

records shown as red ticks. The bottom row shows a subordinate species (which avoids the dominant species), the 

probability weights of which (darker grey) are reduced after records of a dominant species compared to their original value 

(light grey). Realised records of the subordinate species are shown in blue. B) Temporal segregation. The left plot shows the 

daily activity density curves of two species with a time shift of 6 hours between activity peaks. These activity density curv

are used as probability weights for realising records in the simulation. The central plot shows the activity overlap (in grey) of 

those realised records (observed data). The right plot shows the increased activity overlap after one possible species label 
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The activity patterns of both species was chosen to be uniform (flat), unimodal (with one activity 

day), or bimodal (two peaks per day). Uniform activity patterns are representative of 
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Simulation of species records 

We wrote an R function that simulates species records for two temporally interacting species under 

different scenarios, mimicking data from camera trapping surveys. The scenarios are defined by the 

parameters of this function which describe the survey duration in days, number of records of both 

species, the diurnal activity pattern for both species, and the interaction, expressed as intensity and 

duration of avoidance of the dominant species A by subordinate species B or its shift in activity 

period (see Table 4.1 for function parameters and supplementary R code of the function simulating 

the records). All computations were performed in R 3.3.3 (R Core Team 2017).  

Uni- and bimodal patterns were approximated using von Mises distributions. These are continuous 

circular probability distributions used here to represent the density for a species activity by time of 

day (expressed in radian ranging from 0 to 2π). We modelled the bimodal activity patterns using a 

mixture of two von Mises distributions. The density functions of those distributions were calculated 

using the R package CircStats version 0.2-4 (Lund & Agostinelli 2012). Their shape is determined by 

two parameters, the mean µ and concentration parameter κ (kappa).For the unimodal distributions, 

we set the mean to µ = 𝜋, corresponding to maximum activity at 12pm (noon, a diurnal species). For 

the bimodal distributions, we set the two means to µଵ =
ଵ

ଶ
𝜋 and µଶ =

ଷ

ଶ
𝜋, corresponding to activity 

peaks at 6am and 6pm, a crepuscular species. In the assessment of spatiotemporal avoidance, the 

mean was identical for both species to isolate spatiotemporal avoidance and avoid confounding 

effects of temporal segregation. In the assessment of temporal segregation, the means (i.e., the 

activity peaks) were allowed to vary between species (see “temporal segregation” below in the 

methods section). κ determines how strongly records are concentrated around the mean. We chose 

one value of κ in our assessment of spatiotemporal avoidance (because we expected κ to have little 

influence) and three different values in our tests for temporal segregation (because here we expect a 

strong influence of κ). See Table 4.1 for more details and Figure 4.1 for a plot of activity patterns with 

different κ). 

The function creates records of dominant species A by randomly sampling the time axis along the 

whole study duration (in 1-minute intervals) using the activity density of species A in each of these 1-

minute intervals as probability weights for the random draws from the time axis. The binary outcome 

for each 1-minute interval corresponds to observations or non-observations. We created records of 

the subordinate species B in a similar manner using the activity density of species B as probability 

weights for the random draws along the time axis. However, as species B is also affected by prior 

presence of species A, these probability weights can be reduced to a fraction of their original values 
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after a record of species A. This reduction in probability weights is defined so as to obtain constant 

odds ratios:  

𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 =   

௣ (஻ | ௡௢ ஺)

ଵି௣ (஻ | ௡௢ ஺)

௣ (஻ | ஺)

ଵି ௣ (஻ | ஺)

 

where 𝑝(𝐵|𝐴) is the probability of detecting species B directly after species A was detected and 

𝑝 (𝐵 | 𝑛𝑜𝐴) is the probability of detecting species B in the absence of species A. The reduction of 

probability weights only depends on the odds ratio and is independent of the absolute values of 

activity probability density, and thus superimposed on the activity patterns (see Figure 4.1 for an 

example). After a detection of species A, the detection rate of species B recovers linearly to the 

original value for a user-defined amount of time. In the assessment of spatiotemporal interactions, 

the odds ratio was varied between 1 and 100 (1 corresponding to no avoidance and 100 to very 

strong avoidance). In the assessment of temporal segregation, it was fixed at 1. Because the 

simulated records of both species are analogous to data generated in camera trapping studies we 

term them observed data here. 

Spatiotemporal avoidance 

For each parameter combination as shown in Table 4.1, the number of records and the activity 

patterns were identical for both species; we only varied the strength and duration of the 

spatiotemporal avoidance. Analogous to the common practice in camera trapping data, we removed 

records of a species if they fell within 60-minutes from the last record of the same species at the 

same camera trap. We calculated various time intervals between both species in the observed data 

to assess which is most suitable for detecting spatiotemporal avoidance: AB, BA, AA, BB, ABA, BAB, 

and the ratios AB/BA and BAB/BB. AB and BA were used by Harmsen et al.(2009) and Karanth et 

al.(2017). The two ratios correspond to the attraction-avoidance-ratios (AARs) T2/T1 and T4/T3 in 

Parsons et al. (2016) and compare the time intervals between a dominant species and a subordinate 

species to the converse situation (T2/T1) or the time intervals between records of subordinate 

species with/without the passage of a dominant species in between (T4/T3). If there was a sequence 

of records of the other species before a given record, we calculate the time intervals since the last 

record of the other species in that sequence.  

Linear models 

We first directly compared the time intervals AB and BA (dominant-subordinate and subordinate-

dominant) by fitting two linear models using either log-transformed (linear model 1) or  
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Table 4.1: Parameters of the R function used for simulating species records 

Function input Details Temporal 

segregation 

Spatiotemporal 

avoidance 

Number of days Number of simulated days 100, 300 100, 300 

Number of records A Number of records of 

species A  

5, 6, 7, 8, 9, 10, 20, 

30, 40, 50 

10, 20, ..., 90, 100 

Number of records B Number of records of 

species B 

5, 6, 7, 8, 9, 10, 20, 

30, 40, 50 

10, 20, ..., 90, 100 

activity pattern A/B Uniform,  

unimodal (von Mises) or 

bimodal (von Mises 

mixture) 

unimodal, 

bimodal 

uniform, 

unimodal, 

bimodal 

κ (kappa) A/B κ (kappa), concentration 

parameter of the von Mises 

distributions used for uni- 

and bimodal activity 

patterns  

1,2,3 2 

Spatiotemporal 

avoidance strength B 

The odds ratio between the 

odds for detecting B in the 

absence of A relative to the  

odds for detecting B after A 

was present  

1 (no effect) 1, 2, 10, 100 

Spatiotemporal 

avoidance duration B 

Duration for which the 

effect of A on B persists 

until full recovery (in days) 

- (no spatiotemporal 

avoidance) 

1, 3 

Activity peak 

difference B 

Time difference between 

the activity peaks of A and 

B (in hours) 

unimodal: 1,2,3,…,12 

bimodal: 1,2,3,…,6 

- (synchronous 

activity patterns) 

A argument impacts on the probability distribution of the dominant species A 
B argument impacts on the probability distribution of the subordinate species B 
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untransformed (linear model 2) time intervals as the response variable. For both linear models, the 

only predictor considered was the type of the time interval (AB or BA). The interval AB was used as 

the reference level in the model. The linear models thus estimate the difference in BA (log) time 

intervals relative to AB (log) time intervals. The summary.lm()function returns the significance 

level for this difference. In this simple situation, the p-value of the parameter estimate from the 

linear model fit corresponds to the p-value one would obtain preforming a traditional t-test on the 

data without fitting a linear model (t.test(…, var.equal = TRUE) in R). 

We further checked whether the main assumptions about the errors in linear models were met, 

namely homoscedasticity (using the Breusch-Pagan test), independence (i.e. absence of serial 

autocorrelation assessed using the Durbin-Watson test), and normality of the model residuals (using 

the Shapiro-Wilk test).  

Mann-Whitney U-test 

We also compared the time intervals AB and BA using the non-parametric Mann-Whitney U-test. This 

test is usually considered as the non-parametric counterpart of the t-test: it is used to test for 

difference in central locations between two independent groups but it does not require observations 

to be normally distributed. 

Permutation test 

Using the observed data of both species, we performed a permutation test to generate data under 

the null hypothesis of no spatiotemporal avoidance between species. We first calculated the median 

of the observed time intervals and ratios mentioned above (AB, BA, AA, BB, ABA, BAB, AB/BA and 

BAB/BB. We then generated the distributions of these time intervals/ratios under the null hypothesis 

by randomly permuting species labels from the original data at a camera trap station 1000 times, 

each time filtering for temporal independence (60 minutes, see above) and recalculating all time 

intervals. We then compared the median observed time intervals/ratios to the median of these 

1000 permutation time intervals/ratios and performed a two-sided significance test on these 

(because the permutation values may be higher or lower than in observed data). The p-value for this 

test is directly deduced from the distribution of the test statistic: 

𝑝 = 𝑚𝑖𝑛(𝑞, 1 − 𝑞) × 2, 

where q is the quantile of the observed values within the distribution of the randomised values. 

Thus, p is equivalent to the percentage of permutation tests whose values are more extreme than 

the observed values.  
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Random records 

To assess an alternative method to simulate the null hypothesis of no spatiotemporal avoidance 

between species we created random records of the subordinate species B based on its overall 

observed activity pattern (because it is how activity patterns are estimated from field data) without 

influence of presence/absence of species A. To that end we derived a kernel density estimate of the 

diurnal activity pattern from the observed data of subordinate species B using the R package overlap 

(Meredith & Ridout 2016). Using this kernel density estimate as a weight for a random draw from 1-

minute intervals covering one day, we created random times of day. By combining these with 

randomly selected days from the study period we obtained random records of subordinate species B. 

We created a number of random records for B that was identical to the one in original data. This 

procedure was also used by Karanth et al. (2017), but without explicitly taking the activity patterns 

into account. The newly generated records of B were again filtered for temporal independence 

(60 minutes). Records of A were not manipulated. 

We then calculated the median of all time intervals mentioned above for 1000 independent sets of 

random records generated in this manner and compared the median observed values to the 

distribution of values from the random records. As in the permutation test above, we performed a 

two-sided significance test comparing the observed test statistic and obtained the p-value as: 

𝑝 = 𝑚𝑖𝑛(𝑞, 1 − 𝑞) × 2, 

where q is the quantile of the observed values within the distribution of the values derived from the 

random data.  

Temporal segregation 

We created records of both species with temporal segregation between both species (time shifts of 

the activity peaks) ranging from 0 - 12 hours for unimodal activity patterns and 0 - 6 hours for 

bimodal activity patterns (in 1-hour steps). The number of records was equal between both species 

and varied between 5 and 50. The temporal segregation between species A and B consisted of a shift 

in the activity peak of species B relative to species A. Both species had the same type of activity 

pattern (unimodal or bimodal) and no spatiotemporal avoidance. See Table 4.1 for the function 

parameters that were varied. We calculated activity overlap coefficient ∆෠ଵ(Ridout & Linkie 2009) of 

these observed data using function overlapEst from the R package overlap (Meredith & Ridout 

2016). ∆෠ଵ is the integral of (= the area under) the probability density functions of the estimated daily 

activity density curves of both species (denoted 𝑓መ(𝑡) and 𝑔ො(𝑡)): 
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∆෠ଵ=  න min൛𝑓መ(𝑡), 𝑔ො(𝑡)ൟ 𝑑𝑡.
ଵ

଴

 

Analogous to the permutation test above, we randomised the species labels 1000 times (or the 

maximum number of possible permutations for 5 and 6 records) and calculated ∆෠ଵ for each of these 

randomised data sets to obtain the distribution of ∆෠ଵ under the null hypothesis (no temporal 

segregation between species). 

If the time of activity peaks differs between both species, we expect the ∆෠ଵ values from the 

randomized datasets to be higher than the observed ∆෠ଵ, i.e. we expect a higher activity overlap 

coefficient in data with randomised species labels than the observed data (see Figure 4.1). The 

statistic-value for this comparison corresponds to the quantile of the observed ∆෠ଵ compared to the 

distribution of 1000 randomised ∆෠ଵ values. It was calculated as  

𝑝 =  

෍ ∆෠ଵ௢௕௦> ∆෠ଵு଴

୬

ଵ

𝑛 + 1
 

with ∆෠ଵ௢௕௦ being the observed ∆෠ଵ, ∆෠ଵு଴ being the permutation ∆෠ଵ values, and 𝑛 being the number of 

permutations. It is a one-sided test, and its p-value corresponds to the null hypothesis of no time 

shift in activity peaks between both species. 

Power analysis 

Statistical power is the probability that a test correctly rejects the null hypothesis when it is false. 

Thus, it quantifies the ability of a test to detect an effect that actually exists. To assess the power of 

the tests we conducted, each of the above tests was performed on 1000 sets of independently 

generated records of both species (observed data) for each combination of function parameters 

detailed in Table 4.1. Power was calculated as the percentage of significant tests at α = 0.05 out of 

these 1000 independent tests. We considered a test as reliable if an effect was present and power 

was > 0.8.  

Robustness assessment 

Robustness is the property of a statistical test to have a type I error rate (i.e, the probability of 

erroneously rejecting the null hypothesis) that corresponds to the significance level under the null 

hypothesis. A test that is not robust will reject the null hypothesis more or less frequently than 

suggested by the significance level, leading to biased conclusions. 

We assessed the robustness of all methods using the empirical cumulative density functions (ECDFs) 

of the p-values from the 1000 independent test with data generated under the null hypothesis of no 
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temporal interaction (no spatiotemporal avoidance or identical activity peaks, respectively). If a test 

is robust, its p-values are expected to follow a uniform distribution under the null hypothesis. This 

expectation was assessed in three complementary ways, namely 1) by visually assessing the ECDFs of 

p-values, which should follow a straight line, indicating a uniform distribution, 2) by comparing the 

distribution of p-values obtained to a uniform distribution using a Kolmogorov-Smirnov test 

(expecting that there is no evidence for significant deviations from a uniform distribution), and 3) by 

computing the value of the ECDFs at a significance level of α = 0.05, expecting an ECDF value of about 

0.05 at α = 0.05 if the distribution of p-values is uniform. Major deviations from an expected value of 

0.05 would indicate the test has a higher or lower false positive rate than suggested by the nominal 

significance level, i.e. it is not robust. 

Results 

Spatiotemporal Avoidance 

Power  

All four methods we tested (linear models, Mann-Whitney U test, permutation test and the test 

based on randomly generated records) were able to detect spatiotemporal avoidance of a 

subordinate species relative to a dominant species (given sufficient records) and were not affected 

by the type of activity pattern considered. For all methods, higher numbers of records, stronger and 

longer avoidance resulted in higher power (Figure 4.2).  

Overall, the highest power was achieved with a linear model comparing log-transformed time 

intervals AB and BA, followed by the U-test, linear model with untransformed data and the 

comparison of the time interval AB to those from randomly generated records or the permutation 

test. Between the linear models and the Mann-Whitney U-test (both of which compared the intervals 

AB and BA), power was generally similar in range, but highest when using a linear model on log-

transformed time intervals, intermediate for U-tests, and lowest in linear models considering 

untransformed interval values as the response variable. The power of these three tests was generally 

higher than for the permutation test or for the test based on randomly generated records 

(Figure 4.2). 

In both the permutation procedure and test based on randomly generated records, using the time 

interval AB consistently resulted in the highest power of all time intervals calculated. The avoidance-

attraction ratio AB/BA had second highest power followed by time interval ABA. The power of the 

remaining time intervals was consistently lower across all tests (Figure 4.2). For the time interval AB, 

the power was slightly higher when using random records compared to the species label 
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permutation. The same was observed for the time interval ABA (but more pronounced), whereas in 

the ratio AB/BA, the test using species label permutation achieved slightly higher power (Figure 4.2). 

Generally, even with the time intervals that performed best (AB), high power (>0.8) was only 

achievable for high numbers of records and strong avoidance effects (> 50 records per species, odds 

ratio ≥ 10). Below 50 records per species, power dropped sharply and even very strong avoidance 

effects could not be detected reliably, with power up to 50% for 40 records and about 25% for 30 

records (Figure 4.2). The number of necessary records to reliably detect spatiotemporal avoidance 

was lower when the avoidance effect lasted longer relative to the survey duration. If avoidance was 

more subtle (odds ratio = 2), even 100 records per species were insufficient to reliably detect 

spatiotemporal avoidance.  

Robustness 

All tests were robust for all types of activity patterns and all factor combinations tested. The ECDFs of 

p-values under the null hypothesis were linear and there was no evidence for systematic deviations 

from a uniform distribution (Supplementary Figures S4.1 and S4.2). 

In the linear models, p-values were distributed uniformly under the null hypothesis despite frequent 

significant deviations from the test assumptions of normally distributed, homoscedastic residuals. 

The assumption of homoscedasticity was commonly violated significantly, but the distributions of 

test statistics of the Breusch-Pagan test indicated only subtle heteroscedasticity under the null 

hypothesis. However, these test statistics deviated substantially from expectation when the 

avoidance effect was strong (odds ratio = 10 or 100), and particularly when numbers of records was 

high. This problem was generally more pronounced when using log-transformation, and most severe 

in unimodal activity patterns. The assumption of normality of residuals was violated very frequently, 

particularly when the number of data points (records) was high. Nevertheless, the test statistics of 

the Sharpiro-Wilk tests were consistently close to 1, indicating the violations were not severe, albeit 

statistically significant. Log-transformation resulted in test statistics closer to 1, indicating a less 

severe non-normality of regression errors than in untransformed data. There was no evidence for 

systematic autocorrelation. 
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Figure 4.2: Power of four methods for detecting spatiotemporal avoidance between a dominant and a subordinate species 

in camera trapping data (a species label permutation test, randomly created records, linear models and Mann-Whitney U-

test). Each point is based on 1000 independent tests.  Data shown are for 100 simulated survey days, and the detection rate 

of the subordinate species takes 1 day to recover to its original level after the presence of the dominant species. This plot 

shows data from unimodal activity patterns, but it is essentially the same for bimodal and uniform activity. The grey 

horizontal lines represents power = 0.05 and 0.8. The four columns in which plots are arranged show the interaction 

(avoidance) strengths expressed as odds ratios between the odds for detecting the subordinate species in the absence of 

the dominant species relative to the odds for detecting the subordinate species after the presence of the dominant species 

(100 = very strong avoidance, 1 = no avoidance). 

 

Temporal segregation 

Power 

The power of a species label permutation test to find temporal segregation between species varied 

considerably and was influenced by multiple factors. It increased with the number of records and the 

magnitude of the time shift between activity peaks, and when activity peaks became narrower. For a 

given number of records, power was higher if species had unimodal activity patterns compared to 

bimodal activity patterns (Figure 4.3). 
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Figure 4.3: A) Power of species label permutation test for detecting temporal segregation for uni

patterns with different concentration parameters κ and activity peak differences (0… 12 hours for unimodal activity and 

0…6 hours for bimodal activity). Each point is based on 1000 independent tests. The grey horizontal lines corresponds to a 

significance level of α = 0.05. Power of test for 5 and 6 records of each species are not shown due to lacking robustness. B) 

The underlying diurnal probability distributions for species detections. In unimodal distributions, 95% of activity density l

approximately between µ±10 h (2am – 

5 pm) for κ = 3. 

 

The conditions under which power was high (i.e. > 0.8) varied widely depending on these factors. In 

narrow unimodal activity patterns, even smaller time diffe

could be detected reliably given sufficient records (40 or more). Under these conditions, differences 

in activity peaks of 5 hours and above were detectable reliably with less than 10 records. On the 

opposite extreme, it was impossible to reliably detect even considerable temporal segregation in 

large numbers of records with less pronounced bimodal activity (

patterns, power approached 1 for more pronounced bimodal activity pattern

numbers of records, and activity peak shifts of 3 hours and above. 

Robustness 

Robustness of the species label permutation test for differences in species activity peaks was 

satisfying for all parameter combinations with 7 or more records of each species. Below 7 records per 
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A) Power of species label permutation test for detecting temporal segregation for uni- and bimodal activity 

t concentration parameters κ and activity peak differences (0… 12 hours for unimodal activity and 

hours for bimodal activity). Each point is based on 1000 independent tests. The grey horizontal lines corresponds to a 

er of test for 5 and 6 records of each species are not shown due to lacking robustness. B) 

The underlying diurnal probability distributions for species detections. In unimodal distributions, 95% of activity density lies 

7 pm) for κ = 2, and between µ±5 h (7am – 

The conditions under which power was high (i.e. > 0.8) varied widely depending on these factors. In 

rence between activity peaks (2 hours) 

could be detected reliably given sufficient records (40 or more). Under these conditions, differences 

in activity peaks of 5 hours and above were detectable reliably with less than 10 records. On the 

it was impossible to reliably detect even considerable temporal segregation in 

= 1). Similarly to unimodal activity 

s (κ = 3) with higher 

Robustness of the species label permutation test for differences in species activity peaks was 

satisfying for all parameter combinations with 7 or more records of each species. Below 7 records per 
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species, the observed false positive rate at α= 0.05 was 20-30% (see Supplementary Figure S4.3), 

demonstrating that the tests are not robust in this situation irrespectively of the other simulation 

parameters. 

Discussion 

We demonstrated the use of different methods for detecting two different types of spatiotemporal 

species interactions in camera trapping data, namely four methods for spatiotemporal avoidance and 

a permutation test for temporal segregation (shifts in activity patterns), using a flexible simulation 

approach and assessed their statistical power and robustness. The methods were generally robust 

and capable of detecting both of these types of interactions irrespective of the species’ activity 

patterns, but they varied in statistical power.  

The most powerful methods for detecting spatiotemporal avoidance behaviour were linear models 

(corresponding to traditional t-tests for a single station) on the time intervals between the dominant 

and subordinate species and vice versa (AB and BA). Log-transforming time intervals slightly 

increased the power. Harmsen et al. (2009) used a similar linear modelling approach and found 

evidence of spatiotemporal avoidance between jaguars and pumas in a neotropical forest. Even 

though linear model assumptions were violated, power or robustness were not affected negatively 

and we do not consider it a serious problem in this application. However, users can check linear 

model assumptions to ensure power and robustness are acceptable without having to perform a 

simulation study. In case of concern, non-parametric alternative methods for robust detection of 

spatiotemporal avoidance behaviour described here (e.g. U-test) can be applied with slightly lower 

power (Adams & Anthony 1996). 

The preferred time interval for detecting spatiotemporal avoidance behaviour with the permutation 

test and the test based on randomly generated records is the interval between the dominant and the 

subordinate species (AB). There was no indication that Avoidance-Attraction-Ratios AB/BA and 

BAB/BB provided an advantage in detecting spatiotemporal avoidance between species compared to 

the other time intervals in terms of power or robustness. Karanth et al. (2017) used a similar test 

based on randomly generated records compared times intervals between co-occurring species 

(times-to-encounters, akin to AB here) from observed data and random records and found 

indications for potential spatiotemporal interactions between dholes, leopards and tigers in Indian 

wildlife reserves. 

While the presented tests are suitable to reliably (power < 0.8) detect spatiotemporal avoidance and 

temporal segregation, failure to detect these may be due to low power while spatiotemporal 
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avoidance or temporal segregation between species is present. Spatiotemporal avoidance can be 

detected if avoidance is sufficiently strong (odds ratio ≥ 10) and long-lasting (≥ 1 day). However, if 

avoidance was weak (i.e., a mild decrease in detection probability of the subordinate species after 

the presence of a dominant species, odds ratio = 2) or very short-term (e.g. in the range of hours), 

avoidance cannot be detected reliably even with high numbers of records. Analogously, for temporal 

segregation, subtle shifts in activity peaks of 1-2 hours cannot be detected reliably even with large 

numbers of records unless activity peaks are very narrow (narrower than simulated in the present 

study). Hence, failure to detect temporal segregation or spatiotemporal avoidance in data may be 

due to low power while there is an actual interaction between species. 

Tests based on low numbers of records generally have low power, thus impeding the detection of 

spatiotemporal avoidance or temporal segregation. In addition, when calculating activity densities 

(for the creation of random records or activity overlaps), low numbers of records give 

disproportionate weight to individual records and can prevent the inference of actual activity 

patterns. As a consequence, the activity densities estimated from low numbers of records do not 

reflect the underlying distributions adequately. Current studies were generally aware of this 

limitation and used from 10 to well over 1000 records for estimating activity densities (e.g. Lynam et 

al. 2013; Ross et al. 2013; Farris et al. 2015). The use of hourly accumulation curves or a comparison 

of activity density estimates with non-negative trigonometric sums were suggested to help deciding 

whether sufficient records are available to adequately describe the species’ activity patterns (Ridout 

& Linkie 2009; Tambling et al. 2015).  

For the reliable detection of differences in activity peaks between species with unimodal activity 

patterns, 20 records per species were usually sufficient to detect a difference of a few hours. The 

necessary number of records is larger for smaller differences (2-3 hours) or bimodal activity patterns 

and more likely in the range of 50 records per species. As stated above, power strongly depends on 

the shape of the underlying detection probability distribution and the actual activity shift, with 

chances being that subtle changes in activity peaks (e.g. 1-2 hour) would go unnoticed.  

While low numbers of records may result in low power for detecting temporal segregation, power 

may be sufficient in high numbers of records for the detection of small shifts in activity patterns that 

may be ecologically irrelevant. Additionally, differences in the underlying activity density functions 

between the species (e.g., one having a unimodal and the other a bimodal activity pattern) can give 

significant results. Even if sufficient numbers of records are available and activity patterns are similar 

between species, the main constraints on the interpretation of such an analysis is that (in contrast to 

spatiotemporal avoidance results) a significant finding in the presented activity overlap permutation 
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test does not necessarily indicate interaction, niche partitioning, or avoidance between these 

species, but may simply reflect individual species autecology. 

This work is theoretical in nature and does not incorporate the manifold sources of uncertainty found 

in real world data. Examples of such sources of uncertainty are imperfect detection, confounding 

effects of multiple species from the community, or attraction between species. Imperfect detection 

is inevitable in camera trapping and likely reduces the power of the tests for spatiotemporal 

avoidance, as it adds noise to the signal and alters the distribution of time intervals between records, 

thereby likely increasing the number of records needed to reliably detect spatiotemporal 

interactions. However, imperfect detection should not affect the test for differences in activity 

patterns, given sufficient records and under the assumption that detection probabilities of both 

species are constant throughout the day. To assess the impact of the detection process, a potential 

extension of the presented simulation framework would be to (randomly or non-randomly) remove 

records of both species. 

Potential other competitors or predators besides the two focal species complicate the system and 

may introduce further unobserved interaction patterns, which would negatively impact the power of 

detecting the species interactions of interest. Removing time intervals between focal species from 

the analyses when a third species was detected in between (as in Parsons et al. 2016) may partly 

alleviate this problem at the cost of losing data and consequently reduced power. Removing those 

time intervals, however, would not be enough if occupancy by some third species alone changes 

activity patterns of one of the study species (e.g. Ross et al. 2013),. In this situation, the third species 

may introduce spurious relationships between species, e.g. an apparent interaction effect between 

two species that in reality is caused by the additional species. Including a third species in the analyses 

presented here would be possible in theory, but sharply increases the number of necessary 

comparisons, and thus the data requirements to reach a given power, and complicates interpretation 

of findings (there would be three activity overlaps instead of one and six time intervals equivalent to 

AB and BA instead of two). A further alternative may be to take a functional, trait-based approach 

and treat records of different species from the same guild as one species group at the cost of 

reduced taxonomic resolution. 

Spatiotemporal attraction of one species by another should be detectable with the methods we 

present for spatiotemporal avoidance. Therefore, an ecologically meaningful extension of the 

presented simulating framework could be to include attraction between species (e.g. a predator 

following prey). 
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The methods we present may also be applied to intra-specific relationships, e.g. between individuals, 

animals of different age classes or sexes, between seasons, different areas, or between stations with 

specific properties. For example, a significant shift in activity peaks of a species in the absence or 

presence of a potential competitor or predator could give an indication of behavioural adaptation in 

terms of the activity periods (Ross et al. 2013). Nevertheless, even strong shifts in activity patterns do 

not prevent interactions between species, as shown for dholes in Laos that preyed on species they 

had little activity overlap with (Kamler et al. 2012). 

In order to make the results more easily interpretable, we simulated data from a simple system 

consisting of a single camera trap station only. However, all methods we present here can easily be 

expanded to multiple camera trap stations, as will be found in almost all field camera trapping 

studies.  

For detecting spatiotemporal avoidance, our results showed that the most sensitive method to study 

this interaction is a linear model comparing the (log-transformed) time intervals AB and BA. By 

considering the camera trap station as an additional random or fixed effect, one could capture 

geographic differences in interval times. Which of these two formalisms should be used (fixed or 

random) depends on the number of stations and on the number of observations per station. 

Considering stations as a random effect implies the additional assumption that the geographic 

differences are normally distributed between stations (other distributions can also be considered in 

some R packages such as spaMM). If this assumption is legitimate, then fitting the model as a mixed-

effects model considering the type of interval as a fixed effect and the camera trap station as a 

random effect should lead to higher power than the alternative full fixed effect parameterisation. If 

the number of stations is low (e.g. < 6), the mixed model approach is not recommended because the 

estimation of the variance of the random effect will be poor. In such a case, one should consider the 

camera trap station as an additional fixed effect and introducing an interaction term to account for 

the statistical interaction between the spatiotemporal interaction and the station. This latter 

approach requires many observations per station to ensure sufficient power. The approach based on 

linear models (whether mixed or not) has the additional advantage that other factors potentially 

affecting the interaction between species (such as habitat characteristics) could also be included. If 

the violations of linear model assumptions are severe and non-parametric U-tests are performed, the 

p-values of these independent U-tests from individual stations can be combined using Fisher’s 

method (Fisher 1932) at the cost of reduced power. 

Similarly, in both the random record method and the permutation test for spatiotemporal avoidance, 

the p-values from tests at each station can be aggregated using Fisher’s method to test the global 
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null hypothesis of no interaction. The species label permutation test can only be applied if sufficient 

numbers of records are available at each station to ensure a sufficiently high number of possible 

permutations and avoid problems with robustness shown above. Therefore, a high number of 

records at each station will be required and it is likely that this method can only be used for two 

commonly recorded species. When using randomly generated records to detect spatiotemporal 

avoidance, pooling records from different stations can also give a more accurate reflection of 

species’ general activity patterns, thus providing more realistic random records at each station 

(assuming activity is constant between stations). 

For the temporal segregation permutation test, records from all stations or stations at which both 

species co-occur can be pooled to give sufficient numbers of records, assuming activity patterns are 

constant between stations. All stations are then jointly analysed in one permutation test. If activity 

patterns within species are assumed to differ between stations, independent permutation tests can 

be run on different (sets of) stations. Pooling data from many stations or over extended periods of 

time will however induce an increase observed overlap, which is an artefact of pooling (Nouvellet et 

al. 2012). Fisher’s method can also be applied here if multiple permutation tests are performed (e.g. 

on different subsets of camera trap stations). 

The simulation approach we presented provides a flexible, extensible framework for the 

development and testing of statistical methods for detecting species interactions in camera trapping 

data under well-defined conditions. We recommend field researchers to adapt our approach to 

simulate data closer to their biological reality to assess their methods prior to analyses or to assess 

the sampling design prior to the data collection. Our results provide guidance to field researcher as 

to when their data will be sufficient to test spatiotemporal avoidance and temporal segregation and 

how such tests could be implemented. Irrespective of the type of analysis, our simulation study 

showed that in order to detect subtle spatiotemporal interactions, sufficient numbers of records 

(often in the range of 100 per species and above) are needed. As understanding species interactions 

is a key topic in ecology, our results support calls to standardise data collection schemes  and 

combine camera trap datasets from different studies in joint analyses (Forrester et al. 2016; 

Steenweg et al. 2017).  
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Supplementary Figures 
S4.1. Empirical cumulative density functions (ECDFs) of p-values of linear models and U-test for detecting spatiotemporal 

avoidance between two species from 1000 iterations for each factor combination. The margins indicate the factor 

combinations. In the columns: the method applied (lm = linear model, lm(log) = linear model with log-transformed data, U-

test = Mann-Whitney U-test), survey duration (100/300 days), time until recovery of detection rate of the subordinate 

species after presence of the dominant species (1/3 days). The rows show the numbers of simulated records. Data shown 

are for uniform activity patterns, but almost identical to unimodal and bimodal activity patterns. The distribution of p-

values under the null hypothesis corresponds to a uniform distribution if it follows the grey diagonal line (page 89). 

S4.2. ECDFs of the random record method for detecting spatiotemporal avoidance between two species from 1000 

iterations for each factor combination. The margins indicate the factor combinations. In the columns: the time interval 

assessed, survey duration (100/300 days), time until recovery of detection rate of the subordinate species after presence of 

the dominant species (1/3 days). The rows show the numbers of simulated records and both methods, the permutation test 

and randomly generated records. Data shown are for uniform activity patterns, but almost identical to unimodal and 

bimodal activity patterns. The distribution of p-values under the null hypothesis corresponds to a uniform distribution if it 

follows the grey diagonal line (page 90). 

S4.3. ECDFs of permutation tests for finding temporal segregation between two species from 1000 iterations for each factor 

combination. The columns show the number of simulated records of each species. The rows show the activity pattern (uni- 

or bimodal) and its respective concentration parameter k. An activity peak difference of 0 hours means equal activity peaks 

between two species, hence it corresponds to the null hypothesis (thick orange line. The distribution of p-values under the 

null hypothesis corresponds to a uniform distribution if it follows the grey diagonal line (page 91).
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Supplementary Figure S4.3
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Supplement 
Supplement 4.1: R function for simulating camera trappingrecords of interacting species  

library(CircStats) 

 

### function arguments 

 

#     n_records_A                  # number of records of the dominant species 

#     n_records_B                 # number of records of the subordinate species 

#     n_days                       # simulated survey duration in days 

#     effect_duration_days        # how many days until full recovery of detection probability of subordinate 

species after a detection of the dominant species 

#     effect_reduction_factor     # the odds ratio between the odds of detecting the subordinate species 

after the dominant species was present relative to the odds of detecting the subordinate species in the 

absence of the dominant species 

#     linearRecoveryOfB           # after records of dominant species, does detection probability of 

subordinate species recover linearly? 

#     do_plots = FALSE             # make a plot? 

#     family = c("uniform", "von Mises", "Cauchy", "von Mises Mixture")    # the type of probability density 

distribution describing daily activity patterns. 

#     species_offset_hours = 0    # if set, species B activity peaks are shifted relative to peaks of A (in hours) 

#     densityFunctionParameters   # a list with parameters of von Mises / Cauchy distributions 

 

 

simulateInteractionRecordsActivity_simple <- function(n_records_A, 

                                                      n_records_B, 

                                                      n_days, 

                                                      effect_duration_days, 

                                                      oddsRatio, 

                                                      linearRecoveryOfB, 

                                                      do_plots = FALSE, 

                                                      family = c("uniform", "von Mises", "Cauchy", "von Mises Mixture"), 

                                                      species_offset_hours = 0, 

                                                      densityFunctionParameters 

) 

{ 

 

  if(oddsRatio < 0) stop("oddsRatio must be be > 0") 
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  if(oddsRatio < 1) warning("oddsRatio < 1 suggests attraction. This is not fully supported in this function.") 

 

  stopifnot(length(family) == 1) 

 

  family <- match.arg(family, choices =  c("uniform", "von Mises", "Cauchy", "von Mises Mixture")) 

 

 

  # check function input according to distribution function family 

  if(family == "uniform")  { 

    densityFunctionParameters <- list() 

    mu    <- 0 

    kappa <- 0 

  } else { stopifnot(hasArg(densityFunctionParameters)); stopifnot(is.list(densityFunctionParameters))} 

 

  if(family == "von Mises") { 

    stopifnot(all(c("mu", "kappa") %in% names(densityFunctionParameters))) 

    mu    <- densityFunctionParameters$mu 

    kappa <- densityFunctionParameters$kappa 

    if(mu < 0 | mu > 2 * pi) stop("mu must be between 0 and 2*pi") 

  } 

 

  if(family == "Cauchy"){ 

    stopifnot(all(c("mu", "rho") %in% names(densityFunctionParameters))) 

    mu  <- densityFunctionParameters$mu 

    rho <- densityFunctionParameters$rho 

    if(rho < 0 | rho > 1) stop("rho must be between 0 and 1") 

  } 

 

  if(family == "von Mises Mixture") { 

    stopifnot(all(c("mu1", "mu2", "kappa1", "kappa2") %in% names(densityFunctionParameters))) 

    mu1      <- densityFunctionParameters$mu1 

    mu2      <- densityFunctionParameters$mu2 

    kappa1 <- densityFunctionParameters$kappa1 

    kappa2 <- densityFunctionParameters$kappa2 

    if(mu1 < 0 | mu1 > 2 * pi) stop("mu1 must be between 0 and 2*pi") 

    if(mu2 < 0 | mu2 > 2 * pi) stop("mu2 must be between 0 and 2*pi") 

  } 
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  if(species_offset_hours > 24) stop("species_offset_hours can't be greater than 24") 

 

  det_prob_baseline <- 1 

  tz <- "UTC" 

 

  # generate a time sequece with 1-minute intervals for 1 day (00:00:00 - 23:59:00) in radial and clock time 

  seq0 <- seq(0, (2*pi), length.out = 1441) 

  seq0 <- seq0[-length(seq0)] 

 

  date0 <- base::as.Date(rep(seq(0, n_days - 1, by = 1), each = length(seq0)), origin = "1970-01-01",  tz = tz)   

# 0... n_days -1 because origin = day 0!! 

  n_events <- length(date0) 

 

  det_prob_0 <- rep(det_prob_baseline, times = n_events) 

 

  species_offset_rad <- species_offset_hours/24*2*pi 

 

  if(family %in% c("uniform", "von Mises")){  # density of von Mises distribution (it is uniform if kappa = 0) 

 

    density_distribution_A <- dvm(theta = seq0, 

                                  mu    = mu, 

                                  kappa = kappa) 

 

    if(species_offset_hours == 0){ 

      density_distribution_B <- density_distribution_A 

    } else { 

      if(mu + species_offset_rad > 2*pi) stop("mu + species_offset_hours is > 2 * pi") 

      density_distribution_B <- dvm(theta = seq0, 

mu    = mu + species_offset_rad, 

kappa = kappa) 

    } 

  } 

  if(family == "Cauchy"){         # Wrapped Cauchy Density Function 

 

    density_distribution_A <- dwrpcauchy(theta = seq0, 

                                         mu    = mu, 

                                         rho   = rho) 
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    if(species_offset_hours == 0){ 

      density_distribution_B <- density_distribution_A 

    } else { 

      if(mu + species_offset_rad > 2*pi) stop("mu + species_offset_hours is > 2 * pi") 

      density_distribution_B <- dwrpcauchy(theta = seq0, 

mu    = mu + species_offset_rad, 

rho   = rho) 

    } 

  } 

 

  if(family == "von Mises Mixture"){  # Mixture of 2 von Mises Distributions 

    density_distribution_A <- dmixedvm(theta  = seq0, 

mu1    = mu1, 

                                       mu2    = mu2, 

                                       kappa1 = kappa1, 

kappa2 = kappa2, 

                                       p      = 0.5) 

 

    if(species_offset_hours == 0){ 

      density_distribution_B <- density_distribution_A 

    } else { 

      if(mu1 + species_offset_rad > 2*pi) stop("mu1 + species_offset_hours is > 2 * pi") 

      if(mu2 + species_offset_rad > 2*pi) stop("mu2 + species_offset_hours is > 2 * pi") 

 

      density_distribution_B <- dmixedvm(theta  = seq0, 

mu1    = mu1 + species_offset_rad, 

                                         mu2    = mu2 + species_offset_rad, 

                                         kappa1 = kappa1, 

                                         kappa2 = kappa2, 

                                         p      = 0.5) 

} 

  } 

 

  #  observation probabilites (relative, not absolute) for each minute in study period 

 

  det_prob_A <- det_prob_0 * density_distribution_A 

  if(species_offset_hours == 0){ 

    det_prob_B_0 <- det_prob_A 
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  } else { 

    det_prob_B_0 <- det_prob_0 * density_distribution_B 

  } 

 

  # generate records of species A conditional on detection probability of A 

 

  time_random_A_tmp <- sort(sample(x = seq(1, n_events), size = n_records_A, prob = det_prob_A, replace 

= FALSE)) 

 

  # create probability density for species B dependent on records of species A and the strength of the effect 

 

  if(!isTRUE(linearRecoveryOfB)){    # constant effect of strength "oddsRatio" for length of 

"effect_duration_days" 

 

    det_prob_B <- det_prob_B_0 

 

    which_have_reduced_p <- unique(as.vector(sapply(time_random_A_tmp, FUN = function(X){seq(from = 

X, to = X + (effect_duration_days * 1440))}))) 

    if(any(which_have_reduced_p > n_events)){ 

      which_have_reduced_p <- which_have_reduced_p[-which(which_have_reduced_p > n_events)] 

    } 

 

    det_prob_B[which_have_reduced_p] <- det_prob_B_0[which_have_reduced_p] / oddsRatio 

 

  } else {   #linear recovery of det_prob_B 

 

    det_prob_B <- det_prob_B_0 

 

    which_have_reduced_p <- unique(as.vector(sapply(time_random_A_tmp, FUN = function(X){seq(from = 

X, to = X + (effect_duration_days * 1440))}))) 

    # which_have_reduced_p <- sapply(lapply(time_random_A_tmp, FUN = function(X){seq(from = X, to = X 

+ (effect_duration_days * 1440))}), 

    #                                       FUN  = as.vector) 

 

    if(max(which_have_reduced_p) > n_events){ 

      which_have_reduced_p <- which_have_reduced_p[-which(which_have_reduced_p > n_events)] 

    } 

    # for each time point affected by presence of A, calculate distance from last record of A 



Chapter 4: Assessing spatiotemporal interaction between species from camera-trapping data 

97 

    test <- sapply(time_random_A_tmp, FUN = function(x) {which_have_reduced_p - x}) 

    test[test < 0] <- NA 

    distance_from_event <- apply(test, MARGIN = 1, FUN = min, na.rm = TRUE)   # = time steps since last 

detection of A 

 

    n_steps_until_recovery <- effect_duration_days * 1440                     # number of steps after which 

detection probability of B is back to normal 

 

    # calculate detection probability taking into account linear recovery 

    det_prob_B[which_have_reduced_p] <-   det_prob_B[which_have_reduced_p] / oddsRatio + 

      (distance_from_event / n_steps_until_recovery) * (1 - (1 / oddsRatio)) * 

det_prob_B[which_have_reduced_p] 

  } 

 

  # random sample from these (realised observations) 

 time_random_weighted_B_tmp <- sort(sample(x = seq(1, n_events), size = n_records_B, replace = FALSE, 

prob = det_prob_B)) 

 

  # make data frame with results for non-independent detections 

  simu2 <- data.frame(Station          = "station 1", 

                      Species          = rep(c("Species A", "Species B"), times = c(n_records_A, n_records_B)), 

                      DateTimeOriginal = strptime(c(time_random_A_tmp, time_random_weighted_B_tmp) * 60, 

format = "%s", tz = tz)) 

 

  simu2 <- cbind(simu2, 

                 Date     = base::as.Date(simu2$DateTimeOriginal, tz = tz), 

                 Time     = format(simu2$DateTimeOriginal, format = "%H:%M:%S"), 

                 Time_sec = as.numeric(format(simu2$DateTimeOriginal, format = "%s")), 

                 TimeRad  = ClocktimeToRadialTime(simu2$DateTimeOriginal)) 

 

  if(isTRUE(do_plots)){ 

 

    mfrow0 <- par()$mfrow 

    on.exit(par(mfrow = mfrow0)) 

 

    # generate tile and subheadings for plot 

    main_title <- paste("family = ", family, 

                        ";  odds ratio = ", oddsRatio, 
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                        ";  linear recovery of B = ", linearRecoveryOfB, sep = "") 

    subtitle <- paste("n_records A = ", n_records_A, "; total length = ", n_days, " days", ";  effect_duration = 

", effect_duration_days, " days", sep = "") 

    subtitle2 <- paste("n_records B = ", n_records_B, "; species_offset_hours = ", species_offset_hours, sep = 

"") 

 

    if(family == "von Mises") subtitle <- paste(subtitle, "; mu = ", round(mu, 2), " (= ", round(mu * 24/(2*pi)), 

" o'clock); kappa = ", kappa, 

                                                "; odds ratio (B(no A) / B(A)) =", oddsRatio , sep = "") 

    if(family == "Cauchy")    subtitle <- paste(subtitle, "; mu = ", round(mu, 2), " (= ", round(mu * 24/(2*pi)), " 

o'clock); rho = ", rho, 

                                                "; odds ratio (B(no A) / B(A)) =", oddsRatio, sep = "") 

    if(family == "von Mises Mixture")  subtitle <- paste(subtitle, "; mu1 = ", round(mu1, 2), " (= ", round(mu1 

* 24/(2*pi)), " o'clock)", 

"; mu2 = ", round(mu2, 2), " (= ", round(mu2 * 24/(2*pi)), " o'clock)", 

"; kappa1 = ", kappa1, "; kappa2 = ", kappa2, 

                                                         "; odds ratio (B(no A) / B(A)) =", oddsRatio, sep = "") 

 

    # set graphical parameters 

    col_abline <- rgb(0, 0, 0, 0.2) 

    col_abline2 <- rgb(0, 0, 0, 0.1) 

    col_rug_A <- "red" 

    col_rug_B <- "blue" 

    lwd_rug <- 3 

 

 

    # create plot 

 

    # top plot: dominant species A 

    par(mfrow = c(2,1)) 

    plot(det_prob_A, type = "l", axes = F, ylim = c(0, max(det_prob_A)), 

         main = main_title, sub = subtitle, xlab = "", ylab = "probability weight") 

    at_tmp_label <- seq(720, length(det_prob_A), by = 1440)              # location for x axis label (noon) 

    at_tmp_vline <- seq(1, length(det_prob_A), by = 1440)                # location for abline at midnight each day 

    axis(1, at = at_tmp_vline, labels = FALSE, tick = TRUE)    # make ticks 

    axis(1, at = at_tmp_label, labels = paste("day", seq(1, (length(at_tmp_label)))), tick = FALSE) 

    axis(2) 

    abline(v = at_tmp_vline, col = col_abline) 
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    rug(time_random_A_tmp, lwd = lwd_rug, col = col_rug_A); box() 

    polygonToPlot_A <- data.frame(x = c(1, 1:length(det_prob_A), length(det_prob_A), 1), 

                                  y = c(0, det_prob_A, 0, 0)) 

    polygon(x = polygonToPlot_A$x, y = polygonToPlot_A$y, border = NA, col = col_abline) 

 

    # bottom plot: subordinate species B 

    plot(det_prob_B, type = "l", axes = F, ylim = c(0, max(det_prob_B)), xlab = "", ylab = "probability weight", 

sub = subtitle2) 

    axis(1, at = at_tmp_vline, labels = FALSE, tick = TRUE)    # make ticks 

    axis(1, at = at_tmp_label, labels = paste("day", seq(1, (length(at_tmp_label)))), tick = FALSE) 

    axis(2) 

    abline(v = at_tmp_vline, col = col_abline) 

    rug(time_random_A_tmp, lwd = lwd_rug, col = col_rug_A) 

    rug(time_random_weighted_B_tmp, lwd = lwd_rug, col = col_rug_B); box() 

 

    polygonToPlot_B <- data.frame(x = c(1, 1:length(det_prob_B), length(det_prob_B), 1), 

                                  y = c(0, det_prob_B, 0, 0)) 

    polygon(x = polygonToPlot_A$x, y = polygonToPlot_A$y, border = col_abline, col = col_abline2)     # plot 

where it would be 

    polygon(x = polygonToPlot_B$x, y = polygonToPlot_B$y, border = NA, col = col_abline) 

 

  } 

  return(simu2) 

} 
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# Helper function to  convert clock time to radial time (0, ..., 2 pi) 

 

ClocktimeToRadialTime <- function(Clocktime, 

                               timeformat = "%Y-%m-%d %H:%M:%S" 

){ 

  DateTime2 <- strptime(as.character(Clocktime), format = timeformat, tz = "UTC") 

  Time2     <- format(DateTime2, format = "%H:%M:%S", usetz = FALSE) 

  Time.rad  <- (as.numeric(as.POSIXct(strptime(Time2, format = "%H:%M:%S", tz = "UTC"))) - 

                  as.numeric(as.POSIXct(strptime("0", format = "%S", tz = "UTC")))) / 3600 * (pi/12) 

  return(Time.rad) 

} 

 

 

 

# a sample call to the function 

 

###  function parameters explained 

# 20 records of both species over 50 days 

# after record of A, probability of encounter of B is reduced to 10% of its original value and recovers 

linearly within 1 day 

# unimodal activity pattern for both species, activity peaks at noon for both species 

 

records_simulated <- simulateInteractionRecordsActivity_simple (n_records_A = 20, 

                                                      n_records_B = 20, 

                                                      n_days = 50, 

                                                      effect_duration_days = 1, 

                                                      oddsRatio = 10, 

                                                      linearRecoveryOfB = TRUE, 

                                                      do_plots = TRUE, 

                                                      family = "von Mises", 

                                                      species_offset_hours = 0, 

                                                      densityFunctionParameters = list(mu = pi, kappa = 2)) 
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CHAPTER 5 

General discussion 

 

The purpose of this study was to develop new and advance already available methods for the 

management and analyses of wildlife data from camera trapping surveys. The study focused on 

streamlining camera trap data management workflows by providing a new toolbox in the widely used 

R language for that purpose. The second focus of this study was on the advancement of analytical 

tools for camera trapping data in spatial and temporal contexts, the two fundamental axes shaping 

ecological systems (Wolkovich et al. 2014), by assessing the usefulness of high-resolution remote 

sensing data in camera trap based occupancy models and scrutinising methods for detecting 

spatiotemporal interactions between species in camera trapping data. While this study is largely 

conceptual, it is broad in scope and its findings should be applicable to most camera trapping studies. 

The importance of wildlife monitoring in a changing world 

Globally, numerous species of mammals are threatened (Schipper et al. 2008), and while the threat 

status of species and the individual causes of threats differ between regions and species, the 

underlying causes are almost invariably anthropogenic, with habitat loss due to land conversion and 

degradation (Newbold et al. 2015; Struebig et al. 2015a), overexploitation due to hunting and 

poaching (Fa & Brown 2009; Harrison et al. 2016), and the dangers of climate change (Struebig et al. 

2015b) being the most prominent ones. Large, ground-dwelling mammals are particularly 

threatened, and at the same time of high importance for the functioning of ecosystems (Ripple et al. 

2014; Wolf & Ripple 2016). Large carnivores exert trophic control over lower trophic levels (by means 

of direct predation and induced avoidance behaviour), which can have cascading effects and shape 

whole food webs (Terborgh et al. 1999; Suraci et al. 2016). Large ungulates can change vegetation 

structure and succession and play an important roles as seed dispersers, and thus have an ecological 

landscaping effect (McShea & Rappole 1992; Redford 1992; Sinclair 2003). For the same reasons, 

large ungulates affect ecosystem carbon storage and thus may indirectly influence mechanisms 

associated with climate change (Bello et al. 2015; Osuri et al. 2016). Hence, many large mammal 

species are considered keystone species with particular value for ecosystem functioning and severe 

consequences ecosystem health should they be lost, making them a conservation priority (Simberloff 

1998; Camargo-Sanabria et al. 2014).  
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Larger species have higher extinction risk than smaller species because, to a higher degree than in 

smaller species (< 3kg), their extinction risk is not only determined by environmental factors, but by a 

combination of environmental factors and intrinsic traits (Cardillo et al. 2005). This may contribute to 

unexpectedly rapid future losses of large mammal biodiversity under increasing anthropogenic 

pressure by growing human populations, e.g. due to increased hunting and poaching (Corlett 2007; 

Brodie et al. 2014), and it may be further exacerbated by potential lags in species extinction from an 

extinction debt accumulated from historical land cover conversion (Rosa et al. 2016).  

Camera trapping surveys typically targeted these large ground-dwelling mammals, which are of 

tremendous ecological relevance, yet particularly vulnerable. Analyses of camera trapping data thus 

have high conservation and management relevance and can be used for monitoring and robust 

assessment of population status and trends of wildlife and serve as sensitive indicators for 

ecosystem-wide effects of anthropogenic pressures (Cheyne et al. 2016). Computational advances 

and collaborative efforts between practitioners are further expected to enable near real-time 

monitoring and analyses of mammalian biodiversity from camera trapping data at local, regional and 

global scales through networks of camera traps and other sensors in the near future (Steenweg et al. 

2017). Such studies are of particular importance because current assessments of species vulnerability 

tend to be restricted to local and regional scales and rarely take place at continental or global scales 

(Pacifici et al. 2015). To enable such collaborative efforts, sound data management enabling efficient 

and reproducible analyses is imperative. 

Camera trapping for wildlife monitoring  

Given the multitude of survey methods for wildlife monitoring that were developed and applied in 

the past, the question arises why the potential to conduct such comprehensive analyses is seen in 

camera trapping in particular?  

Wildlife surveys are conducted to answer a variety of ecological questions, ranging from individual 

behavioural observations to population assessments or trends to community level inference, and the 

choice of methods depends on the question of interest (Gese 2001). Most traditional methods are 

rather specific in their aims or too labour-intensive to allow broader inferences. Telemetry studies 

provide more detailed animal movement data than any other survey method, but they require live 

capture, which is often difficult to achieve and regularly result in low sample sizes, and are 

complicated by statistical challenges (Aarts et al. 2008). Therefore, telemetry studies are more 

suitable for specific ecological questions, less so for population-level inferences, let alone global 

ecological inferences (Hebblewhite & Haydon 2010). Direct counts of animals, e.g. along transects, is 

labour-intensive and was found to be of little use as a stand-alone technique due to low numbers of 
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detection in random transects and biases introduced in non-random transects (Mathai et al. 2013). 

Track plots are similarly labour-intensive due to the need for frequent checks (preferably daily) and 

susceptible to being negatively impacted by adverse weather conditions. 

Camera trapping, on the other hand, was often found to be superior in terms of data collected and 

more cost-efficient than other survey methods (Silveira et al. 2003; Weckel et al. 2006; Lyra-Jorge et 

al. 2008) Camera trap networks can be operated synchronously in for months without requiring 

human presence or further habitat disturbance and provide information about the mammal 

community instead of targeting individual animals only, allowing broader analyses. Methodological 

advances in analyses of camera trapping now allow for more sophisticated and robust population 

and community assessments far beyond species inventories, tapping on the wealth of ecological data 

collected by networks of camera traps (MacKenzie et al. 2006; Royle et al. 2014).  

In addition, innovative uses of camera traps kept emerging in recent years, suggesting that camera 

traps still hold unexplored potentials for ecological analyses. Examples include arboreal camera 

trapping for studying the ecology and behaviour of arboreal species that are not readily detected 

using typical terrestrial camera traps (but see Ancrenaz et al. 2014; Gregory et al. 2014), analyses of 

temporal interactions between species (Ridout & Linkie 2009), applications in biodiversity monitoring 

within the framework of forest certification schemes (Sollmann et al. 2017), assessments of frugivory 

and seed dispersal by ruminants (Prasad et al. 2010), use in law enforcement to link confiscated skins 

of poached animals to their origin (Hiby et al. 2009), or underwater cameras for marine monitoring 

(Williams et al. 2014). Furthermore, as the saying goes, a picture is worth a thousand words, and the 

images that are collected by camera traps are highly suitable for raising public awareness and 

appreciation of wildlife and can thus increase public engagement in science and conservation alike 

(Toomey & Domroese 2013; Swanson et al. 2015; McShea et al. 2016). 

Novel methods such as sampling invertebrate-derived or environmental DNA (iDNA / eDNA) hold 

potential for rapid and detailed mammalian wildlife assessments (Schnell et al. 2012; Bohmann et al. 

2014). But at the same time, the increased complexity of these molecular methods (in DNA 

extraction, sequencing, species assignment, and the availability of reference sequences), issues of 

spatiotemporal uncertainty, and potential seasonal unavailability of invertebrate species for iDNA 

sampling severely complicate analyses (Schnell et al. 2015). Hence, much development and 

technological refinement will be needed in addition to rigorous comparison of results with existing 

methods before these novel molecular methods can achieve comparable reliability to camera 

trapping.  
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In summary, camera trapping can be considered the most versatile method for surveying wildlife 

available at the moment and combines numerous advantages of other methods. It is widely used and 

has proven its potential in diverse ecological applications. In addition, it is often more cost-efficient 

and less labour-intensive than other methods in terms of the amount of data collected and the 

analytical possibilities offered. Therefore, camera trapping is legitimately considered the method of 

choice for global mammalian biodiversity assessments and monitoring. 

Advances and challenges in camera trap data management 

Over the past decades, camera trapping equipment has become more sophisticated, reliable, user-

friendly and affordable. Enabled by the development of new analytical approaches, the use of 

camera traps has been extended to a multitude of ecological analyses, granting insights and allowing 

analyses that were unthinkable just two decades ago. This increase in popularity is reflected in the 

publication of hundreds of papers pertaining to camera trapping every year (see Chapter 1 and 

McCallum 2012). Irrespective of the aim of these studies, be it occupancy, behavioural analyses or 

population assessments, the basic workflow for data management and preparation of analyses is 

similar and consists of assigning images to locations, identifying species (and/or individuals) and 

preparing data for subsequent analyses.  

A number of approaches were available to facilitate and streamline camera trap data management, 

usually with slightly different foci and workflows, but all with the intention to automate repetitive 

tasks, reduce manual labour and thus increase efficiency and reliability of data generated in camera 

trapping. The popularity of the R language for ecological analyses of camera trapping data and its 

efficiency when working on large amounts of data induced the development of camtrapR, the first R 

package for camera trap data management. Since its publication in 2015 (Niedballa et al. 2015), it 

has quickly gained popularity and is now being used around the world by academic researchers and 

conservationists to manage camera trapping projects. The use of the package was encouraged in a 

number of training courses that were held since the package release, particularly in Southeast Asia, 

and the user base is supported by a Google group1 with 75 members (as of September 2017) which 

the author founded and moderates. The package is being actively maintained, expanded and 

updated regularly to further increase its usefulness to the camera trapping community. 

The multitude of different software toolboxes for camera trap data management available today has 

a number of advantages and disadvantages. Different projects have different aims and study designs, 

complicating the development of a single toolbox that can accommodate all possible study designs. 
                                                           
1https://groups.google.com/forum/#!forum/camtrapr 
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Consequently, more available toolboxes increase the chances for finding suitable software for 

specific needs of particular studies. But, different software adhering to different data storage 

schemes and paradigms, this diversity may on the other hand hamper data exchange and complicate 

collaborative efforts. Future directions for the development for software for camera trap data 

management should therefore aim at standardising data storage to improve compatibility between 

data sets and allow scalability of analyses (Steenweg et al. 2017). To ensure long-term data storage 

and availability, local data storage should be linked to online repositories (Global Biodiversity 

Information Facility 2014). Modern camera traps can usually records videos, but dependable video 

support in camera trap data management software is currently not possible because of inconsistent 

metadata storage in video files, which may easily lead to loss of essential information like date and 

time. Species and individual identification is generally done manually and can be very time-

consuming. Alternative approaches, such as machine learning algorithms for automated species and 

individual identification or citizen science approaches hold potential to significantly reduce the time 

effort needed to manually identify species and individuals from camera trapping data (Pimm et al. 

2015; Swanson et al. 2015). 

Combining advances in camera trapping and remote sensing  

The growing number of camera trapping studies and calls to combine data sets regionally and even 

globally not only requires standardisation in terms of camera trap data management, but also in 

terms of the data used to explain the distribution and population parameters of animal populations 

and communities. In parallel to the developments in camera trapping hardware and software, 

remote sensing technology and analytical possibilities thereof have advanced rapidly in recent years. 

While for many years 30-m Landsat data were the best available data for use in conservation biology 

and still provide highly valuable information on the global scale (Leimgruber et al. 2005; Hansen et al. 

2013), more recent generations of satellites provide higher resolution and more detailed earth 

observations. Remote sensing is the method of choice to deliver earth observation data for use in 

global biodiversity assessments due to its standardised, continuous, near real-time coverage of the 

earth’s surface, capturing patterns and processes in unprecedented detail and spatial extent 

(Pettorelli et al. 2014; Proença et al. 2016). However, the effective use of remote sensing in 

biodiversity conservation and research requires unrestricted and free access to data and must ensure 

data continuity (Turner et al. 2015). 

This study was the first to assess the applicability of 5-m RapidEye satellite imagery in camera trap 

based occupancy models and found strong evidence for higher explanatory value of covariates 

derived from these high-resolution data, highlighting their potential for explaining species-habitat 
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associations at local and regional scales. While the amount of detail provided by these data was 

shown to be of value, further studies will be needed to confirm their usefulness at larger scales, e.g. 

at the national, continental or global level, as applicability at those scales may be impeded by 

excessive detail in high resolution data and soaring requirement in terms of data storage and 

computational power. 

Whatever the data basis of global biodiversity assessments will be, the question of scale is universal 

in ecology and affects remote sensing data, in-situ field surveys and biodiversity assessments alike. 

Consequently, all inferences drawn from these models are likewise affected by their respective scale 

and should only be interpreted at that scale. Analyses at multiple spatial scales can help better 

understand mechanisms underlying observed patterns of species distribution and co-occurrence 

(Gillingham et al. 2012; Lindström et al. 2013; Harms & Dinsmore 2016). 

Species interactions in predictive distribution modelling 

While the development of predictive models for species distributions and abundance under climate 

change is central to future biodiversity conservation, most of these predictive models exclude 

important biological mechanisms (Urban et al. 2016). Six biological mechanisms were identified that 

are often neglected in current predictive models due to lack of data, but which could improve 

prediction accuracy and robustness of these models to inform conservation efforts under climate 

change considerably if they were included.  

Species interactions are one of these key biological processes and can limit species distributions 

across large spatial and temporal scales (competition in particular; Pigot & Tobias 2013). The high-

priority parameters about species interactions that are needed include specialist interactions, top-

down food web interactions and timing mismatches among interacting species (Urban et al. 2016). 

Incorporating these species interaction parameters may enable the development of more realistic, 

mechanistic species distribution models (Urban et al. 2013).  

Camera traps can deliver information about spatiotemporal species interactions at point localities 

and may thus provide the species interaction information needed for mechanistic predictions of 

species and community responses to climate change. A number of approaches were developed to 

assess spatiotemporal interactions in camera trapping data, but these methods remain poorly 

studied and have not been assessed in terms of their statistical properties, mainly because the true 

state of system is unobserved in field data. Data simulation, mimicking basic properties of real-world 

systems at reduced complexity, makes it possible to experiment with these systems, which would 
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often be too difficult or costly to do in real world scenarios (Peck 2004) and was applied here to 

assess different methods for detecting spatiotemporal interactions in camera trapping data. 

The assessment of different methods for detecting spatiotemporal interactions in camera trapping 

data presented in chapter 4 and the recommendations about which method to choose in which 

situation can help derive more robust inferences about species interactions from camera trapping 

data. Besides answering basic ecological questions, such information can also be used in mechanistic 

and thus more realistic predictive frameworks of future biodiversity scenarios under climate change. 

Furthermore, given the potential of global change for altering species interaction patterns (Tylianakis 

et al. 2008), spatiotemporal interactions may be a more sensitive indicator for ecosystem changes 

than occupancy patterns. 

Conclusion 

Camera trapping is a prime method for mammalian biodiversity monitoring and for studying rare and 

elusive species, or those occurring at low densities, where direct observations are too challenging. It 

is particularly suitable in closed habitats (e.g. forests) where direct observations are even more 

challenging than in open habitats such as savannahs. Because of its suite of favourable properties, 

camera traps are expected to stay a main tool in the hands of ecologists and conservation biologists 

for the rapid and robust assessment of mammalian biodiversity in the years to come. This study has 

contributed to these efforts by facilitating camera trap data management, assessing the applicability 

of high-resolution remote sensing data in the analyses of camera trapping data, and providing a 

theoretical framework and recommendations for the inference of spatiotemporal species 

interactions from camera trapping data. 
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SUMMARY 
 

Camera trapping has become a prime source of information about wild terrestrial mammals over the 

recent years, particularly for rare and elusive species and in challenging habitats. Key inference from 

camera-trapping encompasses species habitat associations, density and abundance estimations, or 

species interactions, amongst others. The rapid development of those methods and the large 

amount of data collected entail new challenges in terms of data management and analysis. The aim 

of this thesis was to contribute to the development of new methods for managing (Chapter 2) and 

analysing (Chapter 3 and 4) camera trapping data and to thus increase the efficiency and 

effectiveness of the use of camera-trapping data for practitioners both in academia and 

conservation. 

Camera-trapping can generate vast volumes of data over short periods of time, making efficient yet 

flexible data management imperative. In my first manuscript (Chapter 2), I developed a free and 

open-source R package for camera trap data management, camtrapR. It is the first such toolbox in 

the popular R language and was designed to offer a comprehensive and flexible workflow from data 

acquisition to creating input for well-developed downstream analytical tools, e.g. in occupancy or 

spatial capture-recapture frameworks. The package has quickly gained popularity and is now being 

used worldwide in scientific and conservation work, while it is still being actively maintained and 

developed. 

Species occurrence data from camera-traps can be combined with habitat information at camera 

traps via occupancy models in order to identify habitat associations of species while explicitly 

accounting for imperfect detection. The spatial scale at which habitat information are collected 

(grain and extent) will influence results heavily. In my second manuscript (Chapter 3), I assessed the 

influence of spatial scale on estimates of species-habitat relationships by varying the spatial 

resolution and extent of habitat covariates used in single-species occupancy models for six mammal 

species from Sabah, Malaysian Borneo. Habitat data from high-resolution (5-m RapidEye) satellite 

imagery had considerably higher model support than lower resolution data (≥30 m). Likewise, habitat 

data from patches of 50 meters around camera traps had higher model support than smaller (10 m) 

or larger (100 – 500 m) habitat patches. This study was the first to use 5-m RapidEye imagery in 

occupancy models and demonstrated the potential of such high-resolution satellite imagery for 

obtaining more realistic species-habitat associations in occupancy modelling, particularly in 
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heterogeneous landscapes. The flexibility high-resolution satellite imagery offer in defining suitable 

spatial scales further add to their value. 

Species distributions in space and time are not only shaped by habitat preferences, but also by 

interactions between species, such as predator-prey relationships or various forms of competition. 

Discovering such spatiotemporal interactions in camera trapping data is challenging due to the 

sparseness and randomness of camera trapping data and further exacerbated by a lack of systematic 

comparisons of methods to assess such interactions. Therefore, in my third manuscript (Chapter 4), I 

developed a method to flexibly simulate camera trapping records of two interacting species. These 

simulated data are used for the first comparative assessment of the statistical power and robustness 

of a suite of statistical tests for spatiotemporal interactions. Linear models were the most powerful 

and flexible method to discover such interactions. Nevertheless, only strong interactions could be 

detected reliably with any of the methods tested. This novel simulation approach and the 

recommendations given can serve as guidelines for practitioners wishing to assess interactions 

between or within species from camera trapping data.  
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ZUSAMMENFASSUNG 
 

Kamerafallen haben sich in den letzten Jahren zu einer der wichtigsten Datenquellen über 

wildlebende terrestrische Säugetiere entwickelt, insbesondere für seltene und schwer beobachtbare 

Arten sowie in herausfordernden Habitaten. Wichtige Rückschlüsse, welche aus Kamerafallendaten 

gewonnen werden können, sind unter anderem Habitatassoziationen von Arten, Schätzungen von 

Dichte und Abundanz, oder Interaktionen zwischen Arten. Die rasante Entwicklung dieser Methoden 

und die enormen Datenmengen, die dabei entstehen, hatten neue Herausforderungen hinsichtlich 

Datenverwaltung und –analyse zur Folge. Das Ziel dieser Arbeit war, zur Entwicklung von neuen 

Methoden zum Verwalten (Kapitel 2) und Analysieren (Kapitel 3 und 4) von Kamerafallendaten 

beizutragen und damit sowohl Effizienz als auch die Effektivität der Nutzung von Kamerafallendaten 

in Wissenschaft und Naturschutzarbeit zu verbessern. 

Da Kamerafallenstudien in kurzer Zeit riesige Datenmengen produzieren können, ist effizientes und 

flexibles Kamerafallendatenmanagement zwingend erforderlich. In meinem ersten Manuskript 

(Kapitel 2) habe ich ein frei verfügbares und quelloffenes R-Paket für die Verwaltung von 

Kamerafallendaten entwickelt, camtrapR. Es ist das erste derartige Paket in der weitverbreiteten 

Programmiersprache R, und es wurde konzipiert, um einen umfassenden und flexiblen Arbeitsfluss 

von der Datenerhebung bis zum Bereitstellen von Daten für weitergehende Analysen zu 

gewährleisten, z.B. mit Occupancy- oder Spatial Capture-Recapture-Methoden. Das Paket wird 

weiterhin gepflegt und weiterentwickelt, hat schnell an Popularität gewonnen und wird weltweit in 

Wissenschaft und Naturschutzarbeit genutzt.  

Daten über das Vorkommen von Arten aus Kamerafallen kann mit Habitatinformationen an 

Kamerafallenstandorten mit Hilfe von Occupancy-Modellen kombiniert werden, um 

Habitatassoziationen von Arten zu identifizieren und gleichzeitig für die unvollständige 

Detektierbarkeit von Arten zu korrigieren. Das räumliche Ausmaß (scale), in dem 

Habitatinformationen gesammelt werden, beeinflusst die Modellergebnisse erheblich. In meinem 

zweiten Manuskript (Kapitel 3) habe ich den Einfluss des räumlichen Ausmaßes von Habitatdaten auf 

die Abschätzung von Habitatassoziationen von Arten anhand von sechs Säugetierarten aus einem 

Kamerafallendatensatz aus Sabah, Borneo, Malaysia untersucht. Das geschah, indem ich die 

räumliche Auflösung und die Ausdehnung von Habitatinformationen in Occupancy-Modellen für die 

individuellen Arten variiert habe. Habitatinformationen aus hochauflösenden Satellitenbildern (5-m 
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RapidEye) hatten deutlich höheren Modellsupport als niedrig aufgelöste Daten (≥30 m). Habitatdaten 

mit einem Radius von 50 m um Kamerafallen hatten gleichermaßen höheren Modellsupport als 

Daten aus kleineren (10 m) oder größeren (100 – 500 m) Radien. Dies war die erste Studie, die 5-m 

RapidEye Satelllitendaten in Occupancy-Modellen verwendet und demonstriert den Eignung dieser 

hochauflösenden Satellitendaten, insbesondere in heterogenen Landschaften mit Hilfe von 

Occupancy-Modellen zu realistischeren Habitatassoziationen zu gelangen. Die Flexibilität, mit der 

geeignete räumliche Ausdehnungen von Habitatdaten festgelegt werden können, ist ein weiterer 

Vorteil dieser Daten. 

Die Verbreitung von Arten in Raum und Zeit hängt nicht nur von Habitatpräferenzen ab, sondern 

auch von Interaktionen zwischen Arten, etwa in Räuber-Beute Beziehungen oder Konkurrenz 

zwischen oder innerhalb von Arten. Solche Beziehungen in Kamerafallendaten zu identifizieren ist 

herausfordernd aufgrund der Spärlichkeit und Zufälligkeit in Kamerafallendaten, und weiter 

erschwert durch das Fehlen eines systematischen Vergleiches von Methoden, um solche 

Interaktionen zu untersuchen. Deswegen habe ich in meinem dritten Manuskript (Kapitel 4) eine 

Methode entwickelt, mit der sich Kamerafallendaten zweier interagierender Arten flexibel simulieren 

lassen. Diese simulierten Kamerafallendaten wurden verwendet für die erste vergleichende 

Bewertung der statistischen Teststärke (power) und Robustheit einer Reihe von statistischen Tests 

zur Untersuchung räumlich-zeitlicher Interaktionen. Lineare Modelle hatten die höchste Teststärke 

und sind die flexibelste Methode, um solche Interaktionen festzustellen. Dennoch konnten mit allen 

untersuchten Methoden nur starke Interaktionen zwischen Arten zuverlässig nachgewiesen werden. 

Dieser neuartige Simulationsansatz und die daraus folgenden Empfehlungen können als Richtlinien 

für die Untersuchung von Interaktionen zwischen Arten oder innerhalb von Arten in 

Kamerafallendaten dienen.  
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