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Abstract: Design transformations are ubiquitous in design derivation systems. Many such trans- 
formations have elaborate conditions of applicability known as preconditions. Usually, preconditions 
have both spatial and temporal components. The temporal (components of the) preconditions are 
usually specified by associating a dynamic interpretation with the design description at hand. Such 
dynamic interpretations have a semantic content which is based on interpreting the design descrip- 
tion over the domain of natural numbers. Thus the problem of precondition verification is just as 
difficult as the problem of design verification itself. 

This paper is an informal exposition to the techniques we have used in verifying preconditions 
of the design transformations in a transformational exploration system for register-level hardware 
designs. These techniques are based on a purely syntactic interpretation of the design description 
and avoid the difficulties associated with the theorem proving techniques one could employ when 
a semantic interpretation is associated. While not as powerful as theorem proving methods, we 
found these techniques to be adequate for most cases of precondition verification of useful design 
transformations, at least within the design domain, namely register-level hardware, considered. 

1 I n t r o d u c t i o n  

Transformational design methods have been proposed for both program derivation (eg. [4]) and 
hardware design derivation (eg. [3, 5, 9]). In such systems, a design transformation can be applied 
to the current design to derive a functionally equivalent design. Many design transformations 
have elaborate preconditions which must be satisfied by the design before the transformation can 
be applied. For example, two values can be assigned to the same memory location, only if the 
life-spans of the values do not overlap; two ALU's can be folded into one only if they are never 
used at the same time and if the wires to connect the sources and destinations to the ALU's 
already exist. Clearly, preconditions of transformations have a spatial component and a temporal 
component. The spatial preconditions are predicated upon the static composition and connectivity 
among the various modules in the design description and are relatively easy to verify. The temporal 
preconditions are predicated upon a dynamic interpretation of the design representation. Such 
dynamic interpretation is usually based on the input data typically encoded as (streams of) natural 
numbers (or an equivalent domain of values) and on interpreting the design entities (such as the 
functional units) as functions over the domain of interpretation. Then, in general, automated 
verification of the temporal preconditions is as difficult as verifying design (against its functional 
specifications) itself. 

While building a register-level design-space exploration system [7], we have developed several tech- 
niques for precondition verification of design transformations. These techniques do not use con- 
ventional theorem proving techniques directly and are not based on any semantic interpretation of 
the design representation. Rather, they exploit any information available about the set of possible 
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traces (execution paths) to effectively verify the preconditions. Partial evaluation is the main tech- 
nique we used for this purpose. When combined with two other methods, namely using symbolic 
equivalence rules and comparison rules, we found that partial evaluation is a very effective technique 
for precondition verification. The preconditions themselves are specified in terms of what we call 
t.expressions. A t-expression essentially encapsulates all the time-steps at which the various control 
points in the design can be executed given different traces. Verification of temporal preconditions 
then amounts to determining the truth value of various predicates on one or more t-expressions. 
Specification of preconditions using t-expressions was the subject of an earlier work [7, 8]. In 
this paper, after providing an introduction to t-expressions, we concentrate on the evaluation of 
t-expressions while partial or no trace information is available. 

In this paper, we use flow chart programs as the designs being manipulated in the design derivation 
system. Flow chart programs prescribe a sequencing of assignment statements and no-ops. An 
assignment statement can be executed in one time-step; like-wise a no-op can be executed in one 
time-step. The sequencing operators themselves do not consume any time-steps. 1 We do not 
explicitly deal with the internals of the assignment statement in the flow chart. It is enough to say 
that during an assignment statement several resources (such as ALU's, memory locations, wires 
etc.) are used. Some of these resources (such as ALU's) are occupied or live only during execution 
of the assignment statement. Other resources (such as memory locations) are occupied over many 
time steps (as long as the values stored in them are live). Assignment statements abstract register 
transfers in hardware design and program statements in software design. Similarly, no-ops represent 
control delays. (Manipulating the occurrences of no-ops is the primary way to schedule the design 
operations over the resources available.) 

In Section 2 we introduce the flow charts. We introduce t-expressions which describe the time-step 
assignment to the control points in the flow charts. We describe a notation for describing execution 
traces. In Section 3 we describe the evaluation process of a t-expression at a given execution trace. 
In Section 4 we briefly discuss the symbolic equivalence of t-expressions. In Section 5, we introduce 
partial evaluation of t-expressions as a mechanism to verify the preconditions by utilizing any 
partial trace information that might be available to the designer. Often, in temporal preconditions 
we are only interested in relative scheduling of the resources rather than the absolute time-steps 
at which they are used. Verification of such preconditions involves comparing two t-expressions. 
We introduce several comparison rules to compare t-expressions through relation operators without 
evaluating the expressions. Section 7 contains a very brief sketch of our precondition verification 
system and two small examples to explain how these techniques fit together. The verification system 
itself is discussed in [6]; in this paper we concentrate on the underlying techniques. 

2 F l o w  Charts ,  T-Expressions and Traces 

Our flow chart programs (or, simply, flow charts) contain the following types of statements: assign- 
ment, hoop, parallel, case, and while. A flow chart has exactly one enter node and one exit node. 
We use the icons shown in Figure 1 to write flow chart programs. Figure 1 also defines the syntax 
rules for the flow chart programs. Figure 2 shows an example flow chart program. Informally, 
an assignment statement is used to assign to one or more variables values computed using certain 
resources and the values currently stored in the variables. For the purposes of this paper, we are 
not concerned with the semantics or the internals of the assignment statement any further. 

lit is straight forward to extend our techniques to incorporate the case where sequencing operators as well a s  

assignments take multiple time-steps. 
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Figure 1: Statements  in Flow Chart Programs 
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Figure 2: An Example  Flow Chart Program 

A control point is an edge in a flow chart. A t-expression is associated with each control point, 
as per the derivation rules shown in Figure 3. For the purposes of the t-expressions, we associate 
a unique symbol, called the c-variable, with each case statement and a unique symbol, called the 
l-variable with each while statement in the flow chart. (C-variables and l-variables are used to 
bind the trace information to the preconditions without making references to the execution paths 
themselves explicitly.) We also label each branch of each case statement with a unique symbol 
called the branch id. Using the derivation rules, the following t-expressions can be derived at the 
control points p, q, r and s of the flow chart shown in Figure 2: 
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Ep = (c2An2)( (c lAnl )O + 1) (1) 

Eq == (((c4An4)(0 + 1 + 1))V((c4Am4)0)) + 1 (2) 

Er = 0 + 1 + 1 + ~ - ~ ( 0 + 1 + 1 )  (3) 
12-1 

E,  = ((0 + y~(O + 1 + 1)))11((0 -4- ~(o + 1 + 1))) (4) 
II 12 

Informally, a trace of a flow chart is an execution path through the flow chart beginning at the enter 
node and ending at the exit node. 2 For example, 
{ a l ,  a4 ,d2 ,  a6},  {aS,  d3) ,  {d2, a6},  {aS, d3) ,  {a6 ) ,  {d3} is a trace of the flow chart shown in Figure 
2. In this trace, al, a4, d2, and a6are executed in the first step, a5and d3are executed in the second 
step and so on. We use a visual notation, called trace diagrams, to denote traces. Intuitively, the 
trace diagrams denote an assignment of integer values to 1-variables and branch ids to c-variables. 
3 For example, Figure 4 is the trace diagram corresponding to the above trace. The trace diagram 
indicates that the c-variable cl  diverged on the branch id nl and in that  context the c-variables c2 
and c3 diverged on n2 and m3 respectively. It also shows that the 1-variables II and /2  took the values 
2 and 3 respectively indicating the number of iterations of the corresponding while statements. 

2Note that a trace cannot be defined as a path in the graph theoretic sense because of the parallel statements 
whose branches are executed simultaneously. 

aOnly well-formed trace diagrams denote valid traces. To be well-formed, a trace diagram must assign an integer 
value to each 1-variable for each context of invocation of the corresponding while statement and a branch id to 
each c-variable for each context of invocation of the corresponding case statement. In this paper we consider only 
well-formed trace diagrams. When in doubt, the reader should try to 'walk through' the trace denoted by the trace 
diagram. 
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Figure 4: E x a m p l e  Trace  D i a g r a m  

3 Evaluat ion  of  T-Express ions  

A t-expression of a control point in a flow chart can be evaluated at any given trace of the flow 
chart to yield an integer. We use the following rules when evaluating the t-expressions: 

1. ' + '  and '- '  denote integer addition and subtraction respectively. 

2. [[ denotes integer 'maximum-of' operation. 

3. ~ denotes multiple instantiations. 

4. A denotes selective instantiation: 
(xAy) = x i f  x = y; undefinedotherwise. 

5. V denotes mutual exclusion. For any given trace, all but one of the operands of the V operator 
evaluate to 'undefined'. The value of the V then is same as the value of that one operand. 

For example, given the trace shown in Figure 4, the t-expressions (Eqs. 1-4) can be evaluated to, 
Ep = 1, Eq = 1, Er = 6, Ea = 6. The evaluation can be better understood by viewing the snap- 
shots of the decorated parse-trees of the t-expression Eq and E, shown in Figure 5. The evaluation 
process involves iteratively substituting, at the leaves of the parse tree, the values of 1-variables and 
c-variables and propagating these values up the tree using the evaluation rules given above until 
the root of the tree is assigned with an integer (or the special 'undefined' value). Note that new 
leaves are created during the reduction process due to the multiple instantiations resulting from 
evaluating the ~ operator. These new leaves get appropriate values from the trace diagram. For 
any valid trace of the flow chart, any t-expression in the flow chart can be so evaluated [7, 8]. 

Informally, the integer to which a t-expression is reduced indicates the time-step (relative to the 
enter node) at which the corresponding control point is reached by a controller executing the flow 
chart. There is one complication however. The control points inside while statements may be 
traversed several times during the execution of the flow chart. This leads to the notion of series 
evaluation of the t-expressions for control points inside while statements. 

A series evaluation of a t-expression of a control point inside a while statement yields a series of 
integers. If the while statement is not nested within any other while statement then the series 
evaluation procedure involves repeating, with l = 0, 1, 2 , . . .  lval where Ival is the value assigned to 
the 1-variable I by the given trace, the procedure illustrated in Figure 5. If the while statement is 
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Figure 5: Eva lua t ion  of  T - E x p r e s s i o n s  

nested within another while then this procedure is recursively applied. Each such evaluation of the 
t-expression yields an integer (or 'undefined' value) in the series. For example, given the trace in 
Figure 4, the t-expression E~ shown in the previous section evaluates to the series [2,4,6"1. 

Hence forth, when we say 'evaluation' of t-expressions we mean series evaluation for expressions of 
control points within a while statement the usual integer evaluation for other expressions. 

4 Symbolic Equivalence 

In general, evaluation of a t-expression requires a complete trace. However, during the process of 
design derivation no information about trace (or the set of possible traces) is available. Even so, it 
is sometimes possible to reduce the t-expressions using certain equivalence rules. Two t-expressions 
(or subexpressions) are equivalent if and only if, for any t-trace, both expressions evaluate to the 
same value. Following are some of the equivalence rules often used in our system: 4 

i .  (EIIE) = E 

2. ( ( c A n ) E V ( c A m ) E )  = E 

3. (((cAn)i lV(cAm)i2))l[i3 = i3, where il,  i2, and i3 are integers and if max(i l ,  i2) <_ i3 

At any time during the evaluation process, an equivalence rule can be applied to reduce a subex- 
pression of a t-expression into a simpler form. Examples illustrating the use of these rules appear 
in Section 7. 

4ActuMly, these rules are used in some what more general forms where associativity and commutativity of some 
of the t-expression operators is implicitly taken into account. 
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5 Part ia l  E v a l u a t i o n  

If partial trace information is available, it can be effectively used to reduce t-expressions through a 
technique known as partial evaluation [1]. Such partial trace information may be available in the 
design description or, more often in interactive design systems, through the designer. For example, 
for fixed iteration-depth loops (of the type for i = 1, 100 do O) the values of the corresponding 
l-variables are known. In a flow chart with two successive case statements with m and n branches 
respectively, of the m* n possible traces, the designer, knowing the values the variables on which the 
case statements are predicated assume, may be able exclude several. In general, partial evaluation 
of a t-expression yields a residual t-expression. The residual expression is subject to symbolic 
reduction as well as the other techniques discussed in this paper. 

A partial trace is specified by a trace diagram in which a special unknown symbol is used to 
specify one's ignorance about the assignments of values to specific instances of the 1-variables and 
c-variables. For example, Figure 6 shows a partial trace of the flow chart given in Figure 2. 

The procedure for partial evaluation is similar to the total evaluation procedure discussed in Section 
3 except that, in general, by the end of the evaluation process the root may not receive any value. 
The available 1-values and c-values are substituted at the leaves and propagated through the internal 
nodes by applying as many t-expression evaluation rules as possible. At the end of this process, a 
part of the parse tree remains intact where as the other part is decorated and reduced. For example, 
the t-expressions 1-4 can be partially evaluated at the partial trace shown in Figure 6 to yield the 
following residual t-expressions: 

Ep = 1 

E, = (((c4an4)2)V((c4Am4)0)) + 1 

Er = 10 

E, = ~~J2)[](10 ) 
l l  

6 C o m p a r i s o n  of  T - E x p r e s s i o n s  

Most of the time, in verifying the preconditions, evaluation of one t-expression in itself is of little use. 
More important is to evaluate two t-expressions and compare the results. For example, to substitute 
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a resource rl used in an assignment statement s by another resource r2 it is necessary to verify, 
for each execution of s, whether r2 is being used elsewhere. This can be done by comparing the 
t-expression E associated with s and the t-expressions E~ associated with the assignment statements 
in which r2 is used; the objective is to verify whether E and any Ei evaluate to the same value 
at some trace of the flow chart. Resource folding, where a resource can be a memory location, an 
ALU, a wire, a register etc., is the most important class of optimizing transformations found in 
design derivation systems. 

In our precondition verification framework, the following operators are provided to compare t- 
expressions: E~ opE2 i f f  eval(E1)opeval(E2) for all the c-traces (of interest) of the flow chart, 
where eval stands for the result of evaluating the expression and op is any of the following relational 
operators: <, >, =, <, >, and 4. 

For example, consider the t-expressions at the control points t and r in the flow chart shown in 
Figure 2: 

Et = ~ - ~ ( 0 + 1 + 1 ) + 0  
1 2 -1  

E, = ~-~(0+i+11+0+1+I 
1 2 -1  

For any trace where Et and Er are defined it can be shown that JEt < Er. Similarly, for control 
points t and u it can be shown that Et ~ E,, for any trace where both expressions are defined. 
Hence, for example, certain types of resource folding transformations can be applied to assignment 
statements a5 and a6 (say, using the same ALU for the computations in the assignment statements). 

In addition to the techniques discussed in the previous sections, we use several rules, called com- 
parison rules to compare t-expressions when the entire trace information is unavailable. Some of 
the comparison rules often used in our system are given below: 

1. E < k + E where k is a positive integer and E is a t-expression. 

2. ~11 i # ~t2(i + j )  where i, j are positive integers and 11 and /2  are 1-variables. 

3. (cAm)ilV(cAn)i2) # i3, where ix, i2 and i3 are integers and i3 # il and i3 # i2 

The next section has an example to show the application of these rules. 

7 Examples and Implementation 

This section has two more examples to illustrate the applications of the techniques discussed in the 
previous sections. Figure 7 shows a flow chart in which we are interested in finding the time step 
at which control point x is reached. The t-expression at x is, 

E~ = E,((((c2A2)((clA1)IV(clA2)I) + 1)V(c2A3)((clA1)IV(c2A2)I))[[(((clA1)IV(c2A2)I) + 
1+1) )  

Using the second symbolic equivalence rule given in Section 4 this expression can be reduced to, 

E~ = 21((((c2A2)(1) + 1)V(c2A3)(1))[[((1) + 1 + 1)) 
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By partial evaluation, this is evaluated to, 

E~ = E,((((c2A2)(2)V(c2A3)(1))II(3))  

Using the third symbolic equivalence rule given in Section 4 this can be reduced to, 

E~ = Et(3) 

This cannot be reduced any further without some information on the trace. Specifically, a partial 
trace which assigns a value to the 1-variable, l, is sufficient to evaluate this expression. 

As another example, consider the flow chart shown in Figure 8. Suppose we are interested in 
resource folding involving assignment statements r l l  and r12, such as using the same ALU in both 
statements. The t-expressions at control points y and z are given below: 

Ey = ( c 3 A 2 ) ( ( ( c l A 1 ) I V ( c l A 2 ) 2 )  + 1)V(c3A3)(((clA1)IV(clA2)2) + 1 + 1 + 1) 

E, = (c2A1)3V(c2A2)I 

In the absence of any knowledge of the set of possible traces, resource folding is not possible, 
because we cannot verify that Ey ~ E2 for all possible traces. (In fact, E v = Ez at the trace where 
ci  diverges on P, c3 on 2 and c2 diverges on 1). Suppose that the designer can assert that (say, for 
example, because the same register is tested to take the branching decision involving both cl  and c2 
case statements) whenever cl  diverges on I, c2 also diverges on I and whenever cl  diverges on P, c2 
also diverges on 2. However, no information is available about c3. Even with partial information, 
the above expressions can be reduced using partial evaluation to (when cl  diverges on 1), 

E v = (c3A2)(2)V(c3A3)(4) 

E , = 3  

Using the third comparison rule given in Section 6 one can assert that E~ -~ Ez at this partial trace. 
Similarly the two expressions can be reduced to, (when cl  diverges on $), 

E~ = (c3A2)(3)V(c3A3)(5) 

E , = I  
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Again, using the third comparison rule we can assert that Ey # Ez at this partial trace. Therefore, 
without any further knowledge of the trace information, we can positively verify the resource folding 
precondition. 

We have implemented all the techniques discussed in this paper in a precondition verification system, 
called PV. PV is implemented in Prolog on a Unix workstation and is part of a transformational 
design system for register-level hardware designs. PV is described in [6]. 

8 D i s c u s s i o n  

We have successfully used the techniques presented here in a precondition verification system which 
can verify the preconditions of a set of 18 design transformations used in a register-level design 
system. In our experience, designers (or programmers) can in most occasions supply partial infor- 
mation about the possible traces. By using the partial evaluation technique in conjunction with 
symbolic equivalence and comparison rules we could successfully exploit that information leading 
to better optimization of the design. 

Various extensions to the t-expressions are possible: assignments taking multiple time steps, control 
operators taking one or more time-steps etc. can be easily incorporated. 

Temporal logic can also be used to specify temporal preconditions. However, verification of temporal 
logic expressions is more time consuming. We have abstracted away, by using c- and 1-variables, 
references to the data values which decide the trace of execution. Use of temporal logic would 
perhaps force one to make references to the data values; we believe that the mechanism based on 
c- and 1-variables and trace diagrams is cleaner and the associated verification techniques are faster 
as opposed to those using temporal logic based theorem provers. 
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Finally, having argued the case against the use of general purpose theorem proving for precondition 
verification, we a r e  currently exploring ways of using, in a limited way, such theorem proving 
techniques, to enhance the power of the methods discussed ,in this paper. It seems that after 
applying several rounds of partial evaluation and symbolic equivalence, even if certain precondition 
could not be verified, it can almost certainly be reduced to a form where theorem proving can 
be applied in a computationally efficient manner; On the other hand, theorem proving, specifically 
those based on temporal logic, would have been very expensive (and, preconditions are to be verified 
on the fly during design transformation) if it were to be used on the unreduced preconditions. 
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