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Abstract

Web browsers mediate access to valuable private data in
domains ranging from health care to banking. Despite
this critical role, attackers routinely exploit browser vul-
nerabilities to exfiltrate private data and take over the un-
derlying system. We present QUARK, a browser whose
kernel has been implemented and verified in Coq. We
give a specification of our kernel, show that the imple-
mentation satisfies the specification, and finally show
that the specification implies several security properties,
including tab non-interference, cookie integrity and con-
fidentiality, and address bar integrity.

1 Introduction

Web browsers increasingly dominate computer use as
people turn to Web applications for everything from busi-
ness productivity suites and educational software to so-
cial networking and personal banking. Consequently,
browsers mediate access to highly valuable, private data.
Given the browser’s sensitive, essential role, it should be
highly secure and robust in the face of adversarial attack.

Unfortunately, security experts consistently discover
vulnerabilities in all popular browsers, leading to data
loss and remote exploitation. In the annual Pwn2Own
competition, part of the CanSecWest security confer-
ence [4], security experts demonstrate new attacks on up-
to-date browsers, allowing them to subvert a user’s ma-
chine through the click of a single link. These vulnera-
bilities represent realistic, zero-day exploits and thus are
quickly patched by browser vendors. Exploits are also
regularly found in the wild; Google maintains a Vulner-
ability Reward Program, publishing its most notorious
bugs and rewarding the cash to their reporters [2].

Researchers have responded to the problems of
browser security with a diverse range of techniques, from
novel browser architectures [10, 42, 17, 41, 31] and de-
fenses against specific attacks [26, 20, 22, 8, 36] to al-

ternative security policies [25, 40, 21, 8, 39, 5] and im-
proved JavaScript safety [14, 23, 38, 6, 44]. While all
these techniques improve browser security, the intricate
subtleties of Web security make it very difficult to know
with full certainty whether a given technique works as in-
tended. Often, a solution only “works” until an attacker
finds a bug in the technique or its implementation. Even
in work that attempts to provide strong guarantees (for
example [17, 13, 41, 12]) the guarantees come from ana-
lyzing a model of the browser, not the actual implemen-
tation. Reasoning about such a simplified model eases
the verification burden by omitting the gritty details and
corner cases present in real systems. Unfortunately, at-
tackers exploit precisely such corner cases. Thus, these
approaches still leave a formality gap between the theory
and implementation of a technique.

There is one promising technique that could mini-
mize this formality gap: fully formal verification of the
browser implementation, carried out in the demanding
and foundational context of a mechanical proof assistant.
This severe discipline forces the programmer to specify
precisely how their code should behave and then pro-
vides the tools to formally guarantee that it does, all in
fully formal logic, building from basic axioms up. For
their trouble, the programmer is rewarded with a ma-
chine checkable proof that the implementation satisfies
the specification. With this proof in hand, we can avoid
further reasoning about the large, complex implementa-
tion, and instead consider only the substantially smaller,
simpler specification. In order to believe that such a
browser truly satisfies its specification, one needs only
trust a very small, extensively tested proof checker. By
reasoning about the actual implementation directly, we
can guarantee that any security properties implied by the
specification will hold in every case, on every run of the
actual browser.

Unfortunately, formal verification in a proof assistant
is tremendously difficult. Often, those systems which we
can formally verify are severely restricted, “toy” versions



of the programs we actually have in mind. Thus, many
researchers still consider full formal verification of real-
istic, browser-scale systems an unrealistic fantasy. Fortu-
nately, recent advances in fully formal verification allow
us to begin challenging this pessimistic outlook.

In this paper we demonstrate how formal shim verifi-
cation radically reduces the verification burden for large
systems to the degree that we were able to formally
verify the implementation of a modern Web browser,
QUARK, within the demanding and foundational context
of the mechanical proof assistant Coq.

At its core, formal shim verification addresses the
challenge of formally verifying a large system by clev-
erly reducing the amount of code that must be con-
sidered; instead of formalizing and reasoning about gi-
gantic system components, all components communi-
cate through a small, lightweight shim which ensures the
components are restricted to only exhibit allowed behav-
iors. Formal shim verification only requires one to rea-
son about the shim, thus eliminating the tremendously
expensive or infeasible task of verifying large, complex
components in a proof assistant.

Our Web browser, QUARK, exploits formal shim ver-
ification and enables us to verify security properties for
a million lines of code while reasoning about only a few
hundred. To achieve this goal, QUARK is structured sim-
ilarly to Google Chrome [10] or OP [17]. It consists
of a small browser kernel which mediates access to sys-
tem resources for all other browser components. These
other components run in sandboxes which only allow the
component to communicate with the kernel. In this way,
QUARK is able to make strong guarantees about a million
lines of code (e.g., the renderer, JavaScript implementa-
tion, JPEG decoders, etc.) while only using a proof as-
sistant to reason about a few hundred lines of code (the
kernel). Because the underlying system is protected from
QUARK’s untrusted components (i.e., everything other
than the kernel) we were free to adopt state-of-the-art
implementations and thus QUARK is able to run popu-
lar, complex Web sites like Facebook and GMail.

By applying formal shim verification to only reason
about a small core of the browser, we formally establish
the following security properties in QUARK, all within a
proof assistant:

1. Tab Non-Interference: no tab can ever affect how
the kernel interacts with another tab

2. Cookie Confidentiality and Integrity: cookies for
a domain can only be accessed/modified by tabs of
that domain

3. Address Bar Integrity and Correctness: the ad-
dress bar cannot be modified by a tab without the

user being involved, and always displays the correct
address bar.

To summarize, our contributions are as follows:

• We demonstrate how formal shim verification en-
abled us to formally verify the implementation of
a modern Web browser. We discuss the techniques,
tools, and design decisions required to formally ver-
ify QUARK in detail.

• We identify and formally prove key security prop-
erties for a realistic Web browser.

• We provide a framework that can be used to further
investigate and prove more complex policies within
a working, formally verified browser.

The rest of the paper is organized as follows. Section 2
provides background on browser security techniques and
formal verification. Section 3 presents an overview of
the QUARK browser. Section 4 details the design of the
QUARK kernel and its implementation. Section 5 ex-
plains the tools and techniques we used to formally ver-
ify the implementation of the QUARK kernel. Section 6
evaluates QUARK along several dimensions while Sec-
tion 7 discusses lessons learned from our endeavor.

2 Background and Related Work

This section briefly discusses both previous efforts to im-
prove browser security and verification techniques to en-
sure programs behave as specified.

Browser Security As mentioned in the Introduction,
there is a rich literature on techniques to improve browser
security [10, 42, 17, 41, 31, 13, 12]. We distinguish our-
selves from all previous techniques by verifying the ac-
tual implementation of a modern Web browser and for-
mally proving that it satisfies our security properties, all
in the context of a mechanical proof assistant. Below, we
survey the most closely related work.

Previous browsers like Google Chrome [10],
Gazelle [42], and OP [17] have been designed using
privilege separation [35], where the browser is divided
into components which are then limited to only those
privileges they absolutely require, thus minimizing the
damage an attacker can cause by exploiting any one
component. We follow this design strategy.

Chrome’s design compromises the principles of priv-
ilege separation for the sake of performance and com-
patibility. Unfortunately, its design does not protect the
user’s data from a compromised tab which is free to
leak all cookies for every domain. Gazelle [42] adopts
a more principled approach, implementing the browser

2



as a multi-principal OS, where the kernel has exclusive
control over resource management across various Web
principals. This allows Gazelle to enforce richer policies
than those found in Chrome. However, neither Chrome
nor Gazelle apply any formal methods to make guaran-
tees about their browser.

The OP [17] browser goes beyond privilege separa-
tion. Its authors additionally construct a model of their
browser kernel and apply the Maude model checker to
ensure that this model satisfies important security prop-
erties such as the same origin policy and address bar cor-
rectness. As such, the OP browser applies insight similar
to our work, in that OP focuses its formal reasoning on
a small kernel. However, unlike our work, OP does not
make any formal guarantees about the actual browser im-
plementation, which means there is still a formality gap
between the model and the code that runs. Our formal
shim verification closes this formality gap by conducting
all proofs in full formal detail using a proof assistant.

Formal Verification Recently, researchers have begun
using proof assistants to fully formally verify imple-
mentations for foundational software including Operat-
ing Systems [27], Compilers [28, 1], Database Man-
agement Systems [29], Web Servers [30], and Sand-
boxes [32]. Some of these results have even experimen-
tally been shown to to drastically improve software relia-
bility: Yang et al. [43] show through random testing that
the CompCert verified C compiler is substantially more
robust and reliable than its non-verified competitors like
GCC and LLVM.

As researchers verify more of the software stack, the
frontier is being pushed toward higher level platforms
like the browser. Unfortunately, previous verification re-
sults have only been achieved at staggering cost; in the
case of seL4, verification took over 13 person years of
effort. Based on these results, verifying a browser-scale
platform seemed truly infeasible.

Our formal verification of QUARK was radically
cheaper than previous efforts. Previous efforts were
tremendously expensive because researchers proved
nearly every line of code correct. We avoid these costs in
QUARK by applying formal shim verification: we struc-
ture our browser so that all our target security properties
can be ensured by a very small browser kernel and then
reason only about that single, tiny component. Leverag-
ing this technique enabled us to make strong guarantees
about the behavior of a million of lines of code while rea-
soning about only a few hundred in the mechanical proof
assistant Coq.

We use the Ynot library [34] extensively to reason
about imperative programming features, e.g., impure
functions like fopen, which are otherwise unavailable in
Coq’s pure implementation language. Ynot also provides
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Figure 1: QUARK Architecture. This diagram shows how QUARK
factors a modern browser into distinct components which run in sep-
arate processes; arrows indicate information flow. We guarantee our
security properties by formally verifying the QUARK Kernel in the Coq
proof assistant, which allows us to avoid reasoning about the intricate
details of other components.

features which allow us to verify QUARK in a familiar
style: invariants expressed as pre- and post-conditions
over program states, essentially a variant of Hoare Type
Theory [33]. Specifically, Ynot enables trace-based ver-
ification, used extensively in [30] to prove properties of
servers. This technique entails reasoning about the se-
quence of externally visible actions a program may per-
form on any input, also known as traces. Essentially,
our specification delineates which sequences of system
calls the QUARK kernel can make and our verification
consists of proving that the implementation is restricted
to only making such sequences of system calls. We go
on to formally prove that satisfying this specification im-
plies higher level security properties like tab isolation,
cookie integrity and confidentiality, and address bar in-
tegrity and correctness. Building QUARK with a different
proof assistant like Isabelle/HOL would have required
essentially the same approach for encoding imperative
programming features, but we chose Coq since Ynot is
available and has been well vetted.

Our approach is fundamentally different from pre-
vious verification tools like ESP [16], SLAM [7],
BLAST [18] and Terminator [15], which work on ex-
isting code bases. In our approach, instead of trying
to prove properties about a large existing code base ex-
pressed in difficult-to-reason-about languages like C or
C++, we rewrite the browser inside of a theorem prover.
This provides much stronger reasoning capabilities.

3 QUARK Architecture and Design

Figure 1 diagrams QUARK’s architecture. Similar to
Chrome [10] and OP [17], QUARK isolates complex and
vulnerability-ridden components in sandboxes, forcing
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them to access all sensitive resources through a small,
simple browser kernel. Our kernel, written in Coq, runs
in its own process and mediates access to resources in-
cluding the keyboard, disk, and network. Each tab runs a
modified version of WebKit in its own process. WebKit
is the open source browser engine used in Chrome and
Safari. It provides various callbacks for clients as Python
bindings which we use to implement tabs. Since tab pro-
cesses cannot directly access any system resources, we
hook into these callbacks to re-route WebKit’s network,
screen, and cookie access through our kernel written in
Coq. QUARK also uses separate processes for display-
ing to the screen, storing and accessing cookies, as well
reading input from the user.

Throughout the paper, we assume that an attacker can
compromise any QUARK component which is exposed to
content from the Internet, except for the kernel which we
formally verified. This includes all tab processes, cookie
processes, and the graphical output process. Thus, we
provide strong formal guarantees about tab and cookie
isolation, even when some processes have been com-
pletely taken over (e.g., by a buffer overflow attack in
the rendering or JavaScript engine of WebKit).

3.1 Graphical User Interface

The traditional GUI for Web browsers manages several
key responsibilities: reading mouse and keyboard input,
showing rendered graphical output, and displaying the
current URL. Unfortunately, such a monolithic compo-
nent cannot be made to satisfy our security goals. If
compromised, such a GUI component could spoof the
current URL or send arbitrary user inputs to the kernel,
which, if coordinated with a compromised tab, would vi-
olate tab isolation. Thus QUARK must carefully separate
GUI responsibilities to preserve our security guarantees
while still providing a realistic browser.

QUARK divides GUI responsibilities into several com-
ponents which the kernel orchestrates to provide a tradi-
tional GUI for the user. The most complex component
displays rendered bitmaps on the screen. QUARK puts
this component in a separate process to which the kernel
directs rendered bitmaps from the currently selected tab.
Because the kernel never reads input from this graphi-
cal output process, any vulnerabilities it may have can-
not subvert the kernel or impact any other component
in QUARK. Furthermore, treating the graphical output
component as a separate process simplifies the kernel and
proofs because it allows the kernel to employ a uniform
mechanism for interacting with the outside world: mes-
sages over channels.

To formally reason about the address bar, we designed
our kernel so that the current URL is written directly to
the kernel’s stdout. This gives rise to a hybrid graphi-

Figure 2: QUARK Screenshot. This screenshot shows QUARK run-
ning a Google search, including an interactive drop-down suggesting
query completions and an initial set of search results from a JavaScript
event handler dispatching an “instant search” as well as a page preview
from a search result link. (Location blurred for double-blind review.)

cal/text output as shown in Figure 2 where the kernel has
complete control over the address bar. With this design,
the graphical output process is never able to spoof the
address bar.

QUARK also uses a separate input process to support
richer inputs, e.g., the mouse. The input process is a
simple Python script which grabs keyboard and mouse
events from the user, encodes them as user input mes-
sages, and forwards them on to the kernel’s stdin. For
keystrokes, the input process simply writes characters in
ASCII format to the kernel’s stdin. We use several “un-
printable” ASCII values (all smaller than 60 and all un-
typeable from the keyboard) to pass special information
from the input process to the kernel. For example, the in-
put process maps keys F1-F12 to such un-printable char-
acters, which allows the kernel to use F11 for “new tab”,
and F1-F10 for selecting tabs 1-10. Mouse clicks are also
sent to the kernel through un-printable ASCII values. Be-
cause the input process only reads from the keyboard and
mouse, and never from the kernel or any other QUARK
components, it cannot be exposed any attacks originating
from the network.

3.2 Example of Message Exchanges
To illustrate how the kernel orchestrates all the com-
ponents in QUARK, we detail the steps from startup
to a tab loading http://www.google.com. The user
opens QUARK by starting the kernel which in turn
starts three processes: the input process, the graph-
ical output process, and a tab process. The ker-
nel establishes a two-way communication channel with
each process it starts. Next, the kernel then sends a
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(Go "http://www.google.com") message to the tab
indicating it should load the given URL (for now, assume
this is normal behavior for all new tabs).

The tab process comprises our modified version of
WebKit wrapped by a thin layer of Python to handle
messaging with the kernel. After recieving the Go mes-
sage, the Python wrapper tells WebKit to start process-
ing http://www.google.com. Since the tab process is
running in a sandbox, WebKit cannot directly access the
network. When it attempts to, our Python wrapper in-
tervenes and sends a GetURL request to the kernel. As
long as the request is valid, the kernel responds with a
ResDoc message containing the HTML document the tab
requested.

Once the tab process has received the necessary re-
sources from the kernel and rendered the Web pages, it
sends a Display message to the kernel which contains a
bitmap to display. When the kernel receives a Display

message from the current tab, it forwards the message on
to the graphical output process, which in turn displays
the bitmap on the screen.

When the kernel reads a printable character c from
standard input, it sends a (KeyPress c) message to the
currently selected tab. Upon receiving such a message,
the tab calls the appropriate input handler in WebKit. For
example, if a user types “a” on Google, the “a” character
is read by the kernel, passed to the tab, and then passed
to WebKit, at which point WebKit adds the “a” charac-
ter to Google’s search box. This in turn causes WebKit’s
JavaScript engine to run an event handler that Google has
installed on their search box. The event handler performs
an “instant search”, which initiates further communica-
tion with the QUARK kernel to access additional network
resources, followed by another Display message to re-
paint the screen. Note that to ease verification, QUARK
currently handles all requests synchronously.

3.3 Efficiency

With a few simple optimizations, we achieve perfor-
mance comparable to WebKit on average (see Section 6
for measurements). Following Chrome, we adopt two
optimizations critical for good graphics performance.
First, QUARK uses shared memory to pass bitmaps from
the tab process through the kernel to the output process,
so that the Display message only passes a shared mem-
ory ID instead of a bitmap. This drastically reduces the
communication cost of sending bitmaps. To prevent a
malicious tab from accessing another tab’s shared mem-
ory, we run each tab as a different user, and set access
controls so that a tab’s shared memory can only be ac-
cessed by the output process. Second, QUARK uses
rectangle-based rendering: instead of sending a large
bitmap of the entire screen each time the display changes,

the tab process determines which part of the display has
changed, and sends bitmaps only for the rectangular re-
gions that need to be updated. This drastically reduces
the size of the bitmaps being transferred, and the amount
of redrawing on the screen.

For I/O performance, the original Ynot library used
single-character read/write routines, imposing significant
overhead. We defined a new I/O library which uses size
n reads/writes. This reduced reading an n byte message
from n I/O calls to just three: reading a 1 byte tag, fol-
lowed by a 4 byte payload size, and then a single read for
the entire payload.

We also optimized socket connections in QUARK. Our
original prototype opened a new TCP connection for each
HTTP GET request, imposing significant overhead. Mod-
ern Web servers and browsers use persistent connections
to improve the efficiency of page loading and the respon-
siveness of Web 2.0 applications. These connections are
maintained anywhere from a few seconds to several min-
utes, allowing the client and server can exchange mul-
tiple request/responses on a single connection. Services
like Google Chat make use of very long-lived HTTP con-
nections to support responsive interaction with the user.

We support such persistent HTTP connections via
Unix domain sockets which allow processes to send open
file descriptors over channels using the sendmsg and
recvmsg system calls. When a tab needs to open a
socket, it sends a GetSoc message to the kernel with the
host and port. If the request is valid, the kernel opens
and connects the socket, and then sends an open socket
file descriptor to the tab. Once the tab gets the socket file
descriptor, it can read/write on the socket, but it cannot
re-connect the socket to another host/port. In this way,
the kernel controls all socket connections.

Even though we formally verify our browser kernel in
a proof assistant, we were still able to implement and
reason about these low-level optimizations.

3.4 Socket Security Policy

The GetSoc message brings up an interesting security
issue. If the kernel satisfied all GetSoc requests, then a
compromised tab could open sockets to any server and
exchange arbitrary amounts of information. The kernel
must prevent this scenario by restricting socket connec-
tions.

To implement this restriction, we introduce the idea
of a domain suffix for a tab which the user enters when
the tab starts. A tab’s domain suffix controls several se-
curity features in QUARK, including which socket con-
nections are allowed and how cookies are handled (see
Section 3.5). In fact, our address bar, located at the very
top of the browser (see Figure 2), displays the domain
suffix, not just the tab’s URL. We therefore refer to it as
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the “domain bar”.
For simplicity, our current domain suffixes build on

the notion of a public suffix, which is a top-level domain
under which Internet users can directly register names,
for example .com, .co.uk, or .edu – Mozilla main-
tains an exhaustive list of such suffixes [3]. In particu-
lar, we require the domain suffix for a tab to be exactly
one level down from a public suffix, e.g., google.com,
amazon.com, etc. In the current QUARK prototype the
user provides a tab’s domain suffix separately from its
initial URL, but one could easily compute the former
from the later. Note that, once set, a tab’s domain suf-
fix never changes. In particular, any frames a tab loads
do not affect its domain suffix.

We considered using the tab’s origin (which includes
the URL, scheme, and port) to restrict socket creation,
but such a policy is too restrictive for many useful
sites. For example, a single GMail tab uses frames
from domains such as static.google.com and mail.

google.com. However, our actual domain suffix checks
are modularized within QUARK, which will allow us to
experiment with finer grained policies in future work.

To enforce our current socket creation policy, we first
define a subdomain relation ≤ as follows: given domain
d1 and domain suffix d2, we use d1 ≤ d2 to denote that
d1 is a subdomain of d2. For example www.google.com
≤ google.com. If a tab with domain suffix t requests
to open a connection to a host h, then the kernel allows
the connection if h ≤ t. To load URLs that are not a
subdomain of the tab suffix, the tab must send a GetURL
message to the kernel – in response, the kernel does not
open a socket but, if the request is valid, may provide the
content of the URL. Since the kernel does not attach any
cookies to the HTTP request for a GetURL message, a
tab can only access publicly available data using GetURL.
In addition, GetURL requests only provide the response
body, not HTTP headers.

Note that an exploited tab could leak cookies by en-
coding information within the URL parameter of GetURL
requests, but only cookies for that tab’s domain could be
leaked. Because we do not provide any access to HTTP
headers with GetURL, we consider this use of GetURL
to leak cookies analogous to leaking cookie data over
timing channels.

Although we elide details in the current work, we also
slightly enhanced our socket policy to improve perfor-
mance. Sites with large data sets often use content dis-
tribution networks whose domains will not satisfy our
domain suffix checks. For example facebook.com uses
fbcdn.net to load much of its data. Unfortunately, the
simple socket policy described above will force all this
data to be loaded using slow GetURL requests through
the kernel. To address this issue, we associate whitelists
with the most popular sites so that tabs for those do-

mains can open sockets to the associated content distri-
bution network. The tab domain suffix remains a sin-
gle string, e.g. facebook.com, but behind the scenes, it
gets expanded into a list depending on the domain, e.g.,
[facebook.com, fbcdn.net]. When deciding whether
to satisfy a given socket request, QUARK considers this
list as a disjunction of allowed domain suffixes. Cur-
rently, we provide these whitelists manually.

3.5 Cookies and Cookie Policy
QUARK maintains a set of cookie processes to handle
cookie accesses from tabs. This set of cookie processes
will contain a cookie process for domain suffix S if S is
the domain suffix of a running tab. By restricting mes-
sages to and from cookie processes, the QUARK kernel
guarantees that browser components will only be able to
access cookies appropriate for their domain.

The kernel receives cookie store/retrieve requests from
tabs and directs the requests to the appropriate cookie
process. If a tab with domain suffix t asks to store a
cookie with domain c, then our kernel allows the oper-
ation if c ≤ t, in which case it sends the store request to
the cookie process for domain t. Similarly, if a tab with
domain suffix t wants to retrieve a cookie for domain c,
then our kernel allows the operation if c ≤ t, in which
case it sends the request to the cookie process for domain
t and forwards any response to the requesting tab.

The above policy prevents cross-domain cookie reads
from a compromised tab, and it prevents a compro-
mised cookie process from leaking information about
its cookies to another domain; yet it also allows dif-
ferent tabs with the same domain suffix (but different
URLs) to communicate through cookies (for example,
mail.google.com and calendar.google.com).

3.6 Security Properties of QUARK

We provide intuitive descriptions of the security prop-
erties we proved for QUARK’s kernel; formal defini-
tions appear later in Section 4. A tab in the kernel is a
pair, containing the tab’s domain suffix as a string and
the tab’s communication channel as a file descriptor. A
cookie process is also a pair, containing the domain suffix
that this cookie process manages and its communication
channel. We define the state of the kernel as the cur-
rently selected tab, the list of tabs, and the list of cookie
processes. Note that the kernel state only contains strings
and file descriptors.

We prove the following main theorems in Coq:

1. Response Integrity: The way the kernel responds
to any request only depends on past user “control
keys” (namely keys F1-F12). This ensures that one
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browser component (e.g., a tab or cookie process)
can never influence how the kernel responds to an-
other component, and that the kernel never allows
untrusted input (e.g., data from the web) to influ-
ence how the kernel responds to a request.

2. Tab Non-Interference: The kernel’s response to a
tab’s request is the same no matter how other tabs
interact with the kernel. This ensures that the kernel
never provides a direct way for one tab to attack an-
other tab or steal private information from another
tab.

3. No Cross-domain Socket Creation: The kernel
disallows any cross-domain socket creation (as de-
scribed in Section 3.4).

4. Cookie Integrity/Confidentiality: The kernel dis-
allows any cross-domain cookie stores or retrieves
(as described in Section 3.5).

5. Domain Bar Integrity and Correctness: The do-
main bar cannot be compromised by a tab, and is
always equal to the domain suffix of the currently
selected tab.

4 Kernel Implementation in Coq

QUARK’s most distinguishing feature is its kernel, which
is implemented and proved correct in Coq. In this section
we present the implementation of the main kernel loop.
In the next section we explain how we formally verified
the kernel.

Coq enables users to write programs in a small, simple
functional language and then reason formally about them
using a powerful logic, the Calculus of Constructions.
This language is essentially an effect-free (pure) subset
of popular functional languages like ML or Haskell with
the additional restriction that programs must always ter-
minate. Unfortunately, these limitations make Coq’s de-
fault implementation language ill-suited for writing sys-
tem programs like servers or browsers which must be ef-
fectful to perform I/O and by design may not terminate.

To address the limitations of Coq’s implementation
language, we use Ynot [34]. Ynot is a Coq library
which provides monadic types that allow us to write ef-
fectful, non-terminating programs in Coq while retain-
ing the strong guarantees and reasoning capabilities Coq
normally provides. Equipped with Ynot, we can write
our browser kernel in a fairly straightforward style whose
essence is shown in Figure 3.

Single Step of Kernel. QUARK’s kernel is essentially
a loop that continuously responds to requests from the
user or tabs. In each iteration, the kernel calls kstep

Definition kstep(ctab, ctabs) :=

chan <- iselect(stdin, tabs);

match chan with

| Stdin =>

c <- read(stdin);

match c with

| "+" =>

t <- mktab();

write_msg(t, Render);

return (t, t::tabs)

| ...

end

| Tab t =>

msg <- read_msg(t);

match msg with

| GetSoc(host, port) =>

if(safe_soc(host, domain_suffix(t)) then

send_soc(t, host, port);

return (ctab, tabs)

else

write_msg(t, Error);

return (ctab, tabs)

| ...

end

end

Figure 3: Body for Main Kernel Loop. This Coq code shows how our
QUARK kernel receives and responds to requests from other browser
components. It first uses a Unix-style select to choose a ready input
channel, reads a request from that channel, and responds to the message
appropriately. For example, if the user enters “+”, the kernel creates
a new tab and sends it the Render message. In each case, the code
returns the new kernel state resulting from handling this request.

which takes the current kernel state, handles a single re-
quest, and returns the new kernel state as shown in Fig-
ure 3. The kernel state is a tuple of the current tab (ctab),
the list of tabs (tabs), and a few other components which
we omit here (e.g., the list of cookie processes). For
details regarding the loop and kernel initialization code
please see [24].
kstep starts by calling iselect (the “i” stands for

input) which performs a Unix-style select over stdin

and all tab input channels, returning Stdin if stdin is
ready for reading or Tab t if the input channel of tab
t is ready. iselect is implemented in Coq using a
select primitive which is ultimately just a thin wrap-
per over the Unix select system call. The Coq extraction
process, which converts Coq into OCaml for execution,
can be customized to link our Coq code with OCaml im-
plementations of primitives like select. Thus select
is exposed to Coq essentially as a primitive of the ap-
propriate monadic type. We have similar primitives for
reading/writing on channels, and opening sockets.

Request from User. If stdin is ready for reading,
the kernel reads one character c using the read primi-
tive, and then responds based on the value of c. If c is
“+”, the kernel adds a new tab to the browser. To achieve
this, it first calls mktab to start a tab process (another
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primitive implemented in OCaml). mktab returns a tab
object, which contains an input and output channels to
communicate with the tab process. Once the tab t is
created, the kernel sends it a Render message using the
write_msg function – this tells t to render itself, which
will later cause the tab to send a Display message to
the kernel. Finally, we return an updated kernel state
(t, t::tabs), which sets the newly created tab t as
the current tab, and adds t to the list of tabs.

In addition to “+” the kernel handles several other
cases for user input, which we omit in Figure 3. For
example, when the kernel reads keys F1 through F10,
it switches to tabs 1 through 10, respectively, if the tab
exists. To switch tabs, the kernel updates the currently
selected tab and sends it a Render message. The ker-
nel also processes mouse events delivered by the input
process to the kernel’s stdin. For now, we only han-
dle mouse clicks, which are delivered by the input pro-
cess using a single un-printable ASCII character (adding
richer mouse events would not fundamentally change our
kernel or proofs). The kernel in this case calls a primi-
tive implemented in OCaml which gets the location of
the mouse, and it sends a MouseClick message using
the returned coordinates to the currently selected tab. We
use this two-step approach for mouse clicks (un-printable
character from the input process, followed by primitive
in OCaml), so that the kernel only needs to processes a
single character at a time from stdin, which simplifies
the kernel and proofs.

Request from Tab. If a tab t is ready for reading, the
kernel reads a message m from the tab using read_msg,
and then sends a response which depends on the mes-
sage. If the message is GetSoc(host, port), then the
tab is requesting that a socket be opened to the given
host/port. We apply the socket policy described in Sec-
tion 3.4, where domain_suffix t returns the domain
suffix of a tab t, and safe_soc(host, domsuf) ap-
plies the policy (which basically checks that host is a
sub-domain of domsuf). If the policy allows the socket
to be opened, the kernel uses the send_socket to open
a socket to the host, and send the socket over the chan-
nel to the tab (recall that we use Unix domain sockets to
send open file descriptors from one process to another).
Otherwise, it returns an Error message.

In addition to GetSoc the kernel handles several other
cases for tab requests, which we omit in Figure 3. For
example, the kernel responds to GetURL by retrieving a
URL and returning the result. It responds to cookie store
and retrieve messages by checking the security policy
from Section 3.5 and forwarding the message to the ap-
propriate cookie process (note that for simplicity, we did
not show the cookie processes in Figure 3). The kernel
also responds to cookie processes that are sending cookie
results back to a tab, by forwarding the cookie results

to the appropriate tab. The kernel responds to Display

messages by forwarding them to the output process.
Monads in Ynot. The code in Figure 3 shows how

Ynot supports an imperative programming style in Coq.
This is achieved via monads which allow one to en-
code effectful, non-terminating computations in pure
languages like Haskell or Coq. Here we briefly show
how monads enable this encoding. In the next section we
extend our discussion to show how Ynot’s monads also
enable reasoning about the kernel using pre- and post-
conditions as in Hoare logic.

We use Ynot’s ST monad which is a parameterized
type where ST T denotes computations which may per-
form some I/O and then return a value of type T. To use
ST, Ynot provides a bind primitive which has the fol-
lowing dependent type:

bind : forall T1 T2,

ST T1 -> (T1 -> ST T2) -> ST T2

This type indicates that, for any types T1 and T2, bind
will take two parameters: (1) a monad of type ST T1 and
(2) a function that takes a value of type T1 and returns a
monad of type ST T2; then bind will produce a value
in the ST T2 monad. The type parameters T1 and T2

are inferred automatically by Coq. Thus, the expression
bind X Y returns a monad which represents the compu-
tation: run X to get a value v; run (Y v) to get a value
v’; return v’.

To make using bind more convenient, Ynot
also defines Haskell-style “do” syntactic sugar us-
ing Coq’s Notation mechanism, so that x <- a;b

is translated to bind a (fun x => b), and a;b is
translated to bind a (fun _ => b). Finally, the
Ynot library provides a return primitive of type
forall T (v: T), ST T (where again T is inferred by
Coq). Given a value v, the monad return v represents
the computation that does no I/O and simply returns v.

5 Kernel Verification

In this section we explain how we verified QUARK’s ker-
nel. First, we specify correct behavior of the kernel in
terms of traces. Second, we prove the kernel satisfies this
specification using the full power of Ynot’s monads. Fi-
nally, we prove that our kernel specification implies our
target security properties.

5.1 Actions and Traces
We verify our kernel by reasoning about the sequences of
calls to primitives (i.e., system calls) it can make. We call
such a sequence a trace; our kernel specification (hence-
forth “spec”) defines which traces are allowed for a cor-
rect implementation as in [30].
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Definition Trace := list Action.

Inductive Action :=

| ReadN : chan -> positive -> list ascii -> Action

| WriteN : chan -> positive -> list ascii -> Action

| MkTab : tab -> Action

| SentSoc : tab -> list ascii -> list ascii -> Action

| ...

Definition Read c b :=

ReadN c 1 [c]

Figure 4: Traces and Actions. This Coq code defines the type of
externally visible actions our kernel can take. A trace is simply a list
of such actions. We reason about our kernel by proving properties of
the traces it can have. Traces are like other Coq values; in particular,
we can write functions that return traces. Read is a helper function to
construct a trace fragment corresponding to reading a single byte.

We use a list of actions to represent the trace the
kernel produces by calling primitives. Each action in
a trace corresponds to the kernel invoking a particular
primitive. Figure 4 shows a partial definition of the
Action datatype. For example: ReadN f n l is an
Action indicating that the n bytes in list l were read
from input channel f; MkTab t indicates that tab t was
created; SentSoc t host port indicates a socket was
connected to host/port and passed to tab t.

We can manipulate traces and Actions like any other
values in Coq. For example, we can define a function
Read c b to encode the special case that a single byte
b was read on input channel c. Though not shown here,
we also define similar helper functions to build up trace
fragments which correspond to having read or written
a particular message to a given component. For exam-
ple, ReadMsg t (GetSoc host port) corresponds to
the trace fragment that results from reading a GetSoc re-
quest from tab t.

5.2 Kernel Specification

Figure 5 shows a simplified snippet of our kernel spec.
The spec is a predicate tcorrect over traces with two
constructors, stating the two ways in which tcorrect

can be established: (1) tcorrect_nil states that the
empty trace satisfies tcorrect (2) tcorrect_step

states that if tr satisfies tcorrect and the kernel
takes a single step, meaning that after tr it gets a
request req, and responds with rsp, then the trace
rsp ++ req ++ tr (where ++ is list concatenation)
also satisfies tcorrect. By convention the first action
in a trace is the most recent.

The predicate step_correct defines correctness
for a single iteration of the kernel’s main loop:
step_correct tr req rsp holds if given the past
trace tr and a request req, the response of the
kernel should be rsp. The predicate has several
constructors (not all shown) enumerating the ways

Inductive tcorrect : Trace -> Prop :=

| tcorrect_nil:

tcorrect nil

| tcorrect_step: forall tr req rsp,

tcorrect tr ->

step_correct tr req rsp ->

tcorrect (rsp ++ req ++ tr).

Inductive step_correct :

Trace -> Trace -> Trace -> Prop :=

| step_correct_add_tab: forall tr t,

step_correct tr

(MkTab t :: Read stdin "+" :: nil)

(WroteMsg t Render)

| step_correct_socket_true: forall tr t host port,

is_safe_soc host (domain_suffix t) = true ->

step_correct tr

(ReadMsg t (GetSoc host port))

(SentSoc t host port)

| step_correct_socket_false: forall tr t host port,

is_safe_soc host (domain_suffix t) <> true ->

step_correct tr

(ReadMsg t (GetSoc host port) ++ tr)

(WroteMsg t Error ++ tr)

| ...

Figure 5: Kernel Specification. step correct is a predicate over
triples containing a past trace, a request trace, and a response trace; it
holds when the response is valid for the given request in the context of
the past trace. tcorrect defines a correct trace for our kernel to be a
sequence of correct steps, i.e., the concatenation of valid request and
response trace fragments.

step_correct can be established. For example,
step_correct_add_tab states that typing “+” on
stdin leads to the creation of a tab and sending the
Render message. The step_correct_socket_true

case captures the successful socket creation case,
whereas step_correct_socket_false captures the
error case.

5.3 Monads in Ynot Revisited

In the previous section, we explained Ynot’s ST monad
as being parameterized over a single type T. In re-
ality, ST takes two additional parameters representing
pre- and post-conditions for the computation encoded by
the monad. Thus, ST T P Q represents a computation
which, if started in a state where P holds, may perform
some I/O and then return a value of type T in a state
where Q holds. For technical reasons, these pre- and post-
conditions are expressed using separation logic, but we
defer details to a tech report [24].

Following the approach of Malecha et al. [30], we de-
fine an opaque predicate (traced tr) to represent the
fact that at a given point during execution, tr captures
all the past activities; and (open f) to represent the fact
that channel f is currently open. An opaque predicate
cannot be proven directly. This property allows us to
ensure that no part of the kernel can forge a proof of
(traced tr) for any trace it independently constructs.
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Axiom readn:

forall (f: chan) (n: positive) {tr: Trace},

ST (list ascii)

{traced tr * open f}

{fun l =>

traced (ReadN f n l :: tr) *

[len l = n] * open f }.

Definition read_msg:

forall (t: tab) {tr: Trace},

ST msg

{traced tr * open (tchan t)}

{fun m =>

traced (ReadMsg t m ++ tr) * open (tchan t)} :=

...

Figure 6: Example Monadic Types. This Coq code shows the
monadic types for the readn primitive and for the read msg func-
tion which is implemented in terms of readn. In both cases, the first
expression between curly braces represents a pre-condition and the sec-
ond represents a post-condition. The asterisk (*) may be read as normal
conjunction in this context.

Thus (traced tr) can only be true for the current trace
tr.

Figure 6 shows the full monadic type for the readn

primitive, which reads n bytes of data and returns it.
The * connective represents the separating conjunc-
tion from separation logic. For our purposes, con-
sider it as a regular conjunction. The precondition of
(readn f n tr) states that tr is the current trace and
that f is open. The post-condition states that the trace
after readn will be the same as the original, but with
an additional (ReadN f n l) action at the beginning,
where the length of l is equal to n (len l = n is a reg-
ular predicate, which is lifted using square brackets into
a separation logic predicate). After the call, the channel
f is still open.

The full type of the Ynot bind operation makes sure
that when two monads are sequenced, the post-condition
of the first monad implies the pre-condition of the sec-
ond. This is achieved by having bind take an additional
third argument, which is a proof of this implication. The
syntactic sugar for x <- a;b is updated to pass the wild-
card “_” for the additional argument. When processing
the definition of our kernel, Coq will enter into an inter-
active mode that allows the user to construct proofs to
fill in these wildcards. This allows us to prove that the
post-condition of each monad implies the pre-condition
of the immediately following monad in Coq’s interactive
proof environment.

5.4 Back to the Kernel

We now return to our kernel from Figure 3 and show how
we prove that it satisfies the spec from Figure 5. We
augment the kernel state to additionally include the trace
of the kernel so far, and we update our kernel code to
maintain this tr field. By using a special encoding in

Ynot for this trace, the tr field is not realized at run-
time, it is only used for proof purposes.

We define the kcorrect predicate as follows (s.tr
projects the current trace out of kernel state s):

Definition kcorrect (s: kstate) :=

traced s.tr * [tcorrect s.tr]

Now we want to show that kcorrect is an invariant that
holds throughout execution of the kernel. Essentially we
must show that (kcorrect s) is a loop invariant on the
kernel state s for the main kernel loop, which boils down
to showing that (kcorrect s) is valid as both the pre-
and post-condition for the loop body, kstep as shown in
Figure 3.

As mentioned previously, Coq will ask us to prove im-
plications between the post-condition of one monad and
the pre-condition of the next. While these proofs are ul-
timately spelled out in full formal detail, Coq provides
facilities to automate a substantial portion of the proof
process. Ynot further provides a handful of sophisticated
tactics which helped automatically dispatch tedious, re-
peatedly occurring proof obligations. We had to manu-
ally prove the cases which were not handled automati-
cally. While we have only shown the key kernel invari-
ant here, in the full implementation there are many ad-
ditional Hoare predicates for the intermediate goals be-
tween program points. We defer details of these predi-
cates and the manual proof process to [24], but discuss
proof effort in Section 6.

5.5 Security Properties
Our security properties are phrased as theorems about the
spec. We now prove that our spec implies these key secu-
rity properties, which we intend to hold in QUARK. Fig-
ure 7 shows these key theorems, which correspond pre-
cisely to the security properties outlined in Section 3.6.

State Integrity. The first security property,
kstate dep user, ensures that the kernel state only
changes in response to the user pressing a “control key”
(e.g. switching to the third tab by pressing F3). The
theorem establishes this property by showing its contra-
positive: if the kernel steps by responding with rsp to re-
quest req after trace tr and no “control keys” were read
from the user, then the kernel state remains unchanged
by this step. The function proj_user_control, not
shown here, simply projects from the trace all actions
of the form (Read c stdin) where c is a control key.
The function kernel_state, not shown here, just com-
putes the kernel state from a trace. We also prove that at
the beginning of any invocation to kloop in Figure 3, all
fields of s aside from tr are equal to the corresponding
field in (kernel_state s.tr).

Response Integrity. The second security property,
kresponse dep kstate, ensures that every kernel re-
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Theorem kstate_dep_user:

forall tr req rsp,

step_correct tr req rsp ->

proj_user_control tr

= proj_user_control (rsp ++ req ++ tr) ->

kernel_state tr = kernel_state (rsp ++ req ++ tr).

Theorem kresponse_dep_kstate:

forall tr1 tr2 req rsp,

kernel_state tr1 = kernel_state tr2 ->

step_correct tr1 req rsp ->

step_correct tr2 req rsp.

Theorem tab_NI:

forall tr1 tr2 t req rsp1 rsp2,

tcorrect tr1 -> tcorrect tr2 ->

from_tab t req ->

(cur_tab tr1 = Some t <-> cur_tab tr2 = Some t) ->

step_correct tr1 req rsp1 ->

step_correct tr2 req rsp2 ->

rsp1 = rsp2 \/

(exists m, rsp1 = WroteCMsg (cproc_for t tr1) m /\

rsp2 = WroteCMsg (cproc_for t tr2) m).

Theorem no_xdom_sockets: forall tr t,

tcorrect tr ->

In (SendSocket t host s) tr ->

is_safe_soc host (domain_suffic t).

Theorem no_xdom_cookie_set: forall tr1 tr2 cproc,

tcorrect (tr1 ++ SetCookie key value cproc :: tr2) ->

exists tr t,

(tr2 = (SetCookieRequest t key value :: tr) /\

is_safe_cook (domain cproc) (domain_suffix t))

Theorem dom_bar_correct: forall tr,

tcorrect tr -> dom_bar tr = domain_suffix (cur_tab tr).

Figure 7: Kernel Security Properties. This Coq code shows how
traces allow us to formalize QUARK’s security properties.

sponse depends solely on the request and the kernel state.
This delineates which parts of a trace can affect the ker-
nel’s behavior: for a given request req, the kernel will
produce the same response rsp, for any two traces that
induce the same kernel state, even if the two traces have
completely different sets of requests/responses (recall
that the kernel state only includes the current tab and
the set of tabs, and most request responses don’t change
these). Since the kernel state depends only the user’s
control key inputs, this theorem immediately establishes
the fact that our browser will never allow one component
to influence how the kernel treats another component un-
less the user intervenes.

Note that kresponse dep kstate shows that the ker-
nel will produce the same response given the same re-
quest after any two traces that induce the same kernel
state. This may seem surprising since many of the ker-
nel’s operations produce nondeterministic results, e.g.,
there is no way to guarantee that two web fetches of the
same URL will produce the same document. However,
such nondeterminism is captured in the request, which

is consistent with our notion of requests as inputs and
responses as outputs.

Tab Non-Interference. The second security property,
tab NI, states that the kernel’s response to a tab is not
affected by any other tab. In particular, tab NI shows
that if in the context of a valid trace, tr1, the kernel
responds to a request req from tab t with rsp1, then
the kernel will respond to the same request req with an
equivalent response in the context of any other valid trace
tr2 which also contains tab t, irrespective of what other
tabs are present in tr2 or what actions they take. Note
that this property holds in particular for the case where
trace tr2 contains only tab t, which leads to the follow-
ing corollary: the kernel’s response to a tab will be the
same even if all other tabs did not exist

The formal statement of the theorem in Figure 7 is
made slightly more complicated because of two issues.
First, we must assume that the focused tab at the end of
tr1 (denoted by cur tab tr1) is t if and only if the
focused tab at the end of tr2 is also t. This additional
assumption is needed because the kernel responds differ-
ently based on whether a tab is focused or not. For exam-
ple, when the kernel receives a Display message from a
tab (indicating that the tab wants to display its rendered
page to the user), the kernel only forwards the message
to the output process if the tab is currently focused.

The second complication is that the communication
channel underlying the cookie process for t’s domain
may not be the same between tr1 and tr2. Thus, in
the case that kernel responds by forwarding a valid re-
quest from t to its cookie process, we guarantee that the
kernel sends the same payload to the cookie process cor-
responding to t’s domain.

Note that, unlike kresponse dep kstate, tab NI

does not require tr1 and tr2 to induce the same ker-
nel state. Instead, it merely requires the request req to
be from a tab t, and tr1 and tr2 to be valid traces that
both contain t (indeed, t must be on both traces other-
wise the step correct assumptions would not hold).
Other than these restrictions, tr1 and tr2 may be arbi-
trarily different. They could contain different tabs from
different domains, have different tabs focused, different
cookie processes, etc.

Response Integrity and Tab Non-Interference provide
different, complimentary guarantees. Response Integrity
ensures the response to any request req is only affected
by control keys and req, while Tab Non-Interference
guarantees that the response to a tab request does not leak
information to another tab. Note that Response Integrity
could still hold for a kernel which mistakenly sends re-
sponses to the wrong tab, but Tab Non-Interference pre-
vents this. Similarly, Tab Non-Interference could hold
for a kernel which allows a tab to affect how the kernel
responds to a cookie process, but Response Integrity pre-
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cludes such behavior.
It is also important to understand that tab NI proves

the absence of interference as caused by the kernel, not
by other components, such as the network or cookie pro-
cesses. In particular, it is still possible for two websites to
communicate with each other through the network, caus-
ing one tab to affect another tab’s view of the web. Sim-
ilarly, it is possible for one tab to set a cookie which is
read by another tab, which again causes a tab to affect an-
other one. For the cookie case, however, we have a sep-
arate theorem about cookie integrity and confidentiality
which states that cookie access control is done correctly.

Note that this property is an adaptation of the tra-
ditional non-interference property. In traditional non-
interference, the program has ”high” and ”low” inputs
and outputs; a program is non-interfering if high inputs
never affect low outputs. Intuitively, this constrains the
program to never reveal secret information to untrusted
principles.

We found that this traditional approach to non-
interference fits poorly with our trace-based verification
approach. In particular, because the browser is a non-
terminating, reactive program, the ”inputs” and ”out-
puts” are infinite streams of data.

Previous research [11] has adapted the notion of non-
interference to the setting of reactive programs like
browsers. They provide a formal definition of non-
interference in terms of possibly infinite input and out-
put streams. A program at a particular state is non-
interfering if it produces similar outputs from similar in-
puts. The notion of similarity is parameterized in their
definition; they explore several options and examine the
consequences of each definition for similarity.

Our tab non-interference theorem can be viewed in
terms of the definition from [11], where requests are “in-
puts” and responses are “outputs”; essentially, our the-
orem shows the inductive case for potentially infinite
streams. Adapting our definition to fit directly in the
framework from [11] is complicated by the fact that we
deal with a unified trace of input and output events in the
sequence they occur instead of having one trace of input
events and a separate trace of output events. In future
work, we hope to refine our notion of non-interference
to be between domains instead of tabs, and we believe
that applying the formalism from [11] will be useful in
achieving this goal. Unlike [11], we prove a version of
non-interference for a particular program, the QUARK
browser kernel, directly in Coq.

No Cross-domain Socket Creation. The third secu-
rity property, no xdom sockets, ensures that the ker-
nel never delivers a socket bound to domain d to a tab
whose domain does not match d. This involves check-
ing URL suffixes in a style very similar to the cookie
policy as discussed earlier. This property forces a tab to

Component Language Lines of code
Kernel Code Coq 859
Kernel Security Properties Coq 142
Kernel Proofs Coq 4,383
Kernel Primitive Specification Coq 143
Kernel Primitives Ocaml/C 538
Tab Process Python 229
Input Process Python 60
Output Process Python 83
Cookie Process Python 135
Python Message Lib Python 334
WebKit Modifications C 250
WebKit C/C++ 969,109

Figure 8: QUARK Components by Language and Size.

use GetURL when accessing websites that do not match
its domain suffix, thus restricting the tab to only access
publicly available data from other domains.

Cookie Integrity/Confidentiality. The fourth secu-
rity property states cookie integrity and confidentiality.
As an example of how cookies are processed, consider
the following trace when a cookie is set:

SetCookie key value cproc ::

SetCookieRequest tab key value :: ...

First, the SetCookieRequest action occurs, stat-
ing that a given tab just requested a cookie (in
fact, SetCookieRequest is just defined in terms of a
ReadMsg action of the appropriate message). The ker-
nel responds with a SetCookie action (defined in terms
of WroteMsg), which represents the fact that the kernel
sent the cookie to the cookie process cproc. The ker-
nel implementation is meant to find a cproc whose do-
main suffix corresponds to the tab. This requirement is
given in the theorem no xdom cookie set, which en-
codes cookie integrity. It requires that, within a correct
trace, if a cookie process is ever asked to set a cookie,
then it is in immediate response to a cookie set request
for the same exact cookie from a tab whose domain
matches that of the cookie process. There is a similar
theorem no xdom cookie get, not shown here, which
encodes cookie confidentiality.

Domain Bar Integrity and Correctness. The fifth
property states that the domain bar is equal to the domain
suffix of the currently selected tab, which encodes the
correctness of the address bar.

6 Evaluation

In this section we evaluate QUARK in terms of proof ef-
fort, trusted computing base, performance, and security.

Proof Effort and Component Sizes. QUARK com-
prises several components written in various languages;
we summarize their sizes in Figure 8. All Python com-
ponents share the “Python Message Lib” for messaging
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with the kernel. Implementing QUARK took about 6 per-
son months, which includes several iterations redesign-
ing the kernel, proofs, and interfaces between compo-
nents. Formal shim verification saved substantial effort:
we guaranteed our security properties for a million lines
of code by reasoning just 859.

Trusted Computing Base. The trusted computing
base (TCB) consists of all system components we as-
sume to be correct. A bug in the TCB could invalidate
our security guarantees. QUARK’s TCB includes:

• Coq’s core calculus and type checker
• Our formal statement of the security properties
• Several primitives used in Ynot
• Several primitives unique to QUARK

• The Ocaml compiler and runtime
• The underlying Operating System kernel
• Our chroot sandbox

Because Coq exploits the Curry-Howard Isomor-
phism, its type checker is actually the “proof checker” we
have mentioned throughout the paper. We assume that
our formal statement of the security properties correctly
reflects how we understand them intuitively. We also as-
sume that the primitives from Ynot and those we added in
QUARK correctly implement the monadic type they are
axiomatically assigned. We trust the OCaml compiler
and runtime since our kernel is extracted from Coq and
run as an OCaml program. We also trust the operating
system kernel and our traditional chroot sandbox to pro-
vide process isolation, specifically, our design assumes
the sandboxing mechanism restricts tabs to only access
resources provided by the kernel, thus preventing com-
promised tabs from commuting over covert channels.

Our TCB does not include WebKit’s large code base or
the Python implementation. This is because a compro-
mised tab or cookie process can not affect the security
guarantees provided by kernel. Furthermore, the TCB
does not include the browser kernel code, since it has
been proved correct.

Ideally, QUARK will take advantage of previous for-
mally verified infrastructure to minimize its TCB. For
example, by running QUARK in seL4 [27], compiling
QUARK’s ML-like browser kernel with the MLCom-
pCert compiler [1], and sandboxing other QUARK com-
ponents with RockSalt [32], we could drastically reduce
our TCB by eliminating its largest components. In this
light, our work shows how to build yet another piece of
the puzzle (namely a verified browser) needed to for a
fully verified software stack. However, these other ver-
ified building blocks are themselves research prototypes
which, for now, makes them very difficult to stitch to-
gether as a foundation for a realistic browser.
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Figure 9: QUARK Performance. This graph shows QUARK load
times for the Alexa Top 10 Web sites, normalized to stock WebKit’s
load times. In each group, the leftmost bar shows the unoptimized load
time, the rightmost bar shows the load time in the final, optimized ver-
sion of QUARK, and intermediate bars show how additional optimiza-
tions improve performance. Smaller is better.

Performance. We evaluate our approach’s perfor-
mance impact by comparing QUARK’s load times to
stock WebKit. Figure 9 shows QUARK load times for
the top 10 Alexa Web sites, normalized to stock We-
bKit. QUARK’s overhead is due to factoring the browser
into distinct components which run in separate processes
and explicitly communicate through a formally verified
browser kernel.

By performing a few simple optimizations, the final
version of QUARK loads large, sophisticated websites
with only 24% overhead. This is a substantial improve-
ment over a naı̈ve implementation of our architecture,
shown by the left-most “not-optimized” bars in Figure 9.
Passing bound sockets to tabs, whitelisting content distri-
bution networks for major websites, and caching cookie
accesses, improves performance by 62% on average.

The WebKit baseline in Figure 9 is a full-featured
browser based on the Python bindings to WebKit. These
bindings are simply a thin layer around WebKit’s C/C++
implementation which provide easy access to key call-
backs. We measure 10 loads of each page and take the
average. Over all 10 sites, the average slowdown in load-
time is 24% (with a minimum of 5% for blogger and a
maximum of 42% for yahoo).

We also measured load-time for the previous version
of QUARK, just before rectangle-based rendering was
added. In this previous version, the average load-time
was only 12% versus 24% for the current version. The
increase in overhead is due to additional communica-
tion with the kernel during incremental rendering. De-
spite this additional overhead in load time, incremental
rendering is preferable because it allows QUARK to dis-
play content to the user as it becomes available instead
of waiting until an entire page is loaded.

Security Analysis. QUARK provides strong, formal
guarantees for security policies which are not fully com-
patible with traditional web security policies, but still
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provide some of the assurances popular web browsers
seek to provide.

For the policies we have not formally verified, QUARK
offers exactly the same level of traditional, unverified
enforcement WebKit provides. Thus, QUARK actually
provides security far beyond the handful policies we for-
mally verified. Below we discuss the gap between the
subset of policies we verified and the full set of common
browser security policies.

The same origin policy [37] (SOP) dictates which re-
sources a tab may access. For example, a tab is allowed
to load cross-domain images using an img tag, but not
using an XMLHttpRequest.

Unfortunately, we cannot easily verify this policy
since restricting how a resource may be used after it has
been loaded (e.g., in an img tag vs. as a JavaScript value)
requires reasoning across abstraction boundaries, i.e., an-
alyzing the large, complex tab implementation instead of
treating it as a black box.

The SOP also restricts how JavaScript running in dif-
ferent frames on the same page may access the DOM. We
could formally reason about this aspect of the SOP by
making frames the basic protection domains in QUARK
instead of tabs. To support this refined architecture,
frames would own a rectangle of screen real estate which
they could subdivide and delegate to sub-frames. Com-
munication between frames would be coordinated by the
kernel, which would allow us to formally guarantee that
all frame access to the DOM conforms with the SOP.

We only formally prove inter-domain cookie isolation.
Even this coarse guarantee prohibits a broad class of at-
tacks, e.g., it protects all Google cookies from any non-
Google tab. QUARK does enforce restrictions on cookie
access between subdomains; it just does so using WebKit
as unverified cookie handling code within our cookie
processes. Formally proving finer-grained cookie poli-
cies in Coq would be possible and would not require sig-
nificant changes to the kernel or proofs.

Unfortunately, Quark does not prevent all cookie exfil-
tration attacks. If a subframe is able to exploit the entire
tab, then it could steal the cookies of its top-level parent
tab, and leak the stolen cookies by encoding the informa-
tion within the URL parameter of GetURL requests. This
limitation arises because tabs are principles in Quark in-
stead of frames. This problem can be prevented by refin-
ing Quark so that frames themselves are the principles.

Our socket security policy prevents an important sub-
set of cross-site request forgery attacks [9]. Quark guar-
antees that a tab uses a GetURL message when request-
ing a resource from sites whose domain suffix doesn’t
match with the tab’s one. Because our implementa-
tion of GetURL does not send cookies, the resources re-
quested by a GetURL message are guaranteed to be pub-
licly available ones which do not trigger any privileged

actions on the server side. This guarantee prohibits a
large class of attacks, e.g., cross-site request forgery at-
tacks against Amazon domains from non-Amazon do-
mains. However, this policy cannot prevent cross-site
request forgery attacks against sites sharing the same
domain suffix with the tab, e.g., attacks from a tab on
www.ucsd.edu against cse.ucsd.edu since the tab on
www.ucsd.edu can directly connect to cse.ucsd.edu

using a socket and cookies on cse.ucsd.edu are also
available to the tab.

Compatibility Issues. QUARK enforces non-standard
security policies which break compatibility with some
web applications. For example, Mashups do not work
properly because a tab can only access cookies for its
domain and subdomains, e.g., a subframe in a tab can-
not properly access any page that needs user creden-
tials identified by cookies if the subframe’s domain suf-
fix does not match with the tab’s one. This limitation
arises because tabs are the principles of Quark as op-
posed to subframes inside tabs. Unfortunately, tabs are
too coarse grained to properly support mashups and re-
tain our strong guarantees.

For the same reason as above, Quark cannot currently
support third-party cookies. It is worth noting that third-
party cookies have been considered a privacy-violating
feature of the web, and there are even popular browser
extensions to suppress them. However, many websites
depend on third party cookies for full functionality, and
our current Quark browser does not allow such cookies
since they would violate our non-interference guarantees.

Finally, Quark does not support communications like
“postMessage” between tabs; again, this would violate
our tab non-interference guarantees.

Despite these incompatibilities, Quark works well on a
variety of important sites such as Google Maps, Amazon,
and Facebook since they mostly comply with Quarks’
security policies. More importantly, our hope is that in
the future Quark will provide a foundation to explore all
of the above features within a formally verified setting.

In particular, adding the above features will require fu-
ture work in two broad directions. First, frames need
to become the principles in Quark instead of tabs. This
change will require the kernel to support parent frames
delegating resources like screen region to child frames.
Second, finer grained policies will be required to retain
appropriate non-interference results in the face of these
new features, e.g. to support interaction between tabs
via ”postMessage”. Together, these changes would pro-
vide a form of ”controlled” interference, where frames
are allowed to communicate directly, but only in a sanc-
tioned manner. Even more aggressively, one may attempt
to re-implement other research prototypes like Mashu-
pOS [19] within Quark, going beyond the web standards
of today, and prove properties of its implementation.
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There are also several other features that Quark does
not currently support, and would be useful to add, includ-
ing local storage, file upload, browser cache, browser his-
tory, etc. However, we believe that these are not funda-
mental limitations of our approach or Quark’s current de-
sign. Indeed, most of these features don’t involve inter-
tab communication. For the cases where they do (for ex-
ample history information is passed between tabs if vis-
ited links are to be correctly rendered), one would again
have to refine the non-interference definition and theo-
rems to allow for controlled flow of information.

7 Discussion

In this section we discuss lessons learned while develop-
ing QUARK and verifying its kernel in Coq. In hindsight,
these guidelines could have substantially eased our ef-
forts. We hope they prove useful for future endeavors.

Formal Shim Verification. Our most essential tech-
nique was formal shim verification. For us, it reduced
the verification burden to proving a small browser kernel.
Previous browsers like Chrome, OP, and Gazelle clearly
demonstrate the value of kernel-based architectures. OP
further shows how this approach enables reasoning about
a model of the browser. We take the next step and for-
mally prove the actual browser implementation correct.

Modularity through Trace-based Specification. We
ultimately specified correct browser behavior in terms
of traces and proved both that (1) the implementation
satisfies the spec and (2) the spec implies our secu-
rity properties. Splitting our verification into these two
phases improved modularity by separating concerns. The
first proof phase reasons using monads in Ynot to show
that the trace-based specification correctly abstracts the
implementation. The second proof phase is no longer
bound to reasoning in terms of monads – it only needs to
reason about traces, substantially simplifying proofs.

This modularity aided us late in development
when we proved address bar correctness (Theorem
dom_bar_correct in Figure 7). To prove this theorem,
we only had to reason about the trace-based specifica-
tion, not the implementation. As a result, the proof of
dom_bar_correct was only about 300 lines of code,
tiny in comparison to the total proof effort. Thus, prov-
ing additional properties can be done with relatively little
effort over the trace-based specification, without having
to reason about monads or other implementation details.

Implement Non-verified Prototype First. Another
approach we found effective was to write a non-verified
version of the kernel code before verifying it. This al-
lowed us to carefully design and debug the interfaces be-
tween components and to enable the right browsing func-
tionality before starting the verification task.

Iterative Development. After failing to build and ver-

ify the browser in a single shot, we found that an itera-
tive approach was much more effective. We started with
a text-based browser, where the tab used lynx to gener-
ate a text-based version of QUARK. We then evolved this
browser into a GUI-based version based on WebKit, but
with no sockets or cookies. Then we added sockets and
finally cookies. When combined with our philosophy of
“write the non-verified version first”, this meant that we
kept a working version of the kernel written in Python
throughout the various iterations. Just for comparison,
the Python kernel which is equivalent to the Coq version
listed in Figure 8 is 305 lines of code.

Favor Ease of Reasoning. When forced to choose be-
tween adding complexity to the browser kernel or to the
untrusted tab implementation, it was always better keep
the kernel as simple as possible. This helped manage the
verification burden which was the ultimate bottleneck in
developing QUARK. Similarly, when faced with a choice
between flexibility/extensibility of code and ease of rea-
soning, we found it best to aim for ease of reasoning.

8 Conclusions

In this paper, we demonstrated how formal shim verifica-
tion can be used to achieve strong security guarantees for
a modern Web browser using a mechanical proof assis-
tant. We formally proved that our browser provides tab
noninterference, cookie integrity and confidentiality, and
address bar integrity and correctness. We detailed our
design and verification techniques and showed that the
resulting browser, QUARK, provides a modern browsing
experience with performance comparable to the default
WebKit browser. For future research, QUARK furnishes
a framework to easily experiment with additional web
policies without re-engineering an entire browser or for-
malizing all the details of its behavior from scratch.

9 Acknowledgments

We thank Kirill Levchenko for many fruitful conversa-
tions regarding shim verification. We would also like to
thank our shepherd, Anupam Datta, and the anonymous
reviewers for helping us improve our paper.

References
[1] http://gallium.inria.fr/~dargaye/mlcompcert.html.

[2] Chrome security hall of fame. http://dev.chromium.org/

Home/chromium-security/hall-of-fame.

[3] Public suffix list. http://publicsuffix.org/.

[4] Pwn2own. http://en.wikipedia.org/wiki/Pwn2Own.

[5] AKHAWE, D., BARTH, A., LAMY, P. E., MITCHELL, J., AND
SONG, D. Towards a formal foundation of web security. In
Proceedings of CSF 2010 (July 2010), M. Backes and A. Myers,
Eds., IEEE Computer Society, pp. 290–304.

15



[6] ANSEL, J., MARCHENKO, P., ERLINGSSON, Ú., TAYLOR, E.,
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