
Graph Search of Software Models Using Multidimensional
Scaling

Bojana Bislimovska1, Güneş Aluç2, M. Tamer Özsu2 and Piero Fraternali1
1 Politecnico di Milano, 2 University of Waterloo

{bojana.bislimovska, piero.fraternali}@polimi.it {galuc,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Software models formalize the requirements, structure and
behavior of a system or application. They represent essential
artifacts that simplify the process of software development.
Software repositories have been developed to store models
in order to facilitate the reuse of know-how from software
projects; however, methods for searching these model repos-
itories are not very efficient. Specifically, while being more
scalable, general-purpose keyword search is not suitable for
model search because it does not consider the structure that
is inherent in software models: a good search algorithm
should consider the model structure as well as the knowl-
edge concentrated in the metamodel. On the other hand,
existing approaches that consider the structure while query-
ing software models are limited to only specific domains such
as Business Process Models (BPMs).

In this paper, we introduce MultiModGraph, an efficient
approach for indexing and searching model repositories. Mul-
tiModGraph preserves the model structure and metamodel
information by representing models as graphs. To enable ef-
ficient search, the approach employs multidimensional scal-
ing to approximately map vertices of the model graph to
points in space. We evaluate MultiModGraph both with
respect to speed and quality of results using a real-word
repository of web application models.

1. INTRODUCTION
Models facilitate software development in multiple ways:

They raise the level of abstraction to help deal with the in-
creasing complexity in software development; they help or-
ganizations improve source code quality and adapt faster to
changes in the requirements of a project; and they improve
communications within an organization. Models have a spe-
cific structure, which is expressed using a well-defined syntax
of a modeling language. Each modeling language conforms
to a metamodel, which defines the structure, semantics and
constraints for building a model [10].

Model repositories are used for storing collections of soft-

(c) 2015, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2015 Joint Conference (March 27, 2015, Brus-
sels, Belgium) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0
.

ware models. Most (model) repositories offer elementary
tools to search these collections of models, which is partic-
ularly important for model re-usability [12]. For example,
instead of designing a model from scratch, developers can re-
trieve an already existing modeling pattern (from the repos-
itory) and tailor it according to their needs to build new
software models. This can significantly improve the model
development process by decreasing its time and cost, while
at the same time improving its quality.

Broadly speaking, model repositories employ two tech-
niques for search: general-purpose keyword search [13], or
content-based search that incorporates the model structure
in the query [16, 19]. However, each technique has its short-
comings. While being more scalable, general-purpose key-
word search is not suitable for model search because it does
not consider the structure that is inherent in software mod-
els [2]. Furthermore, most keyword-based approaches allow
only exact matching of keywords, where a set of keywords is
matched against the models’ description (e.g. model element
labels). On the other hand, those approaches that consider
the structure while querying software models are limited
to only specific domains such as Business Process Models
(BPMs). In contrast, methods are needed that are (i) more
general, (ii) sensitive to the knowledge about the model
structure and (iii) are at the same time scalable. Specifi-
cally, these solutions should allow users to pose queries (to
the model repository) in the form of a model sketch, which
captures the intended requirements in a native modeling lan-
guage supported by the model repository. Then, the repos-
itory should rank and return a sub-collection of the “most
relevant” modeling patterns from these models.

In this paper, we propose an algorithm for efficient search
of WebModeling Language (WebML1) models, namely, Mul-
tiModGraph. The algorithm uses a representation of mod-
els as attributed graphs, which allows mapping of the model
structure and hierarchies among the model elements to a
graph. Queries, which represent model fragments, can also
be transformed into graphs, and they can be used for search-
ing similar models in a model repository. Our algorithm uses
multidimensional scaling to represent the graph vertices as
points in a multidimensional space. These points are used to
build an index that allows for efficient pruning during search.
This way, given a query vertex, those vertices in the graph
that are relevant to the query can be located efficiently (i.e.,
they correspond to points within a specified distance in the

1WebML is a modeling language for Web application front-
ends, recently generalized into the OMG IFML standard
(www.ifml.org)

multidimensional space). Furthermore, the algorithm con-
siders neighborhood information for each graph vertex in or-
der to locally expand already matched vertices. Metamodel
information is incorporated in the search and indexing, as
well as in the ranking function which sorts retrieved models
with respect to their similarity.

The paper is organized as follows: Section 2 presents re-
lated work; Section 3 describes the WebML modeling lan-
guage and the process of model to graph transformation;
Section 4 gives the system architecture; Section 5 describes
the proposed approach; Section 6 illustrates our results, and
finally, Section 7 concludes and proposes directions for fu-
ture work.

2. RELATED WORK
Existing works can be classified into 3 areas: (i) keyword-

based model search, (ii) content-based model search, which
present specific techniques for search of models, and (iii)
graph databases whose indexing and querying approaches
can be employed for model search.

2.1 Keyword-Based Model Search
Keyword-based approaches for model search use a set of

keywords for querying models. Their main limitation is that
they do not consider the model structure in the query or the
hierarchies and relationships among model elements. Fur-
thermore, they return exact but not approximate matches
to the query, which may be relavant to the user.

Moogle [13] is a keyword-based model search engine that
uses metamodels to create indexes for the evaluation of key-
word queries. In comparison to our approach, Moogle sup-
ports only textual queries with just a simple filter on the
type of the model element to be returned. Another keyword
based search solution for WebML models is presented in [2].
It incorporates metamodel information in the search pro-
cess, used only in deciding how weights are assigned to dif-
ferent index terms. In contrast, MultiModGraph supports
relationships among model elements through graph model
representation, as well as some additional metamodel infor-
mation such as references to the Data Model.

2.2 Graph-Based Model Search
Existing approaches that rely on a graph-based repre-

sentation of models predominantly target Business Process
Models (BPM) and their corresponding notations. However,
BPMs are not as rich as WebML models in terms of syntax
and semantics. Moreover, they are not suitable for searching
large collections of models, since they only rely on a scan of
the set of models without any indexes. One example of such
technique is [6], which proposes discovering and ranking of
BPEL process models. This is achieved by using behavioral
similarity measure and a graph matching algorithm.

The approach in [16] retrieves process models by combin-
ing related pairs’ clustering and a set of metrics for compar-
ison of vertex labels. The main limitation of this approach
is that the similarity between two process models is mainly
based on the similarity of vertex labels rather than the struc-
tural similarity of the model graphs.

Some recent approaches [19, 8] exploit indexing for more
efficient retrieval of business process models. These indexes
are mostly feature-based, containing subgraphs that are most
representative features of the model graphs in the repository.
However, this type of indexing cannot be applied to models

with complex metamodels, such as WebML.
In [2], we compare keyword-based approach with a graph-

based approach for searching web application(WebML) mod-
els, but we do not apply any indexing in the graph-based
approach.

2.3 Graph Databases
The approaches for indexing and querying that allow ef-

ficient search of large graph databases can be employed for
efficient search of models. NeMa (Network Match) [9] is
a neighborhood-based top-k subgraph matching technique
that uses a minimal cost function to evaluate a goodness of
a match. It considers structure and label similarities and
it uses a neighborhood-based vector index to improve effi-
ciency. Unlike NeMa, MultiModGraph uses different kind
of indexing based on multidimensional scaling. TALE (Tool
for Approximate Subgraph Matching of Large Queries Ef-
ficiently) [18] is a general tool for approximate subgraph
matching. It employs neighborhood-based indexing. TALE
allows for vertex mismatches and vertex and edge gaps. The
basic differences are that in MultiModGraph the queries are
small model fragments, and the graphs are attributed.

There also exist some approaches for search of attributed
graph databases [11, 20] whose graphs contain multiple la-
bels for both vertices and edges. Attributed graphs are used
to represent WebML models, because they exploit the rich-
ness of the WebML metamodel. These techniques for match-
ing attributed graphs use indexing methods that contain
neighborhood information for each vertex. MultiModGraph
also uses neighborhood information, but for a different pur-
pose, i.e., to expand the matching candidates. The main
limitation of these approaches is that they do not consider
approximate, but only exact graph matching.

3. BACKGROUND AND PRELIMINARIES
In this section, we give a brief introduction to WebML,

and describe the transformation from WebML models to at-
tributed graphs.

3.1 Web Modeling Language (WebML)
WebML is a Domain Specific Language (DSL) for design-

ing complex web sites [4], recently generalized into OMG
IFML standard. It consists of two parts (i) data model
and (ii) web model. The data model describes the data
requirements of an application, using entity-relationship no-
tation. The web model describes the organization of the
front-end interfaces of a web application. It contains three
main building blocks, namely pages, units and links which
are organized hierarchically into larger container elements
such as areas and site views. A site view represents a model
element that includes a well-defined set of requirements for
a specific category of users. Site views can contain areas,
container elements that cluster pages with a homogeneous
subject and can be nested recursively [3]. Pages are the ac-
tual interface elements delivered to the user and they contain
content units which represent atomic elements for specify-
ing the content of a web page. Another type of units is an
operation unit, contained in the areas and site views. Oper-
ation units denote operations on data or arbitrary business
actions; they can be activated as a result of a link naviga-
tion, performing manipulation with data, or execution of an
external service. Content and operation units are connected
by links. Links allow sequencing of units, passing parame-

AreaPublication

Enter New Publication

New PublicationPublication Type

Create New
Publication

Publication

Publication type

A

Figure 1: Example of a WebML model

ters, navigating the hypertext front-end, changing the page
content or accessing a page.

Each WebML model has a structure determined by the
WebML metamodel, and an inherent hierarchy determined
by the container WebML model elements. Figure 1 shows an
example of a part of a WebML model. The area Publication
contains a Enter New Publication page, which allows the
user to insert a new publication through the New Publication
entry unit. The selection of a publication type is enabled
by the selector unit Publication Type. After the insertion
of the data for a publication, a new publication instance is
created, which is performed by the Create New Publication
create unit.

3.2 Model to Graph Transformation
We represent WebML models as attributed graphs such

that every model element is represented as a vertex in the
graph, while containment relationships and links among the
model elements are represented as graph edges. This type
of (graph) representation preserves as much as possible the
model structure and the hierarchies present among the model
elements. Specifically in this case, each graph vertex is an-
notated with three attributes: (i) name, (ii) type and (iii)
data, (Figure 2), where:

• Name represents the textual label of the model ele-
ment;

• Type represents the corresponding model element type,
derived fro mthe metamodel;

• Data represents the entity or relationship to which the
model element refers, in case such reference exists.

Likewise, each edge is annotated with the attribute type
which refers to the type of the corresponding relationship/link
in the model, as represented in Figure 2.

Thus, after the transformation, each WebML model from
the repository yields an attributed graph, and the model
search becomes the problem of searching over a collection
of attributed graphs. Since queries also represent model
fragments, they can be transformed in the same way into
graphs.

4. SYSTEM ARCHITECTURE
Figure 3 presents the architecture of our graph-based model

search system. The Content Processing component takes
every model from the repository and transforms it into a
format suitable for indexing. First, the Project Analysis
sub-component extracts general informaton from the model
such as the model name and id. Then, the Model to Graph
Transformation sub-component transforms each model into
a graph considering its metamodel features, as explained

Name: Publication
Type: Area

Name:Enter New Publication
Type:Page

Name: Create New Publication
Type: Create Unit
Data: Publication

Name: New Publication
Type: Entry Unit

Name: Publication Type
Type: Selector Unit
Data: Publication Type

Type: containment Type: containment

Type: containment

Type: containm
ent

Type: automatic
Typ

e: tr
an

sp
ort

Figure 2: Graph representation of the WebML model in
Figure 1

in Section 3 for the case of WebML models. These model
graphs are used to build the index in the Indexing compo-
nent, which is elaborated in more detail in Section 5.1.2.

Project
Analysis

Model to Graph
Transformation

Content Processing

Project
Repository

Metamodel

Query Analysis Query to Graph
Transformation

Query Processing Search

Index

Results

Matching Ranking

Indexing

DSL Metamodel

Model graph

Query graph

Metamodel features

Figure 3: Architecture of a graph-based model-driven infor-
mation retrieval system.

On the user side, a query is expressed as a model frag-
ment, which can be formulated in the same modeling lan-
guage in which models in the repository are encoded. The
Query Processing component transforms the query model
fragment into a format that is more suitable for search, the
same way models are transformed into graphs by the Con-
tent Processing component. When the query is transformed
into a graph, the system is ready for search.

The Search component has two tasks, which are discussed
in more detail in Section 5.1.3. TheMatching sub-component
uses a specific algorithm and the help of the index to find
model fragments (subgraphs) from the repository that match
the query graph under certain criteria. Finally, the Ranking
sub-component performs sorting on the retrieved model sub-
graphs with respect to their relevance to the query. These
ranked subgraphs (along with their computed ranking scores)
are returned to the user.

5. DETAILS OF MULTIMODGRAPH
Our main objective is, for a given query, to find a ranked

list of modeling patterns in the repository such that the
returned patterns are as similar as possible to the model-
ing pattern that represents the query. In our approach, the
problem can be rephrased as discovering a ranked list of
subgraphs in the set of project graphs similar to the query
graph. We define the notion of similarity as follows: A query
graph is similar to a retrieved project subgraph based on
the similarity of the textual content represented by the la-
bels of the vertices and edges in the attributed graphs, as
well as the similarity in their corresponding graph topolo-

gies. Moreover, the size of these similar subgraphs should
be comparable to the size of the query graph, so that upon
retrieval, these subgraphs (or the modeling patterns they
represent) can be reused to build new software models with
as few modifications as possible. One may note that in one
large project graph there might be multiple subgraphs sim-
ilar to a query graph, since a given task can be presented
with different modeling patterns, and we would like to cap-
ture also those kind of modeling patterns.

Our approach consists of an indexing phase, in which ver-
tices of the model graphs are indexed for efficient search, and
a search phase, in which (i) an index lookup is performed
on the vertices to find potentially matching candidates, (ii)
the matched vertices are expanded to form subgraph pat-
terns that are similar to the query graph, and (iii) the sub-
graphs are ranked with respect to their similarity to the
query graph.

In the indexing phase, illustrated in Figure 4, we build
three types of indexes. The first index is a grid index, that
uses multidimensional scaling to cluster similar graph ver-
tices from all of the project graphs for each attribute that
represents a different model feature: name, type and data
(cf., Section 3.2).

Multidimensional
Scaling

Grid Index

Points

Neighborhood Index

Index
Neighborhood

Vertices

Vertices

Project graph
Name Grid

Index Vertices by
Project Name

Vertices

Project Index

Figure 4: Indexing in MultiModGraph.

We use multidimensional scaling because our preliminary
evaluations (detailed results are available in [1]) showed that
it allows efficient pruning of most of those vertices that
are beyond a distance threshold from a given query ver-
tex. For expansion of the vertices matched using the grid
index, two more auxiliary indexes are built: (i) a neigh-
borhood index that considers the vertex neighborhood, and
(ii) a project index that considers the vertices belonging to
a graph (project), specified by their name. The indexing
phase is discussed in more detail in Section 5.1.2.

In the search phase, shown in Figure 5, query vertices are
also transformed into points in space through the same mul-
tidimensional scaling algorithm [5]. These points are used to
search the grid index, retrieving only those vertices similar
to the corresponding query vertices with respect to a specific
attribute. Then, the project and the neighborhood index are
searched to expand the matching candidates and form local
subgraph matches, which are subsequently ranked consid-
ering a graph-edit distance metric as a similarity measure.
Further details of search and match expansion can be found

in Sections 5.1.3 and 5.1.4, respectively.

5.1 Graph search using multidimensional scal-
ing

In this section, we present MultiModGraph in more detail.
We illustrate the concept of graph similarity, i.e. how a
query graph is defined to be similar to a subgraph of the
project graph (Section 5.1.1); we describe the process of
indexing the project graphs (Section 5.1.2), the search of
similar query vertices to find matching candidate vertices
(Section 5.1.3), the expansion of the matching candidate
vertices to produce local subgraph matching patterns, and
the ranking of the matching patterns with respect to the
query (Section 5.1.4).

5.1.1 Graph Similarity
The similarity between the query graph and each of the

project subgraphs is computed through graph-edit distance,
a measure that specifies the number of graph-edit operations
that transform one graph into the other. The considered
operations are:

• Vertex substitution: a vertex in the project subgraph
is substituted with a vertex in the query graph if they
are similar. Two vertices are similar if the project
graph vertex is retrieved as a result of searching the
grid index for a specific query vertex considering at
least one attribute.

• Edge substitution: an edge in the project subgraph is
substituted with an edge in the query graph if their
type labels belong to a similar type, and if their in-
cident vertices are substituted. Two edge labels are
similar if they are identical, or if they both belong to
the set of WebML links, excluding the containment
relationships.

• Vertex deletion: a vertex from the query graph that
does not have corresponding similar vertices in the
project subgraph is deleted from the query graph.

• Vertex insertion: a vertex from the project subgraph
that does not have corresponding similar vertices in
the query graph is inserted in the query graph.

• Edge insertion: an edge from the project subgraph
that does not have corresponding similar edges in the
query graph is inserted in the query graph.

• Edge deletion: an edge from the query graph that does
not have corresponding similar edges in the project
subgraph is deleted from the query graph.

5.1.2 Indexing
A. Grid Index

Given a set of data objects and the distance values between
each pair of objects, multidimensional scaling assigns coor-
dinates to each data object, such that distances computed
from the assigned coordinates are as representative as pos-
sible to the actual distances. While this technique is used
mainly in data visualization [15], we exploit this idea for
clustering and then efficiently indexing the vertices of the
model graphs.

We perform clustering of graph vertices with respect to
the vertex attributes that correspond to the metamodel at-
tributes in a model element. For our specific context, we
consider the name, type and data attributes. Clustering

Grid Index

Multidimensional
Scaling

Querying Grid
Index

Querying
Neighborhood

Index
Match Expansion Graph Distance

Computation
Points

Neighborhood
Index

Vertices
Candidate
Vertices

Small Localized
Matches

Query Graph

Querying Project
Index

Project Index

Vertices

Figure 5: Search and Match Expansion in MultiModGraph.

is achieved by transforming vertex attributes’ values rep-
resenting a specific attribute class (name, type and data)
as points in multidimensional space. The distance between
points, preserved by the multidimensional scaling, is com-
puted by the Euclidian distance. These computed distances
help to find for a graph vertex, its “nearby” graph vertices
with respect to a single attribute. The transformed points
are placed into multidimensional grids, as shown in Figure
6. Each grid corresponds to a metamodel attribute, i.e.,
name, type and data. Therefore, the total number of grids
is the same as the number of attributes (in our case three).
The number of dimensions of each grid is equal to the num-
ber of dimensions of the points representing a specific at-
tribute. These grids are used to build the grid index which
allows for efficient pruning of all vertices that are not within
a specified distance from a query vertex. In this work we
chose the Chalmers algorithm [5] for performing multidimen-
sional scaling, because it has lower computational overhead
(quadratic) than other multidimensional scaling approaches
without introducing too much noise. It is a heuristic-based
approach, hence it does not provide tight error bounds. The
quality evaluation of the algorithm is presented in [1].

Name: Create Book
Type: Create Unit

Data: Book
Name Grid Type Grid Data Grid

Figure 6: Grid Index in MultiModGraph.

B. Auxiliary Indexes
Besides the grid index, two other index structures are con-

structed and used in the search algorithm.

• The neighborhood index is an inverted index that keeps
track of the neighborhood of each vertex, where for
each vertex, all the vertices wthin its 2-hop neighbor-
hood considering both ancestors and descendants are
stored. This index considers the local structure around
a graph vertex for expansion of already matched ver-
tices. The 2-hop neighborhood has been selected for
two reasons: (i) to better respond to the diversity of
modeling patterns expressing a given task; (ii) to allow
vertex mismatches between a query graph and a local
subgraph match, since we perform approximate, and
not exact matching. For scalability reasons, we do not
exceed 2-hop neighborhood.

• The project index is an inverted index that for each

vertex stores the corresponding project name. It is
used to form subgraphs of vertices that belong to the
same project.

5.1.3 Search
The search algorithm is described in Algorithm 1 and pre-

sented in Figure 5. VQ represents the set of vertices of the
query graph, while attribute is the set of attribute types,
namely, name, type and data attribute. The search process,
takes each vertex vq of the query graph and transforms it
into a set of points in space queryPoint, using the Chalmers
algorithm, where each point represents a specific attribute
a. These points are used to query the grid index. Each
query point is positioned in the corresponding grid in a sim-
ilar way as the points that represent vertex label attributes
from the project graphs are positioned by multidimensional
scaling (using a single iteration of the Chalmers algorithm).
In this way, the query point is “querying” the grid to find
points points that are within an acceptable distance value
distance (a user-specified parameter) with respect to a spe-
cific attribute a. Since the grids are independent, differ-
ent acceptable distances can be assigned for each attribute
(grid). This step performs pruning of points that are distant
(dissimilar) from the query point, keeping only those points
points that are within the specifed distance values2.

When all the points for each attribute are retrieved, a
union is performed across the different attribute classes, thus
merging the results obtained from all the three grids into a
set of candidates candidates. To further reduce the num-
ber of vertices, the candidate points are pruned by check-
ing whether the real distance of the vertex labels they rep-
resent is within the acceptable distance values. As a real
distance for name and data attribute we consider the string-
edit distance, while for the type attribute we consider the
distance between two types in the metamodel tree, normal-
ized with respect to the longest distance in the tree. Finally,
for each query vertex we obtain a set of real candidate ver-
tices realCandidates which represent the potential matches.

5.1.4 Match Expansion and Ranking
Each matching candidate is expanded in order to form

small localized subgraph structures, denoted as matching
patterns, achieved with the help of the project and the
neighborhood indexes, as illustrated in Figure 5. The pro-
cess of match expansion is described in Algorithm 2. At
the beginning, for each query vertex vq, a set of patterns is
created, such that each pattern consists of one real candi-
date of vq. Then, if query vertex vq is not the first exam-

2Note that we will use the terms vertex and its representing
point interchangeably.

Algorithm 1 Search Algorithm

Require: VQ, attribute, distance
for all vq ∈ VQ do

candidates ← ∅
for all a ∈ attribute do

queryPoint ← ChalmersQuery(vq, a)
points[a] ← findCandidates(queryPoint,

grid[a], distance[a])
candidates ← candidates ∪ points[a]

end for
realCandidates[vq] ← prune(vq, candidates)

end for

ined vertex, the algorithm checks whether its set of can-
didates realCandidates can extend already existing pat-
terns. Namely, a project vertex from the candidates set
realCandidates is added to an already created pattern in
the set of existing patterns patternSet, if all of the follow-
ing conditions are met:

• The project vertex represents a matching candidate
for different query vertices with respect to the already
matched query vertices.

• The project vertex belongs to the same project graph
as the current matching pattern. This information is
retrieved from the project index.

• The project vertex is within the 2-hop neighborhood
of any of the project vertices present in the matching
pattern. This information is retrieved from the neigh-
borhood index.

As a result, a new set of patterns is created (newPatternSet),
used to update the set of patterns patternSet.

The matching is complete when, for a matching subgraph
pattern, all the query vertices have been examined for poten-
tial matches. Additional vertices from the project graph are
added to the matching pattern if they are in the intersection
intersection of the neighborhoods of the pattern’s vertices
(retrieved from the neighborhood index). In this way, all
the vertices of a pattern are found. They are used to build a
subgraph subgraph by finding the edges that connect these
vertices from the project graph. Thus, subgraph represents
a subgraph of the project graph. Once a matching subgraph
is built, it is compared to the query graph with respect to the
similarity, as explained in Section 5.1.1. Graph-edit distance
is used as a similarity metric to rank the modeling patterns
with respect to their similarity to the query. In the graph-
edit distance computation, the subsituted vertices from a
subgraph pattern are those that represent the real candi-
dates, while the inserted vertices are the vertices that were
added additionally to the pattern as a result of the intersec-
tion with the neighborhood index.

6. RESULTS
We evaluated our approach on a repository of WebML

models3 which consists of 12 real-word WebML projects
from different application domains. The projects were di-
vided into segments such that each segment represents a
different WebML area in the project (i.e., areas group pages
with similar purpose). This way, we obtained 341 segments
in total.

The test queries were generated as follows. First, a set
of exemplary models were selected by considering different

3Provided by the WebRatio company www.webratio.com

Algorithm 2 Match Expansion Algorithm

Require: VQ, realCandidates
patternSet ← ∅
for all vq ∈ VQ do

patternSet ← patternSet ∪ createPatterns(∅,
realCandidates[vq])

if notFirstV ertex(vq) then
for all pattern ∈ patternSet do

if realCandidates[vq] within two-hop neighborhood of
pattern and realCandidates[vq] in the same project as
pattern then

newPatternSet ←
addToExistingPattern(pattern,
realCandidates[vq])

patternSet ←
updatePatternSet(patternSet, newPatternSet)

end if
end for

end if
end for
for all pattern ∈ patternSet do

for all vp ∈ pattern do
intersection ← neighborhood(vp)∩

neighborhood(pattern − ∑p−1
i=1 vi)

if intersection �= ∅ then
pattern ← addAdditionalV ertices(pattern,

intersection)
end if

end for
subgraph ← buildGraph(pattern)

end for

WebML modeling patterns, a variety of metamodel concepts
and a vocabulary of labels present in the repository. Then,
three experienced model developers selected 10 models from
the initial set of exemplary models that they believed better
represented the typical user needs of a model developer [2].
Subsequently, these models were transformed into graphs (as
explained in Section 3.2), which constitute the test queries
in our evaluations.

To obtain the ground truth (used in our evaluations), we
asked the same model developers to manually evaluate the
relevance of each query against each project segment, where
a relevance score of (i) 0 implies no relevance, (ii) 1 implies
either textual or structural similarity, and (iii) 3 implies both
textual and structural similarity. The final scores were com-
puted by averaging the scores reported by the three domain
experts, which was then rounded to the nearest integer [2].
Note that we did not use 2 as a score value to achieve greater
diversity in the aggregate scores.

Given a query, MultiModGraph returns a set of modeling
patterns (that it believes are relevant to the query). Hence,
to assess the quality of the algorithm, we evaluate the rele-
vance of each returned modeling pattern to the given query
(based on the ground truth). However, note that a modeling
pattern might span multiple project segments. Therefore, to
assess a modeling pattern’s relevance to a query, we consider
all of the project segments that the modeling pattern spans.
The final relevance of a modeling pattern is computed as an
average of the relevance of the project segments.

In our evaluations, parameters of the Chalmers algorithm
such as (i) number of iterations, (ii) max number of points in
the random set and (iii) number of dimensions that are used
for representing points in space, have been manually tuned
to their optimal values [2]. As for the distance thresholds,
we performed a preliminary evaluation to discard certain
combinations of distance values across the three attribute
classes: name, type and data. In Table 1, we show the
acceptable distance values we use for each attribute class.

We have observed that using smaller distance values for the
name and the type attribute classes does not retrieve suffi-
cient number of candidate points. On the other hand, using
greater distance values loosens the distance constraints, i.e.,
precision drops.

Table 1: Distance values configurations.

Name distance Type distance Data distance

0.4 0.4 0.2
0.4 0.4 0.4
0.6 0.4 0.2
0.6 0.4 0.4

As the baseline in our evaluations, we use the A-star al-
gorithm [17] that we adapted for searching WebML mod-
els (details are in [2]). First, we compare MultiModGraph
against the A-star algorithm with respect to their 11-point
interpolated average precision, a metric that combines preci-
sion and recall by measuring the highest precision obtained
at 11 standard levels of recall (ranging from 0.0 to 1.0) [14].
Namely, for each recall level i, the precision is computed as
the maximum precision value for recall levels j > i, which is
averaged across all of the test queries. In the computation
of precision and recall values, we consider every modeling
pattern with relevance > 0 relevant, while every modeling
pattern with relevance = 0 irrelevant.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r level

pr
ec

is
io

n
at

 r

nameDist=0.4 typeDist=0.4 dataDist=0.2
nameDist=0.4 typeDist=0.4 dataDist=0.4
nameDist=0.6 typeDist=0.4 dataDist=0.2
nameDist=0.6 typeDist=0.4 dataDist=0.4
A−star algorithm

Figure 7: 11-point Interpolated Average Precision for differ-
ent distance value configurations and the A-star algorithm.

Figure 7 shows the 11-point interpolated average precision
for the four different configurations of MultiModGraph and
the baseline algorithm. Each algorithm was configured to re-
turn the top 150 results. The values denoted as nameDist,
typeDist and dataDist represent the acceptable distance
values for the name, type and data attribute classes, re-
spectively.

MultiModGraph achieves the best configuration with val-
ues of nameDist = 0.4 and typeDist = 0.4, while increas-
ing dataDist from 0.2 to 0.4 does not affect precision/recall.
Increasing the nameDist value further to 0.6, however, sig-
nificantly worsens performance. Compared to the A-star
(baseline) algorithm, MultiModGraph performs better for
recall values greater than 0.5. This is important because it
means that the algorithm still continues to retrieve relevant
models at high levels of recall.

Figure 8 presents the best-case behaviour of MultiMod-
Graph for configuration values nameDist = 0.4, typeDist =
0.4 and dataDist = 0.4, where queries with the best two
11-point interpolated curves are reported. The algorithm
achieves a maximum precision of 1 even at lower levels of
recall: up to 0.3 for Query 6, and up to 0.8 for Query 2.
For other queries, the algorithm performs worse, which in-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

r level

pr
ec

is
io

n
at

 r

Query2
Query6

Figure 8: 11-point interpolated average precision for the best
performing queries for nameDist = 0.4, typeDist = 0.4
dataDist = 0.4 configuration: Query 2 and Query 6.

fluences the overall algorithm performance when averaged
across all of the queries.

MultiModGraph’s lower performance in precision in some
queries can be attributed to the way the algorithm selects
candidate vertices. For a query vertex, a vertex in the
project graph is considered a match candidate if at least
one of the distances for a specific attribute class are within
the specified distance thresholds. This generates patterns
similar to the query, where each model element (in the re-
sult) is similar to a query model element with respect to a
different attribute class. Some of these alternative matching
patterns are still “reusable” (indeed, a closer manual inspec-
tion of the results further confirms this fact), but not all of
them have been considered relevant by the ground truth.

Manage Appointments

Appointments List

Appointment

Manage Appointments

Office List
Office List

Office

Office areas and roles management

(a)

Figure 9: Example of a query and its corresponding “irrele-
vant” result as deemed by the ground truth.

For Query 7, its highly ranked result by MultiModGraph
is depicted in Figure 9, where each matched element in the
result is highlighted by a red rectangle. Note the similarity
between the query (on top) and its result (at the bottom).
The query is about management of appointments and the
result is about management of office areas and roles, but
otherwise, they are structurally equivalent.

This highlights two possible future directions. First, ground
truth generation can be improved to include relevance as-
sessments at more fine-grained segments (i.e., currently, a
project segment corresponds to aWebML area in the project).
Second, improvements to the ranking function can be made
to capture users’ varying notions of relevance across different
attribute classes (i.e., name, type and data attributes).

Lastly, we examine the runtime performance of MultiMod-
Graph and compare it against the runtime performance of
the baseline. We consider the average execution times over
the entire query set. For this experiment, we varied the num-
ber of indexed vertices. The experiments were performed on
a machine with Intel dual Core Processor 2.4 GHz, 6 GB
RAM and Windows 7 (64-bit) operating system.

 10� 20� 30� 40� 50� 60� 70� 80� 90� 100�
0

1000

2000

3000

4000

5000

6000

7000

�ataset �i�e

�
�e

c�
tio

n
�i

�
e

��
s�

MultiModGraph
A−star algorithm

Figure 10: Runtime performance of MultiModGraph and
A-star algorithm.

The runtime performance of the MultiModGraph is much
better than the runtime performance of the A-star algorithm
(on average, MultiModGraph is 12 times faster than the A-
star algorithm), as demonstrated in Figure 10. The improve-
ment in runtime performance is due to the use of indexing,
however, it comes at a cost of some loss in the quality of the
retrieved results, which is due to the approximate nature of
the multidimensional scaling process. However, further op-
timizations are possible to improve both the quality and the
runtime performance of MultiModGraph.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a graph-based approach

for searchingWebML repositories that uses multidimensional
scaling. We have evaluated our approach on a real-world
WebML repository using 10 test queries. Our preliminary
results show that MultiModGraph has a better runtime per-
formance than the baseline algorithm, but this comes at the
cost of accuracy. We have argued that some of this inac-
curacy could be attributed to the way the ground truth is
generated. However, it may also be possible to improve per-
formance by considering alternative objective functions for
ranking, which is an integral part of our future work. Some
other future work directions include: (i) applying MultiMod-
Graph to different types of models by modifying the graph
representation and the grid index according to the meta-
model of the modeling language; (ii) testing the scalability
of the approach on larger model collections; (iii) automatic
tuning of the Chalmers algorithm parameters; (iv) perform-
ing efficiency comparison with existing indexing techniques
for graph-edit distance (e.g. Closure tree [7]); and (v) tun-
ing the search order in the search algorithm, by matching
vertices with less candidates first.

8. REFERENCES
[1] B. Bislimovska. Textual and content based search in

software model repositories. PhD thesis, Politecnico di
Milano, 2014.

[2] B. Bislimovska, A. Bozzon, M. Brambilla, and
P. Fraternali. Textual and content-based search in
repositories of web application models. ACM
Transactions on the Web (TWEB), 8(2):11, 2014.

[3] A. Bongio, P. Fraternali, M. Brambilla, S. Comai, and
M. Matera. Morgan Kaufmann series in data
management systems: Designing data-intensive Web
applications. Morgan Kaufmann, 2003.

[4] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a modeling language for
designing Web sites. Computer Networks,
33(1-6):137–157, 2000.

[5] M. Chalmers. A linear iteration time layout algorithm
for visualising high-dimensional data. In
Visualization’96. Proceedings., pages 127–131. IEEE,
1996.

[6] D. Grigori, J. C. Corrales, M. Bouzeghoub, and
A. Gater. Ranking bpel processes for service discovery.
Services Computing, IEEE Transactions on,
3(3):178–192, 2010.

[7] H. He and A. K. Singh. Closure-tree: An index
structure for graph queries. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International
Conference on, pages 38–38. IEEE, 2006.

[8] T. Jin, J. Wang, M. La Rosa, A. Ter Hofstede, and
L. Wen. Efficient querying of large process model
repositories. Computers in Industry, 64(1):41–49, 2013.

[9] A. Khan, Y. Wu, C. C. Aggarwal, and X. Yan. Nema:
Fast graph search with label similarity. Proceedings of
the VLDB Endowment, 6(3):181–192, 2013.

[10] A. G. Kleppe, J. B. Warmer, and W. Bast. MDA
explained: the model driven architecture: practice and
promise. Addison-Wesley Professional, 2003.

[11] V. Krishna, N. Ranga Suri, and G. Athithan.
Mugram: An approach for multi-labelled graph
matching. In International Conference on Recent
Advances in Computing and Software Systems
(RACSS), 2012, pages 19–26. IEEE, 2012.

[12] M. La Rosa, H. A. Reijers, W. M. Van Der Aalst,
R. M. Dijkman, J. Mendling, M. Dumas, and
L. Garćıa-Bañuelos. Apromore: An advanced process
model repository. Expert Systems with Applications,
38(6):7029–7040, 2011.

[13] D. Lucrédio, R. P. d. M. Fortes, and J. Whittle.
Moogle: a metamodel-based model search engine.
Software & Systems Modeling, 11(2):183–208, 2012.

[14] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to information retrieval, volume 1.
Cambridge university press Cambridge, 2008.

[15] A. Morrison, G. Ross, and M. Chalmers. Fast
multidimensional scaling through sampling, springs
and interpolation. Information Visualization,
2(1):68–77, 2003.

[16] M. Niemann, M. Siebenhaar, S. Schulte, and
R. Steinmetz. Comparison and retrieval of process
models using related cluster pairs. Computers in
Industry, 63(2):168–180, 2012.

[17] A. Sanfeliu and K.-S. Fu. A distance measure between
attributed relational graphs for pattern recognition.
Systems, Man and Cybernetics, IEEE Transactions
on, (3):353–362, 1983.

[18] Y. Tian and J. M. Patel. Tale: A tool for approximate
large graph matching. In IEEE 24th International
Conference on Data Engineering, 2008. ICDE 2008.,
pages 963–972. IEEE, 2008.

[19] Z. Yan, R. Dijkman, and P. Grefen. Fast business
process similarity search. Distributed and Parallel
Databases, 30(2):105–144, 2012.

[20] J. Yang, S. Zhang, and W. Jin. Delta: indexing and
querying multi-labeled graphs. In Proceedings of the
20th ACM international conference on Information
and knowledge management, pages 1765–1774. ACM,
2011.

