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Abstract
We propose a novel variant of the conjugate gradi-
ent algorithm, Kernel Conjugate Gradient (KCG),
designed to speed up learning for kernel machines
with differentiable loss functions. This approach
leads to a better conditioned optimization problem
during learning. We establish an upper bound on
the number of iterations for KCG that indicates it
should require less than the square root of the num-
ber of iterations that standard conjugate gradient re-
quires. In practice, for various differentiable ker-
nel learning problems, we find KCG consistently,
and significantly, outperforms existing techniques.
The algorithm is simple to implement, requires no
more computation per iteration than standard ap-
proaches, and is well motivated by Reproducing
Kernel Hilbert Space (RKHS) theory. We further
show that data-structure techniques recently used
to speed up kernel machine approaches are well
matched to the algorithm by reducing the dominant
costs of training: function evaluation and RKHS in-
ner product computation.

1 Introduction
Kernel methods, in their various incarnations (e.g. Gaussian
Processes (GPs), Support Vector Machines (SVMs), Kernel
Logistic Regression (KLR)) have recently become a preferred
approach to non-parametric machine learning and statistics.
They enjoy this status because of their conceptual clarity,
strong empirical performance, and theoretical foundations.

The primary drawback to kernel methods is their computa-
tional complexity. GPs require the inversion of an n× n (co-
variance/kernel) matrix, implying a running time of O(n3),
where n is the size of the training set. SVMs require sim-
ilar computation to solve the convex program, although in-
tense research has gone into fast, specialized approximations
[Schölkopf & Smola, 2002].

State-of-the-art approaches to kernel learning revolve
largely around two techniques: iterative optimization algo-
rithms, and learning by representing the solution with only a
subset of the original data points. Our algorithm applies most
directly to the former line of research, although we address
the latter in the conclusions.

We propose a novel variant of the conjugate gradient algo-
rithm, Kernel Conjugate Gradient (KCG), designed to speed
up learning for kernel machines with differentiable loss func-
tions (e.g. Gaussian Process mean inference, Kernel Logistic
Regression). This algorithm is motivated by the understand-
ing that all gradient-based methods rely, at least implicitly,
on a particular metric or inner product [Schölkopf & Smola,
2002]. It is natural in kernel learning problems for the algo-
rithm to inherit the metric on functions that the kernel pro-
vides. In Section 2.4 we show that such an approach can be
interpreted as a Riemannian metric method similar to Amari’s
Natural Gradient [Amari & Nagaoka, 2000], although the
kernel metric is much less expensive to compute.

In Section 5, we establish an upper bound on the number
of iterations for KCG that indicates it should require fewer
than the square root of the number of iterations that stan-
dard conjugate gradient requires. The algorithm is simple to
implement, requires no more computation per iteration than
standard approaches, and is well motivated by Reproducing
Kernel Hilbert Space (RKHS) theory. In practice, for various
differentiable kernel learning problems, we find KCG consis-
tently, and significantly, outperforms existing techniques.

Recent research has demonstrated the benefits of space-
partitioning data-structures to speed up certain kernel ma-
chines [Shen et al., 2006; Gray & Moore, 2001]. We show
that these techniques work well with KCG as they reduce the
dominant computational burdens in training: RKHS function
evaluations and inner product computations.

2 Preliminaries
Below we briefly review the theory of kernel machines in
terms of Reproducing Kernel Hilbert Spaces. We then de-
scribe the regularized risk functionals we are interested in
optimizing during learning, and finish by reviewing the func-
tional gradient, a generalization of the standard gradient to
inner product spaces of functions.

2.1 Reproducing Kernel Hilbert Spaces
An RKHS of functionsHk is a complete inner product space,
known as a Hilbert space, that arises from the completion of
a set of basis functions BXk = {k(x, .) | x ∈ X}, where
k : X ×X → R is a symmetric, positive-definite kernel func-
tion, and X is a continuous domain sometimes known as an
index set. A common kernel, and one used exclusively in our
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experiments, is the exponential Radial Basis Function (RBF)

k(x, x′) = e
−‖x−x′‖2

2σ2 . The RKHS inner product between two
functions f =

∑
i αik(xi, .) and g =

∑
j βjk(xj , .) is de-

fined as
〈f, g〉Hk

=
∑
i,j

αiβjk(xi, xj). (1)

Central to the idea of an RKHS is the reproducing prop-
erty which follows directly from the above definition. It
states that the basis functions k(x, .) ∈ BXk are represen-
ters of evaluation. Formally, for all f ∈ Hk and x ∈ X ,
〈f, k(x, .)〉Hk

= f(x). When the basis functions are normal-
ized, this means the evaluation of f at x is the scalar projec-
tion of f onto k(x, .). Note that there exists a simple mapping
φ : X → BX

k between the domain X and the RKHS basis BXk
defined by the kernel as φ(x) = k(x, .). It follows that for any
x, x′ ∈ X
〈φ(x), φ(x′)〉Hk

= 〈k(x, .), k(x′, .)〉Hk
= k(x, x′).

A complete overview of these concepts can be found in
[Aronszajn, 1950].

A fundamental result first proven in [Kimeldorf & Wahba,
1971] and then generalized in [Schölkopf et al., 2001] is
the Representer Theorem, which makes possible the direct
minimization of a particular class of functionals. It states
that given a subset D = {(xi, yi)}ni=1 ⊂ X × R (i.e.
the dataset), the minimizer of a functional with the form
F [f ] = c((x1, y1, f(x1)), . . . , (xn, yn, f(xn)))+g(‖f‖2Hk

),
where c : X × R2 → R is arbitrary and g : [0,∞] → R

is strictly monotonically increasing, must have the form f̃ =∑
xi∈D αik(xi, .).

2.2 Regularized Risk Functionals
An important class of functionals, common in machine learn-
ing, for which the Representer Theorem holds is the regular-
ized risk functional [Schölkopf & Smola, 2002]:

R[f ] =
n∑

i=1

l(xi, yi, f(xi)) +
λ

2
〈f, f〉Hk

(2)

These functionals combine a data-dependent risk term, with
a “prior” (or regularization) term that controls the complexity
of the solution by penalizing the norm of the function f in the
RKHS. Our work focuses on the case where l is differentiable
in its third argument; many important kernel machines have
this property. For instance, we can write Kernel Logistic Re-
gression [Zhu & Hastie, 2001] in this form. Let y ∈ {−1, 1}.
Then

Rklr [f ] =
n∑

i=1

log
(
1 + eyif(xi)

)
+

λ

2
〈f, f〉Hk

(3)

Similarly, we may write the popular Gaussian Process Re-
gression (for the mean function) and the Regularized Least
Squares Classification algorithm in this form 1:

Rrls [f ] =
1
2

n∑
i=1

(yi − f(xi))2 +
λ

2
〈f, f〉Hk

(4)

1These two differently motivated algorithms optimize the same
functional.

Numerous other important examples occur in the litera-
ture [Schölkopf & Smola, 2002]. We focus on these, two
of the best known kernel algorithms other than the non-
differentiable Support Vector Machine, as they are particu-
larly important tools in machine learning for classification
and regression.

2.3 The Functional Gradient
For large-scale problems and problems for which direct so-
lution is inapplicable, the most popular approach to optimiz-
ing these functionals is through the use of iterative, gradient-
based techniques. Gradient-based algorithms, such as steep-
est descent, are traditionally defined with respect to the gradi-
ent arising from the Euclidean inner product between param-
eter vectors. There are many ways in which a given regular-
ized risk functional can be parameterized, though, and each
gives rise to a different parameter gradient. It is intuitively
natural to follow the gradient defined uniquely by the RKHS
inner product. We review some basic concepts behind the
functional gradient below.

The functional gradient may be defined implicitly as the
linear term of the change in a function due to a small pertur-
bation ε in its input [Mason et al., 1999]

F [f + εg] = F [f ] + ε〈∇F [f ], g〉+ O(ε2).

Following this definition using the RKHS inner product
〈., .〉Hk

allows us to define the kernel gradient of a regular-
ized risk functional [Schölkopf & Smola, 2002]. We use three
basic formulas that can be easily derived from this definition:

1. Gradient of the evaluation functional. Define Fx :
Hk → R as Fx[f ] = f(x) =

∑
i αik(xi, x). Then

∇kFx[f ] = k(x, .).

2. Gradient of the square RKHS norm. Define F〈.,.〉 :
Hk → R as F〈.,.〉[f ] = ‖f‖2Hk

= 〈f, f〉Hk
. Then

∇kF〈.,.〉[f ] = 2f .

3. Chain rule. Let g : R → R be a differentiable func-
tion, and let F : Hk → R be an arbitrary differentiable
functional. Then∇kg(F [f ]) = g′(F [f ])∇kF [f ].

A straight forward application of the above formulas brings
us to the following result. The kernel gradient of a regularized
risk functional (Equation 2) is

∇kR[f ] =
n∑

i=1

∂

∂z
l(xi, yi, z)|f(xi)∇kFxi

[f ] + λf

=
n∑

i=1

∂

∂z
l(xi, yi, z)|f(xi)k(xi, .)+ (5)

λ
n∑

i=1

αik(xi, .)

=
n∑

i=1

(
∂

∂z
l(xi, yi, z)|f(xi) + λαi

)
k(xi, .)

where we again use αi to denote the parameters of the expan-
sion of f in terms of the kernels k(xi, .).
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Equation 5 allows us to easily find the kernel gradient of
the functionals we described above and use in the remainder
of this paper:

Kernel Logistic Regression (KLR):

∇kRklr [f ] =
n∑

i=1

(
λαi +

yi

1 + e−yif(xi)

)
k(xi, .) (6)

Regularized Least Squares (RLS), Gaussian Process:

∇kRrls [f ] =
n∑

i=1

(f(xi)− yi + λαi)k(xi, .) (7)

2.4 The Kernel Gradient and Riemannian Metrics
Above we described the kernel gradient as a function; that
is as a linear combination of basis functions. The ker-
nel gradient as in Equation 5 demonstrates a property sim-
ilar to the Representer Theorem: namely that ∇kF [f ] =∑n

i=1 γik(xi, .) for appropriate γi ∈ R. In other words, the
kernel gradient of F is represented in the finite-dimensional
subspace SD = span{BDk } of Hk. A gradient descent type
method through SD then amounts to modifying the coeffi-
cients αi of the current function f by γi. That is, we can
understand the kernel gradient as modifying parameters,

f̃ ← f − λ∇kF [f ]⇔ α̃i ← αi − λγi,

just as a standard gradient descent algorithm would. The dif-
ference is that the coefficients γi for the kernel gradient are
not the same as those of the parameter gradient. One can ver-
ify that they differ by ∇αF [f ] = Kγ where K is the kernel
matrix and γ is the vector of coefficients.

We can derive this relation in another way. Starting from
the parameter gradient, we define a Riemannian metric [Has-
sani, 1998] on the space of parameters. This defines our no-
tion of size in the space of parameters. We then consider an
alternate definition of the gradient, as the direction of steepest
ascent for a “small” change in coefficients α:

∇F [α] = max
γ

F [α + γ] s.t. ‖γ‖ < ε.

It can be shown that taking ‖γ‖2α as γT γ gives the vanilla pa-
rameter gradient ∇αF , while defining the norm with respect
to the RKHS inner product ‖γ‖2Hk

=
∑

i,j γiγjk(xi, xj) =
γT Kγ gives the functional gradient coefficients ∇kF =
K−1∇αF . [Hassani, 1998]

This interpretation of the kernel gradient makes connec-
tions with other metric methods more clear. For instance,
Amari [Amari & Nagaoka, 2000] considers the use of a met-
ric derived from information geometry that leads to the “nat-
ural gradient”. Such algorithms are applicable here as well
since we can compute the metric for the probabilistic models
given by Gaussian Processes or KLR. Unfortunately, comput-
ing the natural gradient in these cases is very expensive: for
instance, in Gaussian Processes it is as expensive as inverting
the kernel matrix, the very computational difficulty we are
striving to avoid. By contrast, computing the kernel gradi-
ent is very cheap: cheaper in fact then the standard parameter
gradient.2

2Furthermore, in practice we often find deriving the kernel gra-
dient using the functional gradient rules easier than deriving the pa-
rameter gradient.

Algorithm 1 Kernel Conjugate Gradient

1: procedure KCG(F : Hk → R, f0 ∈ Hk, ε > 0)
2: i← 0
3: g0 ← ∇kF [f0] =

∑n
j=1 γ

(0)
j k(xj , .)

4: h0 ← −g0

5: while 〈gi, gi〉Hk
> ε do

6: fi+1 ← fi + λihi where λi = arg minλ F [fi +
λhi]

7: gi+1 ← ∇kF [fi+1] =
∑n

j=1 γ
(i+1)
j k(xj , .)

8: hi+1 ← −gi+1 + ηihi where ηi =
〈gi+1−gi,gi+1〉Hk

〈gi,gi〉Hk
= (γ(i+1)−γ(i))T Kγ(i+1)

γ(i)T Kγ(i)

9: i← i + 1
10: end while
11: return fi

12: end procedure

3 The Kernel Conjugate Gradient Algorithm
Both in theory and in practice it is understood that conjugate
gradient (CG) methods outperform standard steepest descent
procedures [Ashby et al., 1990]. These techniques have been
used profusely throughout machine learning, in particular,
for regularized risk minimization and kernel matrix inversion
[Gibbs, 1997; Schölkopf & Smola, 2002].

In this section, we present an algorithm we term Kernel
Conjugate Gradient (KCG) that takes advantage of conju-
gate direction search while utilizing the RKHS inner prod-
uct 〈f, g〉Hk

= αT Kβ. Algorithm 1 gives the general (non-
linear) KCG algorithm in Polak-Ribière form [Ashby et al.,
1990]. In essence, Algorithm 1 comes directly from conju-
gate gradient by replacing all gradients by their functional
equivalents and replacing Euclidean inner products with an
RKHS inner product.

Note that the computational complexity per iteration of
KCG is essentially identical to that of the more conventional
Parameter Conjugate Gradient (PCG) algorithm. Intuitively,
while the kernel inner product takes time O(n2) compared to
the O(n) vanilla inner product used by PCG, KCG is corre-
spondingly more efficient in the gradient computation since
∇αF [f ] = Kγ, where ∇kF [f ] =

∑
i γik(xi, .). It is pos-

sible in the case of RLS to step through an iteration of each
algorithm and show that the number of operations is equiva-
lent.

We emphasize that despite its somewhat involved deriva-
tion, the implementation of this algorithm is just a simple ex-
tension of PCG. The differences amount to only a change of
inner product αT β → ∑

i,j αiβjk(xi, xj) = αT Kβ, and a

different, though in some ways simpler, gradient computa-
tion. We also point out that the line optimization (step 6) can
be solved in closed-form in the case of quadratic risk func-
tionals (e.g. RLS). For starting point f =

∑
i αik(xi, .) and

search direction h =
∑

i γik(xi, .) we have

arg min
λ

F [f + λh] = −αT Kγ

γT Aγ

where A is the Hessian of the quadratic functional when pa-
rameterized by α. Note that this formula differs from that
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derived under the parameter gradient (−αT γ/γT Aγ) only
in the numerator’s inner product, as is a common theme
throughout this algorithm. The theoretical and experimen-
tal results given below suggest that there is little reason why
one should prefer PCG to KCG in most (differentiable) kernel
algorithms.

4 Experimental Results - Kernel Conjugate
Gradient

We bench-marked KCG against PCG for both classification
and regression tasks. In all cases, KCG significantly out per-
formed PCG.

Our first test was performed using KLR on the USPS
dataset (with a training/test size of 7291/2007) for the com-
mon one-vs-all task of recognizing the digit 4. We used a
length scale hyperparameter σ = 5 as was used in [Rifkin
et al., 2003] for RLS classification, and a regularization con-
stant λ = 0. Figure 1 summarizes the results in log scale.

Second, we used RLS for both regression and classification
using the Abalone and Soil datasets in addition to the USPS
dataset. The Abalone dataset 3 consisted of 3133 training
examples and 1044 test examples in 8 attributes. Our exper-
imental setup was equivalent to that in [Smola & Schölkopf,
2000]. The Soil dataset contained three-dimensional exam-
ples of soil pH levels in areas of Honduras partitioned into a
training set of size 1709 and a test set of size 383. The latter
dataset and corresponding hyperparameters (λ = 0.1514 and
σ = 0.296283) were provided by [Gonzalez, 2005]. Again,
the results are summarized in Figure 1.

For RLS, there exists a quadratic

p(α) =
1
2
αT (K + λI)α− yT α

that can provide a lower bound to the regularized risk [Gibbs,
1997; Schölkopf & Smola, 2002]. As theory suggests (see
below) the upper bound under KCG converges comparably
with the lower bound, while the upper bound under PCG lags
considerably behind. This implies faster convergence under a
gap termination criterion [Schölkopf & Smola, 2002].

The right-most plots of Figure 1 contrast (in iterations,
equivalent to multiples of wall-clock time) the speeds of PCG
and KCG for both RLS and KLR. We plot of the number of
iterations of each to reach the same level of performance in
terms of loss on the data-set. Plots are terminated when con-
vergence is achieved as measured with the gap termination
criterion[Schölkopf & Smola, 2002], and hyper-parameters
were chosen on a hold-out set. These figures confirm what
analysis in the next section suggests: it takes more than the
square of the amount of time to achieve the same level of
performance using PCG as it does with KCG. Finally, in Ta-
ble 2 we directly compare the number of iterations needed
to achieve convergence on a number of data sets, all taken
again from the UCI data repository, for both RLS and KLR.
Averaged over the datasets, KCG is 54 times faster than the
standard conjugate gradient approach.

3See UCI repository: http://www.ics.uci.edu/
∼mlearn/MLRepository.html

5 KCG Analysis
We derived the Kernel Conjugate Gradient algorithm from a
normative point of view arguing that 〈f, g〉Hk

defined the nat-
ural notion of inner product in the RKHS and hence for the
optimization procedure as well. The strong empirical perfor-
mance of KCG noted in the previous section, while in some
sense not surprising given we are using the “correct” inner
product, deserves analysis. We examine here the linear case
(as in RLS) where the analysis is more transparent, although
presumably similar results hold near the optima of non-linear
risk functionals.

We note a classic bound on the error reduction of CG (see
[Luenberger, 2003]),

‖ei‖A ≤ 2
(√

κ− 1√
κ + 1

)i

‖e0‖A,

where i is the iteration number, A is the Hessian of the
quadratic form with condition number κ, ‖x‖A = xT Ax is a
norm on x, and ei = xi − x∗. Loosely speaking, this gives a
running time complexity of O(

√
κ) for PCG.

We start by analyzing the effective condition number of
KCG. As with essentially all variants of CG, the algorithm’s
dynamics can be described in terms of a preconditioning to
the spectrum of the Hessian [Ashby et al., 1990]. It can be
verified by inspection of the algorithm, that KCG is equiva-
lent to an implicitly preconditioned conjugate gradient algo-
rithm with preconditioner K[Ashby et al., 1990]. The follow-
ing theorem relates the running time of PCG to KCG in light
of the bound given above.

Theorem. Let κPCG be the condition number of Rrls

(Equation 4), and let κK be the condition number of the ker-
nel matrix K = [k(xi, xj)]i,j . Then the condition number
κKCG resulting from preconditioning the RLS risk functional
by K has the relation κPCG = κKκKCG.

Proof. Let σ1 ≥ σ2 ≥ . . . ≥ σn be the eigenvalues of
K. The condition number of K is then κK = σ1/σn. The
Hessian of Rrls is A = KT K + λK and has eigenvalues
σ2

i + λσi = σi(σi + λ), given in terms of the eigenvalues of
K. This implies

κPCG =
σ1

σn

(
σ1 + λ

σn + λ

)
= κK

σ1 + λ

σn + λ
.

Since K is symmetric, positive-definite, the preconditioned
Hessian becomes K−1A = K−1(KT K + λK) = K + λI ,
with corresponding eigenvalues σi + λ. Thus, κPCG =
κKκKCG. �

The condition number κK of K is typically very large.
In particular, as the regularization constant decreases, the
asymptotic bound on the convergence of PCG approaches
the square of the bound on KCG. Alternatively, as the reg-
ularization constant increases, κKCG approaches 1 implying
an O(1) convergence bound for KCG, while the convergence
bound of PCG remains bounded below by O(κK). We would
thus expect a number of iterations for KCG that is dramati-
cally less than that of PCG.

It is informative to note that the decrease in computational

complexity from PCG to KCG (O(κ1/2) to O(κ1/4)) is at
least the amount we see from steepest descent(O(κ) to PCG

O(κ1/2)) [Luenberger, 2003].
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Figure 1: Upper left shows relative performances (in log scale) of KCG and PCG on the USPS data set optimizing KLR. The
remaining three left-most plots show relative convergence under RLS; green and red lines depict PCG performance on the upper
and lower bound gap-convergence quadratic forms, and the light blue line gives the (significantly tighter) performance of KCG
on the upper bound. The third column shows the benefit of using KD-trees for a single run (bottom) and by training set size
(top) using KCG. The right-most two plots show the equivalent number of PCG iterations required to achieve the performance
per iteration of KCG on the COVTYPE data set from the UCI data repository. Top right and bottom right show the performances
of RLS and KLR, respectively. An approximately quadratic relationship can be seen in both cases as the theory suggests.

6 Tree-Augmented Algorithms
For many stationary kernels, it is often the case that the ma-
jority of the basis functions in BDk are nearly orthogonal. This
often stems from a relationship between the degree of orthog-
onality of two basis functions k(x, .), k(x′, .) ∈ BDk and the
Euclidean distance between x and x′. This is often the case
when using the exponential RBF kernel given above, in which
the orthogonality between two basis functions increases ex-
ponentially with the square Euclidean distance between the
two points ‖x− x′‖2.

Previous work has shown how the evaluation of RKHS
functions f(x) =

∑
i αik(xi, x) can be made fast when this

holds using N -body type algorithms [Gray & Moore, 2001].
Intuitively, the idea is to store the training data in a space-
partitioning tree, such as a KD-tree [Moore, 1990] as was
used in our experiments below, and recursively descend the
tree during evaluation, pruning negligible contributions.

The maximum and minimum impact of each set of pruned
points can be easily calculated resulting in upper and lower
bounds on the evaluation error. We demonstrate how such
data-structures and algorithms can be used to reduce the per
iteration O(n2) computational cost of both KCG and PCG
during learning as well as evaluation.

The inner loop computational bottleneck of KCG is
in evaluating functions and calculating the kernel inner
product. If we rewrite the RKHS inner product be-
tween f =

∑
i αik(xi, .), g =

∑
i βik(xi, .) as

〈f, g〉Hk
=

∑
i,j αiβjk(xi, xj) =

∑
i αig(xi), then re-

ducing the computational complexity of RKHS function
evaluations will simultaneously encompass both of these
bottlenecks. Similarly, the iteration complexity of PCG

is dominated by the computation of the parameter gradi-
ent. We can rewrite the parameter gradient as ∇αF [f ] =
[∇kF [f ](x1),∇kF [f ](x2), . . . ,∇kF [f ](xn)]T (see 2.4), re-
ducing the complexity to that of finding ∇kF [f ] ∈ Hk and
evaluating it n times. As was the case with the KCG al-
gorithm without trees, the tradeoff still balances out so that
the per iteration complexity is essentially equivalent between
KCG and PCG using tree-augmented function evaluation.

Noting [f(x1), . . . , f(xn)]T = Kα suggests that the
closed form quadratic line minimization for both the upper
and lower bounds of RLS under either KCG or PCG can eas-
ily be augmented as well by expanding the Hessians Au =
KT K +λK in the case of the upper bound and Al = K +λI
in the case of the lower bound. This was used in the tree-
augmented RLS experiments described below.

7 Experimental Results - Tree-Augmented
Algorithms

For these experiments, in addition to using the Soil dataset
described in section 4, we performed large scale RLS regres-
sions using a tree-augmented KCG on variable sized sub-
sets of a PugetSound elevation map4 using hyperparameters
λ = 0.1/n and σ2 = kN/(nπ), where n is the size of the
training set, and N is the size of the entire height map. In this
case, we chose N = 500 × 500 = 250, 000, and k = 15.
The largest resulting datasets were on the order of 100,000
points. It should be noted that the näive implementation in
this case did not cache kernel evaluations in a kernel matrix
as such matrices for datasets above O(15, 000) points proved

4http://www.cc.gatech.edu/projects/large models/
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RLS cmc covtype glass ionosphere iris page-block pima spam wine
examples 1000 6000 150 300 120 5000 568 4000 128
PCG iters 1749 318 30 45 72 120 1825 2106 24
KCG iters 17 12 5 6 11 10 17 40 5
Speedup 102.9 26.5 6.0 7.5 6.5 12.0 107.4 52.6 4.8

KLR cmc covtype glass ionosphere iris page-block pima spam wine
examples 1000 4000 150 300 120 - 568 2000 128
PCG iters 1490 232 35 177 74 - 682 11045 52
KCG iters 29 9 9 11 11 - 11 26 6
Speedup 51.4 25.8 3.9 16.1 6.7 - 62.0 424.8 8.7

Figure 2: Times (in iterations) to achieve convergence of RLS (top) and KLR (bottom) on a subset of UCI data-sets. KCG
decreases the number of iterations on average by a factor of 54.

intractable for the machine on which the experiments were
performed.

Figure 1 shows that tree-augmentation significantly outper-
forms the naı̈ve algorithm. Extrapolating from the plot on the
right, trees make possible accurate kernel learning on very
large datasets without requiring explicit subset selection tech-
niques.

8 Conclusions and Future Work
We have demonstrated that the novel gradient method, Ker-
nel Conjugate Gradient, can dramatically improve learning
speed for differentiable kernel machines. Furthermore, we
have shown how this can be understood as a very efficient
preconditioning that naturally derives from the inner product
on functions defined by the kernel. In practice, for various
differentiable kernel learning problems, we find KCG con-
sistently, and significantly, outperforms existing techniques.
We emphasize that the algorithm is simple to implement and
requires no more computation per iteration than standard ap-
proaches.

Further, we demonstrated that space-partitioning data-
structures, also developed by other authors [Shen et al.,
2006], for optimizing Gaussian Processes extend naturally to
other kernel methods. We find that this approach meshes well
with the KCG algorithm, by significantly speeding up the in-
ner loop computations of functions and inner products.

While conjugate gradient is a powerful optimization al-
gorithm, there are other approaches, like Limited-Memory
Quasi-Newton methods [Luenberger, 2003] that may also be
derived in similar ways in terms of the kernel inner product.
These algorithms have proved to be practical when using the
Euclidean inner product; we expect they would also gain the
benefits of preconditioning that KCG enjoys.

Finally, very large scale kernel applications, it seems, will
invariably need to rely on sparse representation techniques
that do not use kernels at all of the data points. Nearly all
of these methods require the efficient solution of large ker-
nel problems using an iterative approximation. It is natural
to explore how Kernel Conjugate Gradient can speed up the
expensive inner loop of these approximation procedures.
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