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Abstract
Recent work done by Lovell, Adams, and Mans-
ingka (2012) and Williamson, Dubey, and Xing
(2013) has suggested an alternative parametrisa-
tion for the Dirichlet process in order to derive
non-approximate parallel MCMC inference for
it – work which has been picked-up and imple-
mented in several different fields. In this paper
we show that the approach suggested is impracti-
cal due to an extremely unbalanced distribution
of the data. We characterise the requirements
of efficient parallel inference for the Dirichlet
process and show that the proposed inference
fails most of these requirements (while approx-
imate approaches often satisfy most of them).
We present both theoretical and experimental ev-
idence, analysing the load balance for the infer-
ence and showing that it is independent of the
size of the dataset and the number of nodes avail-
able in the parallel implementation. We end with
suggestions of alternative paths of research for
efficient non-approximate parallel inference for
the Dirichlet process.

1. Introduction
The Dirichlet process (Ferguson, 1973) is a distribution that
induces clusterings with a varying number of components
that can grow with the complexity of the data. It is often
used to model the prior over possible clusterings in tasks
where the number of clusters is not known in advance; in
topic modelling, for example, the number of topics is not
usually known, and we would like to be able to capture
any arbitrary number of these. This distribution and its
derivatives are used in many fields of research including
natural language modelling (Teh, 2006), statistical machine
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translation (Gal & Blunsom, 2013), activity modelling (Fox
et al., 2008), word segmentation (Xu et al., 2008), and topic
modelling (Teh et al., 2006), to name a few.

Inference for models that use the Dirichlet process can be
done using Markov chain Monte Carlo techniques in which
a Markov chain is constructed to draw samples from the
posterior. These techniques are well known for their long
running time since the walk along the chain should in the-
ory converge to its stationary distribution before the sam-
ples produced can be used. The convergence process is of-
ten slow as it depends on the mixing properties of the sam-
pler – how quickly it “jumps around” in space – while pro-
longed burn-in time and unbounded variance inhibit run-
ning multiple independent chains concurrently in a naive
way.

We are thus interested in distributed samplers to answer for
the slow sampling from the true posterior of the Dirichlet
process. Many have reasoned what requirements such dis-
tributed samplers should satisfy (Brockwell, 2006; Wilkin-
son, 2005; Asuncion et al., 2008; Lovell et al., 2012;
Williamson et al., 2013). These samplers should:

1. distribute the computational load evenly across the
nodes used in the parallel implementation (processors
in a computer, parallel threads, cores in a cluster, com-
puters in a network, and so on),

2. scale favourably with the number of nodes,

3. have low overhead in the global steps,

4. and converge to the true posterior distribution.

Many approximate distributed samplers have been sug-
gested over the years – samplers that satisfy some or all
of the first 3 conditions but not the last one. Asuncion,
Smyth, and Welling (2008) have suggested approximate
Gibbs sampling where each of theK nodes handles exactly
1/K of the data, locally assigning the data points to clusters
according to a stored global state, and occasionally syn-
chronising the global state to keep the clustering from di-
verging. However, in practice this approach leads to slower
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convergence (Williamson et al., 2013). In parallel imple-
mentations of variational inference (Blei & Jordan, 2004;
Kurihara et al., 2007), the distribution is approximated us-
ing simpler distributions from a parametrised family, and
the chosen distribution in the given family is the one min-
imising the Kullback–Leibler divergence.

Doshi, Knowles, Mohamed, and Ghahramani (2009) have
suggested inexact parallel inference in a model closely
related to the Dirichlet process called the Indian Buffet
Process (Griffiths & Ghahramani, 2006). They presented
a way to make the inference exact through the use of
Metropolis–Hastings steps (rejecting samples produced by
the sampler) but argue that doing so introduced a significant
computation overhead which resulted in poor use of com-
putational resources. They presented empirical evidence
showing that the approximate sampler behaves in a similar
way to the exact sampler with the Metropolis–Hastings cor-
rections. Lastly, the use of Sequential Monte Carlo meth-
ods to approximate the distribution using a weighted set of
particles has been suggested for the Dirichlet process and
its derivatives as well (Fearnhead, 2004; Ülker et al., 2010;
Ahmed et al., 2011). In this approach, each particle is in-
dependent of other particles and needs to consider only one
data point at a time, allowing for efficient parallel imple-
mentation. In the global step the whole selection of parti-
cles is replaced with new particles sampled from the cur-
rent posterior estimate to avoid the problems of increasing
variance caused by the independent updates.

Recently an attempt has been made to derive a distributed
sampler that produces samples from the true posterior of
models that use the Dirichlet process. Lovell, Adams, and
Mansingka (2012) have suggested an alternative parametri-
sation for the Dirichlet process in order to derive new par-
allel MCMC inference for it. They use an auxiliary vari-
able representation of the Dirichlet process and describe a
MapReduce algorithm for the implementation of the paral-
lel inference. Independently, Williamson, Dubey, and Xing
(2013) have suggested a distributed algorithm that uses a
re-parametrisation of the Dirichlet process with the same
auxiliary variable scheme. This work was assessed and im-
plemented on a single machine architecture with intentions
to extend the implementation into a multi-machine archi-
tecture. These approaches were adopted in several different
fields (Chahuneau et al., 2013; Deka et al., 2013; Ida et al.,
2013) where the parallel inference was implemented as part
of the research or intended to be used in future research.

However, in this paper we show that the auxiliary variable
approach suggested by Lovell et al. (2012) and Williamson
et al. (2013) for the implementation of the inference in a
parallel way results in an extremely unbalanced distribu-
tion of the data to the different nodes in the parallel im-
plementation – violating the conditions stated above. This

follows from the sparseness properties of the Dirichlet dis-
tribution used for the re-parametrisation which suggest that
the number of nodes used in the parallel implementation
is independent of the number of available nodes for com-
putation, and depends only on n, the size of the dataset,
and α, the parameter used for the distribution – violating
the second condition stated above. Thus, even if a large
number of machines is available for the inference, only a
small subset of it would actually be in use (logarithmic in
the size of the dataset: α log(n)). Moreover, because of the
exponential decay in the size of the clusters of the Dirichlet
process, most of the work will be sent to a small number
of nodes independently of the number of available nodes
or the number of data points (95% of the data points will
be sent to roughly ≈ 1.3

log(α+1)−log(α) nodes) – violating
the first condition stated above. This renders the inference
impractical for large networks and many real-world prob-
lems. For example, in natural language modelling the value
of the parameter α would usually be chosen (or inferred, in
the case of Lovell et al. (2012)) to be a small number of the
order 0.1. This means that 1 machine would handle 95%
of the data, with another machine handling the rest of the
data.

The main contribution of this paper is an analysis of the
parallel inference introduced by Lovell, Adams, and Mans-
ingka (2012) and Williamson, Dubey, and Xing (2013),
demonstrating its impracticality as follows from the re-
quirements of a parallel inference mentioned above, as well
as the proposal of directions for future research for non-
approximate parallel inference for the Dirichlet process to
answer for that.

2. The Dirichlet process
We now review some of the properties of the Dirichlet pro-
cess that are important for our further analysis. The Dirich-
let process (DP) is a distribution that generates finite point
measures given some base distribution H and a concentra-
tion parameter α. These point measures can be used to in-
duce clusterings over data points using a procedure known
as the “Paintbox construction” (Kingman, 1978) where for
each data point we sample from the point measure, obtain
some θ ∈ H , and group all data points assigned to the
same θ together. The Dirichlet process with parameter α
can be seen as the infinite dimensional generalisation of
the Dirichlet distribution with K components and parame-
ter α/K when the number of components of the Dirichlet
distribution tends towards infinity.

We can generate clusterings from the distribution by
marginalising over the point measures sampled from the
Dirichlet process using a construction called the Chinese
Restaurant Process (CRP). This process can be described
using the metaphor of a restaurant with customers enter-
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ing and sitting next to tables with different probabilities de-
pending on the tables’ relative sizes (being partitioned by
their choice of a table). More formally though, one defines
the CRP as a distribution over partitions of the naturals such
that:

P (zi = k|z1, ..., zi−1) =


nk

i−1+α if nk > 0

α
i−1+α k is a new class

where zi is a random variable denoting the class allocation
of the i’th data point, nk is the number of data points in the
class k, and α > 0. This distribution is exchangeable, as
the probability of the allocation of points to specific classes
doesn’t change when the points are permuted.

We will also make use of the residual allocation model
where samples from the Dirichlet process are generated us-
ing the following “stick-breaking” construction given some
concentration parameter α ∈ (0,∞) and underlying mea-
sure H (Sethuraman, 1994):

β′i
iid∼ Beta (1, α) , i ≥ 1

βi = β′i

i−1∏
k=1

(1− β′k)

fj =

∞∑
i=1

βiδθi , θi ∼ H

with the property that a.s.
∑∞
i=1 βi = 1. This construction

can be interpreted intuitively as the breaking of a stick of
unit length (at a point sampled from a Beta distribution),
taking the length of one part to be the probability of some
θ ∈ H , and breaking the rest of the stick in a recursive
manner.

The Dirichlet process induces clusterings with an exponen-
tial decay in the size of the clusters: clusterings with a large
number of customers sitting next to a single table, with the
next largest table having a much smaller number of cus-
tomers, and so on (in more detail, the relative customer fre-
quency of the k’th largest table being a/sk for some con-
stants a, s). In this setting, one would usually choose the
parameter α of the Dirichlet process to be of small mag-
nitude (a value around 0.1 is common when the parame-
ter is not marginalised out; in such cases, a vague gamma
prior is often used (Teh et al., 2006) which in practice puts
an upper bound on the value the concentration can take).
The choice of small values for the concentration parameter
arises from the “rich get richer” property observed in many
real world problems and captured by the Dirichlet process.
The concentration parameter controls this behaviour – for
small values one would observe a relatively small number
of large tables with many customers sitting around each one
and many small tables with a small number of customers,
whereas with large values for the concentration one would

observe a large number of large tables, with fewer cus-
tomers sitting around each table for the same size dataset.

3. Parallel inference for the Dirichlet process
The parallel inference suggested can be presented by the
following formulation of the Dirichlet process given α > 0
and base distribution H (Lovell, Adams, and Mansingka,
2012):

γ ∼ DirK (αµ1, ..., αµK)

Gk ∼ DP (αµk, H)

G =

K∑
k=1

γkGk (1)

for some given (µk)
K
1 where

∑K
k=1 µk = 1 and µk ≥ 0.

The resulting G has the same distribution as DP (α,H) as
proved in (Williamson et al., 2013), and is actually rep-
resented as a mixture of Dirichlet processes with smaller
concentration values. Intuitively, given a network with K
nodes to carry out the parallel inference, one samples from
a Dirichlet distribution with K components and parame-
ter α/K (corresponding to µk = 1

K for all k). The sam-
ple produced determines the distribution of the load in the
network: each component corresponds to one node in the
network, and the value for each component in the vector
γ determines the relative amount of data to be sent to this
node.

Williamson, Dubey, and Xing (2013) give a mixture model
instead of G, and introduce an additional step that sam-
ples the node assignment πi ∼ γ and only then samples
the cluster assignment θi ∼ Gπi

to obtain xi ∼ f(θi).
Williamson et al. (2013) give an intuitive interpretation to
this construction: for K nodes the data is split to groups
according to the probability induced by γ. Then, condi-
tioned on the node allocation of the data, the data points
are clustered in independent Dirichlet processes.

4. Impracticality of the inference –
an asymptotic analysis

The main problem with this approach is that as the num-
ber of nodes K increases, the samples γ from the Dirichlet
distribution become sparser. Even for the optimal choice
of parameters µ1 = 1

K , ..., µK = 1
K (every other choice

will skew the distribution even further) one obtains a sam-
ple from DirK (α/K), where a fixed α and large K would
produce samples with most of the mass concentrated in the
corners of the simplex, resulting in an unbalanced distribu-
tion of the data.

The exact number of nodes used in the parallel implemen-
tation of the inference can be derived from the asymptotic
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properties of the Dirichlet process. This is because of the
special structure of the Dirichlet distribution used in the re-
parametrisation. For the optimal case of µi = 1/K one ob-
tains a sample from a Dirichlet distribution DirK (α/K),
which in the limit of K → ∞ gives us a sample from a
Dirichlet process (with parameter α and a base distribution
P over the infinite set of possible nodes). The asymptotic
number of component locations (corresponding to nodes)
drawn from a sample from this high-dimensional Dirichlet
distribution converges to the asymptotic number of unique
clusters induced by a Dirichlet process with the same pa-
rameter. We thus get that the number of nodes used in
the parallel inference is not dependent on the number of
available nodes: sampling the allocation of n data points
from a Dirichlet process with parameter α gives on aver-
age α log(n) unique clusters (Arratia et al., 2003). For a
mega-set (a dataset with a size of the order of a million data
points) only ≈ 14α nodes would be in use – for α = 0.1
this amounts to 2 nodes used and for α = 10 this amounts
to 140 nodes in use, no matter how many nodes are avail-
able. For a giga-set (a dataset with 109 data points), one
would get ≈ 21α nodes in use, and for a tera-set (1012

data points) one would get ≈ 28α nodes in use (only 3
nodes used for the case α = 0.1). From this it might look
like the solution to the problem would be to only use the
inference for very large datasets.

However, because of the exponential decay in the size of
the clusters of the Dirichlet process, the number of data
points sent to each cluster is unbalanced. We now show that
for all 0 < p < 1, a fraction p of the data is sent to a small
number of nodes independently of the number of available
nodes, and independently of the number of data points as
well. This follows from the stick-breaking construction of
the Dirichlet process brought above.

Following the stick-breaking construction, we get that the
expected value of β1 (the length of the first stick) is given
by 1

1+α . The expected value of β2 is given by

E[β2] = E[(1− β′1)β′2] = E[(1− β′1)]E[β′2] =
α

(1 + α)2

where the second transition follows from the independence
of β′1 and β′2. Similarly, the expectation of β3 is given by

α2

(1 + α)3
,

and so on.

For each βi, the average number of points sent to node θi
is given by E[βi], and since the values of βi partition the
unit interval and sum to one, each data point sampled from
the sample from the Dirichlet process corresponds to one
and only one βi corresponding to the node θi. When sum-
ming the first n expected values of βi, one gets the relative

number of data points belonging to one of the first n nodes
(disregarding the identifiers θi’s of the nodes):

E

[
K∑
i=1

βi

]
=

K∑
i=1

E[βi] =

K∑
i=1

αi−1

(1 + α)i

=
1

1 + α

K−1∑
i=0

αi

(1 + α)i
=

1

1 + α

1−
(

α
1+α

)K
1− α

1+α

= 1−
(

α

1 + α

)K
.

To see how many nodes handle a fraction 0 < p < 1 of the
data, we solve the following equation

1−
(

α

1 + α

)K
= p

which amounts to solving (taking log in natural base)

K log

(
α

1 + α

)
= log(1− p)

which results in

K =
log(1− p)

log(α)− log(α+ 1)
, (2)

i.e. the number of nodes handling any fixed percentage of
the data is independent of the number of data points and
depends only on the concentration parameter.

From this we get that even for the tera-set analysed above
(and for that matter for peta-sets and exa-sets as well), the
number of nodes handling 95% of the data for α = 0.1
would be 1, and for α = 10 would be 31 (out of which
one node would handle 10% of the tera-set, the next would
handle 8%, the next 7%, and so on). In this view, us-
ing the inference for large datasets would penalise us by
sending large amounts of data to single nodes. It is in-
teresting to note that these results were not observed in
the experimental work of Lovell, Adams, and Mansingka
(2012) and Williamson, Dubey, and Xing (2013), as in
these the number of nodes was restricted to small values
(in Williamson et al. (2013) for example it was restricted
to 4) and the choice of the concentration parameter for the
synthetic datasets was large (Lovell et al. (2012) actually
inferred the parameter’s value but the value itself was not
reported). An experimental analysis of this distribution of
the load is presented in the next section.

5. Impracticality of the inference –
an empirical analysis

The problem becomes even worse in practical implementa-
tions in many real-world applications, as one would often



Pitfalls in the use of Parallel Inference for the Dirichlet Process

choose the parameter α to be of small magnitude which re-
sults in a very small parameter value for the Dirichlet dis-
tribution, and thus in sparse samples as most of the mass is
concentrated in the corners of the simplex.

We can see this behaviour more clearly by looking at
the two-staged Chinese restaurant process introduced in
Lovell, Adams, and Mansingka (2012), where each cus-
tomer chooses one of the K restaurants according to its
popularity:

P (data point n chooses node k | α) =

αµk +
∑n−1
i=1 I(szi = k)

α+ n− 1

For small values of αµk we get that most customers go
to the same restaurants, as the first assignment will give a
much higher weight to one restaurants in the next assign-
ment, and the next assignment has high probability of in-
creasing this weight even further.

As a concrete example, we will simulate a sample from a
DP (0.1) with 4 nodes in the distributed implementation. A
selection of samples from a Dir4 (0.1/4) would be (sorting
the nodes by decreasing load):

(1.0000, 0.0000, 0.0000, 0.0000)

(0.5658, 0.3985, 0.0357, 0.0000)

(0.9999, 0.0001, 0.0000, 0.0000)

(1.0000, 0.0000, 0.0000, 0.0000)

(1.0000, 0.0000, 0.0000, 0.0000)

(0.9867, 0.0092, 0.0042, 0.0000)

Which means that in 5 out of the 6 runs 99% of the data
would be sent to a single node.

Sampling 10, 000 samples from DirK (α/K) and averag-
ing, for different real-world values of α and K, we obtain
the loads displayed in figure 1 showing that for α = 0.1
all of the data is sent to only two nodes, with 94% of it
sent to one of the two, and for α = 2 (figure 2) we have
that 92% of the data is sent to only 5 nodes (out of the
K = 10, ..., 10000 nodes), where two of these handle more
than two thirds of the load.

# of nodes / param. α = 0.1
K = 101 94%, 6%, 0%, 0%, 0%, ...
K = 102 94%, 6%, 0%, 0%, 0%, ...
K = 103 94%, 6%, 0%, 0%, 0%, ...
K = 104 94%, 6%, 0%, 0%, 0%, ...
K = 105 94%, 6%, 0%, 0%, 0%, ...

Figure 1. Average load on each node in decreasing order for α =
0.1

# of nodes / param. α = 2
K = 101 54%, 23%, 12%, 6%, 3%, ...
K = 102 48%, 22%, 12%, 7%, 4%, ...
K = 103 48%, 21%, 12%, 7%, 4%, ...
K = 104 48%, 21%, 12%, 7%, 4%, ...
K = 105 48%, 21%, 12%, 7%, 4%, ...

Figure 2. Average load on each node in decreasing order for α =
2

Sampling from the prior of a Dirichlet process mixture
model with different values for the parameter α, and run-
ning the proposed inference procedure as implemented in
(Chang & Fisher III, 2013) with minor bug corrections on
a 12 cores machine, we can analyse the average time spent
in each node in a real-world scenario. In this experiment
we sampled a mega-set (1M points) from a DP mixture of
Gaussians with a Gaussian-Wishart prior for parameter val-
ues α = 0.5 and α = 2 (a value of 0.5 was chosen instead
of 0.1 as in the previous experiment for practical reasons,
since the number of samples required to obtain several clus-
ters with α = 0.1 is much larger). The sampled datasets
can be seen in figure 3. We then ran the inference proce-
dure for 250 iterations initialising the cluster assignments
to a single cluster and the parameter α to the true concen-
tration, and evaluated the relative time spent in each node
(clock cycles per thread to be exact) using K = 2, 4, 6, 8
nodes. The average time spent in each node is shown in
figure 4, demonstrating the unbalanced distribution of the
load among the different nodes.

6. Optimality cases and suggestions for future
research

An interesting question to ask is whether there exists a set-
ting of the inference which would give a better load bal-
ance. In this section we study several different optimal set-
tings showing that a small improvement can be achieved
but that the balance remains skewed. We then explore the
strengths and weaknesses of alternative approaches to non-
approximate parallel inference and discuss possible direc-
tions for future research.

6.1. Optimal number of nodes

Since one cannot usually control the concentration param-
eter value as it is determined by the model to be captured,
as well as the number of data points to be processed, the
only “tunable parameter” for the inference scheme at hand
is the number of network nodes to be used in the paral-
lel inference implementation. Given the computational re-
sources, one would want to utilise these in the best possible
way. However, the use of a large number of nodes in the
inference would entail, apart from the unbalanced distribu-
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Figure 3. Samples of 1M points from a DP mixture of Gaussians with a Gaussian-Wishart prior for parameter values α = 0.5 (left) and
α = 2 (right)

Figure 4. Average relative time spent in each node (clock cycles per thread) using K = 2, 4, 6, 8 nodes on the datasets produced
above. Cluster assignments were initialised using a single cluster and α was set to the true concentration. The average time spent in each
node as a function of the number of nodes is shown where the time intervals are stacked on top of each other for comparison. Shown
α = 0.5 (left) and α = 2 (right).

tion of the data where a small number of nodes carries out
most of the work, that each node performs inference over a
Dirichlet process with parameter nearing zero (DP (α/K)
for largeK) – which in practice would cause the local sam-
pler to assign all data points to a single cluster and all of the
work to be done in the global steps.

Thus, to avoid the waste of computational resources, the
suggested parallel implementation should be used when a
small number of nodes is available. As the extreme case
of using one single node would move all of the work to
the local steps, it would seem that there exists an “optimal
value” for the number of nodes to be used. This number
happens to be α itself – the use of K = dαe nodes in
the network would mean that the distribution of the bal-

ance would be sampled from a Dirichlet distribution with
parameter 1, thus the load would be distributed uniformly.
However, this solution forces the distributed nature of the
inference to depend on the model to be captured – which
renders the optimal choice of the number of nodes imprac-
tical for many real-world problems as explained earlier.

6.2. Optimal initialisation

Another possible optimality case is when the posterior is
balanced. The analysis above of the distribution of the data
to the different nodes looks at the a-priori cluster sizes of
the Dirichlet process. For some problems the a-posteriori
allocation of the data is balanced – i.e. the data is composed
of evenly distributed classes. In such cases, when the sam-
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Figure 5. Accumulative plot of time spent in each node (for optimal initialisation). Inference was done on a sample from the prior
with α = 10 with 138 clusters and 8 nodes, where the number of clusters was initialised to 100. The time spent in each node as a
function of the iteration is shown where the time intervals are stacked on top of each other for comparison. 4 out of the 8 nodes are
balanced, while nodes 5 and 6 carry 80% of the work of the others, and nodes 7 and 8 do almost no work.

pler is close to convergence after it had “moved” the data
points between the different clusters from the initial un-
balanced state, we will converge towards the true posterior
with the data points distributed evenly among the different
clusters. However, the distribution of the different clusters
themselves among the nodes in the parallel implementation
still follows an exponential decay (as can be observed from
the two-staged Chinese restaurant process brought above).
In fact, the exact update for cluster assignment in the dif-
ferent nodes is brought in (Lovell et al., 2012) as:

P (cluster j chooses node k | α, {Jk′/j}Kk′=1) =

αµk + Jk/j

α+
∑K
k′=1 Jk′/j

(3)

for Jk/j the number of clusters in node k not including
cluster j. Even if the clusters happen to divide the data
equally under the posterior, the allocation of clusters to
nodes according to equation 1 would distribute the load
following the same extremely unbalanced exponential de-
cay, since the updates in equation 3 distribute the clusters to
nodes independently of the data. In such a case one could
initialise the sampler close to the posterior if it is known
in advance to have many evenly balanced clusters, and get
a less distorted distribution of the load. We performed an
additional experiment using a sample from the prior with
α = 10 with 138 clusters and 8 nodes, where we initialised
the number of clusters to be 100, randomly assigning data
points to the different clusters. The time spent in each node
as a function of the iteration can be seen in figure 5. As we
can see, 4 out of the 8 nodes are balanced, while nodes 5
and 6 do about 80% of the work of the others, and nodes 7
and 8 do almost no work.

6.3. Metropolis–Hastings corrections

Since whole clusters are sent to single nodes in the pro-
posed inference, datasets that have very large clusters
would distribute the load in an unbalanced and inefficient
way. An implementation of non-approximate parallel in-
ference for the Dirichlet process should therefore split the
cluster representation among different nodes. Such im-
plementations need take care of the overhead from clus-
ter maintenance communication, as they would need to
constantly transmit information about their relative sizes
across all nodes. Following Doshi et al. (2009) we would
like to take an efficient approximate parallel inference and
make it exact (or at least non-approximate) by Metropolis–
Hastings corrections.

A recent attempt influenced by (Jain & Neal, 2004) at do-
ing so is presented in (Chang & Fisher III, 2013), where
the data is decoupled for each finiteK (the number of com-
ponents of the DP) conditioned on the probability of each
component (out of K). This then gives approximate infer-
ence where the approximating distribution is a finite mix-
ture model (a non-ergodic Markov chain which is referred
to as a “restricted chain” in the paper; this chain is ergodic
though over the subspace of finite mixture models with K
components). The sampler then transitions between differ-
ent subspaces of the possible distributions (each subspace
corresponding to a finite mixture model with different K)
via merge-split Metropolis–Hastings proposals. The split
proposals, however, depend linearly on α, while the merge
proposals depend linearly on α−1 (note that this is true
for both random and non-random split-merge moves as re-
ferred to in the paper). This means that for large values
of α almost all merge proposals would be rejected, while
for small values of α almost all split proposals would be
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rejected (even though for small values of α the number of
cluster increases as the dataset size increases). Thus, the in-
ference becomes very susceptible to initialisation – initial-
ising the sampler with the data points randomly allocated to
a large number of clusters would lead the sampler to merge
the clusters quickly for small α but very slowly for large
α, while initialising the sampler with the data points ran-
domly allocated to a small number of clusters would lead
the sampler to split the clusters quickly for large α but very
slowly for small α.

We ran an experiment demonstrating this for α = 0.2, 1, 5
using samples from the prior produced in the same way as
in the previous section, and evaluated the average number
of splits and merges (both random and non-random) per
iteration. The results are shown in table 6. This depen-
dence on α in the split-merge proposals makes (Chang &
Fisher III, 2013)’s inference suitable for the case when the
posterior is known in advance and the initialisation can re-
flect that. However we suspect that introducing additional
random moves that depend on α in an inverse way might
remove that limitation. We were not able to compare the
overhead created by time spent in the cluster maintenance
communication between the nodes as the implementation
was done for a single-machine architecture.

100 initial clusters 1 initial cluster
splits merges splits merges

α = 0.2 0.00 1.48 0.03 0.00
α = 1 0.01 1.29 0.03 0.00
α = 5 0.32 0.16 0.15 0.00

Figure 6. Average splits and merges (both random and non-
random) per iteration in (Chang & Fisher III, 2013)’s inference.
Samples from the prior were used with concentration values α =
0.2, 1, 5 and different numbers of initial clusters. For large αmost
merges are rejected, and for small α most split are rejected. Note
that for 1 cluster initialisation all merges are rejected as expected.

6.4. Directions for future research

An alternative to the inference procedures above might be
the development of better approximate parallel inference.
The current approach uses Gibbs sampling after distribut-
ing the data evenly across the different nodes (Asuncion
et al., 2008). We synchronise the state of the nodes only
in the global step, which means that the distribution would
diverge from the true posterior. Williamson et al. (2013)
reported this inference to have slow convergence in prac-
tice, which raises the question of whether this approximate
parallel inference can be adjusted to have better mixing.
For many problems an approximate posterior would suf-
fice, and this inference might be a suitable alternative to
non-approximate inference.

Lastly, one can also use distributions alternative to the

Dirichlet process for clustering. Miller & Harrison (2013)
have recently shown that the Dirichlet process posterior is
inconsistent in the number of cluster and suggested an alter-
native distribution for clustering: the use of a Poisson mix-
ture of Dirichlet distributions. The use of this alternative
distribution might open the door for more efficient parallel
inference. Furthermore, one might want to use a partly-
parametric partly-nonparametric mixture of the Dirichlet-
K distribution and Dirichlet process for clustering. This
would allow us to use an unbounded number of clusters
with at least K clusters, where the distribution of the load
would be partly balanced.

7. Conclusions
In this paper we presented an asymptotic analysis as well
as an empirical analysis of the parallel inference introduced
by Lovell, Adams, and Mansingka (2012) and Williamson,
Dubey, and Xing (2013). We showed that the inference
doesn’t satisfy the conditions one would expect of a dis-
tributed sampler, suggesting that it would lead to a waste of
computational resources.

We continued to present experimental support of this
pathology where we evaluated the proposed inference pro-
cedure analysing the average time spent in each node for
different initialisations and datasets. Finally, we assessed
the best case scenarios arising from different initialisations
and number of nodes, showing that a small improvement
can be achieved but that the balance is still skewed. We
further explored the strengths and weaknesses of other ap-
proaches to parallel inference and proposed new possible
approaches to research.
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