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Abstract

The ranking of n objects based on pair-
wise comparisons is a core machine learning
problem, arising in recommender systems, ad
placement, player ranking, biological appli-
cations and others. In many practical sit-
uations the true pairwise comparisons can-
not be actively measured, but a subset of all
n(n—1)/2 comparisons is passively and nois-
ily observed. Optimization algorithms (e.g.,
the SVM) could be used to predict a rank-
ing with fixed expected Kendall tau distance,
while achieving an 2(n) lower bound on the
corresponding sample complexity. However,
due to their centralized structure they are
difficult to extend to online or distributed
settings. In this paper we show that much
simpler algorithms can match the same Q(n)
lower bound in expectation. Furthermore, if
an average of O(nlog(n)) binary comparisons
are measured, then one algorithm recovers
the true ranking in a uniform sense, while the
other predicts the ranking more accurately
near the top than the bottom. We discuss
extensions to online and distributed ranking,
with benefits over traditional alternatives.

1. Introduction

Ranking from binary comparisons is a ubiquitous
problem in modern machine learning applications.
Given a set of n objects and set of (possibly incon-
sistent) binary comparisons between pairs of objects
(such as “player i won against player j,” or “the cus-
tomer bought book i instead of j7), the task is to
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infer a total order over objects that aggregates the
given measurements. Common settings for this prob-
lem allow binary comparisons to be measured either
actively (Ailon, 2012; Ailon et al., 2011; Jamieson
& Nowak, 2011; Braverman & Mossel, 2009; Giesen
et al., 2009), repeatedly (Negahban et al., 2012; Am-
mar & Shah, 2011; Feige et al., 1994), or assume that
all n(n — 1)/2 comparisons are known up to some
noise (Braverman & Mossel, 2008; 2009). We believe
that in many challenging applications, these assump-
tions are unrealistic: (1) Active measurements are of-
ten infeasible, either because measurements must be
made passively (e.g., from click-through data, purchas-
ing preferences), or because pairwise comparisons are
too time consuming to measure in series (e.g., measur-
ing protein-protein interactions). (2) Repeated mea-
surements are not practical if comparisons are derived
from the outcomes of sports games or the purchasing
behavior of a customer (a customer typically wants to
purchase a product only once). (3) The O(n?) growth
of comparisons between n objects usually prohibits ex-
haustive measuring when n is large.

Since a total order can be uniquely determined by sort-
ing distinct object “scores,” it is common to formalize
the problem as follows: Given a subset of (possibly
noisy) binary comparisons ¢; ; between n objects, we
desire a scoring function II : {1,...,n} — R so that
Gij =1 <= TI(i) < II(j) for as many examples in
the training data as possible. Traditional optimiza-
tion losses targeting this objective are intuitive (e.g.,
count the number of inversions between the training
data and the scoring function,) but discontinuous and
non-convex. The substantial literature on learning to
rank can be specialized to this setting by learning scor-
ing functions that only depend on the object identity.
This approach suggests ways to approximately solve
the optimization problem by relaxing the intractable
loss to convex surrogates (Dekel et al., 2004; Freund
et al., 2003; Herbrich et al., 2000; Joachims, 2006).



Efficient Ranking from Pairwise Comparisons

Although some of these methods (e.g., the SVM) can
achieve an Q(n) lower bound on a certain sample com-
plexity, we feel that optimization-based approaches
may be unnecessarily complex in this situation. The
question arises whether simpler algorithms could be
equally effective. In this paper we demonstrate that
two very simple algorithms achieve the same (n)
lower bound without solving an explicit optimization
problem. Furthermore, given slightly more measure-
ments, we can show interesting differences between the
two algorithms: The first predicts rankings with ap-
proximately uniform quality across the ranking, while
the second predicts the true ranking with higher qual-
ity near the top of the ranking than the bottom. Ad-
ditionally, we view the simple form of the algorithms
as a significant asset which makes them much easier to
extend. As a demonstration, we discuss extensions to
online and distributed learning, and highlight impor-
tant benefits over traditional alternatives.

The paper is organized as follows: We first introduce
some notation and quality measures in Section 2. In
Section 3 we discuss related research and background.
Section 4 presents two simple ranking algorithms and
analyzes their performance in terms of the expected
Kendall tau distance as well as high probability bounds
on rank displacements. In Section 5 we evaluate and
validate our theoretical findings. We touch on exten-
sions to online and distributed ranking in Section 6,
before concluding with final thoughts in Section 7. The
complete proofs for all propositions, lemmas and the-
orems are collected in the supplementary material.

2. Preliminaries

Throughout the paper we denote the true permutation
we wish to recover by 7* € S,,. We use the notation
m(7) to indicate the position of object 7 in permutation
7. Without loss of generality, let 7* = (1,2,...,n), so
that 7*(j) = j. We will reveal to an algorithm a subset
of binary comparisons, chosen among the n(n — 1)/2
available pairs. Specifically, each comparison is mea-
sured independently with probability m(n)/n, so that
on average O(nm(n)) measurements are made. Each
comparison can be measured only once (i.e. we mea-
sure without replacement)!. The function m(n) is a
key quantity; we will characterize various sample com-
plexities in terms of bounds on its growth. For some
results we will find that m(n) € (1) suffices, while
in others we need m(n) € ©(log(n)). We will always
assume that m(n) € o(n). Noiseless binary compar-

'In some other analyses measurements are made in-
dependently with replacement (Radinsky & Ailon, 2011;
Mitliagkas et al., 2011).

isons are denoted by ¢; ; = 1 (7*(i) < 7*(j)). A com-
mon observation model is to assume that each binary
comparison is independently flipped with probability
1—p, where p > 1/2 (Braverman & Mossel, 2008; Feige
et al., 1994). To capture the overall measurement pro-
cess, we introduce binary variables s; ; which indicate
whether ¢; ; was measured, and let ¢; ; be the (possibly
noisy) measurement that was made. We will assume
throughout that s;; = s; ; and if s;; = s;; = 1, then
Cji =1—20¢;.

In this paper we analyze the quality of the proposed
algorithms in two ways. The first counts the number
of inverted binary comparisons of the predicted per-
mutation 7 relative to 7#*. That is, we use the loss

inv(#) = > 1(7(j) < 7(i)). (1)
(1) <m* (5)
This quantity is also known as the Kendall tau dis-
tance. Using results in Fulman (2004), one can show
that if 7 is chosen uniformly at random in S,,, then
inv(7) concentrates around (1/2)(n(n — 1)/2). To be
interesting we will thus require our algorithms to have
expected risk E(inv(7)) < (n/2)(n(n — 1)/2) for some
0 <7 < 1. We note that another common comparison
metric is Spearman’s footrule

dis(®) = Y 1#(7) — 7" ()]- (2)

1

n

J

As shown in Diaconis & Graham (1977), inv(7) is re-
lated to dis(#) as inv(#) < dis(#) < 2inv(#). Our
results on the expected Kendall tau distance thus di-
rectly transfer to Spearman’s footrule. We also ana-
lyze the prediction 7 by how far individual objects are
displaced relative to 7*. When appropriate, we will
bound the largest displacement

max #(j) = (7). 3)

However, in some cases the recovery is not uniform,
warranting a detailed inspection of the set of displace-

ments {|7(j) —7*(j)|: i =1,...,n}.

3. Related Research

Several threads of research aim to give various sam-
ple complexities in the active ranking setting. Ailon
et al. (2012), for example, give an active algorithm
which produces a permutation with small loss rela-
tive to the optimal loss (which may be zero). This
result was refined by Ailon et al. (2011) to show that
if the true scoring function is linear, one can find a
scoring function with small loss (relative to the opti-
mal loss) using O(nlog*(n)) active queries. Braver-
man and Mossel (2009) give an active algorithm with
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query complexity O(nlog(n)) for noisy binary com-
parisons that produces a ranking in time that is with
high probability polynomial. Agarwal (2005) has de-
veloped a comprehensive theory for bipartite ranking.
Here, instead of receiving binary comparisons, we re-
ceive binary labels (e.g., relevant/irrelevant) for each
object, and the goal is a scoring function which orders
negative before positive examples.

A number of recent papers have analyzed lower
bounds for the demanding task of exact score recovery.
Jamieson and Nowak (2011), for example, consider
the case when the true scoring function reflects the
Euclidean distance of object covariates from a global
reference point. If objects are embedded in R¢, then
any algorithm that exactly identifies the true ranking
must sample at least O(dlog(n)) comparisons. While
this bound can be achieved by an active algorithm, any
algorithm that uses only random measurements must
see almost all pairwise comparisons in order to exactly
predict the true ranking. Gleich and Lim (2011) sup-
pose that the true score differences (i.e., IT*(j) — IT* (4),
or functions thereof) can be measured. Given an in-
complete matrix of such measurements they use low
rank matrix completion to estimate the true object
scores. If the measurements are in fact score differ-
ences, their algorithm recovers the true scores with
high probability exactly using between O(nlog?(n))
and O(n?log®(n)) random measurements (depending
on the shape of the true scores). Although their work
considers random measurements, their theory does not
apply when binary comparisons are measured in lieu
of score differences. Mitliagkas et al. (2011) focus on
exactly recovering the preferences expressed by a pop-
ulation of r users. Each user’s preferences are recorded
by a permutation over objects, which can be queried
(either actively or by random sampling) through pair-
wise comparisons between objects. The randomized
sampling result is not helpful in our setting (where
r = 1) since it then requires O(n?log(n)) measure-
ments (with replacement) for exact recovery.

SVM Ranking. It is well-known that the SVM
could be used to learn a linear scoring function in the
setting of Section 2: For each observed comparison ¢; ;,
create a feature vector ; ; = e; — e; (where e; is a bi-
nary indicator vector with a 1 at the i-th coordinate)
and associate with it the label ; ; = 2¢; ;—1. Learning
a scoring function now reduces to inferring a separat-
ing hyperplane w so that the function sign(w'z; ;)
best predicts the labels 7; ; on training data. The
predicted permutation 7 follows from sorting the el-
ements in w. Statistical learning theory shows that
in the noiseless case (p = 1), the sample complexity

for inferring a w which with high probability induces
a Kendall tau distance of at most (n/2)(n(n—1)/2) is
small. Indeed, using results of Radinsky et al. (2011)
one can show the following proposition, which we prove
in the supplementary material

Proposition 3.1. There is a constant d, so that for
any 0 < n < 1, if we noiselessly measure dn/n* bi-
nary comparisons, chosen uniformly at random with
replacement, and n > ng is large enough, the SVM
will produce a prediction 7, which satisfies

(i) < 7 (5. (@)

The proposition highlights that the SVM needs to
sample O(n/n?) examples with replacement for an ex-
pected risk of at most (n/2)(n(n—1)/2). Some algebra
then reveals that this amounts to an average of O(n)
distinct samples. As the following proposition, a sum-
mary of results of Giesen et al. (2009), demonstrates,
the sample complexity of Proposition 3.1 is tight up
to constants.

Proposition 3.2. For n < 1, any randomized,
comparison-based algorithm that produces for all ™™ a
prediction T with an expected risk of

(inn() < 2 () )

must on expectation use at least Q2(n) comparisons in
the worst case.

The proposition is proved in the supplementary mate-
rial for completeness. Although the SVM is effectively
optimal in this setting, we feel that its direct applica-
tion is overly heavy handed. The goal of this paper
is to exhibit two much simpler algorithms which also
achieve the above sample complexity, while being eas-
ier to extend to novel applications.

4. Two Simple Algorithms

In this section we present two simple rank estimators
using the randomized data collection framework out-
lined in Section 2.

4.1. Balanced Rank Estimation

We begin this paper by analyzing BRE, which esti-
mates an object’s score as the relative difference of
the number of items preceding and succeeding it.
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Balanced Rank Estimation (BRE):
Measure each binary comparison independently with
probability m(n)/n. Define the scores

o Daigg S5y — 1) _
f1() = = s, -
i#]

Predict 7* by the ordering 7 of the estimated scores,
breaking ties randomly.

Our first result concerns the expected number of in-
versions of 7 relative to 7*.

Theorem 4.1. For any 0 < n < 1 there is a con-
stant c(p,n) € O(1/((2p—1)%n?)) so that if m(n)/n >
c(p,n)/n, and n > ng is large enough, BRE satisfies

E(inu(7)) < 2 (g) (6)

To give some intuition for this theorem, we briefly
sketch the proof. Since we assumed 7* = (1,...,n),
the expected Kendall tau distance is

E(inv(7 ZP ( )) . (7)

1<j

The score difference I1(i) — II(j) can be written as a
sum of 2n — 3 independent random variables. By con-
trolling their mean, variance and magnitude, if n > ng
is large the following bound can be derived for i < j:

P (Ti(j) < T1(3)) (8)
j—i]* 3
< exp {— {n} 33(2P - 1)2m(”)} SN C)

Applying this to Eq. (7), we bound E(inv(7)) by

i(n — k) exp { {z] 3%(217 - 1)2m(”)} (10)

k=1

§/On(n k) exp{ [:r; (2p — 1)2m(n)}dk; (11)

e ()

Matching this upper bound with the target quantity
(n/2)(n(n—1)/2), we find m(n) € ©(1/((2p—1)*n?)).

In the noiseless case (p = 1), Theorem 4.1 guaran-
tees that for any 0 < n < 1, BRE in expectation has
the same sample complexity as the SVM in Proposi-
tion 3.1. In particular, BRE also achieves the Q(n)
lower bound of Proposition 3.2. This may seem at

(12)

first surprising. However, a similar algorithm was re-
cently shown to have favorable properties in a different
context (Coppersmith et al., 2010).

More informative statements can be made if a slightly
larger number measurements is available. As the fol-
lowing theorem shows, given an average of ©(nlog(n))
measurements, BRE predicts permutations with uni-
form quality across the entire permutation.

Theorem 4.2. For any c >0 and 0 < v < 1, if each
comparison is measured with probability m(n)/n =
clog(n)/n, then BRE predicts with probability at least

1—2pt=an8@e=1""c 4 permutation 7 with

max [7(j) — 7 (7)] < v, (13)

where a, is a sequence with a, — 1.

The crux of the argument is that the estimated scores
I1(j) concentrate around their expectation IT*(j) £
E(I1(j)) = aj/n + b, where a = (2p— 1) and b € R
(as before we assume 7* = (1,...,n)). If all scores
concentrate uniformly well, they will reveal the true
permutation up to local displacements. Using a similar
analysis as in Theorem 4.1, our proof first establishes

the following Bernstein concentration:
P ([f1) ~ 1 ()| > 1)

n t24m(n)
S26}(1){n—l—m(n)2(1—&-2;)}’ (15)

(14)

to which we then apply a union bound (introducing
the log(n) factor)

P(3: ‘f[(j) - f[*(j)’ > 1)

2
< Qexp{— n t“4m(n)

(16)

n+m(n) 2 (1 + %) + log(n)} . (17

Thus, the relative ordering of two objects that are far
apart in the 7* (large t) should be harder to confuse
than that of nearby objects (small ¢). Indeed, using the
following intuitive lemma, the uniform concentration
of scores translates into a uniform bound on displace-
ments |#(j) — (j)|-

Lemma 4.3. For any a > 0, and b € R, if Vj, we
have |T1(5) — (aj/n+b)| < t, then we have that Vj,
#(j) — 7 (j)] < 2tn/a.

The lemma applies to the union bound with a = (2p—
1). The proof is then completed by setting t = (2p —
1)v/2 and simplifying Eq. (17).

The following corollary immediately follows from The-
orem 4.2 and highlights for what constants ¢ the prob-
ability in Theorem 4.2 converges.
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Corollary 4.4. For0 < v < 1, there is a constant ¢ =
c(p, v) with 2/((2p—1)*v*) < c(p,v) < 3/((2p—1)*1?),
so that for BRE P(max; |7(j) — 7*(j)| <wvn) — 1.

4.2. Unbalanced Rank Estimation

In many situations, we are not interested in learning
the entire permutation accurately but only care about
the highest (or lowest) ranked objects. The well-known
discounted cumulative gain (Jarvelin & Kekéldinen,
2002), for example, captures this notion and has been
important in the information retrieval literature. More
recently, Rudin (2009) proposed p-norms for ranking
losses that penalize errors near the top more severely
than in the tail of the list. The approach has been
taken to the oco-norm limit by Agarwal (2011). When
n grows, the number of top elements we are interested
in will typically also grow; in many natural phenom-
ena, for example, we expect more extreme examples
to appear as we make more observations. Suppose
then, that for some 0 < v < 1 we wish to recover the
placement of the first vn elements in the permutation
with fairly good accuracy, but care less about the re-
maining (1 — v)n elements. Surprisingly, a very slight
modification of the Balanced Rank Estimation Algo-
rithm yields a method that is useful in this situation.
Furthermore, it still only requires a random subset of
pairwise comparisons. The new algorithm, URE, es-
timates an object’s score by the fraction of measured
items preceding it.

Unbalanced Rank Estimation (URE):
Measure each binary comparison independently with
probability m(n)/n. Define the scores

s 1 _ _
InGy) = —— Zsi’jc;fj x Zsi’jc?,j'
m(n) i#i

Predict m* by the ordering 7 of the estimated scores,
breaking ties randomly.

To begin, we first establish that this algorithm in ex-
pectation still achieves the Q(n) lower bound given in
Proposition 3.2.

Theorem 4.5. For any 0 < n < 1, there is a con-
stant c(p,n) € O(1/((2p —1)%n?)) so that if m(n)/n >
c(p,m)/n, URE satisfies

n

L

Similar to Theorem 4.1, the proof relies on a tail in-
equality for the difference I1(:) —II(j). Supposing that

E(inv(7)) <

(RS

(18)

*

7 = (1,...,n), we show in the proof that for i < j
P (Ti(j) < Ti(3)) (19)
j—i]? 3
< — —(2p—1)? .
< exp{ ] - m<n>} (20)

As in Theorem 4.1 we can use this to bound the

Kendall tau distance as
n
. (21
m(n) <2) 1)

o n  [400 1
E(inv(#)) < n—1 \/?(Qp -1)

Finally, equating this upper bound with (n/2)(n(n —
1)/2) allows us to solve for m(n) € ©(1/((2p—1)%1?)).

Theorem 4.5 guarantees in the noiseless case (p = 1)
that for any 0 < n < 1, URE in expectation achieves
the same ©(n/n?) sample complexity as the SVM in
Proposition 3.1.

Our main interest in URE, however, is encapsulated in
the following theorem which shows that predicted per-
mutations are much more accurate near the top than
the bottom if an average of ©(nlog(n)) measurements
are made instead?.

Theorem 4.6. For any ¢ >0, and 0 < v < 1, if each
comparison is measured with probability m(n)/n =
clog(n)/n, URE predicts with probability at least

1 — 2p!—3[@r-)"?/GBA-P+Gr-DW]e (99
a permutation ™ with
wiy  oAg dvn if () <wvn
— < .

The proof parallels that of Theorem 4.2 and shows
that II(j) concentrates around its expectation IT*(j) £
E(I1(j)) = aj/n +b, with a = (2p — 1) and b € R
(again, we assume 7* = (1,...,n)). However, while
in Theorem 4.2 the tail bound was identical for each
4, here the scores ﬁ(]) have variances that depend
on j. To build intuition, in the noiseless case (p =
1), since the first element j = 1 in 7* has no items
preceding it (i.e., Vi # j &, = ¢; = 13 < j) =
0), the estimated score II(j) will always be zero and
have zero variance, regardless of how many elements
we measure. For remaining elements, the mean of the
estimated scores will progressively increase down the
permutation, as will their variance. The increase in
variance brings a decrease in their predictive accuracy,

20f course, a minor modification of the algorithm leads
to better estimation near the bottom.
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which is reflected in the theory. Specifically, one can
show that

P ([f1) ~ ()| > 1) (24)
t2m(n)

S e e M

Before applying a union bound to the above bounds,
it is convenient to first eliminate the j-dependence of
the upper bounds. To do this, we define the following
set of increasing deviation events

e ‘ﬂ(j)fﬁ*(j)'>ﬁt} if j <wn
7 'f[(]) —ﬁ*(j)‘ > \/zt} if j > vn. (26)

Some algebra then gives, for all j,

P(Aj) <2expy — Vottm(n) , (27)
2 (Wp+ 1 -p)+ %)

which yields the following union bound:

Vrtim(n)
i b 11

As in Theorem 4.2, we turn this concentration result
into a bound on the rank displacement using a lemma.

Lemma 4.7. Fora>0,0<~vy < a? and b € R, if

P(U?ZlAj) < 2nexp{ — . (28)

(3 = S

then

i -wals{ T,

The proof of the lemma shows that even if a sorting
algorithm breaks ties in the least favorable way, the
final rank positions cannot differ too much from the
true positions in 7*. The main difficulty for this argu-
ment lies in a suitable definition of the sets A;, which
translates into the preconditions used for this lemma.
As before, the lemma applies with a = (2p — 1). The
result follows if for any 0 < v < 1 we set t = a\/v in
the definition of sets A;, v = va? in Lemma 4.7, sim-
plify Eq. (28) and then substitute 7*(j) for j where
appropriate.

if j < yn/a?
ifj>nfa? - B

The following corollary, highlighting suitable constants
¢, follows immediately from Theorem 4.6.

Corollary 4.8. For any 0 < v < 1, there is a con-
stant ¢ = c(p,v) with 2p/((2p—1)?v)+2(1—p)/((2p—
1202) < c(p,v) < 3p/((2p — 1)) +2(1 - p)/(2p -
1)212), so that as n — oo the displacement bounds of
Theorem 4.6 hold with probability 1.

Discussion. In both Theorems 4.2 and 4.6 the size
of the bins into which we correctly place objects can be
decreased by increasing the number of measurements.
If we consider the noiseless case (p = 1), Corollary 4.8
predicts that to place elements j with 7*(j) < vn/2
into bins half the current size, URE needs on average
twice as many comparisons. To correctly place objects
J with 7*(j) > vn into bins of half the size URE needs
on average four times as many measurements. From
Corollary 4.4, we see that the behavior of the BRE is
rather different. There, a four-fold increase is required
to halve the bin sizes uniformly across the permuta-
tion. The cost of URE’s improved performance near
the top, however, is that for the same amount of data,
the bin sizes in the tail are typically larger than those
of BRE. Thus, if only the top elements are of interest,
URE should be preferred. If a more uniform recovery is
desired, BRE should be chosen. We will highlight this
tradeoff in Section 5 with an example. An advantage
in this regard is that the algorithm can be chosen after
the data has been collected since BRE and URE work
with the same type of input data. This fact could be
exploited by combining the score estimators in various
ways to further improve over the individual prediction
results.

5. Experiments

To begin, we empirically validate Theorems 4.2 and 4.6
in the noiseless case (p = 1). The theorems show
that if each comparison is measured with probability
clog(n)/n, for some constant ¢, then the deviations
|7*(j) — 7 ()| can be controlled with some probability
that depends on ¢. In Figures 1(a) and 1(b) we show
for particular choices of v in solid the empirical proba-
bilities that the displacement bounds of the theorems
hold, as a function of the constant c. Additionally, we
show the theoretical lower bounds on these probabili-
ties, as given in Theorems 4.2 and 4.6. Notice that v
is four times smaller in Figure 1(b) than in Figure 1(a)
so that Theorems 4.2 and 4.6 predict the same upper
bounds on |7*(j) — #(j)| for j s.t. 7*(j) < vn. Em-
pirically, we see that in this case BRE requires more
measurements than URE. To highlight the difference
in prediction quality, we evaluated both algorithms on
an 8000-object permutation. For each of 500 simula-
tion runs, both algorithms saw ezactly the same set
of comparisons. In Figure 1(c) we show the median
displacement |7*(j) — #(j)| across the 500 runs, as a
function of 7*(j). Additionally, the error bars show
1/2 times the standard deviation of the displacements.
For 7*(j) < 2000 URE predicts the correct position
with higher accuracy and smaller variance than BRE.
However, for large 7*(j) > 2000 BRE outperforms.
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(c) BRE and URE on the same set of comparisons. Different prediction characteristics are visible.

Figure 1. Empirical validation of Theorems 4.2 and 4.6. Figures (a) and (b) show for various v in solid the empirical
probabilities that the displacement bounds of Theorems 4.2 and 4.6 hold, if each comparison is measured independently
with probability clog(n)/n, as a function of c¢. To estimate these, we ran 300 noiseless simulations on permutations over
1000 objects and computed the fraction of times the bounds held. The empirical probabilities can be compared to the
corresponding lower bounds produced by Theorems 4.2 and 4.6, which we plot as dashed curves. Figure (c) shows a direct
comparison of our proposed algorithms. For each of 500 runs on an 8000-object permutation task, both algorithms saw
ezactly the same comparisons. Each plot shows the median displacement |7*(j) — #(j)|, as a function of 7*(j).

6. Extensions

An important benefit of BRE/URE over active meth-
ods is that data collection can be trivially parallelized:
Comparisons can be collected from independent pro-
cesses, each measuring within a pre-assigned block of
object pairs. Furthermore, the structure of the score
estimators makes it easy to extend BRE/URE to sev-
eral interesting settings. For one, we see applications
in online ranking where we wish to grow rankings over
n to n + 1 objects as data streams in. Online ver-
sions of BRE/URE are easy to derive, yet lead to
similar guarantees as those in Section 4. In contrast,
the solutions of optimization-based methods can be
non-trivial to update when the problem is slightly per-
turbed. Cauwenberghs and Poggio (2000), for exam-
ple, show that the exact update to an SVM solution
requires careful bookkeeping of dual coefficients. The
simple structure of BRE/URE also makes them use-
ful in distributed settings where costly coordination
and communication among multiple processors can be
avoided. We will now explore this extension.

6.1. Distributed Ranking

In many situations, the number n of objects being
compared is large. For instance, online retailers can

easily offer millions of products for sale among which
comparisons could be made. In such situations the
objects (data points) are often stored on a fixed num-
ber K of machines, so that each machine stores about
f = n/K data points. A consequence of this dis-
tributed storage is that the O(nm(n)) comparisons are
likely to be collected on distinct machines. A nalve
centralized ranking algorithm would collect the indi-
vidual comparisons at a server for learning, incurring
a communication cost of O(nm(n)). This cost is pro-
hibitive if, relative to n, m(n) is large. Distributed,
iterative SVM-type algorithms have been developed
for such situations (Hazan et al., 2008; Graf et al.,
2004) however, their application is typically compli-
cated by the need for running multiple iterations which
must be coordinated by locking protocols. As a result,
the efficiency of these methods can rapidly deterio-
rate if a single machine fails. A favorable property of
BRE/URE is that their simple form lends them much
more naturally to distributed extensions, which can
avoid locking protocols altogether. The main idea is

3This could be because for a particular problem size n
the constant c(p,n) € ©(1/((2p — 1)?1*)) in Theorems 4.1
and 4.5 happens to be large, or because the probability p
of correctly measuring a comparison decreases quickly as a
function of n.
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that the BRE/URE object scores can also be com-
puted from partial scores rather than from individ-
ual comparisons. If the number of binary comparisons
O(nm(n)) is large, then communicating partial scores
can be much more efficient. We analyze this setting.

To compute comparisons, any algorithm must start
by exchanging object encodings between the K ma-
chines. Let the data points allocated to machine k be
Dy. There are K(K — 1)/2 machine pairs (k < 1)
that need to exchange f = n/K data points from
one computer to the other. Overall, this leads to
n(K—1)/2 € O(nK) = O(n?/f) data points being ex-
changed. Once the O(nm(n)) comparisons have been
computed (in distributed fashion), we aggregate them
into partial scores. Specifically, denote the set of bi-
nary comparisons created by a machine pair k <[ by

Cky=1{Cij:i€ Dy, j€ Dy s;j=1}. (31)

Because Ej,i =1- Ei,j if Sji = Sij = 1, the set Cl,k
can easily be computed from Cj ;. In the following we
will assume that C’l,k has been implicitly computed in
this way whenever necessary. For BRE, use C_’;g,l to
compute for each pair k,[ the following partial scores

(i) = Y 80,(265; —1)

1€ Dy

VjieD,. (32

This amounts to a total of K?f = n?/f partial scores.
The partial scores for URE follow a similar strategy.
To complete the algorithm, the partial scores must be
communicated to a central machine at cost O(n?/f).
If I(y) is the machine index | € {1,...,K} so that
7 € Dy, we combine the partial scores as

K
() = My () (33)
k=1

The overall communication time is O(n?/f). In com-
parison, a naive centralized algorithm requires com-
munication time O(nm(n)). If m(n) € O(1/((2p —
1)2n?)) > K then our proposed algorithm significantly
reduces the communication time. For practical appli-
cations, the number of machines K is typically less
than 100. In this case the our algorithm should be a
viable alternative to centralized optimization schemes
with 7 as large as n = 0.1.

7. Conclusions

This paper analyzed two simple algorithms for rank-
ing n objects from a random sample of binary compar-
isons. We showed that the algorithms in expectation
achieve a lower bound on the sample complexity for

predicting a ranking with fixed expected Kendall tau
distance. As such, they are competitive alternatives
to the SVM, which also achieves the lower bound. By
giving the algorithm slightly more measurements, we
showed that interesting displacement bounds between
7 and 7* can be derived.

Because the algorithms rely only on a random subset of
pairwise comparisons, data collection can be trivially
parallelized. The simple structure of the scoring func-
tions makes them easy to adapt to new situations, such
as online or distributed ranking. We showed that in
the latter case the communication cost of a traditional
centralized optimization approach can be substantially
reduced if (2p — 1)?n? is sufficiently small.

This paper has exclusively considered scoring functions
II(j) that only depend on the object identity. However,
BRE and URE can act as a useful performance base-
line even for learning parametric scoring functions, as
frequently considered: If the in-sample empirical per-
formance of such parametric ranking functions is worse
than that predicted by Theorems 4.1 and 4.5, the func-
tion class may need to be redesigned or more data
collected. Moreover, the two algorithms can be used
as quick, general-purpose preprocessing algorithms for
conventional ranking methods: A small subset of pair-
wise comparisons can be approximately completed us-
ing BRE or URE, irrespective of the true (possibly
parametric) ranking function that generated them.
This larger set of comparisons could then be useful
in learning an improved parametric ranking function.
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