
MARCH 1985 VOL. 8 NO. 1

a quarterly bulletin

of the IEEE computer society
technical committee

Database

Engineering
Contents

Letter from the Editor 1

Benchmarking Database Systems: Past Efforts and Future Directions 2

D.J. DeWitt

Tips on Benchmarking Data Base Systems 10

M. Stonebraker

Variations on a Benchmark 19

P. Hawthorn

Benchmarking Database Systems in Mu’tiple Backend Configurations 29

S. Demurjian and D.K. Hsiao

Transaction Acceleration 40
T. Chou and J. Gray

Transaction Oriented Performance Analysis of Database Machines 53
M. Eich

Special Issue on DBMS Performance

Chairperson, Technical Committee

on Database Engineering

Prof. Gio Wiederhold

Medicine and Computer Science

Stanford University
Stanford, CA 94305

(415) 497-0685
ARPANET: Wiederhold@ SRI-Al

Editor-in-Chief,
Database Engineering

Dr. David Reiner

Computer Corporation of America

Four Cambridge Center

Cambridge, MA 02142

(617) 492-8860
ARPANET: Reiner@CCA

UUCP: decvax!cca!reiner

Database Engineering Bulletin is a quarterly publication of

the IEEE Computer Society Technical Committee on Database

Engineering. Its scope of interest includes: data structures

and models, access strategies, access control techniques,
database architecture, database machines, intelligent front

ends, mass storage for very large databases, distributed

database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,

letters, technical papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.

All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technical

papers are unretereed.

Opinior~s expressed in contributions are those of the indi

vidual author rather than the official position of the TC on

Database Engineering, the IEEE Computer Society, or orga

nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky
Department of Computer Science

University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193

(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of

Business Administration

New York University
90 Trinity Place

New York, NY

(212) 598-7536

Memoership in the Database Engineering Technical Com

mittee is open to individuals who demonstrate willingness to

actively participate in the various activities of the TC. A

member of the IEEE Computer Society may join the IC as a

full member. A non-member of the Computer Society may
join as a participating member, with approval from at least

one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free of charge, until further notice.

Letter from the Editor

The proliferation of Relational Database Management
Systems offerings in the marketplace in the past few years
has forced users of such systems to seek for means to

evaluate their performance. For obvious reasons, and

despite its many shortcomings, the technique of benchmark—

ing has become the basis for all such evaluations. A

number of such benchmarks have been developed and others

are most likely under development (for examples see refer

ences in the papers).

For this issue of DBE we asked several of the “known”

researchers in the area of performance evaluation of DBMS5

to submit papers that summarize their present work in the

area. The result is a collection of six papers. Roughly
speaking, three general themes are addressed in the

papers: a reflection on past work leading to a list of

“lessons learned” (the papers by Dewitt and Stonebraker),
further use of the existing benchmarks to examine the per
formance of systems (papers by Hawthorn and Demurjian &

Hsiao) and, discussions of new metrics and techniques for

evaluating the performance of DBMSs (papers by DeWitt,
Chou & Gray, and Eich).

Several other papers were submitted to this issue but

were not included because they dealt with the evaluation

of the performance of some specific component of a DBMS

(such as scheduler in a distributed system or the con

currency control mechanism). I was hoping that we’d be

able to have a paper detailing the results of the “Great

French Database Machine Competition” (which pits five or

six database machines against one another using the

Wisconsin benchmark (see Dewitt’s paper in this issue)),
but unfortunately the results are still not available due

to the rescheduling of the “contest” date.

I wish to thank the contributors to this issue for

their excellent papers and for keeping to themselves any

gripes about the unrealistic deadlines I set.

Haran Boral

February 1985

Upcoming Issues

6/85 Concurrency Control and Recovery in DBMS’s (Mohan)
9/85 Natural Languages and Databases (Vassiliou)

12/85 Object Oriented Systems and DBMS’s (Lochovsky)

—1—

Benchmarking Database Systems:
Past Efforts and Future Directions

David J. DeWitt

Computer Sciences Department

University of Wisconsin

1. Introduction

During the past two years we have developed a strategy for benchmarking database management sys

tems and achines81TT83, BORA84]. At the present time our set of single user benchmarks BJTF83]
has been used by over 30 vendors and customers of relational products. For better or worse, it has emerged
as the standard set of single user benchmarks. To date, this benchmark has been applied to Unify, Oracle.

INGRES, SOLIDS. RDB. to the 1DM 500 and DIRECT database machines. and a number of other unan

nounced software and hardware products.

In Section 2. we review our present single user and multiuser benchmarking methodology. Section 3

contains a number of open research areas that we are currently exploring. Our conclusions are presented in

Section 4.

Those of you who were hoping for a new set of numbers will he disappointed with this paper. While

we had çhoped to do exactly that, we have not yet succeeded in getting a copy of. or access to. each of the key

products. While certain vendors have been quite helpful, others have remained reluctant to cooperate. Evi

dently. bad numbers translate into poor profits. Based on the number of requests we receive each month for

updated numbers, there is clearly a market for this information. Perhaps what is needed is an EPA Testing
Lab or Consumers Union for benchmark numbers.

Overview of the Wisconsin Benchmark Methodology

In this section. we present an overview of the methodology that we have developed for benchmarking
rilational database systems and machines. First we describe the synthetic database thai is used as the basis of

our all tests. Second. our strategy for constructing a single user benchmark is presented. Finally, we

describe our approach for multiuser tests of a database system. For more details the reader is encouraged to

examine BITT83] and BORA84].

2.1. Synthetic Database Design

A key component of our benchmarkiiig methodology is a synthetic database. Such databases BITT83]
and BODG83]) can be easily generated by programs and have a number of advantages over “real” databases.

First, a synthetic database makes ii quite simple to specify a wide range of retrieval and/or update queries and

to control the sizes of the relations resulting from these queries. With a “real” database, getting a selection

query that retrieves precisely 10% or 50% of the tupies in a relation is difficult and sometimes impossible.
Furthermore, specifying such a query requires one to either know a good deal about the semantics of the

data in the database base or execute a bunch of trial queries. A second advantage of a synthetic database is

that the distribution of attribute values is under the control of the program generating the database. With

“real” data, one has to deal with very large amounts of data before ii can be safely assumed that the data

values are randomly distributed, in addition, while we have, to date. only experimented with uniform distri

butions of attribute values, experimenting with non-uniform distributions would be straightforward.

The benchmark database is designed so that a naive user can quickly understand the structure of the

relations and the distribution of each attribute value. The attributes of each relation have distributions of

values that can be used for partitioning aggregates, controlling selectivity factors in selections and joins, and

varying the number of duplicate tuples created by a projection. It is also straightforward to build an index

(primary or secondary) on some of the attributes, and to reorganize a relation so that it is clustered with

respect to an index.

—2—

There are four “basic” relations in the database. We refer to them as “thoustup”, “twothoustup”,

“fivethoustup”. and “tenthoustup” as they contain, respectively, contain 1000, 2000, 5000, and 10000

tuples. A fragment of the thoustup relation is shown in Figure 1. All the tuples are 182 bytes long. Thus,

the four relations occupy approximately 4 megabytes of disk storage. However, in order to build queries that

operate on more than one operand relation, we often generate two or more relations of the same size. The

attributes are either integer numbers (between 0 and 9999), or character strings (of length 52 characters).

The first attribute (“uniquel “) is always an integer number that assumes unique values throughout the rela

tion. We have made the simplest possible choice for the values of “unique 1”. For example, for the thoustup

relation, uniquel assumes the values 0, 1.
...

999. For the relations with 10,000 tuples, the values of

“uniquel” are 0,1 9999. The second attribute “unique2” has the same range of values as “unique]
Thus both “unique]” and “unique2” are key attributes. However, while we have used a random number

generator to scramble the values of “unique]” and “unique2”. the attribute “unique2” is often used as a Sort

key. When relations are sorted. they are sorted with respect to this attribute. When we need to build a

clustered index, again it is an index on “unique2”.

A Fragment of the Thoustup Relation

(some attributes have also been omitted)

uniguel unigue2 two ten hundred thousand

378 0 1 3 13 615

816 1 0 4 4 695

673 2 0 6 26 962

910 3 0 2 52 313

180 4 0 0 20 74

879 5 I 9 29 447

557 6 1 7 47 847

916 7 0 4 54 249

73 8 0 6 26 455

101 9 0 2 62 657

Figure 1

As an example of how this database can he used. we ma~ execute the following INGRES query to

observe the effect of a primary index on a selection that retrieves 10% of the twothoustup relation:

range of i is twothoustup
retrieve (tall) where t.unique2 < 200

After the “unique]
‘ and “unique2” attributes come a set of integer-valued attributes that assume non-unique

values. -The main purpose of these attributes is to provide a systematic way of modeling a wide range of

selectivity factors. Each attribute is named after the range of values the attribute assumes. That is, the

“two”, “ten”. “twenty’, “hundred” “tenthous” attributes assume, respectively, values in the ranges

(0.1). (0.1 9). (0.1 19). (0,1 99) (0,1 9999). For instance, each relation has a “hun

dred” attribute which has a uniform distributiOn of the values 0 through 99. ~epending on the number of

tuples in a relation, the attribute can be used to control the percentage of tuples that will be duplicates in a

projection or the percentage of tuples that will be selected in a selection or join query. For example, in the

twothoustup relation, the “hundred” attribute can be used for projecting into a single attribute relation where

95% of the tuples are eliminated as duplicates (since only 100 values are distinct among the 2000 attribute

values). The INGRES statement for this query would be:

range of t is twothoustup
retrieve (t.hundred)

The same “hundred” attribute can be used for creating 100 partitions in aggregate function queries. For

—3—

example. we may query for the minimum of an attribute that assumes values randomly distributed between 0

and 4999 (“fivethous”), with the relation partitioned into 100 partitions:

range of t is twothoustup
retrieve (minvalue = min(t.fivethous by t.hundred))

2.2. Single User Methodology

Once a synthetic database has been constructed and loaded, the next step is to run a set of queries
which measure the cost of executing each of the standard relational database operations. Our set of queries
includes the following tests:

(1) Selection queries with different selectivity factors.

(2) Projection with different percentages of duplicate tuples.

(3) Queries involving single and multiple joins

(4) Simple aggregates and aggregate functions.

(5) Single tuple updates: append. delete. modif~.

Three variations of each query are generaily run: first, without any applicable index, second. with a primary

(clustered) index onthe appropriate attribute, and, finally, with a secondary (non-clustered) index.

Some partial results from the single user tests of the 1DM 500 database machine (with a database

accelerator) are shown in Table 1. It should be clear from these numbers that our set of single user bench

marks is. itself, capable of generating a wide range of loads on a database system.

We consider conducting single user benchmarks to he a crucial first step in an~’ benchmarking effort.

First. in a number of cases the single user benchmarks have uncovered various performance anomalies. If a

particular system does not provide satisfactory performance for a type of query e.g. ad-hoc joins on large
relations) which constitutes a high percentage of the queries to he executed h~ the target application, there is

no point in performing multiuser benchmarks on such a system. Second. single user benchmarks provide
information on the resources required by different queries. As will be described below, we use these results

in developing a multi-user benchmark for a particular system.

One might have noticed that. ~or the most part. our single user methodology evaluates the performance
of each operator individuall~. Only in the case of join queries do we consider more than one operator at a

time. There are a couple of good reasons for doing this. First, we can isolate the cost of each operator. If

instead we considered onh complex queries (e.g. queries with both joins and selections), it becomes difficult,
if not impossible. to understand the results. The other moti~’ation for considering each operation in isolation

is use the results to predict the performance of a system for a particular application by weighting the response

time of e~ich operator according to its frequency of use in the target application. If one just tested complex

queries, such an extrapolation would he impossible.-

This is not to say that testing complex. single user queries is not important. In conducting benchmark

tests it is quite important to insure that the query optimizer works properly. For example. specifying the join
operations before the selection operations in a query enables one to test whether the query optimizer has any

intelligence at all. We found thai several of the systems we tested were not even smart enough to reorder the

operations in a query to do selections first.

2.3. Multiuser Methodology

Three key factors affect the performance of a database system in a multiuser environment: the mul

tiprogramming level, the mix of queries running concurrently. and the degree to which these queries access

the same portion of the database. This last factor, which we term “degree of data sharing” can have two dif

ferent effects on performance. If all the concurrently executing queries are retrieval queries, then a high-
degree of data sharing should increase throughput due to buffer pool hits. On the other hand, a high degree
of data sharing will result in a reduction of throughput when updating transactions are run concurrently with

retrieval transactions (as the result of conflicts for access to shared data pages).

—4—

Table 1

Query Query Response Time CPU Usage # of Disk

(seconds) (seconds) Operations

1 Select I tuple from 10.000 0.7 0.18 2-3

using a clustered index

2 Select 100 tuples from 10.000 1.5 0.56 1]

using a clustered index

3 Select 100 tuples from 10.000 3.3 0.90 91

using a non-clustered index

.4 Select 1000 tuples from 10.000 8.7 5.90 104

using a clustered index

5 Select 1000 tuples from 10.000 23.7 8.67 696

using a non-clustered index

6 Mm Scalar aggregate operation 21 .2 9.83 1.011

on 10.000 tuple relation

7 Mm Aggregate function on 10.000 38.2 35.62 1 .008

tuple relation (100 partitions)

8 Join 10.000 tuples with 1.000 27.6 18.96 206

tuples using a clustered index

on ioin attribute of 10.000

tuple relation

9 Select 1000 tuples from 10.000 23.4 18.88 207

using a clustered index followed

b~ a join with a 10,000 tuple
relation using a clustered index

10 Select 1 .000 tuples from 10,000 34.8 107.21 306

Select 1 .000 tuples from 10,000

Join two 1 .000 tuple relations to

form a I ,000 tuple relation which

is then joined with another 1 .000

tuple relation
-

The hardest part of developing a methodology for multiuser benchmarks is devising a small set of

representative queries to test. We found by partitioning the consumption of CPU and I/O resources into

‘low” and “high” levels, that we were able to reduce the number of queries needed to test a system to four

basic query types:

—5—

Type I - low CPU utilization, low disk utilization

Type II - low CPU utilization, high disk utilization

Type III - high CPU utilization, low disk utilization

Type IV - high CPU utilization, high disk utilization

For the Briiton-Lee database machine, we selected queries 1, 3, 8. 7 from Table I as being representa

tive of Types I. II. III. and IV respectively. In BORA84], we show that ihese four query types are sufficient

to achieve a throughput difference of three orders of magnitude. Figure 2 provides an illustration of how data

sharing and multiprogramming level affect system throughput for Query type II.

Q
U

E

R

F

S

S

E

C

0

N

D

.6

1.4

12

1.0

06

0.4

02

0.0

3. Future Research Directions

12345678910111213141516

MULTIPROGRAMMING LEVEL

Figure 2

In this section we outline what we think are some important areas to explore in developing a more com

plete methodology for benchmarking database systems. We have divided this list into two categories: those

that deal with single user tests and those dealing with multiuser issues.

3.1. Single User Research issues

One pressing issue to explore is to examine under what conditions (if any) can results from single user

benchmarks be extrapolated to predict the performance of more complex queries associated with a particular
application. The first step in answering this question would be to take application specific queries and

transform them into “equivalent” queries on the synthetic database. After being run, one would look to see

whether one could have predicted the execution time by combining (in some way) the execution times of the

100% Data Shar~ntz

,

50% Data Sharint~

0% Data Sharint~

—6—

component operations. Another approach to looking at this problem would be to compare the performance of

the “real” application queries on the “real” database with the results obtained by combining numbers from

synthetic tests on the “real” database.

A second, unexplored area is the impact of non-uniform distributions of attribute values. That is, if

you are retrieving 10% of the tuples in a relation does it make any difference whether the attribute values of

those tuples are uniformly distributed or not? It seems fairly obvious that if no indices are involved then it

should not make any difference. Differences in performance may, however, occur if an index is being used.

Our gut feeling is that there would not be any difference if a self-balancing index mechanism were used1

(e.g. a B-tree) but that there might he a difference if a poorly organized ISAM structure were being used.

One would obviously want to examine the impact on the other relational operations.

A third single user project would be to examine the effect of tuple size on performance. To date, all of

our tests have used 182 byte tuples. in FBODG83]. a number of tests using varying luple sizes were con

ducted on the 1DM 500. As one might expect. these results indicate that when one keeps the number of

tuples produced by a query constant and increases the tuple width, the response time increases in pretty much

a linear fashion. The degree of the increase should depend on the extent to which the system is I/O bound.

If I/O can always he overlapped with the CPU. then the degree of the increase should be proportional to the

cost (in CPU time) of initiating an 1/0 operation relative to the cost (in CPU time) of processing the page.

While the increase in response time in a single user mode might he relativel~ small, throughput in a mul

tiuser environment would always he more directly affected. A interesting variation would he to keep the

volume of data accessed from disk fixed, while varying the selectivity factor and the tuple size.

Another single user project is to further refine the ability of the benchmark to isolate the “faulty” coni

ponents of a database system. For example. when testing SQL/DS on a 4341. we once saw a particular

query run in a couple of minutes. After we did some vendor-suggested physical database reorganization (ie.

how relations and their indices were laid Out Ofl disk). the same query took 9 hours. Had we never seen the

2 minute time. we would have tended to suspect either a hug or a poor join algorithm. As it turned out, the

database reorganization caused the query optimizer to change its mind about what join algorithm to use.

What seems to be needed is a benchmarking methodology that can check out the components of the system

independently of one another. This “isolation” strategy would make it possible to evaluate and test the com

ponents individually.

3.2. Multiuser Experiments

A number of challenging multiuser research projects are also possible. The first is to simplify the

present multiuser methodology. The results published in IBORA84I required well over 100 hours of stand

alone time on both an 1DM 500 and a host processor. While the resulis obtained are interesting, it is simply
not clear that all four query types are needed to stress a database system adequately. Since the principal goal
of the multiuser benchmarks is to explore the behavior of a system under load, it might instead be sufficient

to run a very large number of simple queries simultaneously. This is the approach suggested in ANON85].
While pushing both CPU and I/O utilization levels to 100% is the goal of the multiuser tests, there may be

cases when pushing each one as separately as possible to 100% yields more information about the behavior of

the system. One potential drawback that we see with this approach is that by using simple debit/credit queries
as the basis of such a benchmark. one may miss testing the ability of the buffer manager to properly handle

complicated access patterns.

An extension to this effort would be to develop a~~portable multiuser benchmark~ While the methodol

ogy described above can itself be applied to any relational database system or machine, the type of a particu
lar query may vary from system to system depending on the algorithms used on each system. One motivation

for using a simple/debit credit transaction as the basis for the multiuser benchmark described in IANON85]
was to insure portability across systems. While this is an appropriate benchmark for transaction processing
systems. it may not be an acceptable benchmark for more sophisticated relational database systems.

Unless one or more leaf pages had a number of overflow pages that were not physically clustered near the leaf page. In this

case, the extra seeks might result in a slight (litierence in performance.

Techniques for throughly testing the concurrency control and recovery mechanisms of a database sys

tem also need to be developed. In BORA84], one experiment was conducted in which transactions that

updated a single tuple were run concurrently with transactions that retrieved a single tuple. With a multipro

gramming level of 16 and a database consisting of 10,000 tuples, conflicts between transactions were very

infrequent even though the updating transactions modified an attribute on which a primary index existed. To

thoroughly evaluate a concurrency control mechanism two tests need to be developed. First is a method of

generating a range of conflicts between concurrently executing transactions. One possibility would be to run

a single bulk-update transaction concurrently with a number of read-only transactions. By varying the per

centage of the database updated. one should be able to vary the number of conflicts generated. An alterna

tive approach would be to reduce the size of the relation to just a few tuples and continue to use transactions

that do single tuple updates.

For database systems that use locking for concurrency control. a way of testing the deadlock resolution

mechanism is also needed. The following approach looks promising. Consider two types of transactions:

one which uses a clustered index to access tuples which are then updated by modifying a non-indexed attri

bute. The second type uses a non-clustered index to access the tuples to be modified. When transactions of

the first type are run concurrently. no-deadlocks should occur as data pages will be accessed once and in

“ke~” order. The conflict rate between transactions will depend on the multiprogramming level, the size of

the relation, and the number of data pages accessed by each of the queries. When transactions of the second

type are run concurrently, deadlocks will occur as datà~ pages will accessed in random order and, possibly.

multiple times. By varying the number of data pages accessed. one will be able to control both the conflict

rate and the deadlock rate. By comparing the thro~ighput of the first case with that of the second, one should

be able to access how well a system handles deadlocks.

With regard to recovery, measuring two aspects looks appealing. The first project would be to meas

ure the cost of gathering recovery information. One should be able to do this by simply turning the recovery

manager off. Determining this cost as a function of the percentage and size of the updating transactions

would be interesting. A second project would he to determine the cost of transac~ion aborts on system

throughput by varying the rate at which updating transactions simply exit instead of committing.

3.3. Other Projects

Given the results (ie. response time. Cpu utilization, and disk utilization figures) of a set of single user

benchmarks. it would he nice to be able to dispense with most of the multiuser benchmarks and instead use

an analytical model to predict the multiuser behavior of a database system. Recently we have been examining
internal measurements from our multiuser benchmarks on the 1DM 500 in an attempt to determine exactly
what details need to be captured by such a model. Preliminary results indicate that building such a model

may be complicated as the multiuser characteristics of the buffer ~manager seems to have a significant effect

on the throughput of the system. Life becomes even more complicated if one wants to predict multiuser

behavior with updating transactions. It may be that models of concurrency control and recovery mechanisms

could be adapted to help in this case.

So far we have only addressed single site database systems. Mechanisms for testing distributed database

systems will obviously be needed in the future. While some of the single site techniques should be applicable
to distributed systems, it seems apparent that a new set of techniques will needed for these systems.

4. Conclusions

In this paper we have surveyed our earlier work on database system performance evaluation. While

our single user and multiuser techniques have become widely used, these tools are just the first of a number

of tools that are needed. While the present tools help determine overall system performance, they are not

adequate for isolating exactly which components are “faulty”. In addition, they do not do an adequate job of

stressing the concurrency control and recovery components of a system.

—8—

5. Acknowledgments

A number of the ideas in this paper have been stolen from others. Unfortunately. I cannot remember

who made exactly what suggestions as some number came during presentations of the various benchmarking

papers. Mike Carey and Mike Ubell are certainly two of the contributors. Dma Bitton, Haran Boral. and

Carolyn Turbyfihl deserve recognition for the key roles they played in developing the current benchmarking
tools.

6. References

ANON85] Anon Et. Al, “A Measure of Transaction Processing Power.” to appear. Datamation. Feb 15.

1985.

BOGD83] Bogdanowicz, R., Crocker. M.. Hsiao. D.. Ryder, C.. Stone. V.. and P. Strawser. “Experi
ments in Benchmarking Relational Database Machines,” Database Machines. Springer-Verlag,
1983.

FBITT83] Bition. D.. DeWitt. D. J.. and C. Turbvfill. “Benchmarking Database Systems: A Systematic

Approach.” Computer Sciences Department Technièal Report #526. Computer Sciences Depart
ment. University of Wisconsin. December 1983. This is a revised and expanded version of the

paper that appeared under the same title in the Proceedings of the 1983 Very Large Database

Conference. October. 1983.

BORA84} Boral H. and D. J. DeWitt. “A Methodology for Database System Performance Evaluation.”

Proceedings of the 1984 SIGMOD Conference. Boston. MA.. June 1984.

IDM500} 1DM 500 Reference Manual. Britton-Lee Inc.. Los Gatos. California.

(STRA83] Strawser. Paula. “A Methodology for Benchmarking Relational Database Machines.” Ph.D.

Dissertation. Ohio State University, December 1983.

—9—

TIPS Ct~ BE~CHW~RKING D~A BASE SYSTEMS

by

Michael Stonebraker

Relational Technology, Inc.

2855 Telegraph Ave.

Berkeley, CA

ABSfl~ACT

This paper contains a cxllection of suggestions to persons considering
benchmark evaluation of data base systems (DBMS) and surtinarizes my

experience with benchmarking studies over the past several years. These

suggestions include coinnents on published benchmark scripts, issues to

consider, and pitfalls to avoid.

L.. INT1~)DUC~I~~

Many potential DBMS users benchmark the coiwnercial offerings of vendors of

data base systems, and base their purchasing decision in part on the

results of such benchmarks. Since the available products differ widely in

performance and ease of use, this tactic is often a useful one. Benchmarks

should measure query/update performance, as well as ease of application
develcçment. When planning and conducting a benchmark, one must make

decisions regarding the choice of what to benchmark (the benchmark

script), the person who does the benchmark, the person who tunes the

benchmark for performance, and how to evaluate the result. This paper
sumarizes my thoughts on these questions.

2. TYPE C~’ BENCHMARK

The first issue is whether to do a single—user benchmark (in which a

collection of conunands are timed as if they were submitted sequentially by
a single user) or to perform a multi—user benchmark. Of course, a

multi—user benchmark is much harder to construct and often much harder to

evaluate than a single—user one.

SUGGF.STION 1: Perform a multi—user benchmark unless you truly have a

single—user environment.

A multi—user benchmark tests two features of data base systems which are

not evaluated by a single user benchmark. First, the concurrency control

facilities of the various vendors differ widely in function and

performance. Locking is the concurrency control mechani~n used to guarantee
data consistency during reads and updates by multiple users simultaneously.
Differences include the locking granularity used by the vendor for read

c~erations (e.g. records, pages, relations, whole data base), the locking
granularity for updates, the locking granularity for schema modifications

(e.g. adding or dropping an index), how deadlock detection and resolution
is accomplished, and whether there is support for multiple lock

granular ities and lock escalation. (On amnands which touch many records,
it is more efficient to lock larger objects. Hence when the discovery is

made that a data—intensive catinand is being processed, it is beneficial to

—10—

exchange any ~naller locks that have already been set for a single larger
enclosing lock.)

For example, if a vendor chooses to lock a whole relation when tuples in

that relation are modified, then updates are effectively single—threaded
because locks must be held to the end of a transaction. As a result of a

single-user benchmark, a potential user will not be made aware of iiiportant
shortcomings such as this one.

Another problem with single-user benchmarks concerns system performance. In

many data base systems, there is a considerable difference between

performance in single-user and multi—user environments. This results from

buffer management issues (such as read—ahead and write—behind tactics) and

consumption of system resources.

A data base system which expects to be used in a multi—user environment

will often not be concerned with optimizing read-ahead and write—behind for

a single user. Such a system would not attempt to read pages from the disk

in advance of their being requested by a user (read—ahead), nor would it

attempt to queue write requests for a user (write—behind). Rather, it would

be more concerned with optimization of concurrency control, crash recovery,
and increasing the average number of transactions per second that can be

run in a multi—user environment. Such a system, when run in a single-user
environment, will either be in page—wait status (waiting for an I/O
operation to complete) or it will be executing code on behalf of that user.

No CPU activity will be overlapped with I/O activity in a single-user
environment. Moreover, it can excute the concurrent coninarx5s of two users

in about the same amount of time as the conuiand of a single user. This

results from overlapping the CPU activity of one user with the I/O activity
of the second. Hence, a single user benchmark will often understate the

amount of work that can be accomplished in a multi—user environment, and a

user will not get an accurate picture of resource consumption.

3. THE BENCHM~PK SCPIPr

One next has to face the issue of what cxxrinands to put in the benchmark.

There are four choices:

1) use a canned benchmark such as the one in BOR~L84]
2) have a vendor choose the benchmark

3) create an artificial benchmark

4) use a real application

SU(~ESTIC*~ 2: Use a real application if possible.

The best choice for a benchmark script, is a real application from your
environment. We discuss the drawbacks of the other options first, and then

cc~iinent on the benefits of a real application.

The first option is to use a canned benchmark. The one in BORAL84J (the
Wisconsin benchmark) is widely suggested as a reasonable candidate;
however, it suffers from two flaws:

1) It has no floating point operations.

Data base systems differ widely in their support for floating point

—11-.-

operations. Sane systems simulate floating point operations in software

using decimal numbers as a storage mechanism. Others use the available

floating—point hardware to support a built—in floating point data type. The

latter option is dramatically faster than the former, and one will not be

made aware of this difference fran the Wisconsin benchmark.

2) It has no copy operations or schema ncdifications.

Many installations spend a considerable alTount of time loading and

unloading data sets and building arid changing schexnas. One will get no

information on the performance of such functions fran the Wisconsin script.
Moreover, one will not be made aware of any concurrency control

deficiencies in schema nodifications (such as the choice by some vendors to

lock the whole data base on schema changes) fran the Wisconsin test suite.

A second general benchmark has been suggested by Jim Gray and is in draft

state GRAY84]. This script is appropriate only for production transaction

processing systems and includes the well known TP1 banking transaction. TP1

contains three update coninands and one append corrrnarid each affecting a

single record. These coninands simulate the action of a bank teller cashing
a check for a custaner. TP1 is largely a test of the concurrency control

and crash recovery facilities of a data base system and its overhead on

single record interactions. This script is reasonable for sane production
transaction processing applications, but will rot be helpful in any
environment which contains decision support functions.

It ~xuld be great to have a single (or even a small number) of general

purpose scripts (the whetstones of data base management), arid I applaud the

initial efforts in this direction by the above authors. However, the above

carrnents point out the difficulty of creating a general purpose benchmark

that will test all of the aspects of a data base system that many potential
clients ~uld want to test. Hence choosing a canned script may not be a

suitable option at the current time.

The problem with allowing the vendor to choose the benchmark (option 2) is

that almost all data base systems excel at sane collection of corrmands.

Most vendors have had enough benchmarking experience to recognize this set

of interactions and can easily choose a winning benchmark. Therefore, this

option is only desirable if you have already selected a vendor’ s data base

system.

The third way to construct a benchmark script is to choose an artificial

benchmark. Unfortunately, this benchmark is arbitrary, arid a losing vendor

will con~lain that it is biased and suggest changes. In all probability,
the vendor will complain to you, to your boss, arid to your boss’ boss.

Hence, you will have to mediate cDmplaints of unfairness and perhaps
dynamically adjust the composition of the script.

A script fran a real application is free fran any possible criticism

concerning arbitrariness; noreover, it will provide a good indication of

how one’ s problems will run on a particular vendor’ s system. The only
consideration is that the benchmark nuist be relatively simple if the

vendors will be required to program it. If the benchmark requires several

person—weeks to code, one will guarantee that only the very large vendors

can afford to execute the test. But why rot do it yourself to test the

product’s ease of use, documentation ocmpleteness, arid vendor technical

—12—

support?

zL RI~ING THE BE~CH~RK

The next issue concerns who will run the benchmark. There are three

choices:

1) the vendor can run the benchmark on his machine

2) the vendor can run the benchmark on your machine

3) one can run his own benchmark

SUGFSSTION 3: If at all possible, run the benchmark yourself.

There are a multitude of reasons for choosing this option. First, if the

benchmark is run on the ‘s machine, the results may rot be

reproducible in your environment. There are many innocuous reasons for this

behavior; disk drives differ in speed, configurations are different, etc.

Moreover, a vendor may be teiipted to use his latest “about to be

Beta—tested” version of his system. This system may not be available to you

for several months.

Another disadvantage of this approach is that a vendor can subtly change
the benchmark to improve its performance. For example, most systems will

execute retrieval operations faster if the output is rot sorted and

duplicate records are not removed. In addition, all systems go faster if

the output is thrown away rather than printed or delivered to an

a~1ication program. If one’ s benchmark is not precise on all these points,
a vendor is free to choose the option which executes fastest in his

environment.

In addition, some vendors have systems which generate a query processing
plan for complex queries by examining the clauses in the query

qualification from left to right. Hence, performance will differ

dramatically depending on the order of the clauses in a cxuplex

qualification and query performance will be data dependent. If the vendor

runs the benchmark, he is at liberty to rearrange the qualifications to

improve performance. A client does not find out about such shortcx~mLngs
with vendor run benchmarks. Ideally, you want to select a system in which

the performance does not depend on the expertise of the person writing the

queries.

The second option is to ask each vendor to run the benchmark at your site.

Most vendors will respond by having their local technical sales support
person do the benchmark, or by sending in a special “swat team”.

The problem with a swat team is that such specialists disa~ear when the

benchmark is over, and their tactics are rot necessarily ones that you will

have the expertise (or desire) to use. The following are tactics which I

have seen swat teams use:

1) divide a relation into 26 physical data sets, one for each letter of the

alphabet. This vendor had a concurrency control scheme which locked whole

relations on update. With this scheme multiple concurrent updates could be

processed as long as they specified different first letters for an

indicated key. Of course, this precludes the possibility of performing

aggregates on this relation; unfortunately there were none in the benchmark

—13--

to preclude the use of this tactic.

2) rewrite queries to take advantage of formats the optimizer can use. For

example, the query language SQL has two ways of expressing joins, as nested

queries

select sname

fran supplier
where s41 in

(select s#
from supplier_parts
where p# = 2)

and as flat queries

select supplier . snanie

where supplier.s# = supplier_parts.s# and

supplier_parts.piI = 2

In some vendor products, the query optimizer can not optimize the nested

query format, so vendors will rewrite those queries as flat queries when

measuring performance - even though these same vendors ~nphasize their

nested query feature.

Of course, if a vendor chooses to have his local sales support people
perform the benchmark, they may well use similar tactics. Hence, a user

should always be on the lookout for the use of such programming stunts and

disallcM them. The one advantage to using local support people rather than

a swat team is that a user can evaluate the competency of the people who

will assist him after the sale.

The best option is to run one’s c~n benchmark. In follc~.iing this course of

action, the user obtains a great deal more information on a vendor’ s

product than with either of the previous options. In particular, one can

test the ease of installation of the system, test the reliability of the

software, and discover the quality of the system &cumentation. Moreover,
one discovers ha~i easy it is to write applications on the system. For

exanple, one client elected to test two systems by having two different

employees program arid run the benchmark on the two data base packages being
compared. One product required one-third of the programming time of the

second because of subtle restrictions in one programming language
interface. Such valuable information results only from internally run

benchmarks. Lastly, one can ascertain the responsiveness of the technical

support fran each organization involved in the benchmark. It appears that

various vendors differ widely in ha~i much energy they invest in ensuring
that users get helpful, accurate, and prompt answers to their problems.

5. WHO TUNES THE BE~~CHMARK

Among the tuning options:

1) no tuning
2) user tunes the benchmark with no assistance

3) user tunes the benchmark with vendor assistance

4) vendor tunes the benchmark

—14—

SUGGESTI(1’I 4: choose option 3 if possible.

One client executed a benchmark between two systems with no tuning of

storage structures whatsoever. The reasoning was to simulate the behavior

of a naive user who might not consider performance tradeoffs. The problem
with this approach is that several orders of magnitude in performance
differentiate optimized and uroptiniized storage structures. The default

storage structures of any particular system (e.g. heap, keyed on the first

field, etc.) may or may not work well for any particular script. Hence,

performance of any particular system is effectively a random variable. This

is no way to evaluate DBMS performancet

The second option is for the user to tune his own benchmark, and this is

certainly preferable to no tuning at all. In sophisticated environments

where query processing tactics are well understood, this approach will

probably lead to an optimized benchmark. Moreover, it will give the user a

feel for the optimization parameters of any particular system. However, in

shops that are new to relational data base technology, the algorithms used

by a query optimizer may not be well understood. In this case, advice from

the vendor will help in choosing good storage structures. Even in

sophisticated shops, it is probably wise to have the vendor check a schema

for performance oversights. A useful way to accomplish this function is to

give the vendor a copy of your script and test data. After he has

implemented the benchmark on his system, you can ask him for performance
suggestions. This option also provides a way of evaluating the quality of

training guides, classes, and technical support.

The final option is to have the vendor tune the benchmark for you. This

approach is an invitation to the swat team tactics dicussed above. Avoid

this approach if possible.

6. ES1ALUATIC~ OF THE RESULTS

There are three considerations to think through when evaluating the results

of any benchmark studies.

6.1 Future Versus Present Performance

Every vendor is “about to come out with” his next system which is “2—10

times faster” than his current system. It “fixes all known performance
problems” and can be benchmarked “in a little while”. In general, one has

to decide whether to run a benchmark on:

1) a production system
2) a Beta—test system
3) a system still in developnent

Moreover, one has to decide whether to delay the benchmark under pressure
fran a vendor who has a next system “almost ready”

My advise is to simply realize that this issue is bound to arise and to

think through in advance how to deal with it. Also, one should realize that

all relational systems are becoming progressively faster. A purchase
decision will usually result in a coim~itment to a particular vendor for at

least a couple of years. During this time, any system under consideration

will get faster. Hence, one should consider both:

—15—

1) how fast the system is today
2) how fast it is likely to be in a year

Of course the future is difficult to predict, and data base salesmen are

notorious for optimistic predictions. T~ possible tactics to use in

addition to asking the vendor for his prediction are:

1) Ask the vendor for a benchmark that has been run on his last several

releases. One can probably expect approximately the same relative

performance inprovement in future releases.

2) Ask the vendor how many deve1o~nent engineers he has dedicated to

performance inprovement. Do not expect much inprovement if this number is

small.

6.2 Future Functionality

All vendors are making their systems nore functional in areas such as:

number of data types
number of operators

support for business graphics
support for business forms

application generators

report writers

support for spread sheets

Moreover, many vendors have plans to release their system on new computers.
Ask each vendor about his future plans in areas of concern to you. Remember

that one will, in all probability, be using several releases of the

vendor’s software. Again, one must assess the credibility of vendors who

say that everything one could conceivably want will be available “in the

very near future”. Ask each vendor for the dates and functional

enhancements in his last few systems. One can probably assume that he will

make about the same rate of progress in the future as he has made in the

past. Another good reality check is to ask the vendor for the size of his

developnent staff and hcM they are allocated (e.g. how many are working on

conversions, how many on new functionality, and how many on performance).
While you are asking such questions, also inquire how many clients per

technical support engineer the vendor has and how many quality assurance

engineers. These will be good indicators of the level of technical support
and the reliability of the software.

6.3 Performance Versus Coding Difficulty

Many users evaluate a DBMS only on the expected level of performance and do

not consider the suitability of vendor provided application developuent
tools for end users and application developers. I feel that nost users are

very shortsighted and should consider the cost of writing an application in

addition to the cost of executing it. During the remainder of this century,
software costs will play an increasingly important role in overall

application cost. This section gives a hypothetical example to illustrate

this point.

Suppose a client is purchasing a DBMS to run a single application and has

performed enough benchmarking to obtain the following table for three

—16—

hypothectical systems.

Lines of code Running time of

the benchmark

System A 20,000 6 minutes

System B 12,000 8 minutes

System C 6,000 10 minutes

For example, System C might have a sophisticated application generator
which dramatically cuts the effort involved in coding an application while

System A might have only a subroutine call interface from a general purpose

programming language. A user would have to write a lot more code to get his

application to run in such an environment. Presumably (but rot necessarily)
the added function which allows a user to bring up his application with

less code in System C will result in slower performance. The above table

suggests three systems with increasing performance and difficulty of use.

Suppose all three systems are
“ enough” to meet whatever response time

requirements exist. Hence, one should choose between the systems based on

hcM cost effective each is at coding and executing your application for its

lifetime. Assume that your application will be run for 5 years and then

discarded or rewritten. During that time it will be used 8 hours per day,
250 days per year, and must support an average of 5 interactions per

minute. Suppose the benchmark noted above is constructed of 100 such

interactions. Lastly, suppose that computer time on your system costs $3.00

per minute and that your shop can write a line of code and maintain it for

its 5 year lifetime for $25.00 per line.

With these numbers one can cczipute the following table for the 2,400,000
interactions which will be run during the lifetime of this application:

cost to write running cost hardware cost total cost

and maintain per interaction during the of the

the application lifetime of the application
application

A $500,000 $0.18 $432,000 $932,000

B $300,000 $0.24 $576,000 $876,000
C $150,000 $0.30 $720,000 $870,000

Notice that the fastest system (A) is the least cost effective solution.

Moreover, Systems B and C are about equally cost effective, even though
System C is 20% slower. In fact the following is the general strategy for

this application:

If your lifetime number of interactions is:

less than 2,500,000 then choose System C

more than 3,333,333 then choose System A

else choose System B

Hence, our hypothetical lifetime number of transactions is in the range

where System C is the winner for the assumed parameters. Of course, any
real shop should perform the above calculation using actual numbers for

their application. However, one should carefully note that for any

—17—

technology parameters (e.g. $25.00 per line, $3.00 per minute) there will

be an interaction volume below which C is the correct choice and another

volume above which A is the best choice.

Over the remainder of this century the cost to write and maintain a line of

code will probably remain constant or increase while the cost of computer
time should decrease rapidly. These technology trends will increase the

lifetime number of transactions for which System C is the best choice.

Hence one can say in general:

For any application with any given lifetime number of interactions, sooner

or later the easier to use a system with slower performance will be the

nost cost effective solution.

One should simply keep these technological trends in mind when conducting a

benchmark, and include application generation and maintenance costs in

one’s overall benchmark evaluation, whenever possible.

L SU~RY

The conclusions to be drawn from this paper are that one should use a

simple multi-user application frau one’s own environment for a benchmark.

One should control the running and tuning of the benchmark and should

carefully avoid swat team tactics. Set a firm date for the conclusion of

the study to avoid procrastination by a vendor with a next system “almost

ready”. Set clear criteria for determining the winner. Lastly, include

application deve1o~.ment costs, predicted future performance, and future

functionality, as well as current performance in your evaluation.

R~~ES

tBORAL84I Boral,H., DeWitt, D.J., “A Methodology for Data Base Systems Perfor

mance Evaluation”, Proc. 1984 SI(}IOD, Boston, Massachusetts, June 1984.

GRAY84J Gray, J., “A Transaction Processing Benchmark” unpublished working

paper.

—18—

Variations on a Benchmark

Paula Hawthorn

Britton Lee Inc.

ABSTRACT

The Wisconsin benchmark is a general program that has been used to benchmark the Britton Lee

Intelligent Database Machine (1DM). This paper presents an augmentation to the benchmark that

more correctly represents the performance effect of Britton Lee’s use of special-purpose hardware.

This augmentation is necessary because the Wisconsin Benchmark does not include “amount of

data returned” as a factor in the performance of a DBMS.

1. Introduction

The Wisconsin benchmark was developed by Bitton, Boral, DeWitt and Turbyfill at the Univer

sity of Wisconsin. The benchmark is readily available, uses standard relational queries, and is

well documented. In a previous paper, BORA84}, DeWitt and Boral use the Wisconsin bench

mark to show the effect of the Britten Lee special-purpose processor, the Database Accelerator, on

the throughput of the system. In this paper we show that the result in BORA84I is lower than

can be expected in many applications. We then show why the Wisconsin benchmark failed to

fully expose the capabilities of the DAC, and finally offer suggestions for the augmentation of the

benchmark based on a more general model of DBMS processing.

Section 2 is a discussion of the Wisconsin benchmark, and of the queries we added. Section 3 is

the conclusion.

2. Benchmark

The Wisconsin Benchmark is discussed in BITT83] and BORA84]. One of several experiments
described in BORA84] was to determine the effect of Britton Lee’s custom designed 10 MIPS pro

cessor, the Database Accelerator (DAC) on the performance of the system. The Britten Lee Intel

ligent Database Machine uses a DAC as a callable co-processor, called by code executing on a

general-purpose Z8000. If the DAC is not present, or is turned off, the Z8000 executes the code

itself.

in BORA84] an experiment was described where several queries were run with the DAC alter

nately on, then off. The result, that the DAC increased performance by, at most, a factor of 1.71,
was counter to what we at Britten Lee typically see in user applications, where a factor of 2 - 7 is

more usual. Therefore, we reran the benchmark, analyzed the results, and added a class of

queries to the benchmark that show where the DAC more significantly increases performance.
The following is a brief description of the Wisconsin Benchmark, and of the benchmark runs that

we performed.

2.1. Description of Wisconsin Benchmark

The following section briefly summarizes the description of the Wisconsin benchmark found in

BORA84I.

The Wisconsin Benchmark consists of:

Benchmark Variations

—19—

1) database creation scripts that create thirty-two relations: 16 of type tenKtup and 16 of type

oneKtup. These relations contain, respectively, 10,000 tuples and 1000 tuples. The tuples in

both relations consist of 13 2-byte integer attributes and 3 52-byte compressed character fields.

16 of each type are created so that in the multi-user benchmarks a multiprogramming level of 16

with no data sharing can be assured.

2) database loading scripts that load the relations with synthetically generated data. The result..

ing relations then have precisely known characteristics: the first two attributes (“unique!” and

“unique2”) are unique and random; the next 11 integer values are generated according to precise
selectivity factors, so that, for instance, attribute “two” has two distinct values, attribute “hun

dred” has one hundred distinct values, etc.

3) index creation scripts that create clustered indices on “unique2” in all relations, and non-

clustered indices on “unique!” in all relations.

4) a UNIX script to call the “multibench” program, control the level of multiprogramming, and

direct timing results to the proper files.

5) The “multibench” program itself, which contains four queries (described below) and executes

the queries on the database according to parameters furnished it: the parameters specify the per

centage of datasharing, and based on that percentage a random number is generated to randomly
select which relations shall be accessed; parameters also specify the number of queries to be run,

and the percent of that total that should be Query 1, Query 2, Query 3 or Query 4. During exe

cution, a random number is drawn to determine which of the queries should be executed next,

according to the percentage specified. Multibench calls the Unix 1-second granularity clock before

and after each query is executed, and writes the time to a file.

6) The “stats” program that analyzes the output files to determine the total throughput of the

benchmark run.

The queries are:1

Query 1: /* select one tuple using clustered index */
mt a, b, value; long randomnumber;

/* select a random key value between 0 and 9999 s/
randomnumner = rOrandom(&seed);
value = randomnumber % 10000);

range of x is tenKtup
retrieve (a = uniquelD, b = unique2D)

where x.unique2D = value

Query 2: /* select 100 tuples out of 10000 */
/* using a non-clustered index */

mt lowervalue, uppervalue, a, b;

/ * select a lower range value between 0 and 9900 */
randomnumber = rorandom(&seed);
lowervalue = (randomnumber % 990!);

1 IBORA84I

Benchmark Variations

—20—

uppervalue = lowervalue + 100;

range of x is tenKtup
retrieve (a = x.uniquelD, b = x.unique2D) where

(x.uniquelD >= lowervalue) and x.uniquelD < uppervalue)

Query 3: /* Join using clustered index on unique2D */
/* Query produces 1000 tuples */

mt a, b, c, d;

range of t is tenKtup
range of w is oneKtup

retrieve (a = t.uniquelD, b = t.unique2D, c = w.uniquelA
d = w.unique2A) where t.unique2D = w.uniquelA

Query 4: /4~ Aggregate function mm with 100 partitions */

mt xmin;

range of x is tenKtup
retrieve (mm = min(x.twothousD by x.hundredD))

The selection process that led the Wisconsin researchers to use the above four queries as the com

plete multiuser benchmark set was that they determined that there are basically four types of

queries, and chose the above queries as representative of the types. The types are: low CPU utili

zation, low disk utilization (Query 1); low CPU, high disk (Query 2); high CPU, low disk (Query
3, with adequate buffering); and high CPU, high disk (Query 4).

2.2. Benchmark Result.

We reran the Wisconsin Benchmark on a Britton Lee Intelligent Database Machine (1DM) exactly
as the benchmark came from Wisconsin. In Figure 1, the bars Query 1, Query 2, Query 3 and

Query 4 represent the 1DM performance as reported by the “stats” program for queries 1-4 of the

Wisconsin benchmark.

The benchmark was run on a 3-Mbyte, 4 disk 1DM, front-ended by an 11/70 and connected via a

(IEEE 488) parallel channel. The benchmarks were run with levels of multiprogramming varied

from 1-10, and with 100% data sharing.

Benchmark Variations -21-

maximum t.hroughput
(queries/sec)

DAC no DAC DAC no DAC DAC no DAC DAC no DAC

(26)
261 xx

I xx

241 xx

I xx

221 xx

xx (20)
201 xx xx

xx xx

61 xx xx

xxxx

4~ xx xx (2.45) (2.45)
I xx xx xx xx (.13) (.07) (.03) (.02)

2j xx xx xx xx xx

xx xx xx xx xx xx xx xx

I Query 1 Query 2 Query 3 Query4

100% data sharing

FIGURE 1.Wlscorison Benchmark Queries

Benchmark Variations
22

We express the results in “queries/sec”, as is done in BORA84J, for comparison purposes. The

above results agree with the results reported in rBORAS4): that the maximum percentage

improvement provided by the DAC for these queries was in Query 3, the clustered index join. To

keep the experiments the same as in BORA84J, we used 100% datasharing (that is, all queries go

to the same two relations) for the DAC tests.

For this particular data set, we would not expect that the DAC would improve the performance
greatly. That is because the DAC is designed primarily for fast string comparisons, and none of

the above queries perform such comparisons. Since we were trying to understand why the

Wisconsin benchmark did not represent our actual user experience with the 1DM, we reviewed the

customer benchmarks that have been previously run on the 1DM, and noted that there are two

striking dissimilarities between those benchmarks and the Wisconsin benchmark: first, the data in

the user benchmarks is nearly all character data, and the key attributes almost always
uncompressed character data. Second, the queries tend to return little data.

It turns out that both of these differences are the cause of the failure of the Wisconsin benchmark

to reflect our experience with the DAC. To show this, we changed one factor at a time. First, we

created new relations (see Appendix A for the scripts to create the new relations) substituting
character strings for each of the integer strings, and ran the benchmark set again. The result was

that the extra length of the fields returned caused more character handling by the 1DM channels

and the 11/70, which caused this particular query set to still show results similar to the first set:

no more than double improvement between the non-DAC and DAC systems. This is shown in

Figure 2, below, in the case of Query 3C: this is query 3, with character attributes in the place of

numeric attributes.

Query 3 returns 1000 tuples to the user process. To change the second factor - that is, to return

less data, we ran Query 3 with a qualification; the query then became Query 3Cq:

Query 3Cq: /* Join using clustered index on unique2D */
/* Query produces 1000 tuples */
/* further qualified to produce one tuple */

char 20];

range of t is tenKtup
range of w is oneKtup

retrieve (a = w.uniquelA) where

t.unique2D = w.uniquelA and w.thousandD = “10000”

The qualification results in one tuple returned. Figure 2 shows that use of the DAC improves
Query 3Cq performance by a factor of 3.2.

As a final test, we changed the database itself. The DAC requires a set-up time per page, and per

compressed attribute involved in the query. Therefore, maximal DAC improvement will result

when there are many uncompressed attributes per page included in the qualificaton clause. So we

created a relation made up of 10,000 tuples, each having 2 uncompressed 20-character attributes,
and ran the following query:

Query 5:

range of p is packed
retrieve (cnt = count(p.thousandD where p.thousandD = “10000”)

This resulted in the largest DAC speedup in this benchmark - a factor of 8.

Benchmark Variations -23-

maximwn througbput
(queries/sec)

DAC no DAC DAC no DAC DAC no DAC

71 (7.6)
I xx

I ‘cc

6! xx

I xx

I xx

5(xx

I xx

I xx

xx

I xx

I xx

(2.8) xx

I xx xx

xx xx (2.33)
21 xx xx xx

xx xx xx.

xx xx xx

xx xx xx

I xx (.35) xx xx (.08) (.07)
xx xx xx xx xx xx

Query 5 Query 3Cq Query 3C

100% data sharing

FIGURE 2. Augmented Queries

Benchmark Variationa -24-

2.3. Analysis

All of the above queries are artificial in the sense that they re-reference the same data. That is,
the experiment is to, for instance, run Query 3 fifteen times - since “100% data sharing” is

specified, that means that, with adequate buffering (and there was adequate buffering) all the data

referenced the second time will be in memory. This was done purposefully in BORA84] in order

to make the queries as CPU bound as possible, and thus show the maximum effect of the DAC.

The augmented queries above show that the results of BORA84I do not actually represent the

effect of the DAC because there are more than two factors that effect the per-process response

time of any DBMS. Other factors are:

1) Input/Output processing speed: for the 1DM, this is a function of the number of bytes
transferred to the host, of the speed of the channel, and the speed of the host. For single-machine
DBMS, this is the time to move data from the user application to the DBMS and back again.

2) Disk utilization: this is a function of the number of disks, the spread of accessed data across

the disks, the use of algorithms that minimize disk accesses, and the amount of memory available.

3) General purpose CPU utilization: this is a function of the algorithm used in the query, the

amount of output processing that must be done (formatting the data for display), the amount of

memory (less memory means more CPU time spent managing memory).

4) Special-purpose hardware utilization: this depends on the set-up time to use the special-purpose
hardware, and its functionality. For the DAC, Where the set-up time is large, and the time spent
in the DAC small (e’.g., whole-page tuples with only a single small attribute that requires charac

ter comparisons) the DAC will not be heavily utilized; where the set-up time is low (e.g., creating
indices on character attributes), the DAC utilization will be high.

5) Memory utilization: This is a function of the size of memory, the buffer management scheme

used, and the query mix.

6) Locking strategy

A benchmark that attempts to represent DBMS performance inherently is affected by all the

above factors, whether or not the user is aware of the factors.

2.4. The Real World

Since the above queries are clearly artificial, what is the real world 1ike~ In our experience, most

people are using mainly character data for their “business” databases; most buy large-memory
systems, so there is adequate buffering, and the DAC is used effectively; many connect a single
1DM via RS232 serial lines to several hosts, and are more concerned about total 1DM throughput
than per-process response time. However, the most important thing we have found is what we

have all known to be true: the overall performance of the 1DM is very application-dependent.

3. Conclusion
-

There are two general methods of benchmarking data management systems: application bench

marks and system benchmarks. An application benchmark is an attempt to capture the essence

of an application by modelling the application queries and data, then running the benchmark on

the data management system using this model. The purpose of the system benchmark is to

characterize the performance of the data management system in an application-independent
environment. The challenge in benchmark development is to partition the

Benchmark Varlationa -25-

query/data/algorithm/hardware space into a finite set of queries which reflect fully the factors of

performance of the system.

Application benchmarks are commonly developed as part of a potential customer’s evaluation of

competitive systems. They represent a great cost to both the customer, who must spend time and

effort characterizing the application, and the vendor, who must help the customer develop and

run the benchmark. It would be wonderful if a single, believable system benchmark could be

developed and used which would characterize the performance of the DBMS for all applications,
so that customized application benchmarks would no longer be necessary.

The Wisconsin benchmark was developed as an application-independent systematic benchmark of

relational data management systems. The relations contain precisely quantified attributes so that

the selectivity and randomness of the queries is known. In BORAS4J it is proposed that there are

4 query types, representing two factors of DBMS performance: CPU utilization and disk utiliza

tion. We have shown that there is at least a third factor: amount of data returned to user; and

that without consideration of this third factor the benchmark cannot expose the performance
enhancement furnished by the DAC. The new queries that we propose adding to the Wisconsin

benchmark are queries that include this factor.

The Wisconsin benchmark is an important contibution to the development of the architecture of

data management systems - both software and hardware. As new systems are developed, the

Wisconsin benchmark can be run on them to determine whether the new systems are improve
ments over other, existing systems.However, as we have shown, this benchmark (or any general
benchmark) must be used with care. in analyzing the results of the benchmark, the analyst
should be sure that the benchmark is acually measuring what the analyst is looking for - that is,
in measuring one of the six factors in section 2.3, to be sure the benchmark is not hung up on one

of the other six factors. For instance, BORAS4] was specifically attempting to define what the

increase in performance due to the DAC was (factor 4), but in fact was measuring input/output
processing speed (factor 1). It is especially important that developers of new systems, who don’t

have the advantage of user experience that Britton Lee has and who therefore would tend to place
more emphasis on one particular benchmark, understand clearly the system performance factors

and assure themselves that the benchmark measures the factors they are interested in.

In general it appears that developing an application-independent benchmark is very hard, because

such a benchmark would need to be representative of all the query/data/algorithm/hardware
dependent performance factors of a DBMS, and that is difficult. Application-independent bench

marks, when carefully used, are useful for obtaining a relative comparison of certain system pro

perties, but, because they are necessarily limited, give little information about throughput for

specific applications.

Bibliography

BITT83] Bitton, D., DeWitt, D.J., and C. Turbyfil, “Benchmarking Database Systems: A Sys
tematic Approach,” Computer Sciences Department Technical Report #526, Computer Sciences

Department, University of Wisconsin, December 1983.

BORA84) Boral, H., DeWitt, D., “A Methodology for Database System Performance Evalua

tion,” Proceedings, SIGMOD, Boston, 1984.

Benchmark Variationa -26-

Appendix A.

Query streams to create character databases:

open wiscbench

range of at is AtenKtup

range of ab is AEprime
create ABstring(
uniquelA =uc2O,

unique2A =uc2O,
twoA =uc2O,
fourA =uc2O,
tenA =uc2O,

twentyA =uc2O,
hundredA =uc2O,
thousandA =uc2O,
twothousA =uc2O)
go

append to ABstring(
uniquelA =string(20,ab.uniquelA + 10000),
unique2A =string(20,ab.unique2A + 10000),
twoA =string(20,ab.twoA + 10000),
fourA ==string(20,ab.fourA + 10000),
tenA =string(20,ab.tenA + 10000),
twentyA =string(20,ab.twentyA + 10000),
hundredA =string(20,ab.hundredA + 10000),
thousandA =string(20,ab.thousandA + 10000),
twothousA =string(20,ab.twothousA + 10000))
go

create Atenstring(
uniquelD =uc2O,

unique2D =uc2O,
twoD =uc2O,
fourD =uc2O,
tenD =uc2O,
twentyD =uc2O,
hundredD =uc2O,
thousandD =uc2O,
twothousD =uc2O)
go

append to Atenstring(
uniquelD =string(20,at.uniquelD + 10000),
unique2D =string(20,at.unique2D + 10000),
twoD =string(20,at.twoD + 10000),
fourD =string(20,at.fourD + 10000),
tenD ==string(20,at.tenD + 10000),
twentyD =string(20,at.tw~ntyD + 10000),
hundredD =string(20,at.hundredD + 10000),
thousandD =string(20,at.thousandD + 10000),
twothousD =string(20,at.twothousD + 10000))
go

create unique clustered index on Atenstring (unique2D) with fillfactor=98,skip=1

Benchmark Variations -27-

go

create nonclustered index on Atenstring (uniquelD) ~with fihlfactor=98,skip=1

go

create unique clustered index on ABstring (unique2A) with fiilfactor=98,skip=1

go

create nonclustered index on ABstring (uniquelA) with fihlfactor=98,skip=1

go

range of at is Atenstring

range of ab is ABstring

retrieve into Btenstring (at.all) go

retrieve into BBstring (ab.alI) go

create unique clustered index on Btenstring (unique2D) with fihlfactor=98,skip~=1

go

create nonclustered index on Btenstring (uniquelD) with fihlfactor=98,skip=1

go

create unique clustered index on BBstring (unique2A) with fihlfactor=98,skip=1

go

create nonclustered index on BBstring (uniquelA) with flhlfactor==98,skip=1

go

retrieve into CBstring (ab.all) go

retrieve into Ctenstring (at.all) go

create unique clustered index on Ctenstring (unique2F) with fillfactor=98,skip=1

go

create nonclustered index on Ctenstring (uniquelF) with fillfactor=98,skip=1

go

create unique clustered index on Cflstring (unique2A) with fillfactor=98,skip=1

go

create nonclustered index on CBstring (uniquelA) with fillfactor=98,skip=1
go

- and so on, until -

create nonclustered index on PBstring (uniquelA) with fihlfactor=98,skip=1

go

Benchmark Variations

BENCHMARKING DATABASE SYSTEMS IN

MULTIPLE BACKEND CONFIGURATIONS *

Steven A. Demurjian and David K. Hsiao

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

(4o8)-646-2449

ABSTRACT

The aim of this performance evaluation is twofold: (1) to devise benchmarking stra

tegies for and apply benchmarking methodologies to the measurement of a prototyped
database system in multiple backend configurations, and (2) to verify the performance
claims as projected or predicted by the designer and implementor of the multi-backend

database system known as MBDS.

Despite the limitation of the backend hardware, the benchmarking experiments
have proceeded well, producing startling results and good insights. By collecting

macroscopic data such as the response time of the request, the external performance
measurements of MBDS have been conducted. The performance evaluation studies ver

ify that (a) when the database remains the same the response time of a request can be

reduced to nearly half, if the number of backends and their disks is doubled; (b) when

the response set of a request doubles, the response time of the query remains nearly con

stant, if the number of backends and their disks is doubled. These were the perfor
mance claims of MBDS as predicted by its designer and implementor.

1. INTRODUCTION

The multi-backend database system (MBDS) is a database system designed specifi

cally for capacity growth and performance enhancement. MBDS consists of two or more

minicomputers and their dedicated disk systems. One of the minicomputers serves as a

controller to broadcast the requests to and receive the results from the other minicom

puters, which are configured in a parallel manner and are termed as backends. All the

backend minicomputers are identical, and run identical software. The database is evenly
distributed across the disk drives of each backend by way of a cluster-based data place
rnent algorithm unknown to the user. User access tQ the MBDSi~ accomplished either

via ahost computer, which in turn communicates with the MBDS controller, or with

the MBDS controller directly. Communication between the controller and backends is

accomplished using a broadcast bus. An overview of the system architecture is given in

Figure 1.

* The work reported herein is supported by Contract N00014-84-WR-24058 from the Office of Naval ReBearch and conducted

at the Laboratory for Database Systems Research, Naval Postgraduate School, Monterey, CA 93943.

—29—

one OT mOre

- -.

4is~ drives

one or more

disk drives

~one or sore

-

disk dr$vei

bus

Figure 1. The MBDS Hardware Organization

There are two basic performance claims of the multi-backend database system,

which have been projected in the original design goals Hsia8la, Hsia8lb}. The first

claim states that if the database size remains constant, then the response time of

requests processed by the system is inversely proportional to the multiplicity of back-

ends. This claim implies that by increasing the number of backends in the system and

by replicating the system software on the new backends, MBDS can achieve a reciprocal
decrease in the response time for the same requests. The second claim states that the

response time of requests is invariant when the response set and the multiplicity of

backends increase in the same proportion. This claim implies that when the database

size grows, the response set for the same requests will grow. By increasing the number

of backends accordingly, MBDS can maintain a constant response time.

In this paper we provide a preliminary evaluation of the validity of the MBDS per

formance claims. The main focus of this paper is on the external performance measure

ment of MBDS. The external performance measurement evaluates a system by collect

ing the response times of requests. External performance measurement is a macroscopic
evaluation of the system. Ingres, Oracle, and the Britton-Lee IDM/500, have all been

evaluated using external performance measurement techniques Stra84, Schi84, Bitt83].
The remainder of this paper is organized as follows. In Section 2 we provide a brief

overview of the multi-backend database system. In Section 3 we discuss the general

testing strategy that was used to evaluate the system. In Section 4 we examine the

evaluation results. Finally, in Section 5 we conclude this paper and summarize the

results.

To the

host

~rosdcsst tog

—30—

2. THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

The current hardware configuration of MBDS consists of a VAX-11/780 (VMS OS)
running as the controller and two PDP-11/44s (RSX-11M OS) and their disk systems

running as backends. The disk system on each backend is an DEC RMO2 disk drive,
which has a 67MB formatted capacity, a peak transfer rate of 806KB/s and an average

access time of 42.5ms (3Oms average seek time + 12.5ms average latency time). Inter-

computer communication is supported by three parallel communication links (PCL
liBs), which is a time-divisioned-multiplexed bus. An overview of MBDS can be found

in EKerr82l. The implementation efforts are documented in He82, Boyn83b, DemuS4].
MBDS is a message-oriented system (see Boyn83a]). In a message-oriented system,
each process corresponds to one system function. These processes, then, communicate

among themselves by passing messages. User requests are passed between processes as

messages. The message paths between processes are fixed for the system. The MBDS

processes are created at the start-up time and exist throughout the entire running time

of the system.

MBDS provides a centralized database system where the database itself is evenly
distributed across the backend processors. Only a single copy of the database is stored.

The underlying data model for MBDS is the attribute-based data model ~Hsia70]. The

attribute-based data model stores data in files of records. MBDS stores records of a file

in clusters. A cluster is a group of records such that every record in the cluster satisfies

the same set of attribute-value pairs or ranges. Thus, a file is divided into one or more

clusters. The distribution of the database is accomplished using a cluster-based data

placement algorithm.

The cluster-based data placement algorithm is arbitrated and managed by the con

troller. When a new cluster is defined, the backend processor notifies the controller.

The controller then decides which backend will insert the new record. Under the direc

tion of the controller, the chosen backend will continue to insert records of the new clus

ter, until the backend processor fills a block of secondary memory storage. When this

occurs, the backend processor notifies the controller that the block is full. The con

troller then directs another backend for the insertion of new records of the cluster. In a

multiple-backend configuration, the controller attempts to achieve a block-parallel-and-
record-serial operation for any subsequent access to the records of the cluster.

Let’s trace through an example. Suppose that our system has four backend proces

sors, the average size of a record is 200 bytes, and the size of a block of secondary

storage memory is 4K (so, each block contains approximately 20 records). A new clus

ter of 100 records, say C, is defined. The controller picks say, Backend 3, for inserting
records of cluster C. Backend 3 will insert 20 records into a block for the cluster C

under the direction of the controller. Then the controller will have Backend 4 insert

records of cluster C. After Backend 4 has inserted 20 records, the controller will cycle
to Backend 1, and continue the round-robin process until all 100 records are placed on

the secondary storage blocks. For the next new cluster, say, C’, the controller will then

pick Backend 4, since Backend 3 is the last backend used by the previous cluster in the

algorithm.

—31—

3. THE BENCHMARK STRATEGY

In this section we analyze the basic benchmark strategy for the preliminary perfor

mance evaluation of the multi-backend database system. The benchmark strategy

focuses on collecting macroscopic measurements on the systems performance. Macros

copic measurements correspond to the external performance measurement of the system,

which collects the response time of requests that are processed by the system. To ade

quatel~ conduct the external performance measurement of the system, software was

developed to collect timing information and data. The performance software was brack

eted in conditional compilation statements to facilitate an easy transition between a

testing system and a running system.

The rest of this section is organized as follows. First, we give a high-level descrip
tion of the test database organization and system configurations used in the performance
evaluation. Next, we examine the request set used to collect the timings. Finally, we

review the relevant tests that are to be conducted, and the measurement statistics that

are collected and calculated.

3.1. The Test Database Organization and Testing Configurations

The test database was constructed using a record size of 200 bytes. A total of 24

clusters are defined for the test database. The virtual and physical memory limitations

of each backend restricted the database size to a maximum of 1000 records per backend.

This limitation, coupled with the need to verify the two performance claims, led us to

the specification of three different system configurations for the MBDS performance
measurements. Table 1 displays the configurations.

Test A configures MBDS with one backend and one thousand records in the test

database. Test B configures MBDS with two backends and one thousand records split

evenly between the backends. The transition from Test A tn Test B is used to verify
the first performance claim (see Section 1). Tests A and B 1~. ~ ~ clusters that contain

40 records and one cluster that contains 80 records. In Test A, all of the records are

stored on the single backend. In Test B, each backend stores 20 records for the first 23

clusters and 40 records for the last cluster.

Test C also configures MBDS with two backends, but, the size of the database is

doubled to two thousand records. The transition from Test A to Test C is used to verify
the second performance claim (see Section 1). Test C has 23 clusters that contain 80

records each and one cluster that contains 160 recDrds. In Test C, each backend stores

40 records for each of the first 23 clusters and 80 records for the last cluster. Notice

that the record totals per cluster per backend are the same for Test A and Test C;

TEST No. of Backends Records/Backend J Database Size

A 1 1000 200K bytes

B 2 500 200K bytes

C 2 1000 400K bytes

Table 1. The Measurement Configurations

—32—

3.2. The Request Set

In this section we review the retrieve requests that are used to benchmark MBDS.

The retrievals, shown in Table 2, are a mix of single and double predicates. There are

two directory attributes and thirty-one non-directory attributes in each record. The

directory attributes, INTEl and INTE2, are integer-valued, and are used for the cluster

definition and formation. INTEl is defined using 5 attribute-value ranges, while INTE2

is defined using 24 attribute-value ranges. The non-directory attributes are used as fill

ers for the 200-byte record. The retrieve requests given in Table 2 are specified using

equality and inequality predicates, to control the search space when accessing the data

base records.

In Table 3 we present a high-level analysis of the request set given in Table 2. We

focus on specifying two characteristics for each retrieve request in the request set; the

number of clusters examined by the particular retrieve request and the volume of the

database information that is retrieved. The values in Table 3 apply to the three testing

configurations, A, B, and C, with one exception. The numbers in parenthesis in the

third column represent the number of records retrieved for Test C.

3.3. The Measurement Strategy, Statistics and Limitations

The basic measurement statistics used in the performance evaluation of MBDS is

the response time of request(s) that are processed by the database system. The

response time of a request is the time between the initial issuance of the request by the

user and the final receipt of the entire request set for the request. The response times

are collected for the request set (see Table 2) for each of the three configurations (see
Table 1). Each request is sent a total of ten times per database configuration. The

response time of each request is recorded. We determine that ten repetitions of each

request produce an acceptable standard deviation. Upon completion of the ten repeti
tions for a request, we calculate the mean and the standard deviation of the ten

response times. There are two main statistics that we calculate to evaluate the MBDS

performance claims, the response-time improvement and the response-time reduction.

Request Number Retrieval Request

1 (INTEl = 10) or (INTEl = 230)
2 (INTE2 =< 250)
3 (INTE2 =< 500)
4 (INTEl =< 1000)
5 (INTEl =< 200) or (INTEl >= 801)
6 (INTEl =< 400) or (INTEl >= 601)
7 (INTEl <= 201)
8 (INTEl <= 401)
9 (INTEl <= 201) or (INTEl >= 800)

Table 2. The Retrieval Requests

—33—

Request
Number

Number of

Clusters

Examined

Volume of

Database

Retrieved

1 10 2(4) records

2 7 25%

3 13 50%

4 24 100%

5 9 40%

6 19 80%

7 10 20% + 1(2) record

8 15 40% + 1(2) record

9 19 40% -i- 2(4) records

Table 3. The Number of Clusters Examined and the

Percent of the Database Retrieved

The response-time improvement is defined to be the percentage improvement in the

response time of a request, when the request is executed in n backends as opposed to

one backend and the number of records in the database remains the same. Equation 1

provides the formula used to calculate the response-time improvement for a particular

request, where Configuration Y represents n backends and Configuration X represents

one backend. The response-time improvement is calculated for the configuration pair

(A, B). The configuration pair (A, B) is evaluated for the retrieve requests (1) through

(9) (see Table 2).

The Re8pon8e
Time of

Lue Con1i uration Y
Re8pon8e Time = 100% * 1 — ________________

Improvement The Re8ponse
T*me of

Configuration X

Equation 1. The Response-Time-Improvement Calculation

The response-time reduction is defined to be the reduction in response time of a

request, when the request is executed in n backends containing nx number of records as

opposed to one backend with x number of records. Equation 2 provides the formula

used to calculate the the response-time reduction for a particular retrieval request,

where ~configuration X represents one backend with x recOrd~ and configuration Z

represents n backends, each with x records. The response-time reduction is calculated

for the configuration pair (A, C), for the retrieve requests (1) through (9).

—34—

The Re8pon8e
Time of

Re8ponle Time = 100% * ~ —
Configuration Z

Reduction The Re8ponse
Tune of

Configuration. X

Equation 2. The Response-Time-Reduction Calculation

Finally, we examine the limitations of the testing strategy. The last two versions of

MBDS differ in the implementation of the directory tables. The newest version of the

system, called Version F, implements the directory tables on the secondary storage.
The previous version, called Version E, stored the directory tables in the primary

memory. The major roadblock that we have encountered in the performance measure

ment of MBDS has been the hardware limitations of the backend processors (PDP
11/44). With only 64K of virtual memory per process and a total of 256K physical

memory, we found that we could not increase the MBDS system parameters to permit
an extensive test of the system on a large database. These restrictions have forced us to

benchmark the primary-memory-based directory management version of the system

which, excluding the directory table management routines, is nevertheless equivalent in

functionality to Version F.

4. THE BENCHMARKING RESULTS

In this section, we present the results obtained from the performance measurement

of MBDS. In particular, we review the results of external performance measurement, in

the hope of verifying the MBDS performance and capacity claims. One final note, the

units of measurement presented in the tables of this section are expressed in seconds.

Table 4 provides the results of the external performance measurement of MBDS.

There are three parts to Table 4. Each part contains the mean and the standard devia

tion of the response times for requests (1) through (9), which are outlined in Section 3.2.

The three parts of Table 4 represent three different configurations of the MBDS

hardware and the database capacity. The first part has configured MBDS with one

backend and the database with 1000 records on its disk. The second part has configured
MBDS with two backends, with the database of 1000 records, split evenly between the

disks of the backends. The third part has configured MBDS with two backends and with

a database doubled of 2000 records, where the disk of each backend has 1000 records.

Given the data presented in Table 4, we can now attempt to verify or disprove the

two MBDS performance claims. We begin by calculating the response-time improvement
for the nine requests. In Table 5 we present the response-time improvement for the

data given in Table 4. Notice that the response-time improvement is lowest for request

(1), which represents a retrieval of two records of the database. On the other hand, the

response-time improvement of request (4), which retrieves all of the database informa

tion is highest, approaching the upper bound of fifty percent. In general, we find that

the response-time improvement increases as the number of records retrieved increases.

This seems to support a hypothesis that even if the response set (therefore the database)
is larger, the response-time improvement will remain at a relatively high level (between

—35—

Request

Number

One Backend

1K Records

(A)

Two Backends

1K Records

(B)

Two Backends

2K Records

(C)
mean stdev mean stdev mean stdev

1 3.208 0.0189 2.051 0.0324 3.352 0.0282

2 13.691 0.0255 7.511 0.0339 14.243 0.0185

3 26.492 0.0244 14.164 0.0269 26.737 0.0405

4 52.005 0.0539 26.586 0.0294 52.173 0.0338

5 21.449 0.0336 11.309 0.0375 21.550 0.0237

6 42.235 0.0326 21.622 0.0424 42.287 0.0400

7 12.285
—

.0408 6.642 0.0289 12.347 0.0371

8 22.532 0.0296 11.764 0.0300 22.583 0.0110

9 23.913 0.1115 12.624 0.0350 24.169 0.0181

40 an 50 percent).

Table 4. The Response Time Results

Next, we calculate the response-time reduction for each of the nine requests. In

Table 6 we present the response-time reductions for the data given in Table 4. Notice

that the response-time reduction is worst for request (1), which represents a retrieval of

two records of the database. On the other hand, the response-time reductions for the

requests which access larger portions of the database, requests (4) and (6), have only a

small response-time reduction. In general, we found that the response-time reduction

decreases as the number of records retrieved increases, i.e., the response time remains

virtually constant. Again we seem to have evidence to support the hypothesis that,
as the size of the response set increases for the same request, the response-time

Request
Number

Response-Time

Improvement

(A,B)
1

2

3

4

5

6

7

8

9

36.07

45.14

46.53

48.94

47.27

48.81

45.93

47.79

47.21

Table 5. The Response-Time Improvement Between

Configurations A and B.

—36—

reduction will decrease to a relatively low level (0.1% or less).

Request
Number

Response-Time
Reduction

(A,C)
1

2

3

4

5

6

7

8

9

4.49

4.03

0.92

0.32

0.47

0.12

0.50

0.23

1.07

Table 6. The Response-Time Reduction Between

Configurations A and C

5. CONCLUSIONS AND FUTURE WORK

We have shown that the two basic performance claims of the multi-backend data

base system are valid. While these results are preliminary, they are encouraging.

Overall, the response-time improvement ranged from 36.07 percent to 48.94 percent,
when the number of backends and their disks is doubled for the same database. The

low end of the scale represented a request which involved the actual retrieval of only
two records. The high end represents a request which has to access all of the database

information. The response-time reductions were also impressive, ranging from a 4.49

percent change to a 0.12 change. In other words, when we double the number of back-

ends and their disks, the response time of a request is nearly invariant despite the fact

that the response set for the request is doubled. Another crucial discovery that we

made was that the results were consistent and reproducible. The tests were conducted

at least twice for most of the request set, with the testing done on different days by dif

ferent people. The resulting data was consistent and reproducible. The data presented
in this paper represents the last set of tests for the request set.

The next logical step in the performance evaluation of the multi-backend database

system is to extend the testing to include the other request types, update, insert and

delete. Additionally, there are still some more tests to run on the retrieval request.
We also seek to provide some insight into the internal performance of MBDS. Internal

performance measurement provides a microscopic view of the system, by collecting the

times of the work distributed and performed by the system components, i.e., in our case,

individual processes.

Because MBDS is intended for microprocessor-based backends, winchester-type
disks and an Ethernet-like broadcast bus, we will not continue our benchmark work on

the present VAX-PDPs configuration. Instead, we plan to download MBDS to either

MicroVaxs or Sun Workstations. With either choice, we can utilize a broadcast bus,
which was not available when the work began in 1981. We may also eliminate all the

physical and virtual memory problems. In the new environment we can perhaps obtain

—37—

a more thorough benchmarking of MBDS, and study various benchmarking strategies.

ACKNOWLEDGEMENTS

We would like to thank all of those who have helped us with the performance
evaluation of the multi-backend database system. Robert C. Tekampe and Robert J.

Watson were involved with the development and implementation of the testing software

for our system Teka84J. Prof. Douglas S. Kerr and Dr. Paula R. Strawser provided
valuable advice and assistance on the benchmark strategy. Finally, Albert Wong and

the technical staff at the Naval Postgraduate School provided assistance with configur
ing the computer systems for testing.

REFERENCES

Bitt83l Bitton, D., DeWitt, D. and Turbytil, C., “Benchmarking Database Systems: A

Systematic Approach,” Proceedings on Very Large Data Bases, 1983.

Boyn83a] Boyne, R., et al., “A Message-Oriented Implementation of a Multi-Backend

Database System (MBDS),” in Database Machines, Leilich and Missikoff (eds.),
Springer-Verlag, 1983.

Boyn83b] Boyne, R., et al., “The Implementation of a Multi-Backend Database System

(MBDS): Part III - The Message-Oriented Version with Concurrency Control and

Secondary-Memory-Based Directory Management,” Technical Report, NPS-52-83-003,
Naval Postgraduate School, Monterey, California, March 1983.

Demu84] Demurjian, S. A., et a!., “The Implementation of a Multi.-Backend Database

System (MBDS): Part IV - The Revised Concurrency Control and Directory Manage
ment Processes and the Revised Definitions of Inter-Process and Inter-Computer Mes

sages” Technical Report, NPS-52-84-005, Naval Postgraduate School, Monterey, Califor

nia, March 1984.

He82] He, X., et al., “The Implementation of a Multi-Backend Database System

(MBDS): Part II - The First Prototype MBDS and the Software Engineering Experi
ence,” Technical Report, NPS-52-82-008, Naval Postgraduate School, Monterey, Cali

fornia, July 1982; also appeared in Advanced Database Machine Architecture, Hsiao

(ed.), Prentice Hall, 1983.

Hsia7OJ Hsiao, D.-K., -and Harary, F., “A Formal System for In-formation Retrieval

from Files,” Communications of the ACM, Vol. 13, No. 2, February 1970, Corrigenda,
Vol 13., No. 4, April 1970.

Hsia8laJ Hsiao, D.K. and Menon, M.J., “Design and Analysis of a Multi

Backend Database System for Performance Improvement, Functionality Expansion and

Capacity Growth (Part I),” Technical Report, OSU-CISRC-TR-81-7, The Ohio State

University, Columbus, Ohio, July 1981.

—38—

Hsia8lbl Hsiao, D.K. and Menon, M.J., “Design and Analysis of a Multi

Backend Database System for performance Improvement, Functionality Expansion and

Capacity Growth (Part II),” Technical Report, OSU-CISRC-TR-81-8, The Ohio State

University, Columbus, Ohio, August 1981.

Kerr82] Kerr, D.S., et al., “The Implementation of a Multi-Backend Database System

(MBDS): Part I - Software Engineering Strategies and Efforts Towards a Prototype

MBDS,” Technical Report, OSU-CISRC-TR-82-1, The Ohio State University,
Columbus, Ohio, January 1982; also appeared in Advanced Database Machine Architec

ture, Hsiao (ed.), Prentice Hall, 1983.

Schi84] Schill, J., “Comparative DBMS Performance Test Report,” Naval Ocean Sys
tem Center, San. Diego, CA, August 1984.

Stra84] Strawser, P. R., “A Methodology for Benchmarking Relational Database

Machines,” Ph. D. Dissertation, The Ohio State University, 1984.

Teka84] Tekampe, R. C., and Watson, R. J., “Internal and External Performance

Measurement Methodologies for Database Systems,” Master’s Thesis, Naval Postgradu
ate School, Monterey, California, June 1984.

—39—

TRANSACT ION ACCELERAT ION

Timothy Chou

Jim Gray

Tandem Computers, Inc.

19333 Vailco Parkway
Cupertino, CA 95014

—40—

Transaction Acceleration

TRANSACT ION ACCELERAT ION

1.0 INTRODUCTION

Today corporations are faced with a myriad of vendors providing

transaction processing systems. When a corporation is willing to commit

considerable resources to a large application it is important to have

confidence that the application will perform adequately on that vendor’s

system. A traditional method to insure that performance goals are met

is to specify a representative benchmark, run it on each vendor’s system

and compare the results GLES81I. While this is certainly an accurate

method, it both time consuming and expensive. Initially, a customer may

only be interested in the relative capabilities of the various vendor’s

systems. With a single standard metric for transaction processing

performance, systems which are totally incapable of supporting the

desired workload could be removed from consideration early in the

procurement cycle.

The scientific marketplace has had the same requirement. In the

1970’s the Whetstone benchmark CURN74,c1ICH75J was developed by the

Central Computer Agency (CCA) of the British Government as a standard

scientific benchmark. Today practically every manufacturer of systems

for the scientific processing marketplace advertizes, or at least knows,

the number of Whetstones/sec the machihe is capable of.

—41—

Transaction Acceleration

In the transaction processing marketplace one standard

performance metric is transactions per second (TPS), the throughput of a

standard transaction at a given response time. The transaction

definition is typically the DebitCredit transaction. This is also

sometimes referred to as the TP1 or ET1 transaction TAND85].

While TPS is a valid metric of system performance, it doesn’t

tell the whole story. This paper introduces a new metric, transaction

acceleration, which gives the customer a new, different and useful

characterization of transaction processing system performance.

2.0 RESPONSE TIME

Response time is the time the system takes to process a

transaction. One may speak of a minimum, average or maximum response

time. Response time curves usually have long tails because of anomalies

such as lock waits, system checkpoints, operator tasks, etc.,

performance metrics usually use the 90% or 95% response time —— 95% of

the transactions have response time less than this.

To eliminate the issue of communication line speed and delay,

response time is typically defined as the time interval between the

arrival of the last bit from the communication line and the sending~ of

the first bit to the communication line. This is the metric used by most

transaction processing stress testers ENCO83I.

—42—

Transaction Acceleration

In evaluating a system’s performance it is often interesting to

plot the response time curves. This curve easily illustrates that the

minimum response time occurs when the system is running a very low load.

As the load grows, response time increases, slowly at first but

eventually the system saturates and response times approach infinity.

-I 0.

0.

RESPONSE -I
TIME (sec) I

-~ 0

-I 0

-I 0

I 0

—I 0 0

I I I I I I
THROUGHPUT

(trans/sec)

FIGURE 1. TRANSACTION RESPONSE TIME

In Figure 1, the horizontal dotted line is the minimum response time.

The vertical dotted line is the maximum throughput of the system

measured in transactions per second.

The traditional TPS rating is obtained by defining the maximum

throughput when 95% of the transactions have a response time of less

than 1 sec. The computation of the TPS rating is shown in Figure 2.

—43—

Transaction Acceleration

-l 0

I 0

RESPONSE -I
TIME (sec) I

-I 0

— I
. . .

>0

-~
I 0

-lo 0

___________________________V_______________
I I I I I I

THROUGHPUT

(trans/sec)
N

FIGURE 2. COMPUTING TRADITIONAL TPS SYSTEM RATING

3.0 TRANSACTION ACCELERATION

Transaction acceleration is defined as the slope of the curve

which plots transaction throughput on the Y-axis and response time on

the X—axis. It is called transaction acceleration because the units

are transactions/sec/sec. Transaction acceleration can be computed

from the following steps.

—44—

Transaction Acceleration

STEP 1: Compute the response time curve for the DebitCredit

transaction and database on the system.

STEP 2: Transpose the curve to get throughput vs. response time rather

than response time vs. throughput.

THROUGHPUT I
(tran/sec) —I o

I 0

_i 0

-I 0

-l 0

-I 0

I I I I I I I
RESPONSE TIME (sec)

FIGURE 3. THROUGHPUT VS. RESPONSE TIME

STEP 3: Plot the derivative of the resulting curve to give transaction

acceleration.

_i 0

-I 0

-I 0

ACCELERATION I
(tran/sec/sec)— I o

-I 0

I 0

I I I I I I
RESPONSE TIME (sec)

FIGURE 4. TRANSACTION ACCELERATION VS. RESPONSE TIME

In Figure 4, the initial transaction acceleration of this system

is infinite (because response time stays steady at first). But

—45—

Transaction Acceleration

eventually, the acceleration declines to zero. If throughput

declined when the system saturated, then acceleration might become

negative.

So why is transaction acceleration a good system performance

metric? Consider the following graph of transaction throughput

for three vendor’s systems.

—46--

Transaction Acceleration

—I x

-I x x:VendorA

I a :VendorB

-I x z:VendorC

-I x 0

THROUGHPUT I o

(tran/sec) —I x a

I 0

—I zx z z z z z z

I z 0

—I z

I ox

—I z

I ox

zox_____________________
I I

RESPONSE TIME (sec)

-l x : Vendor A

I o : VendorB

—I z z:VendorC

-I oxxxxxxxxxxxx

ACCELERATION I oz

(tran/sec/sec) - I
I 0

I 0

-I z 0

I 0

-I 0

I z

_______________z z

i__I I I I I I
RESPONSE TIME (sec)

FIGURE 5. TRANSACTION ACCELERATION OF THREE SYSTEMS

If we assume that the intersection of the three curves is at a

response time of 1 second then all three systems have the same

transaction throughput, and therefore the same TPS rating. Using the

TPS metric there is no difference between the three systems. However,

—47—

Transaction Acceleration

that is clearly not the case. Vendor A’s system is clearly a better one

when we look at the transaction acceleration curves -— as the

transaction workload increases system A will suffer the least

degradation in response time. In other words, if you have to “step on

the gas” system A is going to be “more responsive”. Since transaction

processing workloads have a large dynamic range, it is clear that

knowing how much “headroom” you have is important. Only the transaction

acceleration metric captures this aspect of system performance.

4.0 THROUGHPUT vs. RESPONSE TIME CURVES

While transaction acceleration is a metric which characterizes

transaction processing performance the throughput vs. response time

curves are also interesting in their own right. They provide another way

of looking at the implication of many other transaction processing

design issues. For example, a vendor’s profile of a system could also

include the following curves:

o Single point of failure curves

o Fixed cost curves

A single point of failure curve could easily show to what degree

performance would suffer if there were such a failure. A hypothetical

example is shown below in Figure 6. Note that Vendors B and C do not

have fault—tolerant configurations.

—48—

Transaction Acceleration

—I x

I x:VendorA

-I o : Vendor B

I z:VendorC

—I x

THROUGHPUT - I
(tran/sec) I

—I x

zo x_______________________
_J___I I-

RESPONSE TIME (sec)

FIGURE 6. SINGLE PROCESSOR FAILURE

The capability to incrementally expand a transaction processing

system is important. A fixed cost transaction acceleration curve can

illustrate what the units of expandability are. Figure 7 and 8 show two

representative cost curves.

—49—

Transaction Acceleration

I *
: $4 million

—I a : $2 million

I # : $1 million

—I * ** *

* 0

THROUGHPUT - I *

(tran/sec) I * o

-I * a

I *

-I *
0

-I * 0

_I *0

I # #

1~~~ I I
RESPONSE TIME (sec)

FIGURE 7. VENDOR A

—I *

I *
: $4 million

—I * a .: $2 million

I # : $1 million

—I *

I 0

THROUGHPUT - I 0

(tran/sec) I a

-I * 0

—I 0

-I 0

-I 0

#0 *

—

—I I I I I I
RESPONSE TIME (sec)

FIGURE 8. VENDOR B

—50—

Transaction Acceleration

Another proposal {REuT84] has suggested plotting K$/TPS against

response time. A curve like this could tell how much you have to pay for

decreasing response time below a given level, or conversely how much you

can gain by letting it increase.

4.0 SUMMARY

There have been and continue to be a number of methods of

characterizing computer system performance. While benchmarks,

simulations and analytic models can produce performance numbers there is

still a need for standard metrics to be able to compare systems from

various vendors. Transaction acceleration provides a new and useful

metric of system performance.

—51—

Transaction Acceleration

cuRN74I

ENco83l

GLE581]

GRAY78]

I GRAY85]

REuT84I

TAND85]

wIcH75]

REFERENCES

Curnow, H.J. and Wichmann, B.A., “A Synthetic Benchmark,” The

Computer Journal, Volume 19, No. 1, ppgs 43-48.

“ENCORE User’s Guide”, Tandem Computers Part 82350, April
1983.

Gleser, M.A., Bayard, J., Lang, D.D., “Benchniarking for the

Best,” Datamation, May 1981.

Gray, J.
,
“Notes on Database Operating Systems”, Lecture

Notes in Computer Science, vol. 60, Bayer-Seegmuller editors,
Springer Verlag, 1978.

Gray, J. et al., “One Thousand Transactions Per Second”,To
appear in the Proceedings of the IEEE COMPCON-85, San

Francisco.

Reuter, A., private communication.

“A Measure of Transaction Processing Power,” to appear in

Datamat ion.

Wichrnann, Brian A., “The Design of Synthetic Programs-i”
Computer Evaluation and Measurement, John Wiley and Son, New

York, ppgs 89—98.

—52--

TRANSACTION ORIENTED PERFORMANCE

ANALYSIS OF DATABASE MACHINES

Margaret H. Eich

Department of Computer Science and Engineering
Southern Methodist University

Dallas, Texas 75275

(214) 692-3087 eich%smu©csnet-relay

Abstract. A new technique for evaluating the performance of database machines (DBM)
is proposed. In previous studies, performance analysis has been based on a single trans

action, a reference string for transactions, or read only transactions. These approaches
are not satisfactory in a DBM environment when subtransactions may be executed on

different processors, and the interrelationships between operations within and across

transactions can greatly effect the DBM performance. An approach for DBM perfor
mance analysis based upon a coordinated view of transactions, hardware, software, and

databases is described.

1. Introduction

The need for performance evaluation measures and techniques applicable in a Data

base Machine DBM environment has been previously expressed LVEMU8OI, and there

have been several studies evaluating the performance of various DBM designs
BANE78J, DEWI81I, HAWT82J, and OZKA77J). These previous studies have had a

very simplistic view of database transactions with little concern for the actual trans

actions to be executed in the target DBM. Analysis is based on a single transaction, a

reference string for transactions, or read only transactions. These approaches are not

satisfactory in a DBM environment where subtransactions may be executed on different

processors, and the interrelationships between operations within and across transactions

can greatly effect the DBM performance. As stated by Vemuri, the overall goal of DBM

research is to “improve the performance and capability of the total system.” Perfor

mance studies should attempt to measure total system performance.

This paper introduces a technique which can be used in DBM performance analysis
research. Of concern is the technique to be used for simulation, not the measures gath
ered. The next section discusses some of the problems with previous approaches to

DBM performance analysis. The third section describes the proposed technique, while

the fourth section discusses the application of this approach in the simulation of a new

DBM concurrency control technique.

2. Previous Studies

Based upon transaction representation, previous DBM performance studies can be

classified as single query BANE78J, BANE7O], DEWI81I, HAWT82I, OZKA75J, and

OZKA77]), reference string AGRA83J and WILK81]), or read only BORA81]. Single
query studies determine performance analysis based on the execution of a single query or

operation. These studies ignore the interrelationship between transactions. Analysis
techniques usually fall into this category. Performance studies in the second class view

—53—

transactions as a sequence of page (record, tuple) references~ This view overlooks varia

tions in the time at which different operations in the same transaction actually make

page references. The third view of transactions only sees transactions as performing
retrieval operations, ignoring the impact of update operations. This view is sometimes

taken because updates take a relatively short time to execute, and are often imple
ment~d very similar to retrieval operations DEWI81J and HAWT82I). Even if these are

true, the impact of update operations on overall system performance is not unimportant.

There are five major reasons why these simplistic views of transactions are unac

ceptable for DBM performance analysis:

1. Total Performance

2. Subtransaction Execution

3. Protocol Evaluation

4. Cross Transaction Effect

5. Bottleneck Analysis

To satisfactorally determine overall DBM system performance, the ability to model por

tions of transactions as well as to determine the effect that transactions have on each

other must be examined.

Good performance of the total DBM system is often listed as the overall goal for

the development of DBMS EVEMU8OI. To determine total DBM performance, any perfor
mance analysis study should examine the execution of multiple concurrent transactions.

Obtaining performance statistics based upon a single transaction, or read only trans

actions does not necessarily indicate the overall system performance with multiple con

current update and retrieval transactions. It has been previously observed that input to

DBM performance analysis should “reflect a wide range of transactions to determine the

suitability of the various machines to different transaction types” BORA81J. Previous

studies have provided valuable insight into the performance .of various DBM architec

tures for certain types of transactions, but they have not provided any indication of

total DBM performance for concurrently executing potentially conflicting transactions.

Some DBM architectures require the processing of portions of transactions on

different processors CESA83J and DEWI7O]). To accurately determine the impact of

protocol overhead on the performance, it needs to be simulated at the point in time that

it will occur in actual implementation. A more detailed view of transactions would facili

tate the placement of protocol overhead within a transaction execution as well as pro

viding the capability for simulating execution of portions of transactions on different

processors. Thus a better estimate of performance could be obtained.

When estimating DBM performance, the impact of transactions on each other is

crucial. One of the performance drawbacks of conventional sequential von Neumann

machines is their lack of appropriateness for the “parallel process of data manipulation”

SU8O]. DBMs should be designed to provide efficient storage, retrieval, managment,
and update of large databases with concurrent access HSIA7OJ. The application of

database machines will primarily be in large multiuser environments where the issues of

integrity and synchronization are crucial. Estimates of overall DBM performance can

not be obtained with any accuracy if the impact of multiple transactions are not exam

ined.

The last reason that previous views of transactions have been inadequate when

estimating DBM performance analysis, is that the identification of potential bottlenecks

can not be accurately determined. Timing of different events is crucial in identifying

—54—

system bottlenecks. Overly simplified views of transactions do not provide realistic esti

mates or the time when different events occur. More detailed descriptions of transactions

give a better estimate of these times and can thus be used to more accurately predict

potential system bottlenecks.

3. Proposed Technique

This section describes a technique for conducting a DBM performance analysis
simulation using a more realistic view of transactions than is found in previous DBM

performance studies. This method provides the ability to execute subtransactions while

still allowing the ability to determine the impact of total transactions on system perfor
mance. The relational data model using relational algebra operations is assumed. This

transaction oriented method requires a detailed representation for transactions, the

definition of various mixes of transactions, as well as the description of other system and

workload parameters needed for simulation. When using a more realistic view of trans

actions, other components of the DBM must still be appropriately described. Thus, this

performance analysis approach is based upon a coordinated view of transactions,

hardware, software, and databases in the target DBM being analyzed. TABLE 1 lists

functions and parameters needed to describe these four DBM components during a simu

lation. These lists are not intended to be all inclusive, but to indicate the types of

parameters needed.

TABLE 1

SIMIJLATION PARAMETERS

Software Hardware Transaction Database

Processor Allocation Method Number of Processors Number Number

Operation Processing Times Number of I/O Devices Description Access Method

Recovery Technique and Times Type of Network Select Probability Size

Concurrency Control Times Network Transmission Times Update Probability Location

Preprocessing Time I/O Times Relations Accessed

Commit Processing Time

The software functions described should include such things as the processor alloca

tion method in an MIMD architecture, description of concurrency control and recovery

techniques used, and processing times for various CPU operations. The hardware

parameters include descriptions and quantity of the different hardware equipment,
description of network used, and times for I/O and network processing. The structure

of all relations considered needs to be described. This should include the number and

access methods to be used for the various relations, as well as their size and location.

Transaction structures need to be explicitly described including all database operations
and relations accessed. During simulation runs, the probability of actually selecting and

updating the examined pages (records, tuples) needs to be included. While we feel that

the software, hardware, and database components are often adequately described in

DBM performance studies, transactions are not. Therefore, the remainder of this section

discusses a possible method to be used for representing transactions.

—55—

During transaction execution in a database system, a transacbo~ request is often

compiled into a query parse tree (QPT) DEWI79]. A query parse tree is a directed

graph where the nodes define the database operations to be performed and the arcs

show the precedence relationships between the operations. During optimization, the

trees may be converted into query dags by combining common subexpressions. It is

assumed that each node in the dag completely describes the operation to be performed,
including the databases acted on and the selection criteria for the operation. Figure 1

shows a query parse tree for a multirelation query used in a previous performance study

HAWT82]. Input databases have been shown as source nodes labelled by the relation

name, and output data is shown by a sink node labelled OUTPUT. Query dags will be

the basis for our detailed representation of transactions.

Fig. 1. - Sample Query Parse Tree

Both retrieval and update operations can be classified according to the number of

input relations (and thus input arcs). A simple operation has one, while a complex opera
tion has two. Simple Operations include select, project, modify, insert, and delete, while

complex operations include union, difference, product, and join. A complex version of

the three types of update operations (modify, insert, delete) may also be considered.

Here the target tuples (records) to be updated are identified by the tuples on the second

input arc. For simulation purposes, the precise definition of the operations is not usually
required. All that is really needed is an indication of the type of operations to be exe

cuted. Therefore, instead of specifically describing a transaction by a query dag, we use

a transaction skeleton. The transaction skeleton for a transaction contains the same

graphical structure as its associated query dag, but does not describe the operations in

any detail, nor does it identify precise input relations. Nodes simply identify the type of

operation (simple retrieval, simple update, complex retrieval, complex update) and input
relation nodes are assigned unique integers. During simulation, the integers will be

replaced with one of the relations assumed in existence. An example of the transaction

skeleton for the query parse tree in Figure 1 is shown in Figure 2. The source nodes are

labelled 1 and 2 to indicate two potentially different input relations.

—56—

Fig. 2. - Transaction Skeleton for QPT in Figure 1

During simulation, a transaction skeleton is used to direct the simulation processing
functions. The graph identifies precedence relationships between the various operations

performed during the simulated execution of the transaction, and the node types iden

tify time to be simulated for the operation. In actual use, a transaction skeleton may

contain more nodes that in the associated query dag. Additional nodes would be added

for any required processing activities needed during transaction execution such as con

currency control, data transmission between sites in a distributed system, or scheduling
overhead. The placement of the nodes in the graph indicates the time during execution

when the associated function would be performed. Addition of these nodes to the skele

ton allows a more precise representation of processing overhead requirements than sim

ply showing the database operations and assuming a fixed overhead for each.

To describe all transactions to be executed during simulation, a mix of transaction

skeletons is defined by identifying the number of occurrences of each transaction skele

ton to be included. Determining the exact mix of transactions to be examined in a DBM

performance analysis study is not an easy task due to the fact that there is no accepted
set of representative transactions. Previous investigations of the usage of different data

base operations have resulted in identification of the types of transactions most often

used in the specific environment involved, but they have not identified a standard set of

transactions which could be used for performance analysis (IEAST75I and JOYC83]).
The exact mix of transactions to be examined should be determined based upon the

intended environment. If the target environment is not well understood, then the trans

actions to be included should be representative of many different types.

To perform a simulation experiment, each transaction to be executed must be

defined by creating its transaction skeleton. Various mixes should then be described

which use these skeletons. During simulation, the precise definition and order of trans

actions within a mix is determined. The order of transactions can be determined by
assuming any distribution of the total number of transactions as long as the correct

number of each type is included. The precise definition of each skeleton occurrence is

obtained by replacing the label of each source node in the skeleton with the name of one

of the relations being considered. To obtain different degrees of conflict across trans

actions, different distributions for assigning the relation names could be used. For the

same transaction mix, different runs could yield extremely different results based upon

the order of transactions and relations involved.

—57—

4. Example of Use

A new database concurrency control mechanism utilizing specialized data flow

graphs, databa8e flow graph8 (DBFG), has been introduced and shown to perform as well

or better than locking in an MIMD DBM environment EICH84aI and EICH84b]). A

database flow graph is a special type of data flow graph used to show dependencies
between database operations (both intra-transaction and inter-transaction). The depen
dencies shown in a DBFG can be used to define a multiple transaction schedule of data

base operations which is serializable. With DBFG scheduling, concurrency control is

implicitly obtained by ensuring that all schedules of database operations are valid data

flow schedules.

The performance of DBFG scheduling was evaluated both analytically and through
simulation EICH84aJ. The simulation utilized the transaction oriented approach to

gather performance statistics. Software parameters used represented CPU processing
times for transaction preprocessing, concurrency control, database operation execution,
and commit processing. Hardware parameters described the number of secondary
storage devices and query processors, as well as the I/O times needed for page access.

The database structure consisted of fifteen relations, each with a predefined number of

pages. Any given simulation run could uniformly change the number of pages for all

relations by providing a page multiple parameter. The actual number of pages per rela

tion was then calculated by multiplying the base number of pages by the page multiple.

Due to the fact that this was a general simulation with no knowledge of typical
transaction mixes, a general set of transactions was created representing different types
and levels of complexity. The twelve transaction skeletons used are shown in TABLE 2.

Twenty mixes of these twelve transactions were defined by identifying the percentage of

each transaction included. Depending on the experiment, some or all mixes were used.

Some mixes were constructed based upon input to previous simulation experiments

BORA81J and HAWT82I), some were based upon reasonable and extreme combina

tions of transactions, and still others were based on the actual usage patterns of

different operations in specific database systems EAST75J and JOYC83]).

TABLE 2

TRANSACTION SKELETONS

Simple Retrievals (SRet 1)
(SRet (SRet 1))

Simple Updates (SUpd 1)
(SRet (SUpd 1))

Complex Retrievals (CRet (SRet (SRet 1)) (SRet 2))
(CRet (SRet (SRet 1)) (SRet (SRet 2)))
(CRet (SRet 1) (SRet 2))
(GRet (GRet (SRet 1) (SRet 2))(SRet 3))
(CRet (CRet (SRet 1) (SRet 2)) (CRet (SRet 3) (SRet 4)))

Complex Updates (CUpd (SRet (SUpd 1)) (2))
(CUpd (SRet 1) (2))
(CRet (SRet (SRet (SUpd 1))) (SRet (SRet (SUpd 2))))

—58—

At run time, the total number of each transaction type was determined based upon

the associated percentage and actual number of transactions desired for that run. The

order of the transactions was determined assuming a uniform distribution of the trans

actions across the total number of transactions in the run. The number in the trans

action skeleton indicating the relation, was replaced at run time with one of the actual

relations based upon an input parameter giving the mean of an exponential distribution

whose range is the set of relation numbers. An exponential distribution was used to

mimic the behavior which is found when a small number of relations is accessed more

than the remaining ones. During execution, selection of a page for retrieval or update
was made based upon an input parameter stating the mean of an exponential distribu

tion from 0 to 1.

Six experiments were performed. The objectives of the first experiment were to

determine the effect of the number of transactions on performance measures and to

determine the number of transactions required to reach a steady state. The next three

experiments determined the impact on performance of differences in various workload

parameters: number of secondary storage devices, number of pages per relation, and pro

bability of conflict among transactions. Experiment five examined the effect of different

transaction mixes on the performance measures. The last experiment simulated the use

of data flow processor allocation BORA81J techniques across transactions.

The transaction oriented approach used in this simulation made the representation
of different concurrency control processing locations within a transaction possible. A

more simplistic view of transactions would not have allowed this definition of con

currency overhead during transaction processing. A simple yet flexible definition of

transactions and transaction mixes provided the capability for an unlimited number of

simulated transactions and mixes. While it is not implied that all aspects relating to

DBM performance were included in this simulation, a more complex view of transactions

was used than has been found in previous simulation experiments.

6. Summary

A transaction oriented approach to DBM performance analysis has been proposed.
This technique requires a more precise representation of transactions than has been used

by previous DBM performance studies. Used in conjunction with descriptions for the

hardware, software, and database components of the DBM, this technique defines a

coordinated approach to DBM performance analysis. The transaction orientation pro
vides a more realistic predictor of DBM performance than would be possible using a sim

ple reference string, a single transaction, or read only transactions.

6. References

AGRA83] Rakesh Agrawal, “Concurrency Control and Recovery in Multiprocessor
Database Machines: Design and Performance Evaluation,” Ph.D. Dissertation,
University of Wisconsin-Madison, September 1983.

BANE78J Jayanta Banerjee and David K. Hsiao, ‘Performance Study of a Database

Machine in Supporting Relational Databases,” Proceedings 1978 Verij Large Data

Bases Conference, 1978, pp. 319-329.

BANE79J Jayanta l3anerjee, David K. Hsiao, and Krishnamurthi Kannan, “DBC - A

Database Computer for Very Large Databases,” IEEE Transactions on Computers,
Vol. C-28, No. 6, June 1979, pp. 414-429.

—59—

BORA81I Haran Boral, “On the Use of Data-Flow Techniques in Database Machines,”
Ph.D. Dissertation, University of Wisconsin-Madison, April 1981.

CESA83I F. Cesarini, D. DeLuca Cardillo, and G. Soda, “An Assessment of the

Query-Processing Capability of DBMAC,” Advanced Database Machine Architec

ture, 1983, Printice-Hall Inc., pp. 109-129.

DEWI79J David J. DeWitt, “DIRECT - A Multiprocessor Organization for Supporting
Relational Database Management Systems,” IEEE Tran8actions on Computers,
Vol. C-28, No. 6, June 1979, pp. 395-406.

DEWI81] David J. DeWitt and Paula B. Hawthorn, “A Performance Evaluation of

Database Machine Architectures,” Proceedings of the 1981 Very Large Databa8e8

Conference, pp. 199-213.

EAST75J M. C. Easton, “Model for Interactive Data Base Reference String,” IBM

Journal of Re8earch and Development, November 1975, pp 550-555.

EICH84aI Margaret H. Eich, Concurrency in a Data Flow Database Machine, PhD

Dissertation, Department of Computer Science and Engineering, Southern Metho

dist University, August 1984.

EICH84b] Margaret H. Eich and David L. Wells, “Database Flow Graphs,” Proceed

ings of the 1984 International Conference on Parallel Proce8sing, August 21-24

1984, pp. 266-268.

IHAwT82I Paula B. Hawthorn and David J. DeWitt, “Performance Analysis of Alter

native Database Machine Architectures,” IEEE Transactions on Software
Engineering, Vol. SE-8, No. 1, January 1982, pp. 61-75.

HSIA79] David K. Hsiao, “Data Base Machines Are Coming, Data Base Machines Are

Coming!,” Computer, March 1979, pp. 7-9.

JOYC83] John D. Joyce and David R. Warn, “Command Use in a Relational Data

base System,” AFIPS Proceeding8 National Computer Conference, 1988, pp 247-

253.

OZKA75I E. A. Ozkarahan, S. A. Schuster, and K. C. Smith, “RAP - An Associative

Processor for Data Base Management,” National Computer Conference, 1975, pp.

379-387.

OZKA77I E. A. Ozkarahan, S. A. Schuster, and K. C. Sevcik, “Performance Evalua

tion of a Relational Associative Processor,” ACM Transaction on Database 5ys-
tem8, Vol. 2, No. 2, June 1977, pp. 175-195.

(SU80~ Stanley Y. W. Su, Hsu Chang, George Copeland, Paul Fisher, Eugene Lowenthal,
and Stewart Schuster, “Database Machines and Some Issues on DBMS Standards,”
AFIPS Proceedings National Computer Conference, 1980, pp. 191-208.

VEMU8O] V. Vemuri, R. A. Liuzzi, J. P. Cavano, and P. B. Berra, “Evaluation of

Alternate Data Base Machine Designs,” Proceeding.~ of the Fifthe Work8hop on

computer Architecture for Non-Numeric Processing, March 11-14 1980, pp. 29-38.

WILK81) William Kevin Wilkinson, “Database Concurrency Control and Recovery in

Local Broadcast Networks,” Ph.D. Dissertation, The University of Wisconsin-

Madison, August 1981.

—60—

CALL FOR PAPERS

Committee

Honorary Chairman:

C. V. Ramamoortv

University of California. Berkele~ CA

Gcnefal Chairman:

P. Bruce Berra

Syracuse Univ ersitv Syracuse, NY

(315) 423-4445

Program Chairman:

Gio Wiederhold

Dept. of Computer Science

Stanford Universit~~ Stanford. CA 94305

(415) 497-068.5

Program Co-Chairpe,sons:
Iris Kamen~ SDC, Santa Monica, CA 90406

Ming 1. (Mike) Liu, Ohio State Univ.. Columbus, OH 43210

Richard 1. Shuey, Schenectady. NY 12309

toseph Urban, Univ. S. W. Louisiana, Lafayette, LA 70504

Tutorials: Benj amin Wah, Purdue

Peter Ng, Univ. of Missouri, Columbia, MO

Treasurers:

Lily Chow, IEEE. Sih’er Spring, MD 20910

Aldo Castillo, TRW Redondo Park, CA 90278

Local Arrangements:
Walter Bond, Ca! State Univ. Dominquez Hills, CA 90747

1000 East Victoria Street; (213) S1b-3580’3398

Publicity:
Mas Tsuchi~a. TRW Colorado Springs, CO 80916

1555 North Newport Rd; (303) 570~8376

~ — — — — — — — — — — — —

For further inforrnaLion write to.

Second Data Engineering Conference

c/o IEEE Computer Society
P.O. Box 639

Silver Spring. MD 20901 USA

(301) 589-8142

TWX: 7108250437 IEEE COMPSO

The Second

Data Engineering
Bonaventure Hotel

Los Angeles, California, USA

SCOPE

February 4-6, 1986

Data Engineering is concerned with the role of data and

knowledge about data in the design, development, manage

ment, and utilization of information systems. As such, it en

compasses traditional aspects of databases, knowledge bases,

and data management in general. The purpose of this confer

ence is to continue to provide a forum for the sharing of

experience, practice. and theory of automated data and knowl

edge management from an engineering point-of-view. The

effectiveness and productivity of future information systems

will depend critically on improvements in their design, organi
zation, and management.
We are actively soliciting industrial contributions. We be

lieve that it is critically important to share practical experience.
We look forward to reports of experiments, evaluation, and

problems in achieving the objectives of information systems.

Papers which are identified as such will be processed, sched

uled, and published in a distinct track.

TOPICS OF INTEREST

We also are planning a special workshop track:

Performance models and measurement of relational database

systems

and solicit papers which report or evaluate such findings.

Awards. Student Papers. and Subsequent Publication:

An award will be given for the best paper at the conference.

Up to three awards of 5500 each to help defray travel costs will

be given for outstanding papers authored by students.

Outstanding papers will be considered for publication in the. IEEE

Computer Magazine. the Transactions on Computers, and the Trans

actions on Software Engineering. For more information, contact

the General Chairman.

Paper submission:

Four copies of papers should be mailed before July 1, 1985 to:

Second Data Engineering Conterence

IEEE Computer Society

1109 Spring Street, Suite 30(1

Silver Spring, MD 20911)

(301) 598-8142

C6nference Timetable:

Manuscripts due: July 1. 198’)

Acceptance letters sent: October 1. 1985

Camera-reads’ cop~ due \r,vt’niht’r 15, 1985

Tutorials: February 3, 198ti

Conference: February 4-u. I’lhsi See you in Los Angeles!

1~4q~4 THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC.

r
DATA

ENGINEERING

International Conference on

Sponsored by the • IEEE Computer Society

• Logical and physical data

base design
• Data management

methodologies
• Distribution of data and

information

• Performance Evaluation

• Design of knowledge
based systems

• Architectures for data- and

knowledge-based systems

• Data engineering toots

I
I

I

I
I

I

I

I

I

I

1Name

I
Affiliation

I

I

I

‘4

I

—I
I

•— — — — — — — —

IEEE COMPUTER SOCIETY

—61—

texts are collections of original
materials and reprinted articles

assembled as a coherent package
designed to address a well-defined

area

Tutorial: Supercomputers: Design and Applications
by Kel Hwang
This tutorial introduces state-of-the-art supercomputers and presents

major design issues and typical applications requirements of

high-performance computer systems. The text is designed for

scientists, systems designers, programmers, and educators, as well

as for people who are involved in the research, development, and

application of high-pertorrnance computers. It is intended for novices

as well as for a major reference for computer professionals. Divided

Into five main parts, it covers the following aspects of

supercomputers: systems architecture, technology buses, large-scale
computations, vector processing, language extensions, compiling

techniques, commercial and exploratory systems, parallel algorithms,
resource allocation, important applications, data flow and very

large-scale integration computing, and future trends.

8J511 (ISBN 0-8188-0581-2): August 1984, 648 pp.,

NM, $36.00; M, $24.00

Tutorial: Interconnection Networks for Parallel and

Distributed Processing
by Chuan-lln Wu and Tse-yun Feng
This tutorial serves as a useful guide for beginners and as a major
reference for all computer professionals. It is hoped that readers, after

going through the text, will be able to design interconnection networks

that fit their computer architecture needs, design better algorithms,
write better programs, and trigger a revolution on the system control

concept. It presents fundamentals in interconnection networks, a

crucial topic in the field of parallel/distributed processing.
BJ674 (ISBN 0-8186-0574-X): August 1984, 656 pp.,

NM, $3t00; U, $24.00

Tutorial: Principles of Communication Network Protocols

by Simon S. Lam

This tutorial is a valuable reference for systems engineers and

analysts who desire an understanding of the technical principles that

underlie the design of communication network software and the

performance tradeoffs involved in its design. It is also an excellant

source of supplemental readings for graduate-level courses on

computer communication networks. Divided into seven chapters. it

covers: the fundamentals of computer communication networks, data

link control protocols, multiple access protocols, local area networks,

resource àliocation problems and solution techniques in

store-and-forward networks with point-to-point links, communication

protocols for wide area networks and intemetworks, and mOdels and

methods for protocol verification and construction.

BJ582 (ISBN 0-8186-0582-0): October 1984, 528 pp.,

NM, $36.00; M, $25.l~0

Selected Reprints on Logic Design for Testability
by Constantin C. Timoc

Interest in designing testable digital logic has grown rapidly in the

past decade, therefore, this collection of reprints was carefully

compiled to discuss the current status and growing trends toward

higher levels of integration and to illustrate the considerable effort

required to test the integrated circuits that perform complex logic
functions. Topics include: testability problems, logic and switch

models of physical failures, test generation and fault simulation, serial

and random scan, and built-in self-testing.
BJ573 (ISBN 0-8186-0573-1): August 1984, 324 pp.,

NM, $25.00; M, $18.75

Tutorial: Computer Text Recognition and Error Correction

by Sargur N. Srihari

Designed for computer researchers interested in developing flexi

ble techniquesfor text processing and corn~iJter VisiOn, this tuto

rial is concerned with transferring a degree of intelligence to text

processing systems. In particular, the ability to automatically detect

and correct spelling and typographical errors and to interpret

digitized video images of print and script whose iconic representa

tions (visual symbols) are ambiguous. Organized into four parts: an

introduction to text error correction, the interpretation of print!

script and their postprocessing, spelling and typographical error

correction, and dictionary organization, the papers included have

appeared in a relatively wide context of computing literature and

encompass a fairly wide span of time.

BJ579 (ISBN 0-8166-0579-0): December 1984,363 pp., NM,

$36.00; M, $24.00

*

F
iON A~

~OMPU’TER
SOCIETY
PPESS

~‘u. a LaI~

-

VA4

4

=

Computer Society Press tutorial

VIA
Selected Reprints on VLSI Technologies and Computer
Graphics
by Henry Fuchs

This compilation or reprints is intended for professionals interested in

the intersection of, and the relationship between, computer graphics
and VLSI. Two major areas are represented: the graphical aspects of

VLSI design and the impact of VLSI computing structures on graphics
hardware. This book contains 56 printed articles that are divided into

eight sections covering the following topics: mask level layout;

symbolic layout; floorplanning, placement, and routing; artwork

analysis; algorithms for layout synthesis and analysis; CAD systems
and related graphics issues; and image analysis.
BJ491 (ISBN 0-8186-0491-3): July 1983, 500 pp.,

NM, $36.00; M, $20.00

Tutorial: VLSI—The Coming Revolution in Applications
and Design
by Rex Rice

Providing a broad interdisciplinary perspective on present and

potential uses of VLSI, this tutorial emphasizes economic

considerations rather than covering details of processes. It includes

both historical background and examples of current VLSI programs.

The main portion of the tutorial traces a VLSI design through the

complete processes from system design through a tested computer,

giving particular emphasis to the hazards to be avoided and

discussing available alternatives and economic considerations for

each step.
BJ288 (ISBN 0-8186-0288-0): February 1980, 316 pp.,

NM, $30.00; M, $20.00

Tutorial: VLSI Technologies—Through the 80’s and

Beyond
by Denis J. McGreivy and Kenneth A. Pickar

The semiconductor industry, now in its fourth decade of growth, is

experiencing unprecedented demands from all facets of government,

industry, and science. This has created highly competitive R&D efforts

to reduce physical size of these chips while improving
performance-to-cost characteristics. In this tutorial, an attempt is

made to chart the most probable path of technology evolution in the

integrated circuit industry through the remainder of this decade.

Parameters with which to identify and describe past and future trends

are discussed, and market demands and projections of anticipated

supply are also presented. A detailed discussion of the trends in

various VLSI technologies in which such factors as size, complexity,
and costs, are also examined.

BJ424 (ISBN 0-8186-0424-7): April 1982, 450 pp.,

NM, $30.00; M, $20.00

Tutorial: VLSI Support Technologies (Computer-Aided
Design, Testing, and Packaging)
by Rex Rice

Designed to answer the question of what technologies one needs to

design and to use custom and “semi-custom” VLSI arrays, this tutorial

attempts to provide a single source of information on the three major

concerns of VLSI designers today. For the least expensive and most

expeditious development of VLSI, the author provides bridging
materials to enable designers, implementers, and users to realize the

effects of their activities on other aspects of VLSI design.
BJ386 (ISBN 0-8186-0386-0): February 1982, 480 pp.,

NM, $30.00: M, $18.75

Tutorial: Data Base Management in the 80’s

by James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base management systems
(DBMS) that will be available through this decade. Interfaces available

to various classes of users are described, including self-contained

query languages and graphical displays. Techniques available to data

base administrators to design both logical and practical DBMS
architectures are reviewed, as are data base computers and other

hardware specifically designed to accelerate database management
functions.

B~69 (ISBN 0-8186-0369-0): September 1981, 472 pp.,

NM, $27.00; M, $20.00

Database Engineering, Volume 2

Binding the four 1983 issues of the quarterly newsletter of the

Technical Committee on Database Engineering, this book featured

articles covering such topics as: database systems being marketed by
major vendors in Japan, commercial transaction-processing systems,
various approaches to automating office systems, and expert
systems. Includes 37 papers.
BJ553 (ISBN 0-8186-0553-7): February 1984, 274 pp.,

NM, $20.00; M, $15.00

SELECTED REPRINTS ON VLSI
TECHNOLOGIES AND COMPUTER

GRAPHICS

DATAWEMAN~
IN THE 1980’s

—~-----~

I

0
0

—
r ., —v ‘ .~

‘A~

PUBLICATIONS ORDER FORM
Return with remittance to:

IEEE Computer Society Order Department
P.O. Box 80452

Worldway Postal Center

Los Angeles, CA 90080 U.S.A.

Discounts. Orders, and Shipping Policies:

Member discounts apply on the FIRST COPY OF A MULTIPLE-

COPY ORDER (for the same title) ONLYI Additional copies are

sold at list price.

Priority shipping in U.S. or Canada, ADD $5.00 PER BOOK

ORDERED. Airmail service to Mexico and Foreign Countries,

ADD $15.00 PER BOOK ORDERED.

Requests for refunds/returns honored for 60 days from date of

shipment (90 days for overseas).

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

ALL BOOKS SUBJECT TO AVAILABILITY ON DATE OF

PAYMENT.

ALL FOREIGN/OVERSEAS ORDERS MUST BE PREPAID.

Minimum ecredit card charges (excluding postage and handling).
$15.00.

Service charge for checks returned or expired credit cards,

$10.00.

PAYMENTS MUST BE MADE IN U.S. FUNDS ONLY.

DRAWN ON A U.S. BANK. UNESCO coupons. International

money orders, travelers checks are accepted. PLEASE DO NOT

SEND CASH.

I v~
_

PLEASE SHIP TO:

IHIHHHHHHIHIHHIHIII
NAME

11111111111111111111111111111 Li
AFFILIATION (company or attention of)

I I I I 11111111 I 11111111 I I I I I I I I 0
ADDRESS (Line .

1111111111111111111111111111 I I I
ADDRESS ILine - 2)

Hill lilt IlIiliiiiiiilliiliIIil
CITY/STATE/ZIP-CODE

111111111111111111111(111111111
COUNTRY

IIIIIIIIl(r&luiredfordiscount) 11111111111
IEEE/COMPUTER SOCIETY MEMBER NUMBER PHONE/TELEX NUMBER

liii I HI I I II I 111111]
PURCHASE ORDER NUMBER AUTHORIZED SIGNATURE

QTY
ORDER

NO.
TITLE/DESCRIPTION

M/NM

PRICE
AMOUNT

If your selection is no longer SUB TOTAL $

in print, will you accept CALIFORNIA RESIDENTS ADD 6% SALES TAX $

microfiche at the same price7 HANDLING CHARGE (BASED ON SUB-TOTAL) $

LI Yes LI No OPTIONAL PRIORITY SHIPPING CHARGE $

TOTAL $

METHOD OF PAYMENT (CHECK ONE)

LI CHECK ENCL. LI VISA LI MASTERCARD LI AMERICAN EXPRESS

III IllIlIllIti III 11111
CHARGE CARD NUMBER EXPIRATION

DATE

SIGNATURE BJ

ORDER HANDLING CHARGES (based on the $ value

ot your order—not including sales tax and postage)

For orders totaling:
$ 1.OOto$ 10.00

$ 10.01 to $ 25.00

$ 25.01 to $ 50.00

$ 50.01 to $100.00

$100.01 to $200.00

over $200.00

Add:

$ 3.00 handling charge

$ 4.00 handling charge

$ 5.00 handling charge

$ 7.00 handling charge

$10.00 handling charge
$15.00 handling charge

I

Non-profit
Organization
U.S. Postage

Paid

Silver Spring, MD
Permit No. 1398

IEEE COMPUTER SOCIETY

Administrative Office

P.O. Box 639

Silver Spring, Maryland
20901

	40979_DataEngineering_Mar1985_Vol 8_No1.pdf

