MARCH 1985 VOL. 8 NO. 1

a quarterly bulletin
of the IEEE computer society
technical committee

Batabase
Engineernn

Contents

Letter fromthe Editor. 1

Benchmarking Database Systems: Past Efforts and Future Directions 2

D.J. DeWitt

Tips on Benchmarking Data Base Systems 10
M. Stonebraker

Variationson a Benchmark i i i 19
P. Hawthorn

Benchmarking Database Systems in Multiple Backend Configurations 29
S. Demurjian and D.K. Hsiao

Transaction Acceleration. i i 40
T. Chou and J. Gray

Transaction Oriented Performance Analysis of Database Machines. 53
M. Eich

Special Issue on DBMS Performance

Chairperson, Technical Committee
on Database Engineering

Prof. Gio Wiederhold

Medicine and Computer Science
Stanford University

Stanford, CA 94305

(415) 497-0685

ARPANET: Wiederhold@ SRI-Al

Editor-in-Chief,

Database Engineering

Dr. David Reiner

Computer Corporation of America
Four Cambridge Center
Cambridge, MA 02142

(617) 492-8860

ARPANET: Reiner@CCA

UUCP: decvax!ccalreiner

Database Engineering Bulletin is a quarterly publication of
the IEEE Computer Society Technical Committee on Database
Engineering. Its scope of interest includes: data structures
and models, access strategies, access control techniques,
database architecture, database machines, intelligent front
ends, mass storage for very large databases, distributed
database systems and techniques, database software design
and implementation, database utilities, database security
and related areas.

Contribution to the Bulletin is hereby solicited. News items,
letters, technical papers, book reviews, meeting previews,
summaries, case studies, etc., should be sent to the Editor.
All letters to the Editor will be considered for publication
unless accompanied by a request to the contrary. Technicatl
papers are unrefereed.

Opinior:s expressed in contributions are those of the indi-
vidual author rather than the official position of the TC on
Database Engineering, the |EEE Computer Society, or orga-
nizations with which the author may be affiliated.

Associate Editors,
Database Engineering

Dr. Haran Boral

Microelectronics and Computer
Technology Corporation (MCC)

9430 Research Blvd.

Austin, TX 78759

(512) 834-3469

Prof. Fred Lochovsky

Department of Computer Science
University of Toronto

Toronto, Ontario

Canada M5S1A1

(416) 978-7441

Dr. C. Mohan

IBM Research Laboratory
K55-281

5600 Cottle Road

San Jose, CA 95193
(408) 256-6251

Prof. Yannis Vassiliou

Graduate School of
Business Administration

New York University

90 Trinity Place

New York, NY

(212) 598-7536

Mempership in the Database Engineering Technical Com-
mittee is open to individuals who demonstrate willingness to
actively participate in the various activities of the TC. A
member of the IEEE Computer Society may join the TC as a
full member. A non-member of the Computer Society may
join as a participating member, with approval from at least
one officer of the TC. Both full members and participating
members of the TC are entitled to receive the quarterly
bulletin of the TC free ot charge, until further notice.

Letter from the Editor

The proliferation of Relational Database Management
Systems offerings in the marketplace in the past few years
has forced users of such systems to seek for means to
evaluate their performance. For obvious reasons, and
despite its many shortcomings, the technique of benchmark-
ing has become the basis for all such evaluations. A
number of such benchmarks have been developed and others
are most likely under development (for examples see refer-
ences in the papers).

For this issue of DBE we asked several of the "known"
researchers in the area of performance evaluation of DBMSs
to submit papers that summarize their present work in the
area. The result is a collection of six papers. Roughly
speaking, three general themes are addressed in the
papers: a reflection on past work leading to a list of
"lessons learned" (the papers by DeWitt and Stonebraker),
further use of the existing benchmarks to examine the per-
formance of systems (papers by Hawthorn and Demurjian &
Hsiao) and, discussions of new metrics and techniques for
evaluating the performance of DBMSs (papers by DeWitt,
Chou & Gray, and Eich).

Several other papers were submitted to this issue but
were not included because they dealt with the evaluation
of the performance of some specific component of a DBMS
(such as scheduler in a distributed system or the con-
currency control mechanism). I was hoping that we'd be
able to have a paper detailing the results of the "Great
French Database Machine Competition" (which pits five or
six database machines against one another wusing the
Wisconsin benchmark (see DeWitt's paper in this issue)),
but unfortunately the results are still not available due
to the rescheduling of the "contest" date.

I wish to thank the contributors to this issue for

their excellent papers and for keeping to themselves any
gripes about the unrealistic deadlines I set.

Haran Boral
February 1985

Upcoming Issues
6/85 Concurrency Control and Recovery in DBMS's (Mohan)

9/85 Natural Languages and Databases (Vassiliou)
12/85 Object Oriented Systems and DBMS's (Lochovsky)

-1-

Benchmarking Database Systems:
Past Efforts and Future Directions

David J. DeWitt
Computer Sciences Department
University of Wisconsin

1. Introduction

During the past two years we have developed a strategy for benchmarking database management sys-
tems and machines - [BITT83, BORA84]. At the present time our set of single user benchmarks [BITT83)
has been used by over 30 vendors and customers of relational products. For better or worse, it has emerged
as the standard set of single user benchmarks. To date. this benchmark has been applied to Unify, Oracle.
INGRES. SQL/DS. RDB. to the IDM 500 and DIRECT database machines. and a number of other unan-
nounced software and hardware products.

In Section 2. we review our present single user and multiuser benchmarking methodology. Section 3
contains a number of open research areas that we are currently exploring. Our conclusions are presented in
Section 4.

Those of vou who were hoping for a new set of numbers will be disappointed with this paper. While
we had hoped to do exactly that. we have not yet succeeded in getting a copy of. or access to. each of the key
products. While certain vendors have been quite helpful, others have remained reluctant to cooperate. Evi-
dently, bad numbers translate into poor profits. Based on the number of requests we receive each month for
updated numbers. there is clearly a market for this information. Perhaps what is needed is an EPA Testing
i.ab or Consumers Union for benchmark numbers.

.. Overview of the Wisconsin Benchmark Methodology

In this section. we present an overview of the methodology that we have developed for benchmarking
rclational database systems and machines. First we describe the synthetic database that is used as the basis of
our all tests. Second. our strategy for constructing a single user benchmark is presented. Finally, we
describe our approach for multiuser tests of a database system. For more details the reader is encouraged to
examine [BITT83] and [BORAB4].

2.1. Svnthetic Database Design

A key component of our benchmarking methodology is a synthetic database. Such databases ([BITT83]
and [BODGS83])) can be easily generated by programs and have a number of advantages over "real” databases.
First. a synthetic database makes it quite simple to specify a wide range of retrieval and/or update queries and
to control the sizes of the relations resulting from these queries. With a “real” database, getting a selection
query that retrieves precisely 10% or 50% of the tuples in a relation is difficult and sometimes impossible.
Furthermore. specifying such a query requires one to either know a good deal about the semantics of the
data in the database base or execute a bunch of trial queries. A second advantage of a synthetic database is
that the distribution of attribute values is under the control of the program generating the database. With
“real” data. one has to deal with very large amounts of data before it can be safely assumed that the data
values are randomly distributed. In addition, while we have, to date. only experimented with uniform distri-
butions of attribute values, experimenting with non-uniform distributions would be straightforward.

The benchmark database is designed so that a naive user can quickly understand the structure of the
relations and the distribution of each attribute value. The attributes of each relation have distributions of
values that can be used for partitioning aggregates, controlling selectivity factors in selections and joins, and
varying the number of duplicate tuples created by a projection. It is also straightforward to build an index
(primary or secondary) on some of the attributes, and to reorganize a relation so that it is clustered with
respect to an index. ’

-2-

There are four "basic” relations in the database. We refer to them as "thoustup”, "twothoustup”,
"fivethoustup”. and “tenthoustup” as they contain, respectively, contain 1000, 2000, 5000, and 10000
tuples. A fragment of the thoustup relation is shown in Figure 1. All the tuples are 182 bytes long. Thus,
the four relations occupy approximately 4 megabytes of disk storage. However, in order to build queries that
operate on more than one operand relation. we often generate two or more relations of the same size. The
attributes are either integer numbers (between O and 9999), or character strings (of length 52 characters).
The first attribute (“uniquel”) is always an integer number that assumes unique values throughout the rela-
tion. We have made the simplest possible choice for the values of "uniquel”. For example, for the thoustup
relation, uniquel assumes the values 0, 1. ... 999. For the relations with 10,000 tuples, the values of
"uniquel” are 0,1, 9999. The second attribute "unique2" has the same range of values as "uniquel”.
Thus both "uniquel” and "unique2” are key attributes. However. while we have used a random number
generator to scramble the values of “uniquel” and "unique2”. the attribute "unique2” is often used as a sort
key. When relations are sorted. they are sorted with respect to this attribute. When we need to build a
clustered index, again it is an index on "unique2”.

A Fragment of the Thoustup Relation
(some attributes have also been omitted)

uniquel | unique2 | two | ten | hundred | thousand

378 0 1 3 13 615
816 1 0 4 4 695
673 2 0 6 26 962
910 3 0 2 52 313
180 4 (] 0 20 74
879 5] 9 29 447
557 6 1 7 47 847
916 7 0 4 54 249

73 8 0 6 26 455
101 9 0 2 62 657

Figure 1

As an example of how this database can be used. we may execute the following INGRES query to
observe the effect of a primary index on a selection that retrieves 10% of the twothoustup relation:

range of t is twothoustup
retrieve (t.all) where t.unique2 < 200

After the "uniquel” and "unique2” attributes come a set of integer-valued attributes that assume non-unique
values. ‘The main purpose of these attributes is to provide a systematic way of modeling a wide range of
selectivity factors. Each attribute is named after the range of values the attribute assumes. That is, the
"two”, "ten”. "twenty”, "hundred”,..., "tenthous” attributes assume. respectively. values in the ranges
(0.1, (0.1..... 9). (O.1..... 19). (0.1....,99),(0,1..... 9699). For instance. each relation has a "hun-
dred” attribute which has a uniform distribution of the values O through 99. Depending on the number of
tuples in a relation. the attribute can be used to control the percentage of tuples that will be duplicates in a
projection or the percentage of tuples that will be selected in a selection or join query. For example, in the
twothoustup relation. the "hundred” attribute can be used for projecting into a single attribute relation where
95% of the tuples are eliminated as duplicates (since only 100 values are distinct among the 2000 attribute
values). The INGRES statement for this query would be:

range of t is twothoustup
retrieve (t.hundred)

The same "hundred” attribute can be used for creating 100 partitions in aggregate function queries. For

-3~

example. we may query for the minimum of an attribute that assumes values randomly distributed between O
and 4999 ("fivethous"”), with the relation partitioned into 100 partitions:

range of t is twothoustup .
retrieve (minvalue = min(t.fivethous by t.hundred))

2.2. Single User Methodology

Once a synthetic database has been constructed and loaded, the next step is to run a set of queries
which measure the cost of executing each of the standard relational database operations. Our set of queries
includes the following tests:

(1) Selection queries with different selectivity factors.

(2) Projection with different percentages of duplicate tuples.
(3) Queries involving single and multiple joins

(4) Simple aggregates and aggregate functions.

(5) Single tuple updates: append. delete. modifv.

Three variations of each query are generally run: firsi. without any applicable index. second. with a primary
(clustered) index on-the appropriate attribute. and. finaliv. with a secondary (non-clustered) index.

Some partial results from the single user tests of the IDM 500 database machine (with a database
accelerator) are shown in Table 1. It should be clear from these numbers that our set of single user bench-
marks is. itself. capable of generating a wide range of loads on a database system.

We consider conducting single user benchmarks to be a crucial first step in any benchmarking effort.
First. in a number of cases the single user benchmarks have uncovered various performance anomalies. If a
particular system does not provide satisfactorv performance for a type of query (e.g. ad-hoc joins on large
relations) which constitutes a high percentage of the queries to be executed by the target application. there is
no point in performing multiuser benchmarks on such a system. Second. single user benchmarks provide
information on the resources required by different queries. As will be described below. we use these results
in developing a multi-user béenchmark for a particular system.

One might have noticed that. for the most part. our single user methodology evaluates the performance
of each operator individually. Only in the case of join queries do we consider more than one operator at a
time. There are a couple of good reasons for doing this. First. we can isolate the cost of each operator. If
instead we considered onlv complex queries (e.g. queries with both joins and selections). it becomes difficult,
if not impossible. 1o understand the results. The other motivatiori for considering each operation in isolation
is use the results to predict the performance of a system for a particular application by weighting the response
time of each operator according 10 its frequency of use in the target application. If one just tested complex
queries. such an extrapolation would be impossible.-

This is not to say that testing complex. single user queries is not important. In conducting benchmark
tests it is quite important to insure that the query optimizer works properly. For example. specifying the join
operations before the selection operations in a query enables one to test whether the query optimizer has any
intelligence at all. We found that several of the systems we tested were not even smart enough to reorder the
operations in a query to do selections first.

2.3. Multiuser Methodology

Three key factors affect the performance of a database system in a multiuser environment: the mul-
tiprogramming level. the mix of queries running concurrently. and the degree to which these queries access
the same portion of the database. This last factor. which we term "degree of data sharing” can have two dif-
ferent effects on performance. If all the concurrently executing queries are retrieval queries, then a high-
degree of data sharing should increase throughput due to buffer pool hits. On the other hand, a high degree
of data sharing will result in a reduction of throughput when updating transactions are run concurrently with
retrieval transactions (as the result of conflicts for access to shared data pages).

—4-

Table 1

Query Query Response Time CPU Usage # of Disk
(seconds) (seconds) Operations
1 Select 1 tuple from 10.000 0.7 0.18 2-3

using a clustered index

2 Select 100 tuples from 10.000 1.5 0.56 11
using a clustered index

3 Select 100 tuples from 10.000 3.3 0.90 91
using a non-clustered index

4 Select 1000 tupies from 10.000 8.7 5.90 104
using a clustered index

5 Select 1000 tuples from 10.000 23.7 8.67 696
using a non-clustered index

6 Min Scalar aggregate operation 21.2 9.83 1.011
on 10.000 tuple relation

7 Min Aggregate function on 10.000 38.2 35.62 1.008
tuple relation (100 partitions)

8 Join 10.000 tuples with 1.000 27.6 18.96 206
tuples using a clustered index
on join attribute of 10.000
tuple relation

9 Select 1000 tuples from 10.000 23.4 18.88 207
using a clustered index followed
by a join with a 10,000 tuple
relation using a clustered index

10 Select 1,000 twples from 10,000 34.8 107.21 306
Select 1.000 tuples from 10,000
Join two 1.000 tuple relations to
form a 1,000 tuple relation which
is then joined with another 1,000
tuple relation

The hardest part of developing a methodology for multiuser benchmarks is devising a small set of
representative queries to test. We found by partitioning the consumption of CPU and I/O resources into
"low"” and "high” levels, that we were able to reduce the number of queries needed to test a system to four
basic query types:

Type 1 - low CPU utilization. low disk utilization

Type 11 - low CPU utilization, high disk utilization
Type III - high CPU utilization, low disk utilization
Type IV - high CPU utilization. high disk utilization

For the Britton-Lee database machine. we selected queries 1, 3, 8. 7 from Table 1 as being representa-
tive of Types I, II. III, and IV respectively. In [BORA84], we show that these four query types are sufficient
to achieve a throughput difference of three orders of magnitude. Figure 2 provides an illustration of how data
sharing and multiprogramming level affect system throughput for Query type II.

nm=xmcCo

OZzO0Nmw

3. Future Research Directions

1.6 7

100% Data Sharing

o~ s

0% Data Sharing

0.0

Y ™ T v T LS T L T T T T T nl

23 4 S 6 7 8 91011 1213 14 15 16
MULTIPROGRAMMING LEVEL

Figure 2

In this section we outline what we think are some important areas to explore in developing a more com-
plete methodology for benchmarking database systems. We have divided this list into two categories: those
that deal with single user tests and those dealing with multiuser issues.

3.1. Single User Research Issues

One pressing issue to explore is to examine under what conditions (if any) can results from single user
benchmarks be extrapolated to predict the performance of more complex queries associated with a particular

application.

The first step in answering this question would be to take application specific queries and

transform them into "equivalent” queries on the synthetic database. After being run, one would look to see
whether one could have predicted the execution time by combining (in some way) the execution times of the

-6~

component operations. Another approach to looking at this problem would be to compare the performance of
the "real” application queries on the "real” database with the results obtained by combining numbers from
synthetic tests on the "real” database.

A second, unexplored area is the impact of non-uniform distributions of attribute values. That is, if
you are retrieving 10% of the tuples in a relation does it make any difference whether the attribute values of
those tuples are uniformly distributed or not? It seems fairly obvious that if no indices are involved then it
should not make any difference. Differences in performance may, however. occur if an index is being used.

Our gut feeling is that there would not be any difference if a self-balancing index mechanism were used’
(e.g. a B-tree) but that there might be a difference if a poorly organized ISAM structure were being used.
One would obviously want to examine the impact on the other relational operations.

A third single user project would be to examine the effect of tuple size on performance. To date, all of
our tests have used 182 byte tuples. In [BODGS83]. a number of tests using varyving tuple sizes were con-
ducted on the IDM 500. As one might expect. these results indicate that when one keeps the number of
tuples produced by a query constant and increases the tuple width. the response time increases in pretty much
a linear fashion. The degree of the increase should depend on the extent to which the system is I/O bound.
If 1/0 can alwavs be overlapped with the CPU. then the degree of the increase should be proportional to the
cost (in CPU time) of initiating an I/O operation relative to the cost (in CPU time) of processing the page.
While the increase in response time in a single user mode might be relatively small. throughput in a mul-
tiuser environment would alwavs be more directly affected. A interesting variation would be to keep the
volume of data accessed from disk fixed. while varying the selectivity factor and the tuple size.

Another single user project is to further refine the ability of the benchmark to isolate the "faulty” com-
ponents of a database svstem. For example. when testing SQL/DS on a 4341. we once saw a particular
query run in a couple of minutes. After we did some vendor-suggested phvsical database reorganization (ie.
how relations and their indices were laid out on disk). the same query took 9 hours. Had we never seen the
2 minute time. we would have tended to suspect either a bug or a poor join algorithm. As it turned out. the
database reorganization caused the query optimizer to change its mind about what join algorithm to use.
What seems to be needed is a benchmarking methodology that can check out the components of the system
independently of one another. This "isolation” strategy would make it possible to evaluate and test the com-
ponents individually.

3.2. Multiuser Experiments

A number of challenging multiuser research projects are also possible. The first is to simplify the
present multiuser methodology. The results published in |BORAB4] required well over 100 hours of stand-
alone time on both an IDM 500 and a host processor. While the resulis obtained are interesting. it is simply
not clear that all four query types are needed to stress a database system adequately. Since the principal goal
of the multiuser benchmarks is to explore the behavior of a svstem under load. it might instead be sufficient
1o run a very large number of simple queries simultaneously. This is the approach suggested in [ANONS5].
While pushing both CPU and I/O utilization levels to 100% is the goal of the multiuser tests. there may be
cases when pushing each one as separately as possible to 100% vields more information about the behavior of
the system. One potential drawback that we see with this approach is that by using simple debit/credit queries
as the basis of such a benchmark. one may miss testing the ability of the buffer manager to properly handle
complicated access patterns.

An extension to this effort would be to develop a portable multiuser benchmark. While the methodol-
ogy described above can itself be applied to any relational database system or machine. the type of a particu-
lar query may vary from system to system depending on the algorithms used on each system. One motivation
for using a simple/debit credit transaction as the basis for the multiuser benchmark described in [ANONS85]
was to insure portability across systems. While this is an appropriate benchmark for transaction processing
systems. it may not be an acceptable benchmark for more sophisticated relational database systems.

! Unless one or more leaf pages had a number of overflow pages that were not physically clustered near the leal page. In this
case, the extra seeks might result in a slight difference in performance.

-7~

Techniques for throughly testing the concurrency control and recovery mechanisms of a database sys-
tem also need to be developed. In [BORAS84], one experiment was conducted in which transactions that
updated a single tuple were run concurrently with transactions that retrieved a single tuple. With a multipro-
gramming level of 16 and a database consisting of 10,000 tuples, conflicts between transactions were very
infrequent even though the updating transactions modified an attribute on which a primary index existed. To
thoroughly evaluate a concurrency control mechanism two tests need to be developed. First is a method of
generating a range of conflicts between concurrently executing transactions. One possibility would be to run
a single bulk-update transaction concurrently with a number of read-only transactions. By varying the per-
centage of the database updated. one should be able to vary the number of conflicts generated. An alterna-
tive approach would be to reduce the size of the relation to just a few tuples and continue to use transactions
that do single tuple updates.

For database systems that use locking for concurrency control. a way of testing the deadlock resolution
mechanism is also needed. The following approach looks promising. Consider two types of transactions:
one which uses a clustered index to access tuples which are then updated by modifying a non-indexed attri-
bute. The second type uses a non-clustered index to access the tuples to be modified. When transactions of
the first type are run concurrently. no-deadlocks should occur as data pages will be accessed once and in
"kev" order. The conflict rate between transactions will depend on the multiprogramming level. the size of
the relation. and the number of data pages accessed by each of the queries. When transactions of the second
type are run concurrently. deadlocks will occur as data pages will accessed in random order and. possibly.
multiple times. By varying the number of data pages accessed. one will be able to control both the conflict
rate and the deadlock rate. By comparing the thropghput of the first case with that of the second. one should
be able to access how well a system handles deadlocks.

With regard 1o recovery. measuring two aspects looks appealing. The first project would be to meas-
ure the cost of gathering recovery information. One should be able to do this by simply turning the recovery
manager off. Determining this cost as a function of the percentage and size of the updating transactions
would be interesting. A second project would be to determine the cost of transaction aborts on system
throughput by varying the rate at which updating transactions simply exit instead of committing.

3.3. Other Projects

Given the results (ie. response time, cpu utilization, and disk utilization figures) of a set of single user
benchmarks. it would be nice to be able to dispense with most of the multiuser benchmarks and instead use
an analytical model to predict the multiuser behavior of a database system. Recently we have been examining
internal measurements from our multiuser benchmarks on the IDM 500 in an attempt to determine exactly
what details need to be captured by such a model. Preliminary results indicate that building such a model
may be complicated as the multiuser characteristics of the buffer manager seems to have a significant effect
on the throughput of the system. Life becomes even more complicated if one wants to predict multiuser
behavior with updating transactions. It may be that models of concurrency control and recovery mechanisms
could be adapted to help in this case.

So far we have only addressed single site database systems. Mechanisms for testing distributed database
systems will obviously be needed in the future. While some of the single site techniques should be applicable
to distributed systems, it seems apparent that a new set of techniques will needed for these systems.

4. Conclusions

In this paper we have surveyed our earlier work on database system performance evaluation. While
our single user and multiuser techniques have become widely used, these tools are just the first of a number
of tools that are needed. While the present tools help determine overall system performance, they are not
adequate for isolating exactly which components are “faulty”. In addition, they do not do an adequate job of
stressing the concurrency control and recovery components of a system.

5. Acknowledgments

A number of the ideas in this paper have been stolen from others. Unfortunately. I cannot remember
who made exactly what suggestions as some number came during presentations of the various benchmarking
papers. Mike Carey and Mike Ubell are certainly two of the contributors. Dina Bitton, Haran Boral. and
Carolyn Turbyfill deserve recognition for the key roles they played in developing the current benchmarking
tools.

6. References

[ANONS85]) Anon Et. Al, "A Measure of Transaction Processing Power.” to appear. Datamation, Feb 15,
1985.

[BOGD83] Bogdanowicz, R., Crocker. M., Hsiao. D.. Ryder, C.. Stone. V.. and P. Strawser. "Experi-
ments in Benchmarking Relational Database Machines,” Database Machines. Springer-Verlag,
1983.

[BITT83]) Bitton, D.. DeWitt. D. J.. and C. Turbyfill. "Benchmarking Database Systems: A Systematic
Approach.” Computer Sciences Department Technical Report #526. Computer Sciences Depari-
ment. University of Wisconsin. December 1983. This is a revised and expanded version of the
paper that appeared under the same title in the Proceedings of the 1983 Very Large Database
Conference. October. 1983.

[BORAS84] Boral H. and D. J. DeWitt. "A Methodology for Database Svstem Performance Evaluation.”
Proceedings of the 1984 SIGMOD Conference. Boston. MA.. June 1984.

[IDM500] IDM 500 Reference Mamial. Britton-Lee Inc.. Los Gatos. California.

{STRAS83] Strawser. Paula. "A Methodology for Benchmarking Relational Database Machines.” Ph.D.
Dissertation. Ohio State University, December 1983,

TIPS ON BENCHMARKING DATA BASE SYSTEMS

by

Michael Stonebraker
Relational Technology, Inc.
2855 Telegraph Ave.
Berkeley, CA

ABSTRACT

This paper oontains a collection of suggestions to persons considering
benchmark evaluation of data base systems (DBMS) and summarizes my
experience with benchmarking studies over the past several years. These
suggestions include comments on published benchmark scripts, issues to
consider, and pitfalls to avoid.

1. INTRODUCTION

Many potential DBMS users benchmark the commercial offerings of vendors of
data base systems, and base their purchasing decision in part on the
results of such benchmarks. Since the available products differ widely in
performance and ease of use, this tactic is often a useful one. Benchmarks
should measure query/update performance, as well as ease of application
development. When planning and conducting a benchmark, one must make
decisions regarding the choice of what to benchmark (the benchmark
script), the person who does the benchmark, the person who tunes the
benchmark for performance, and how to evaluate the result. This paper
summar izes my thoughts on these questions.

2. TYPE OF BENCHMARK

The first issue is whether to do a single-user benchmark (in which a
collection of commands are timed as if they were submitted sequentially by
a single user) or to perform a multi-user benchmark. Of oourse, a

multi-user benchmark is much harder to construct and often much harder to
evaluate than a single-user one.

SUGGESTION 1: Perform a multi-user benchmark unless you truly have a
single-user environment.

A multi-user benchmark tests two features of data base systems which are
not evaluated by a single user benchmark. First, the concurrency control
facilities of the various vendors differ widely in function and
performance. Locking is the concurrency control mechanism used to guarantee
data consistency during reads and updates by multiple users simultaneously.
Differences include the locking granularity used by the vendor for read
operations (e.g. records, pages, relations, whole data base), the locking
granularity for updates, the locking granularity for schema modifications
(e.g. adding or dropping an index), how deadlock detection and resolution
is accomplished, and whether there is support for multiple lock
granularities and lock escalation. (On commands which touch many records,
it is more efficient to lock larger objects. Hence when the discovery is
made that a data-intensive command is being processed, it is beneficial to

=10~

exchange any smaller locks that have already been set for a single larger
enclosing lock.)

For example, if a vendor chooses to lock a whole relation when tuples in
that relation are modified, then updates are effectively single-threaded
because locks must be held to the end of a transaction. As a result of a
single-user benchmark, a potential user will not be made aware of important
shortcomings such as this one.

Another problem with single-user benchmarks concerns system performance. In
many data base systems, there 1is a considerable difference between
performance in single-user and multi-user environments. This results from
buffer management issues (such as read-ahead and write-behind tactics) and
consumption of system resources.

A data base system which expects to be used in a milti-user environment
will often not be concerned with optimizing read-ahead and write-behind for
a single user. Such a system would not attempt to read pages from the disk
in advance of their being requested by a user (read-ahead), nor would it
attempt to queue write requests for a user (write-behind). Rather, it would
be more concerned with optimization of concurrency control, crash recovery,
and increasing the average number of transactions per second that can be
run in a multi-user environment. Such a system, when run in a single-user
environment, will either be in page-wait status (waiting for an I/0
operation to complete) or it will be executing code on behalf of that user.
No CPU activity will be overlapped with I/0 activity in a single-user
environment. Moreover, it can excute the concurrent commands of two users
in about the same amount of time as the coomand of a single user. This
results from overlapping the CPU activity of one user with the I/O activity
of the second. Hence, a single user benchmark will often understate the
amount of work that can be accomplished in a multi-user environment, and a
user will not get an accurate picture of resource consumption.

3. THE BENCHMARK SCRIPT

One next has to face the issue of what commands to put in the benchmark.
There are four choices:

1) use a canned benchmark such as the one in [BORALS4]
2) have a vendor choose the benchmark

3) create an artificial benchmark

4) use a real application

SUGGESTION 2: Use a real application if possible.
The best choice for a benchmark script is a real application from your
environment. We discuss the drawbacks of the other options first, and then
comment on the benefits of a real application.
The first option is to use a canned benchmark. The one in [BORAL84] (the
Wisconsin benchmark) is widely suggested as a reasonable candidate;
however, it suffers from two flaws:

1) It has no floating point operations.

Data base systems differ widely in their support for floating point

-11-

operations. Some systems simulate floating point operations in software
using decimal numbers as a storage mechanism. Others use the available
floating-point hardware to support a built-in floating point data type. The
latter option is dramatically faster than the former, and one will not be
made aware of this difference from the Wisconsin benchmark.

2) It has no copy operations or schema modifications.

Many installations spend a considerable amount of time loading and
unloading data .sets and building and changing schemas. One will get no
information on the performance of such functions from the Wisconsin script.
Moreover, one will not be made aware of any concurrency control
deficiencies in schema modifications (such as the choice by some vendors to
lock the whole data base on schema changes) from the Wisconsin test suite.

A second general benchmark has been suggested by Jim Gray and is in draft
state [GRAY84]. This script is appropriate only for production transaction
processing systems and includes the well known TPl banking transaction. TPl
contains three update commands and one append command each affecting a
single record. These commands simulate the action of a bank teller cashing
a check for a customer. TPl is largely a test of the concurrency control
and crash recovery facilities of a data base system and its overhead on
single record interactions. This script is reasonable for some production
transaction processing applications, but will not be helpful in any
environment which contains decision support functions.

It would be great to have a single (or even a small number) of general
purpose scripts (the whetstones of data base management), and I applaud the
initial efforts in this direction by the above authors. However, the above
comments point out the difficulty of creating a general purpose benchmark
that will test all of the aspects of a data base system that many potential
clients would want to test. Hence choosing a canned script may not be a
suitable option at the current time.

The problem with allowing the vendor to choose the benchmark (option 2) is
that almost all data base systems excel at some collection of commands.
Most vendors have had enough benchmarking experience to recognize this set
of interactions and can easily choose a winning benchmark. Therefore, this
option is only desirable if you have already selected a vendor's data base
system.

The third way to construct a benchmark script is to choose an artificial
benchmark. Unfortunately, this benchmark is arbitrary, and a losing vendor
will complain that it is biased and suggest changes. In all probability,
the vendor will complain to you, to your boss, and to your boss' boss.
Hence, you will have to mediate ocomplaints of unfairness and perhaps
dynamically adjust the composition of the script.

A script from a real application is free from any possible criticism
concerning arbitrariness; moreover, it will provide a good indication of
how one's problems will run on a particular vendor's system. The only
consideration is that the benchmark must be relatively simple if the
vendors will be required to program it. If the benchmark requires several
person-weeks to code, one will guarantee that only the very large vendors
can afford to execute the test. But why not do it yourself to test the
product's ease of use, documentation completeness, and vendor technical

-12-

support?
4. RUNNING THE BENCHMARK

The next issue concerns who will run the benchmark. There are three
choices:

1) the vendor can run the benchmark on his machine
2) the vendor can run the benchmark on your machine
3) one can run his own benchmark

SUGESSTION 3: If at all possible, run the benchmark yourself.

There are a multitude of reasons for choosing this option. First, if the
benchmark is run on the vendor's machine, the results may not be
reproducible in your environment. There are many innocuous reasons for this
behavior; disk drives differ in speed, configurations are different, etc.
Moreover, a vendor may be tempted to use his 1latest "about to be
Beta-tested" version of his system. This system may not be available to you
for several months.

Another disadvantage of this approach is that a vendor can subtly change
the benchmark to improve its performance. For example, most systems will
execute retrieval operations faster if the output is not sorted and
duplicate records are not removed. In addition, all systems go faster if
the output is thrown away rather than printed or delivered to an
application program. If one's benchmark is not precise on all these points,
a vendor is free to choose the option which executes fastest in his
environment.

In addition, some vendors have systems which generate a query processing
plan for <complex <queries by examining the clauses in the query
qualification from 1left to right. Hence, performance will differ
dramatically depending on the order of the clauses in a complex
qualification and query performance will be data dependent. If the wvendor
runs the benchmark, he is at liberty to rearrange the qualifications to
improve performance. A client does not find out about such shortcomings
with -vendor run benchmarks. Ideally, you want to select a system in which
the performance does not depend on the expertise of the person writing the
queries.

The second option is to ask each vendor to run the benchmark at your site.

Most vendors will respond by having their 1local technical sales support
person do the benchmark, or by sending in a special "swat team".

The problem with a swat team is that such specialists disappear when the
benchmark is over, and their tactics are not necessarily ones that you will
have the expertise (or desire) to use. The following are tactics which I
have seen swat teams use:

1) divide a relation into 26 physical data sets, one for each letter of the
alphabet. This vendor had a concurrency control scheme which locked whole
relations on update. With this scheme multiple concurrent updates could be
processed as long as they specified different first letters for an
indicated key. Of course, this precludes the possibility of performing
aggregates on this relation; unfortunately there were none in the benchmark

-13-

to preclude the use of this tactic.

2) rewrite queries to take advantage of formats the optimizer can use. For
example, the query language SQL has two ways of expressing joins, as nested
queries .

select sname

from supplier

where s# in
(select s#
from supplier parts
where p# = 2)

- and as flat queries

select supplier.shame
where supplier.s# = supplier parts.s# and
supplier parts.p# = 2

In some vendor products, the query optimizer can not optimize the nested
query format, so vendors will rewrite those queries as flat queries when
measuring performance - even though these same vendors emphasize their
nested query feature.

Of course, if a vendor chooses to have his local sales support people
perform the benchmark, they may well use similar tactics. Hence, a user
should always be on the lookout for the use of such programming stunts and
disallow them. The one advantage to using local support people rather than
a swat team is that a user can evaluate the competency of the people who
will assist him after the sale.

The best option is to run one's own benchmark. In following this course of
action, the user obtains a great deal more information on a vendor's
product than with either of the previous options. In particular, one can
test the ease of installation of the system, test the reliability of the
software, and discover the quality of the system documentation. Moreover,
one discovers how easy it 1is to write applications on the system. For
example, one client elected to test two systems by having two different
employees program and run the benchmark on the two data base packages being
compared. One product required one-third of the programming time of the
secord because of subtle restrictions in one programming language
interface. Such valuable information results only from internally run
benchmarks. Lastly, one can ascertain the responsiveness of the technical
support from each organization involved in the benchmark. It appears that
various vendors differ widely in how much energy they invest in ensuring
that users get helpful, accurate, and prompt answers to their problems.

5. WHO TUNES THE BENCHMARK

Among the tuning options:

1) no tuning

2) user tunes the benchmark with no assistance

3) user tunes the benchmark with vendor assistance
4) vendor tunes the benchmark

—14—

SUGGESTION 4: Choose option 3 if possible.

One client executed a benchmark between two systems with no tuning of
storage structures whatsoever. The reasoning was to simulate the behavior
of a naive user who might not consider performance tradeoffs. The problem
with this approach is that several orders of magnitude in performance
differentiate optimized and unoptimized storage structures. The default
storage structures of any particular system (e.g. heap, keyed on the first
field, etc.) may or may not work well for any particular script. Hence,
performance of any particular system is effectively a random variable. This
is no way to evaluate DBMS performance!

The second option is for the user to tune his own benchmark, and this is
certainly preferable to no tuning at all. In sophisticated environments
where query processing tactics are well understood, this approach will
probably lead to an optimized benchmark. Moreover, it will give the user a
feel for the optimization parameters of any particular system. However, in
shops that are new to relational data base technology, the algorithms used
by a query optimizer may not be well understood. In this case, advice from
the wvendor will help in choosing good storage structures. Even in
sophisticated shops, it is probably wise to have the vendor check a schema
for performance oversights. A useful way to accomplish this function is to
give the vendor a copy of your script and test data. After he has
implemented the benchmark on his system, you can ask him for performance
suggestions. This option also provides a way of evaluating the quality of
training gquides, classes, and technical support.

The final option is to have the vendor tune the benchmark for you. This
approach is an invitation to the swat team tactics dicussed above. Avoid
this approach if possible.

6. EVALUATION OF THE RESULTS

There are three considerations to think through when evaluating the results
of any benchmark studies.

6.1 Future Versus Present Performance

Every vendor is "about to come out with" his next system which is "2-10
times faster" than his current system. It "fixes all known performance
problems" and can be benchmarked "in a little while". In general, one has
to decide whether to run a benchmark on:

1) a production system
2) a Beta-test system
3) a system still in development

Moreover, one has to decide Whether to délay the benchmark under pressure
from a vendor who has a next system "almost ready"

My advise is to simply realize that this issue is bound to arise and to
think through in advance how to deal with it. Also, one should realize that
all relational systems are becoming progressively faster. A purchase
decision will usually result in a commitment to a particular vendor for at
least a couple of years. During this time, any system under consideration
will get faster. Hence, one should consider both:

-15-

1) how fast the system is today
2) how fast it is likely to be in a year

Of course the future is difficult to predict, and data base salesmen are
notorious for optimistic predictions. Two possible tactics to use in
addition to asking the vendor for his prediction are:

1) Ask the vendor for a benchmark that has been run on his last several
releases. One can probably expect approximately the same relative
performance improvement in future releases.

2) Ask the vendor how many development engineers he has dedicated to
performance improvement. Do not expect much improvement if this number is
small,

6.2 Future Functionality

All vendors are making their systems more functional in areas such as:

number of data types

number of operators

support for business graphics
support for business forms
application generators

report writers

support for spread sheets

Moreover, many vendors have plans to release their system on new computers.
Ask each vendor about his future plans in areas of concern to you. Remember
that one will, in all probability, be using several releases of the
vendor's software. Again, one must assess the credibility of wvendors who
say that everything one could conceivably want will be available "in the
very near future". Ask each vendor for the dates and functional
enhancements in his last few systems. One can probably assume that he will
make about the same rate of progress in the future as he has made in the
past. Another good reality check is to ask the vendor for the size of his
development staff and how they are allocated (e.g. how many are working on
conversions, how many on new functionality, and how many on performance).
While you are asking such questions, also inquire how many clients per
technical support engineer the vendor has and how many quality assurance
engineers. These will be good indicators of the level of technical support
and the reliability of the software.

6.3 Performance Versus Coding Difficulty

Many users evaluate a DBMS only on the expected level of performance and do
not consider the suitability of vendor provided application development
tools for end users and application developers. I feel that most users are
very shortsighted and should consider the cost of writing an application in
addition to the cost of executing it. During the remainder of this century,
software costs will play an increasingly important role in overall
application cost. This section gives a hypothetical example to illustrate
this point.

Suppose a client is purchasing a DBMS to run a single application and has
performed enough benchmarking to obtain the following table for three

-16-

hypothectical systems.

Lines of code Running time of
the benchmark
System A 20,000 6 minutes
System B 12,000 8 minutes
System C 6,000 10 minutes

For example, System C might have a sophisticated application generator
which dramatically cuts the effort involved in coding an application while
System A might have only a subroutine call interface from a general purpose
programming language. A user would have to write a lot more code to get his
application to run in such an environment. Presumably (but not necessarily)
the added function which allows a user to bring up his application with
less code in System C will result in slower performance. The above table
suggests three systems with increasing performance and difficulty of use.

Suppose all three systems are "fast enough" to meet whatever response time
requirements exist. Hence, one should choose between the systems based on
how cost effective each is at coding and executing your application for its
lifetime. Assume that your application will be run for 5 years and then
discarded or rewritten. During that time it will be used 8 hours per day,
250 days per year, and must support an average of 5 interactions per
minute. Suppose the benchmark noted above is constructed of 100 such
interactions. Lastly, suppose that computer time on your system costs $3.00
per minute and that your shop can write a line of code and maintain it for
its 5 year lifetime for $25.00 per line.

With these numbers one can compute the following table for the 2,400,000
interactions which will be run during the lifetime of this application:

cost to write running cost hardware cost total cost
and maintain per interaction during the of the
the application lifetime of the application
application
A $500,000 $0.18 $432,000 $932,000
B $300,000 $0.24 $576,000 $876,000
C $150,000 $0.30 $720,000 $870,000

Notice that the fastest system (A) is the least cost effective solution.

Moreover, Systems B and C are about equally cost effective, even though
System C is 20% slower. In fact the following is the general strategy for
this application:

If your lifetime number of interactions is:

less than 2,500,000 then choose System C
more than 3,333,333 then choose System A
else choose System B

Hence, our hypothetical lifetime number of transactions is in the range
where System C is the winner for the assumed parameters. Of course, any
real shop should perform the above calculation using actual mnumbers for
their application. However, one should carefully note that for any

-17-

technology parameters (e.g. $25.00 per line, $3.00 per minute) there will
be an interaction volume below which C is the correct choice and another
volume above which A is the best choice.

Over the remainder of this century the cost to write and maintain a line of
code will probably remain constant or increase while the cost of computer
time should decrease rapidly. These technology trends will increase the
lifetime number of transactions for which System C is the best choice.
Hence one can say in general:

For any application with any given lifetime number of interactions, sooner
or later the easier to use a system with slower performance will be the
most cost effective solution.

One should simply keep these technological trends in mind when conducting a
benchmark, and include application generation and maintenance costs in
one's overall benchmark evaluation, whenever possible.

7. SUMMARY

The conclusions to be drawn from this paper are that one should use a
simple multi-user application from one's own environment for a benchmark.
One should control the running and tuning of the benchmark and should
carefully avoid swat team tactics. Set a firm date for the conclusion of
the study to avoid procrastination by a vendor with a next system "almost
ready". Set clear criteria for determining the winner. Lastly, include
application development costs, predicted future performance, and future
functionality, as well as current performance in your evaluation.

REFERENCES

[BORAL84] Boral,H., DeWitt, D.J., "A Methodology for Data Base Systems Perfor-
mance Evaluation", Proc. 1984 SIGMOD, Boston, Massachusetts, June 1984.

[GRAY84] Gray, J., "A Transaction Processing Benchmark" unpublished working
paper.

~-18~

Variations on a Benchmark

Paula Hawthorn
Britton Lee Inc.

ABSTRACT

The Wisconsin benchmark is a general program that has been used to benchmark the Britton Lee
Intelligent Database Machine (IDM). This paper presents an augmentation to the benchmark that
more correctly represents the performance effect of Britton Lee’s use of special-purpose hardware.
This augmentation is necessary because the Wisconsin Benchmark does not include "amount of
data returned” as a factor in the performance of a DBMS.

1. Introduction

The Wisconsin benchmark was developed by Bitton, Boral, DeWitt and Turbyfill at the Univer-
sity of Wisconsin. The benchmark is readily available, uses standard relational queries, and is
well documented. In a previous paper, [BORA84], DeWitt and Boral use the Wisconsin bench-
mark to show the effect of the Britton Lee special-purpose processor, the Database Accelerator, on
the throughput of the system. In this paper we show that the result in [BORA84] is lower than
can be expected in many applications. We then show why the Wisconsin benchmark failed to
fully expose the capabilities of the DAC, and finally offer suggestions for the augmentation of the
benchmark based on a more general model of DBMS processing.

Section 2 is a discussion of the Wisconsin benchmark, and of the queries we added. Section 3 is
the conclusion.

2. Benchmark

The Wisconsin Benchmark is discussed in {BITT83] and [BORA84]. One of several experiments
described in [BORA84] was to determine the effect of Britton Lee’s custom designed 10 MIPS pro-
cessor, the Database Accelerator (DAC) on the performance of the system. The Britton Lee Intel-
ligent Database Machine uses a DAC as a callable co-processor, called by code executing on a
general-purpose Z8000. If the DAC is not present, or is turned off, the Z8000 executes the code
itself.

In [BORAS84] an experiment was described where several queries were run with the DAC alter-
nately on, then off. The result, that the DAC increased performance by, at most, a factor of 1.71,
was counter to what we at Britton Lee typically see in user applications, where a factor of 2 - 7 is
more usual. Therefore, we reran the benchmark, analyzed the results, and added a class of
queries to the benchmark that show where the DAC more significantly increases performance.
The following is a brief description of the Wisconsin Benchmark, and of the benchmark runs that
we performed.

2.1. Description of Wisconsin Benchmark

The following section briefly summarizes the description of the Wisconsin benchmark found in
[BORAS4].

The Wisconsin Benchmark consists of:

Benchmark Variations
~19-

1) database creation scripts that create. thirty-two relations: 16 of type tenKtup and 16 of type
oneKtup. These relations contain, respectively, 10,000 tuples and 1000 tuples. The tuples in
both relations consist of 13 2-byte integer attributes and 3 52-byte compressed character fields.
16 of each type are created so that in the multi-user benchmarks a multiprogramining level of 16
with no data sharing can be assured.

2) database loading scripts that load the relations with synthetically generated data. The result-
ing relations then have precisely known characteristics: the first two attributes ("uniquel” and
”unique2”) are unique and random; the next 11 integer values are generated according to precise
selectivity factors, so that, for instance, attribute "two” has two distinct values, attribute "hun-
dred” has one hundred distinct values, ete.

3) index creation scripts that create clustered indices on "unique2” in all relations, and non-
clustered indices on "uniquel” in all relations.

4) a UNIX script to call the "multibench” program, control the level of multiprogramming, and
direct timing results to the proper files.

5) The "multibench” program itself, which contains four queries (described below) and executes
the queries on the database according to parameters furnished it: the parameters specify the per-
centage of datasharing, and based on that percentage a random number is generated to randomly
select which relations shall be accessed; parameters also specify the number of queries to be run,
and the percent of that total that should be Query 1, Query 2, Query 3 or Query 4. During exe-
cution, a random number is drawn to determine which of the queries should be executed next,
according to the percentage specified. Multibench calls the Unix 1-second granularity clock before
and after each query is executed, and writes the time to a file.

6) The “stats” program that analyzes the output files to determine the total throughput of the
benchmark run.

The queries are:!

Query 1: /# select one tuple using clustered index */
int a, b, value; long randomnumber;

/* select a random key value between 0 and 9999 »/
randomnumner = rOrandom(&seed);
value = randomnumber % 10000);

range of x is tenKtup
retrieve (a = uniquelD, b = unique2D)
where x.unique2D = value

Query 2: /#* select 100 tuples out of 10000 */
/* using a non-clustered index */
int lowervalue, uppervalue, a, b;
/* select a lower range value between 0 and 9900 */

randomnumber = rOrandom(&seed);
lowervalue = (randomnumber % 9901);

! (BORAS4|

Benchmark Variations

-20-

uppervalue = lowervalue + 100;

range of x is tenKtup .
retrieve (a = x.uniquelD, b = x.unique2D) where
(x.uniquelD >= lowervalue) and x.uniquelD < uppervalue)

Query 3: /* Join using clustered index on unique2D */
/* Query produces 1000 tuples */

int a, b, ¢, d;

range of t is tenKtup
range of w is oneKtup

retrieve (a = t.uniquelD, b = t.unique2D, ¢ = w.uniquelA
d = w.unique2A) where t.unique2D = w.uniquelA

Query 4: /* Aggregate function min with 100 partitions */
int xmin;

range of x is tenKtup
retrieve (min = min(x.twothousD by x.hundredD))

The selection process that led the Wisconsin researchers to use the above four queries as the com-
plete multiuser benchmark set was that they determined that there are basically four types of
queries, and chose the above queries as representative of the types. The types are: low CPU utili-
zation, low disk utilization (Query 1); low CPU, high disk (Query 2); high CPU, low disk (Query
3, with adequate buffering); and high CPU, high disk (Query 4).

2.2. Benchmark Results

We reran the Wisconsin Benchmark on a Britton Lee Intelligent Database Machine (IDM) exactly
as the benchmark came from Wisconsin. In Figure 1, the bars Query 1, Query 2, Query 3 and
Query 4 represent the IDM performance as reported by the stats” program for queries 1-4 of the
Wisconsin benchmark.

The benchmark was run on a 3-Mbyte, 4 disk IDM, front-ended by an 11/70 and connected via a

(IEEE 488) parallel channel. The benchmarks were run with levels of multiprogramming varied
from 1-10, and with 100% data sharing.

Benchmark Variations -21-

maximum throughput
(queries/sec)
DAC no DAC DAC no DAC DAC no DAC DAC no DAC

(26)
26| XX
| XX
24| XX
| xx
22| xX
| xx (20)
20| XX XX
| XX XX
6] XX = XX
| XX XX
4| XX XX (2.45) (2.45)
| XX XX XX XX (.13) (.07) (.03) (.02)
2} XX = XX xx xX XX
| XX = XX XX XX XX XX xx XX
| Query 1 Query 2 Query 3 Query4

1009, data sharing

FIGURE 1.Wisconson Benchmark Queries

Benchmark Variations -22-

We express the results in ”queries/sec”, as is done in [BORA84], for comparison purposes. The
above results agree with the results reported in [BORAB84]: that the maximum percentage
improvement provided by the DAC for these queries was in Query 3, the clustered index join. To
keep the experiments the same as in [BORA84], we used 100% datasharing (that is, all queries go
to the same two relations) for the DAC tests.

For this particular data set, we would not expect that the DAC would improve the performance
greatly. That is because the DAC is designed primarily for fast string comparisons, and none of
the above queries perform such comparisons. Since we were trying to understand why the
Wisconsin benchmark did not represent our actual user experience with the IDM, we reviewed the
customer benchmarks that have been previously run on the IDM, and noted that there are two
striking dissimilarities between those benchmarks and the Wisconsin benchmark: first, the data in
the user benchmarks is nearly all character data, and the key attributes almost always
uncompressed character data. Second, the queries tend to return little data.

It turns out that both of these differences are the cause of the failure of the Wisconsin benchmark
to reflect our experience with the DAC. To show this, we changed one factor at a time. First, we
created new relations (see Appendix A for the scripts to create the new relations) substituting
character strings for each of the integer strings, and ran the benchmark set again. The result was
that the extra length of the fields returned caused more character handling by the IDM channels
and the 11/70, which caused this particular query set to still show results similar to the first set:
no more than double improvement between the non-DAC and DAC systems. This is shown in
Figure 2, below, in the case of Query 3C: this is query 3, with character attributes in the place of
numeric attributes.

Query 3 returns 1000 tuples to the user process. To change the second factor - that is, to return
less data, we ran Query 3 with a qualification; the query then became Query 3Cq:

Query 3Cq: /* Join using clustered index on unique2D */
~/* Query produces 1000 tuples */
/* further qualified to produce one tuple */

char a[20];

range of t is tenKtup
range of w is oneKtup

retrieve (a = w.uniquelA) where
t.unique2D = w.uniquelA and w.thousandD = ”10000”

The qualification results in one tuple returned. Figure 2 shows that use of the DAC improves
Query 3Cq performance by a factor of 3.2.

As a final test, we changed the database itself. The DAC requires a set-up time per page, and per
compressed attribute involved in the query. Therefore, maximal DAC improvement will result
when there are many uncompressed attributes per page included in the qualificaton clause. So we
created a relation made up of 10,000 tuples, each having 2 uncompressed 20-character attributes,
and ran the following query:

Query 5:
range of p is packed
retrieve (cnt = count(p.thousandD where p.thousandD = ”10000”)

This resulted in the largest DAC speedup in this benchmark - a factor of 8.

Benchmark Variations -23-

maximum throughput

(queries/sec)
DAC no DAC DAC no DAC DAC no DAC
71 (7.6)
XX
XX
6 XX
XX
XX
5 xx
XX
| XX
4 XX
XX
XX
3 (2.8) XX
XX XX
xx XX (2.33)
2 XX xx xx
XX xX xX
XX XX XX
1 XX XX blo 4
xx (.35) XX XX (.08) (.07)
| XX XX xx b o d p o d XX
| Query 5 Query 3Cq Query 3C

100% data sharing
FIGURE 2. Augmented Queries

Benchmark Variations -24-

2.3. Analysis

All of the above queries are artificial in the sense that they re-reference the same data. That is,
the experiment is to, for instance, run Query 3 fifteen times - since "100% data sharing” is
specified, that means that, with adequate buffering (and there was adequate buffering) all the data
referenced the second time will be in memory. This was done purposefully in [BORA84] in order
to make the queries as CPU bound as possible, and thus show the maximum effect of the DAC.
The augmented queries above show that the results of [BORAS84| do not actually represent the
effect of the DAC because there are more than two factors that eflect the per-process response
time of any DBMS. Other factors are:

1) Input/Output processing speed: for the IDM, this is a function of the number of bytes
transferred to the host, of the speed of the channel, and the speed of the host. For single-machine
DBMS, this is the time to move data from the user application to the DBMS and back again.

2) Disk utilization: this is a function of the number of disks, the spread of accessed data across
the disks, the use of algorithms that minimize disk accesses, and the amount of memory available.

3) General purpose CPU utilization: this is a function of the algorithm used in the query, the
amount of output processing that must be done (formatting the data for display), the amount of
memory (less memory means more CPU time spent managing memory).

4) Special-purpose hardware utilization: this depends on the set-up time to use the special-purpose
hardware, and its functionality. For the DAC, Where the set-up time is large, and the time spent
in the DAC small (e.g., whole-page tuples with only a single small attribute that requires charac-
ter comparisons) the DAC will not be heavily utilized; where the set-up time is low (e.g., creating
indices on character attributes), the DAC utilization will be high.

5) Memory utilization: This is a function of the size of memory, the buffer management scheme
used, and the query mix.

6) Locking strategy

A benchmark that attempts to represent DBMS performance inherently is affected by all the
above factors, whether or not the user is aware of the factors.

2.4. The Real World

Since the above queries are clearly artificial, what is the real world like? In our experience, most
people are using mainly character data for their "business” databases; most buy large-memory
systems, so there is adequate buffering, and the DAC is used effectively; many connect a single
IDM via RS232 serial lines to several hosts, and are more concerned about total IDM throughput
than per-process response time. However, the most important thing we have found is what we
have all known to be true: the overall performance of the [DM is very application-dependent.

3. Conclusion

There are two general methods of benchmarking data management systems: application bench-
marks and system benchmarks. An application benchmark is an attempt to capture the essence
of an application by modelling the application queries and data, then running the benchmark on
the data management system using this model. The purpose of the system benchmark is to
characterize the performance of the data management system in an application-independent
environment. The challenge in benchmark development 1is to partition the

Benchmark Variations ~25-

query/data/algorithm /hardware space into a finite set of queries which reflect fully the factors of
performance of the system.

Application benchmarks are commonly developed as part of a potential customer’s evaluation of
competitive systems. They represent a great cost to both the customer, who must spend time and
effort characterizing the application, and the vendor, who must help the customer develop and
run the benchmark. It would be wonderful if a single, believable system benchmark could be
developed and used which would characterize the performance of the DBMS for all applications,
so that customized application benchmarks would no longer be necessary.

The Wisconsin benchmark was developed as an application-independent systematic benchmark of
relational data management systems. The relations contain precisely quantified attributes so that
the selectivity and randomness of the queries is known. In [BORAS4] it is proposed that there are
4 query types, representing two factors of DBMS performance: CPU utilization and disk utiliza-
tion. We have shown that there is at least a third factor: amount of data returned to user; and
that without consideration of this third factor the benchmark cannot expose the performance
enhancement furnished by the DAC. The new queries that we propose adding to the Wisconsin
benchmark are queries that include this factor.

The Wisconsin benchmark is an important contibution to the development of the architecture of
data management systems - both software and hardware. As new systems are developed, the
Wisconsin benchmark can be run on them to determine whether the new systems are improve-
ments over other, existing systems.However, as we have shown, this benchmark (or any general
benchmark) must be used with care. In analyzing the results of the benchmark, the analyst
should be sure that the benchmark is acually measuring what the analyst is looking for - that is,
in measuring one of the six factors in section 2.3, to be sure the benchmark is not hung up on one
of the other six factors. For instance, [BORA84| was specifically attempting to define what the
increase in performance due to the DAC was (factor 4), but in fact was measuring input/output
processing speed (factor 1). It is especially important that developers of new systems, who don't
have the advantage of user experience that Britton Lee has and who therefore would tend to place
more emphasis on one particular benchmark, understand clearly the system performance factors
and assure themselves that the benchmark measures the factors they are interested in.

In genéral it appears that developing an application-independent benchmark is very hard, because
such a benchmark would need to be representative of all the query/data/algorithm/hardware
dependent performance factors of a DBMS, and that is difficult. Application-independent bench-
marks, when carefully used, are useful for obtaining a relative comparison of certain system pro-
perties, but, because they are necessarily limited, give little information about throughput for
specific applications.

Bibliography

[BITTS3] Bitton, D., DeWitt, D.J., and C. Turbyfil, "Benchmarking Database Systems: A Sys-
tematic Approach,” Computer Sciences Department Technical Report #526, Computer Sciences
Department, University of Wisconsin, December 1983.

[BORAS84] Boral, H., DeWitt, D., "A Methodology for Database System Performance Evalua-
tion,” Proceedings, SIGMOD, Boston, 1984.

Benchmark Variations -26-

Appendix A.
Query streams to create character databases:

open wiscbench

range of at is AtenKtup
range of ab is ABprime
create ABstring(

uniquelA =uc20,
unique2A =uc20,
twoA =uc20,
fourA =uc20,
tenA =uc20,
twentyA =uc20,

hundredA =uc20,
thousandA =uc20,
twothousA =uc20)

go

append to ABstring(

uniquelA ==string(20,ab.uniquelA + 10000),
unique2A =string(20,ab.unique2A + 10000),
twoA =string(20,ab.twoA + 10000),

fourA ==string(20,ab.fourA + 10000),

tenA =string(20,ab.tenA + 10000),
twentyA =string(20,ab.twentyA + 10000),
hundredA =string(20,ab.hundredA + 10000),
thousandA =string(20,ab.thousandA + 10000),
twothousA =string(20,ab.twothousA + 10000))

go

create Atenstring(
uniquelD =uc20,
unique2D =uc20,
twoD =uc20,
fourD =uc20,
tenD =uc20,

twentyD =uc20,

hundredD =uc20,

thousandD =uc20,

twothousD =uc20)

go

append to Atenstring(

uniquelD =string(20,at.uniquelD + 10000),
unique2D =string(20,at.unique2D + 10000),
twoD =string(20,at.twoD + 10000),

fourD =string(20,at.fourD + 10000),

tenD ==string(20,at.tenD + 10000),
twentyD — =string(20,at.twentyD + 10000),
hundredD =string(20,at.hundredD + 10000),
thousandD =string(20,at.thousandD + 10000),
twothousD =string(20,at.twothousD + 10000))

go

create unique clustered index on Atenstring (unique2D) with fillfactor=98 skip=1

Benchmark Variations =27~

go

create nonclustered index on Atenstring (uniquelD) with fillfactor=98,skip=1
go

create unique clustered index on ABstring (unique2A) with fillfactor=98,skip=1
go

create nonclustered index on ABstring (uniquelA) with fillfactor=98,skip=1

go

range of at is Atenstring
range of ab is ABstring

retrieve into Btenstring (at.all) go

~ retrieve into BBstring (ab.all) go

create unique clustered index on Btenstring (unique2D) with fillfactor=98,skip=1
g0

create nonclustered index on Btenstring (uniquelD) with fillfactor=98,skip=1

go

create unique clustered index on BBstring (unique2A) with fillfactor=98 skip=1
go

create nonclustered index on BBstring (uniquelA) with fillfactor=88,skip=1

go

retrieve into CBstring (ab.all) go

retrieve into Ctenstring (at.all) go

create unique clustered index on Ctenstring (unique2F) with fillfactor=98,skip=1
gO

create nonclustered index on Ctenstring (uniquelF) with fillfactor—98,skip=1

go

create unique clustered index on CBstring (unique2A) with fillfactor=98,skip=1
go .

create nonclustered index on CBstring (uniquelA) with fillfactor=98,skip=1

go

- and so on, until -

create nonclustered index on PBstring (uniquelA) with fillfactor—98,skip=1
go

Benchmark Variations —28-

BENCHMARKING DATABASE SYSTEMS IN

MULTIPLE BACKEND CONFIGURATIONS *

Steven A. Demurjian and David K. Hsiao
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943
(408)-646-2449

ABSTRACT

The aim of this performance evaluation is twofold: (1) to devise benchmarking stra-
tegies for and apply benchmarking methodologies to the measurement of a prototyped
database system in multiple backend configurations, and (2) to verify the performance
claims as projected or predicted by the designer and implementor of the multi-backend
database system known as MBDS.

Despite the limitation of the backend hardware, the benchmarking experiments
have proceeded well, producing startling results and good insights. By collecting
macroscopic data such as the response time of the request, the external performance
measurements of MBDS have been conducted. The performance evaluation studies ver-
ify that (a) when the database remains the same the response time of a request can be
reduced to nearly half, if the number of backends and their disks is doubled; (b) when
the response set of a request doubles, the response time of the query remains nearly con-
stant, if the number of backends and their disks is doubled. These were the perfor-
mance claims of MBDS as predicted by its designer and implementor.

1. INTRODUCTION

The multi-backend database system (MBDS) is a database system designed specifi-
cally for capacity growth and performance enhancement. MBDS consists of two or more
minicomputers and their dedicated disk systems. One of the minicomputers serves as a
controller to broadcast the requests to and receive the results from the other minicom-
puters, which are configured in a parallel manner and are termed as backends. All the
backend minicomputers are identical, and run identical software. The database is evenly
distributed across the disk drives of each backend by way of a cluster-based data place-
ment algorithm unknown to the user. User access to the MBDS is accomplished either

via a host computer, which in turn communicates with the MBDS controller, or with
the MBDS controller directly. Communication between the controller and backends is
accomplished using a broadcast bus. An overview of the system architecture is given in
Figure 1.

* The work reported herein is supported by Contract N00014-84-WR-24058 from the Office of Naval Research and conducted
at the Laboratory for Database Systems Research, Naval Postgraduate School, Monterey, CA 93943.

-20-~

one oT wore
disk drives

one or more
Backend 1 —_ disk drives

Yo the
host
cozpute

one or more
T disk drives

Broadcasting
bus

Figure 1. The MBDS Hardware Organization

There are two basic performance claims of the multi-backend database system,
which have been projected in the original design goals [Hsia81a, Hsia81b]. The first
claim states that if the database size remains constant, then the response time of
requests processed by the system is inversely proportional to the multiplicity of back-
ends. This claim implies that by increasing the number of backends in the system and
by replicating the system software on the new backends, MBDS can achieve a reciprocal
decrease in the response time for the same requests. The second claim states that the
response time of requests is invariant when the response set and the multiplicity of
backends increase in the same proportion. This claim implies that when the database
size grows, the response set for the same requests will grow. By increasing the number
of backends accordingly, MBDS can maintain a constant response time.

In this paper we provide a preliminary evaluation of the validity of the MBDS per-
formance claims. The main focus of this paper is on the external performance measure-
ment of MBDS. The external performance measurement evaluates a system by collect-
ing the response times of requests. External performance measurement is a macroscopic
evaluation of the system. Ingres, Oracle, and the Britton-Lee IDM/500, have all been
evaluated using external performance measurement techniques [Stra84, Schi84, Bitt83].

The remainder of this paper is organized as follows. In Section 2 we provide a brief
overview of the multi-backend database system. In Section 3 we discuss the general
testing strategy that was used to evaluate the system. In Section 4 we examine the
evaluation results. Finally, in Section 5 we conclude this paper and summarize the
results.

-30-

2. THE MULTI-BACKEND DATABASE SYSTEM (MBDS)

The current hardware configuration of MBDS consists of a VAX-11/780 (VMS OS)
running as the controller and two PDP-11/44s (RSX-11M OS) and their disk systems
running as backends. The disk system on each backend is an DEC RMO02 disk drive,
which has a 67MB formatted capacity, a peak transfer rate of 806KB/s and an average
access time of 42.5ms (30ms average seek time + 12.5ms average latency time). Inter-
computer communication is supported by three parallel communication links (PCL-
11Bs), which is a time-divisioned-multiplexed bus. An overview of MBDS can be found
in [Kerr82]. The implementation efforts are documented in [{He82, Boyn83b, Demu84].
MBDS is a message-oriented system (see [Boyn83a]). In a message-oriented system,
each process corresponds to one system function. These processes, then, communicate
among themselves by passing messages. User requests are passed between processes as
messages. The message paths between processes are fixed for the system. The MBDS
processes are created at the start-up time and exist throughout the entire running time
of the system.

MBDS provides a centralized database system where the database itself is evenly
distributed across the backend processors. Only a single copy of the database is stored.
The underlying data model for MBDS is the attribute-based data model [Hsia70]. The
attribute-based data model stores data in files of records. MBDS stores records of a file
in clusters. A cluster is a group of records such that every record in the cluster satisfies
the same set of attribute-value pairs or ranges. Thus, a file is divided into one or more
clusters. The distribution of the database is accomplished using a cluster-based data
placement algorithm.

The cluster-based data placement algorithm is arbitrated and managed by the con-
troller. When a new cluster is defined, the backend processor notifies the controller.
The controller then decides which backend will insert the new record. Under the direc-
tion of the controller, the chosen backend will continue to insert records of the new clus-
ter, until the backend processor fills a block of secondary memory storage. When this
occurs, the backend processor notifies the controller that the block is full. The con-
troller then directs another backend for the insertion of new records of the cluster. In a
multiple-backend configuration, the controller attempts to achieve a block-parallel-and-
record-serial operation for any subsequent access to the records of the cluster.

Let’s trace through an example. Suppose that our system has four backend proces-
sors, the average size of a record is 200 bytes, and the size of a block of secondary
storage memory is 4K (so, each block contains approximately 20 records). A new clus-
ter of 100 records, say C, is defined. The controller picks say, Backend 3, for inserting
records of cluster C. Backend 3 will insert 20 records into a block for the cluster C
under the direction of the controller. Then the controller will have Backend 4 insert
records of cluster C. After Backend 4 has inserted 20 records, the controller will cycle
to Backend 1, and continue the round-robin process until all 100 records are placed on
the secondary storage blocks. For the next new cluster, say, C’, the controller will then
pick Backend 4, since Backend 3 is the last backend used by the previous cluster in the
algorithm.

-31-

8. THE BENCHMARK STRATEGY

In this section we analyze the basic benchmark strategy for the preliminary perfor-
mance evaluation of the multi-backend database system. The benchmark strategy
focuses on collecting macroscopic measurements on the systems performance. Macros-
copic measurements correspond to the external performance measurement of the system,
which collects the response time of requests that are processed by the system. To ade-
quatel; conduct the external performance measurement of the system, software was
developed to collect timing information and data. The performance software was brack-
eted in conditional compilation statements to facilitate an easy transition between a
testing system and a running system.

The rest of this section is organized as follows. First, we give a high-level descrip-
tion of the test database organization and system configurations used in the performance
evaluation. Next, we examine the request set used to collect the timings. Finally, we
review the relevant tests that are to be conducted, and the measurement statistics that
are collected and calculated.

3.1. The Test Database Organization and Testing Configurations

The test database was constructed using a record size of 200 bytes. A total of 24
clusters are defined for the test database. The virtual and physical memory limitations
of each backend restricted the database size to a maximum of 1000 records per backend.
This limitation, coupled with the need to verify the two performance claims, led us to
the specification of three different system configurations for the MBDS performance
measurements. Table 1 displays the configurations.

Test A configures MBDS with one backend and one thousand records in the test
database. Test B configures MBDS with two backends and one thousand records split
evenly between the backends. The transition from Test A to Test B is used to verify
the first performance claim (see Section 1). Tests A and B l.i»« =i clusters that contain
40 records and one cluster that contains 80 records. In Test A, all of the records are
stored on the single backend. In Test B, each backend stores 20 records for the first 23
clusters and 40 records for the last cluster.

Test C also configures MBDS with two backends, but, the size of the database is
doubled to two thousand records. The transition from Test A to Test C is used to verify
the second performance claim (see Section 1). Test C has 23 clusters that contain 80
records each and one cluster that contains 160 records. In Test C, each backend stores
40 records for each of the first 23 clusters and 80 records for the last cluster. Notice
that the record totals per cluster per backend are the same for Test A and Test C.

TEST | No. of Backends | Records/Backend | Database Size
A 1 1000 200K bytes
B 2 500 200K bytes
C 2 1000 400K bytes

Table 1. The Measurement Configurations

-32-

3.2. The Request Set

In this section we review the retrieve requests that are used to benchmark MBDS.
The retrievals, shown in Table 2, are a mix of single and double predicates. There are
two directory attributes and thirty-one non-directory attributes in each record. The
directory attributes, INTE1 and INTE2, are integer-valued, and are used for the cluster
definition and formation. INTEIL is defined using 5 attribute-value ranges, while INTE2
is defined using 24 attribute-value ranges. The non-directory attributes are used as fill-
ers for the 200-byte record. The retrieve requests given in Table 2 are specified using
equality and inequality predicates, to control the search space when accessing the data-
base records.

In Table 3 we present a high-level analysis of the request set given in Table 2. We
focus on specifying two characteristics for each retrieve request in the request set; the
number of clusters examined by the particular retrieve request and the volume of the
database information that is retrieved. The values in Table 3 apply to the three testing
configurations, A, B, and C, with one exception. The numbers in parenthesis in the
third column represent the number of records retrieved for Test C.

3.3. The Measurement Strategy, Statistics and Limitations

The basic measurement statistics used in the performance evaluation of MBDS is
the response time of request(s) that are processed by the database system. The
response time of a request is the time between the initial issuance of the request by the
user and the final receipt of the entire request set for the request. The response times
are collected for the request set (see Table 2) for each of the three configurations (see
Table 1). Each request is sent a total of ten times per database configuration. The
response time of each request is recorded. We determine that ten repetitions of each
request produce an acceptable standard deviation. Upon completion of the ten repeti-
tions for a request, we calculate the mean and the standard deviation of the ten
response times. There are two main statistics that we calculate to evaluate the MBDS
performance claims, the response-time improvement and the response-time reduction.

Request Number Retrieval Request
(INTE1 = 10) or (INTE1 = 230)

(INTE2 =< 250)

(INTE2 =< 500)

(INTE1 =< 1000)

(INTE1 =< 200) or (INTE1 >= 801)
(INTE1 =< 400) or (INTE1 >= 601)
(INTE1 <= 201)

(INTE1 <= 401)

(INTE1 <= 201) or (INTEI >= 800)

OO d]WN| =

Table 2. The Retrieval Requests

-33-

Request | Number of Volume of
Number Clusters Database
Examined Retrieved
1 10 2(4) records
2 7 25%
3 13 50%
4 24 100%
5 9 40%
6 19 80%
7 10 20% + 1(2) record
8 15 40% + 1(2) record
9 19 40% + 2(4) records

Table 3. The Number of Clusters Examined and the
Percent of the Database Retrieved

The response-time tmprovement is defined to be the percentage improvement in the
response time of a request, when the request is executed in n backends as opposed to
one backend and the number of records in the database remains the same. Equation 1
provides the formula used to calculate the response-time improvement for a particular
request, where Configuration Y represents n backends and Configuration X represents
one backend. The response-time improvement is calculated for the configuration pair
(A, B). The configuration pair (A, B) is evaluated for the retrieve requests (1) through
(9) (see Table 2).

The Response
Time of

The Configuration Y

Response Time = 100% * | 1 -

Improvement The Response
Time of

Configuration X

Equation 1. The Response-Time-Improvement Calculation

The response-time reduction is defined to be the reduction in response time of a
request, when the request is executed in n backends containing nx number of records as
opposed to one backend with x number of records. Equation 2 provides the formula
used to calculate the the response-time reduction for a particular retrieval request,
where -configuration X represents one backend with x records and configuration Z
represents n backends, each with x records. The response-time reduction is calculated
for the configuration pair (A, C), for the retrieve requests (1) through (9).

. Y

(S

The Response
Time of

The A .
Response Time = 100% * | 1~ Configuration Z
Reduction The Response

Time of
Con ftguration . X

Equation 2. The Response-Time-Reduction Calculation

Finally, we examine the limitations of the testing strategy. The last two versions of
MBDS differ in the implementation of the directory tables. The newest version of the
system, called Version F, implements the directory tables on the secondary storage.
The previous version, called Version E, stored the directory tables in the primary
memory. The major roadblock that we have encountered in the performance measure-
ment of MBDS has been the hardware limitations of the backend processors (PDP-
11/44). With only 64K of virtual memory per process and a total of 256K physical
memory, we found that we could not increase the MBDS system parameters to permit
an extensive test of the system on a large database. These restrictions have forced us to
benchmark the primary-memory-based directory management version of the system
which, excluding the directory table management routines, is nevertheless equivalent in
functionality to Version F.

4. THE BENCHMARKING RESULTS

In this section, we present the results obtained from the performance measurement
of MBDS. In particular, we review the results of external performance measurement, in
the hope of verifying the MBDS performance and capacity claims. One final note, the
units of measurement presented in the tables of this section are expressed in seconds.

Table 4 provides the results of the external performance measurement of MBDS.
There are three parts to Table 4. Each part contains the mean and the standard devia-
tion of the response times for requests (1) through (9), which are outlined in Section 3.2.
The three parts of Table 4 represent three different configurations of the MBDS
hardware and the database capacity. The first part has configured MBDS with one
backend and the database with 1000 records on its disk. The second part has configured
MBDS with two backends, with the database of 1000 records, split evenly between the
disks of the backends. The third part has configured MBDS with two backends and with
a database doubled of 2000 records, where the disk of each backend has 1000 records.

Given the data presented in Table 4, we can now attempt to verify or disprove the
two MBDS performance claims. We begin by calculating the response-time improvement
for the nine requests. In Table 5 we present the response-time improvement for the
data given in Table 4. Notice that the response-time improvement is lowest for request
(1), which represents a retrieval of two records of the database. On the other hand, the
response-time improvement of request (4), which retrieves all of the database informa-
tion is highest, approaching the upper bound of fifty percent. In general, we find that
the response-time improvement increases as the number of records retrieved increases.
This seems to support a hypothesis that even if the response set (therefore the database)
is larger, the response-time improvement will remain at a relatively high level (between

-35-

One Backend Two Backends Two Backends
Request 1K Records 1K Records 2K Records
Number (A) (B) ©)
mean stdev mean stdev mean stdev
1 3.208 | 0.0189 2.051 | 0.0324 3.352 | 0.0282
2 13.691 | 0.0255 7.511 | 0.0339 || 14.243 | 0.0185
3 26.492 | 0.0244 | 14.164 | 0.0269 || 26.737 | 0.0405
4 52.005 | 0.0539 || 26.586 | 0.0294 || 52.173 | 0.0338
5 21.449 | 0.0336 || 11.309 (| 0.0375 || 21.550 | 0.0237
6 42.235 | 0.0326 || 21.622 | 0.0424 | 42.287 | 0.0400
7 12.285 0408 6.642 | 0.0289 j 12.347 | 0.0371
8 22.532 | 0.0296 || 11.764 | 0.0300 | 22.583 | 0.0110
9 23.913 | 0.1115 12.624 | 0.0350 || 24.169 | 0.0181

Table 4. The Response Time Results

40 an 50 percent).

Next, we calculate the response-time reduction for each of the nine requests. In
Table 6 we present the response-time reductions for the data given in Table 4. Notice
that the response-time reduction is worst for request (1), which represents a retrieval of
two records of the database. On the other hand, the response-time reductions for the
requests which access larger portions of the database, requests (4) and (6), have only a
small response-time reduction. In general, we found that the response-time reduction
decreases as the number of records retrieved increases, i.e., the response time remains
virtually constant. Again we seem to have evidence to support the hypothesis that,
as the size of the response set increases for the same request, the response-time

Request | Response-Time
Number Improvement
(A,B)
36.07
45.14
46.53
48.94
47.27
48.81
45.93
47.79
47.21

Table 5. The Response-Time Improvement Between
Configurations A and B.

-36-

reduction will decrease to a relatively low level (0.1% or less).

Request | Response-Time

Number Reduction

(A,C)
4.49
4.03
0.92
0.32
0.47
0.12
0.50
0.23
1.07

© 00 IO U WIN -

Table 6. The Response-Time Reduction Between
Configurations A and C

5. CONCLUSIONS AND FUTURE WORK

We have shown that the two basic performance claims of the multi-backend data-
base system are valid. While these results are preliminary, they are encouraging.
Overall, the response-time improvement ranged from 36.07 percent to 48.94 percent,
when the number of backends and their disks is doubled for the same database. The
low end of the scale represented a request which involved the actual retrieval of only
two records. The high end represents a request which has to access all of the database
information. The response-time reductions were also impressive, ranging from a 4.49
percent change to a 0.12 change. In other words, when we double the number of back-
ends and their disks, the response time of a request is nearly invariant despite the fact
that the response set for the request is doubled. Another crucial discovery that we
made was that the results were consistent and reproducible. The tests were conducted
at least twice for most of the request set, with the testing done on different days by dif-
ferent people. The resulting data was consistent and reproducible. The data presented
in this paper represents the last set of tests for the request set.

The next logical step in the performance evaluation of the multi-backend database
system is to extend the testing to include the other request types, update, insert and
delete. Additionally, there are still some more tests to run on the retrieval request.
We also seek to provide some insight into the internal performance of MBDS. Internal
performance measurement provides a microscopic view of the system, by collecting the
times of the work distributed and performed by the system components, i.e., in our case,
individual processes.

Because MBDS is intended for microprocessor-based backends, winchester-type
disks and an Ethernet-like broadcast bus, we will not continue our benchmark work on
the present VAX-PDPs configuration. Instead, we plan to download MBDS to either
MicroVaxs or Sun Workstations. With either choice, we can utilize a broadcast bus,
which was not available when the work began in 1981. We may also eliminate all the
physical and virtual memory problems. In the new environment we can perhaps obtain

-37-

a more thorough benchmarking of MBDS, and study various benchmarking strategies.

ACKNOWLEDGEMENTS

We would like to thank all of those who have helped us with the performance
evaluation of the multi-backend database system. Robert C. Tekampe and Robert J.
Watson were involved with the development and implementation of the testing software
for our system [Teka84]. Prof. Douglas S. Kerr and Dr. Paula R. Strawser provided
valuable advice and assistance on the benchmark strategy. Finally, Albert Wong and
the technical staff at the Naval Postgraduate School provided assistance with configur-
ing the computer systems for testing.

REFERENCES

[Bitt83] Bitton, D., DeWitt, D. and Turbytil, C., "Benchmarking Database Systems: A
Systematic Approach," Proceedings on Very Large Data Bases, 1983.

[Boyn83a] Boyne, R., et al., "A Message-Oriented Implementation of a Multi-Backend
Database System (MBDS)," in Database Machines, Leilich and Missikoff (eds.),
Springer-Verlag, 1983.

[Boyn83b] Boyne, R., et al., "The Implementation of a Multi-Backend Database System
(MBDS): Part III - The Message-Oriented Version with Concurrency Control and
Secondary-Memory-Based Directory Management," Technical Report, NPS-52-83-003,
Naval Postgraduate School, Monterey, California, March 1983.

[Demu84] Demurjian, S. A., et al., "The Implementation of a Multi-Backend Database
System (MBDS): Part IV - The Revised Concurrency Control and Directory Manage-
ment Processes and the Revised Definitions of Inter-Process and Inter-Computer Mes-
sages' Technical Report, NPS-52-84-005, Naval Postgraduate School, Monterey, Califor-
nia, March 1984.

[He82] He, X., et al.,, "The Implementation of a Multi-Backend Database System
(MBDS): Part II - The First Prototype MBDS and the Software Engineering Experi-
ence," Technical Report, NPS-52-82-008, Naval Postgraduate School, Monterey, Cali-
fornia, July 1982; also appeared in Advanced Database Machine Architecture, Hsiao
(ed.), Prentice Hall, 1983.

[Hsia70] Hsiao, D. K., -and Harary, F.; "A Formal System for Information Retrieval
from Files," Communications of the ACM, Vol. 13, No. 2, February 1970, Corrigenda,
Vol 13., No. 4, April 1970.

[Hsia8la] Hsiao, D.K. and Menon, M.J., "Design and Analysis of a Multi-
Backend Database System for Performance Improvement, Functionality Expansion and
Capacity Growth (Part I)," Technical Report, OSU-CISRC-TR-81-7, The Ohio State
University, Columbus, Ohio, July 1981.

-38-

[Hsia81b] Hsiao, D.K. and Menon, M.J.,, "Design and Analysis of a Multi-
Backend Database System for performance Improvement, Functionality Expansion and
Capacity Growth (Part II},” Technical Report, OSU-CISRC-TR-81-8, The Ohio State
University, Columbus, Ohio, August 1981.

[Kerr82] Kerr, D.S., et al., "The Implementation of a Multi-Backend Database System
(MBDS): Part I- Software Engineering Strategies and Efforts Towards a Prototype
MBDS," Technical Report, OSU-CISRC-TR-82-1, The Ohio State University,
Columbus, Ohio, January 1982; also appeared in Advanced Database Machine Architec-
ture, Hsiao (ed.), Prentice Hall, 1983.

[Schi84] Schill, J., "Comparative DBMS Performance Test Report,” Naval Ocean Sys-
temn Center, San. Diego, CA, August 1984.

[Stra84] Strawser, P. R., "A Methodology for Benchmarking Relational Database
Machines," Ph. D. Dissertation, The Ohio State University, 1984.

[Teka84] Tekampe, R. C., and Watson, R. J., "Internal and External Performance

Measurement Methodologies for Database Systems," Master’s Thesis, Naval Postgradu-
ate School, Monterey, California, June 1984.

-39-

TRANSACTION ACCELERATION

Timothy Chou
Jim Gray

Tandem Computers, Inc.
19333 Vallco Parkway
Cupertino, CA 95014

-40-

Transaction Acceleration

TRANSACTION ACCELERATION

1.0 INTRODUCTION

Today corporations are faced with a myriad of vendors providing
transaction processing systems. When a corporation is willing to commit
considerable resources to a large application it is 1important to have
confidence that the application will perform adequately on that vendor's
system. A traditional method to insure that performance goals are met
is to specify a representative benchmark, run it on each vendor's system
and compare the results [GLES81]. While this is certainly an accurate
method, it both time consuming and expensive. Initially, a customer may
only be interested in the relative capabilities of the various vendor's
systems. With a single standard metric for transaction processing
performance, systems which are totally incapable of supporting the
desired workload could be removed from consideration early 1in the

procurement cycle,

The scientific marketplace has had the same requirement. In the
1970's the Whetstone benchmark [CURN74,WICH75] was developed by the
Central Computer Agency (CCA) of the British Government as a standard
scientific benchmark. Today practically every manufacturer of systems
for the scientific processing marketplace advertizes, or at least knows,

the number of Whetstones/sec the machihe is capable of.

—41-

Transaction Acceleration

In the transaction processing marketplace one standard
performance metric is transactions per second (TPS), the throughput of a
standard transaction at a given response time. The transaction
definition is typically the DebitCredit transaction. This 1is also

sometimes referred to as the TPl or ET1 transaction [TAND85].

While TPS is a valid metric of system performance, it doesn't
tell the whole story. This paper introduces a new metric, transaction
acceleration, which gives the customer a new, different and useful

characterization of transaction processing system performance.

2.0 RESPONSE TIME

Response time is the time the system takes to process a
transaction. One may speak of a minimum, average or maximum response
time. Response time curves usually have long tails because of anomalies
such as lock waits, system checkpoints, operator tasks, etc.,
performance metrics usually use the 90% or 95% response time -- 95% of

the transactions have response time less than this,

To eliminate the issue of communication 1line speed and delay,
response time is typically defined as the time interval between the
arrival of the last bit from the communication line and the sending of
the first bit to the communication line., This is the metric used by most

., transaction processing stress testers [ENCO83].

—42-

Transaction Acceleration

In evaluating a system's performance it is often interesting to
plot the response time curves. This curve easily illustrates that the
minimum response time occurs when the system is running a very low load.
As the 1load grows, response time increases, slowly at first but

eventually the system saturates and response times approach infinity.

- o.
| .
-1 .
| .
- .
| o .
RESPONSE -1 .
TIME (sec) | .
- o .
I .
-1 o .
| .
- | o .
| o .
el T T < T
|
| [T 1 l 1 [
THROUGHPUT
(trans/sec)

FIGURE 1. TRANSACTION RESPONSE TIME

In Figure 1, the horizontal dotted line is the minimum response time.
The vertical dotted 1line is the maximum throughput of the system

measured in transactions per second.
The traditional TPS rating is obtained by defining the maximum

throughput when 95% of the transactions have a response time of less

than 1 sec. The computation of the TPS rating is shown in Figure 2.

—43-

Transaction Acceleration

-1 o
|
o
|
-1
| o
RESPONSE -1
TIME (sec) I
-1 o
|
el I ¢
| .
- o .
I o .
-l o o .
| .
\'
| i | | | 1 !
THROUGHPUT
(trans/sec)

FIGURE 2, COMPUTING TRADITIONAL TPS SYSTEM RATING

3.0 TRANSACTION ACCELERATION

Transaction acceleration is defined as the slope of the curve
which plots transaction throughput on the Y-axis and response time on
the X-axis. It is called transaction acceleration because the units
are transactions/sec/sec. Transaction acceleration can be computed

from the following steps.

44—

Transaction Acceleration

STEP 1: Compute the response time curve for the DebitCredit
transaction and database on the system.

STEP 2: Transpose the curve to get throughput vs. response time rather
than response time vs. throughput.

.

THROUGHPUT
(tran/sec) -

T | [[! I [
RESPONSE TIME (sec)

FIGURE 3. THROUGHPUT VS. RESPONSE TIME

STEP 3: Plot the derivative of the resulting curve to give transaction
acceleration.

(tran/sec/sec)-

-1
I
-
I
-1
ACCELERATION :
I
-1
I
-1
|

| | | | [[
RESPONSE TIME (sec)

FIGURE 4. TRANSACTION ACCELERATION VS. RESPONSE TIME

In Figure 4, the initial transaction acceleration of this system

is infinite (because response time stays steady at first). But

—45-

Transaction Acceleration

eventually, the acceleration declines to zero. If throughput

declined when the system saturated, then acceleration might become

negative.

So why is transaction acceleration a good system performance
metric? Consider the following graph of transaction throughput

for three vendor's systems.

-

Transaction Acceleration

|
|
- X x : Vendor A
| o : Vendor B
- X z : Vendor C
|
- X o)
THROUGHPUT | o
(tran/sec) -1 X o
| o
-1 Z X z z A zZ 2z z
| o
-1 z
| X
-1 2
| o X
-1
0. X
T | 1B T I I T
RESPONSE TIME (sec)
-1 X : Vendor A
| o : Vendor B
-1 z z : Vendor C
I
-1 O X XX X XX XXX XXX
ACCELERATION | oz
(tran/sec/sec)-|
I o
-1
| o
-1 z o
I o
-] o
| z
-1
_ z z
T [[[| [[
RESPONSE TIME (sec)
FIGURE 5. TRANSACTION ACCELERATION OF THREE SYSTEMS

If we assume that the intersection of
response time of
transaction throughput, and

TPS metric there is no difference between the

second

then all

therefore the

—47-

three

the three
systems have
same TPS rating.

three systems.

curves 1is at a

the same
Using the

However,

Transaction Acceleration

that is clearly not the case. Vendor A's system is clearly a better one
when we look at the transaction acceleration curves -- as the
transaction workload increases system A will suffer the least
degradation in response time. In other words, if you have to "step on
the gas™ system A 1is going to be "more responsive". Since transaction
processing workloads have a 1large dynamic range, it 1is <clear that
knowing how much "headroom" you have is important. Only the transaction

acceleration metric captures this aspect of system performance.

4.0 THROUGHPUT vs. RESPONSE TIME CURVES

While transaction acceleration is a metric which characterizes
transaction processing performance the throughput vs. response time
curves are also interesting in their own right. They provide another way
of looking at the implication of many other transaction processing

design issues. For example, a vendor's profile of a system could also

include the following curves:

o Single point of failure curves

o Fixed cost curves

A single point of failure curve could easily show to what degree
performance would suffer if there were such a failure. A hypothetical
example is shown below in Figure 6. Note that Vendors B and C do not

have fault-tolerant configurations.

—48—-

Transaction Acceleration

_.| X
| x : Vendor A
- o : Vendor B
I z : Vendor C
- p'e
|
THROUGHPUT -|
(tran/sec) |
_| X
I
-1
I
-1
I
-1
I
Z O_X
T | | I | | T
RESPONSE TIME (sec)

FIGURE 6. SINGLE PROCESSOR FAILURE

The capability to incrementally expand a transaction processing
system is important. A fixed cost transaction acceleration curve can
illustrate what the units of expandability are. Figure 7 and 8 show two

representative cost curves.

-49-

Transaction Acceleration

| * : $4 million
- o : $2 million
| # : $1 million
_: * * * *
| * o
THROUGHPUT - * o
(tran/sec) [* o
_I * o
| *
_: * o
_l * fe)
I
_I X fo)
I # # # # # #
#*o
T | | |] | |
RESPONSE TIME (sec)
FIGURE 7. VENDOR A
- *
| * : $4 million
- * o : $2 million
| # : $1 million
-1 *
| o
THROUGHPUT - | o)
(tran/sec) | o
_| * le)
I
|
_| [o)
I
- o
| # # # # # #
o *
T | 1 P] []
RESPONSE TIME (sec)

FIGURE 8. VENDOR B

-50-

Transaction Acceleration

Another proposal [REUT84] has suggested plotting K$/TPS against
response time. A curve like this could tell how much you have to pay for
decreasing response time below a given level, or conversely how much you

can gain by letting it increase.

4.0 SUMMARY

There have been and continue to be a number of methods of
characterizing computer system performance. While benchmarks,
simulations and analytic models can produce performance numbers there is
still a need for standard metrics to be able to compare systems from
various vendors. Transaction acceleration provides a new and useful

metric of system performance.

-51-

Transaction Acceleration

REFERENCES

[CURN74] Curnow, H.J. and Wichmann, B.A., "A Synthetic Benchmark," The
Computer Journal, Volume 19, No. 1, ppgs 43-48.

[ENCO83] "ENCORE User's Guide", Tandem Computers Part 82350, April
1983.

[GLES81] ‘Gleser, M.A., Bayard, J., Lang, D.D., "Benchmarking for the
Best," Datamation, May 1981.

[GRAY78] Gray, J. , "Notes on Database Operating Systems", Lecture
Notes in Computer Science, vol. 60, Bayer-Seegmuller editors,
Springer Verlag, 1978.

[GRAY85] Gray, J. et al., "One Thousand Transactions Per Second",To
appear in the Proceedings of the IEEE COMPCON-85, San
Francisco.

[REUT84] Reuter, A., private communication.

[TAND85] "A Measure of Transaction Processing Power," to appear in
Datamation.

[WICH75] Wichmann, Brian A., "The Design of Synthetic Programs-1"

Computer Evaluation and Measurement, John Wiley and Son, New
York, ppgs 89-98.

~52~

TRANSACTION ORIENTED PERFORMANCE
ANALYSIS OF DATABASE MACHINES

Margaret H. Eich

Department of Computer Science and Engineering
Southern Methodist University
Dallas, Texas 75275
(214) 692-3087 eich%smu@csnet-relay

Abstract. A new technique for evaluating the performance of database machines (DBM)
is proposed. In previous studies, performance analysis has been based on a single trans-
action, a reference string for transactions, or read only transactions. These approaches
are not satisfactory in a DBM environment when subtransactions may be executed on
different processors, and the interrelationships between operations within and across
transactions can greatly effect the DBM performance. An approach for DBM perfor-
mance analysis based upon a coordinated view of transactions, hardware, software, and
databases is described.

1. Introduction

The need for performance evaluation measures and techniques applicable in a Data-
base Machine DBM environment has been previously expressed [VEMUSO|, and there
have been several studies evaluating the performance of various DBM designs
([BANE78|, [DEWI81], [HAWTS82], and [OZKA77]). These previous -studies have had a
very simplistic view of database transactions with little concern for the actual trans-
actions to be executed in the target DBM. Analysis is based on a single transaction, a
reference string for transactions, or read only transactions. These approaches are not
satisfactory in a DBM environment where subtransactions may be executed on different
processors, and the interrelationships between operations within and across transactions
can greatly effect the DBM performance. As stated by Vemuri, the overall goal of DBM
research is to ‘‘improve the performance and capability of the total system.” Perfor-
mance studies should attempt to measure total system performance.

This paper introduces a technique which can be used in DBM performance analysis
research. Of concern is the technique to be used for simulation, not the measures gath-
ered. The next section discusses some of the problems with previous approaches to
DBM performance analysis. The third section describes the proposed technique, while
the fourth section discusses the application of this approach in the simulation of a new
DBM concurrency control technique.

2. Previous Studies

Based upon transaction representation, previous DBM performance studies can be
classified as single query (|BANE78], [BANE79]|, [DEWI81}, [HAWTS82], [0ZKA75], and
[OZKAT7)), reference string ((AGRAS83] and [WILKS81]), or read only [BORAS1]. Single
query studies determine performance analysis based on the execution of a single query or
operation. These studies ignore the interrelationship between transactions. Analysis
techniques usually fall into this category. Performance studies in the second class view

-53-

transactions as a sequence of page (record, tuple) references. This view overlooks varia-
tions in the time at which different operations in the same transaction actually make
page references. The third view of transactions only sees transactions as performing
retrieval operations, ignoring the impact of update operations. This view is sometimes
taken because updates take a relatively short time to execute, and are often imple-
mented very similar to retrieval operations ([DEWI81] and [HAWTS82]). Even if these are
true, the impact of update operations on overall system performance is not unimportant.

There are five major reasons why these simplistic views of transactions are unac-
ceptable for DBM performance analysis:

1. Total Performance

2. Subtransaction Execution
3. Protocol Evaluation

4. Cross Transaction Effect
5. Bottleneck Analysis

To satisfactorally determine overall DBM system performance, the ability to model por-
tions of transactions as well as to determine the effect that transactions have on each
other must be examined.

Good performance of the total DBM system is often listed as the overall goal for
the development of DBMs [VEMUS80]. To determine total DBM performance, any perfor-
mance analysis study should examine the execution of multiple concurrent transactions.
Obtaining performance statistics based upon a single transaction, or read only trans-
actions does not necessarily indicate the overall system performance with multiple con-
current update and retrieval transactions. It has been previously observed that input to
DBM performance analysis should “‘reflect a wide range of transactions to determine the
suitability of the various machines to different transaction types”’ [BORAS81]. Previous
studies have provided valuable insight into the performance.of various DBM architec-
tures for certain types of transactions, but they have not provided any indication of
total DBM performance for concurrently executing potentially conflicting transactions.

Some DBM architectures require the processing of portions of tramsactions on
different processors ([CESA83] and [DEWI79]). To accurately determine the impact of
protocol overhead on the performance, it needs to be simulated at the point in time that
it will occur in actual implementation. A more detailed view of transactions would facili-
tate the placement of protocol overhead within a transaction execution as well as pro-
viding the capability for simulating execution of portions of transactions on different
processors. Thus a better estimate of performance could be obtained.

When estimating DBM performance, the impact of transactions on each other is
crucial. One of the performance drawbacks of conventional sequential von Neumann
machines is their lack of appropriateness for the ‘‘parallel process of data manipulation”
[SU80]. DBMs should be designed to provide efficient storage, retrieval, managment,
and update of large databases with concurrent access [HSIA79]. The application of
database machines will primarily be in large multiuser environments where the issues of
integrity and synchronization are crucial. Estimates of overall DBM performance can
not be obtained with any accuracy if the impact of multiple transactions are not exam-
ined.

The last reason that previous views of transactions have been inadequate when
estimating DBM performance analysis, is that the identification of potential bottlenecks
can not be accurately determined. Timing of different events is crucial in identifying

54—

systein bottlenecks. Overly simplified views of transactions do not provide realistic esti-
mates of the time when different events occur. More detailed descriptions of transactions
give a better estimate of these times and can thus be used to more accurately predict
potential system bottlenecks.

3. Proposed Technique

This section describes a technique for conducting a DBM performance analysis
simulation using a more realistic view of transactions than is found in previous DBM
performance studies. This method provides the ability to execute subtransactions while
still allowing the ability to determine the impact of total transactions on system perfor-
mance. The relational data model using relational algebra operations is assumed. This
transaction oriented method requires a detailed representation for transactions, the
definition of various mixes of transactions, as well as the description of other system and
workload parameters needed for simulation. When using a more realistic view of trans-
actions, other components of the DBM must still be appropriately described. Thus, this
performance analysis approach is based upon a coordinated view of transactions,
hardware, software, and databases in the target DBM being analyzed. TABLE 1 lists
functions and parameters needed to describe these four DBM components during a simu-
lation. These lists are not intended to be all inclusive, but to indicate the types of
parameters needed.

TABLE 1
SIMULATION PARAMETERS

Software Hardware Transaction Database
Processor Allocation Method Number of Processors Number Number
Operation Processing Times Number of 1/O Devices Description Access Method

Recovery Technique and Times Type of Network Select Probability Size
Concurrency Control Times Network Transmission Times | Update Probability Location
Preprocessing Time 1/O Times Relations Accessed
Commit Processing Time

The software functions described should include such things as the processor alloca-
tion method in an MIMD architecture, description of concurrency control and recovery
techniques used, and processing times for various CPU operations. The hardware
parameters include descriptions and quantity of the different hardware equipment,
description of network used, and times for I/O and network processing. The structure
of all relations considered needs to be described. This should include the number and
access methods to be used for the various relations, as well as their size and location.
Transaction structures need to be explicitly described including all database operations
and relations accessed. During simulation runs, the probability of actually selecting and
updating the examined pages (records, tuples) needs to be included. While we feel that
the software, hardware, and database components are often adequately described in
DBM performance studies, transactions are not. Therefore, the remainder of this section
discusses a possible method to be used for representing transactions.

55—

During transaction execution in a database system, a transaction request is often
compiled into a query parse tree (QPT) [DEWI79). A query parse tree is a directed
graph where the nodes define the database operations to be performed and the arcs
show the precedence relationships between the operations. During optimization, the
trees may be converted into query dags by combining common subexpressions. It is
assumed that each node in the dag completely describes the operation to be performed,
including the databases acted on and the selection criteria for the operation. Figure 1
shows a query parse tree for a multirelation query used in a previous performance study
[HAWTS2]. Input databases have been shown as source nodes labelled by the relation
name, and output data is shown by a sink node labelled OUTPUT. Query dags will be
the basis for our detailed representation of transactions.

Courrur

JOIN
(ROOMS.roomnum == COURSE roomnum)
ROOMS building == COURSE.building)

SELECT
ROQMS.type = “lab”

Fig. 1. - Sample Query Parse Tree

Both retrieval and update operations can be classified according to the number of
input relations (and thus input arcs). A simple operation has one, while a complez opera-
tion has two. Simple operations include select, project, modify, insert, and delete, while
complex operations include union, difference, product, and join. A complex version of
the three types of update operations (modify, insert, delete) may also be considered.
Here the target tuples (records) to be updated are identified by the tuples on the second
input arc. For simulation purposes, the precise definition of the operations is not usually
required. All that is really needed is an indication of the type of operations to be exe-
cuted. Therefore, instead of specifically describing a transaction by a query dag, we use
a transaction skeleton. The transaction skeleton for a transaction contains the same
graphical structure as its associated query dag, but does not describe the operations in
any detail, nor does it identify precise input relations. Nodes simply identify the type of
operation (simple retrieval, simple update, complex retrieval, complex update) and input
relation nodes are assigned unique integers. During simulation, the integers will be
replaced with one of the relations assumed in existence. An example of the transaction
skeleton for the query parse tree in Figure 1 is shown in Figure 2. The source nodes are
labelled 1 and 2 to indicate two potentially different input relations.

—56-

QuTruD)

S
v

(D ®
Fig. 2. - Transaction Skeleton for QPT in Figure 1

During simulation, a transaction skeleton is used to direct the simulation processing
functions. The graph identifies precedence relationships between the various operations
performed during the simulated execution of the transaction, and the node types iden-
tify time to be simulated for the operation. In actual use, a transaction skeleton may
contain more nodes that in the associated query dag. Additional nodes would be added
for any required processing activities needed during transaction execution such as con-
currency control, data transmission between sites in a distributed system, or scheduling
overhead. The placement of the nodes in the graph indicates the time during execution
when the associated function would be performed. Addition of these nodes to the skele-
ton allows a more precise representation of processing overhead requirements than sim-
ply showing the database operations and assuming a fixed overhead for each.

To describe all transactions to be executed during simulation, a mix of transaction
skeletons is defined by identifying the number of occurrences of each transaction skele-
ton to be included. Determining the exact mix of transactions to be examined in a DBM
performance analysis study is not an easy task due to the fact that there is no accepted
set of representative transactions. Previous investigations of the usage of different data-
base operations have resulted in identification of the types. of transactions most often
used in the specific environment involved, but they have not identified a standard set of
transactions which could be used for performance analysis ([EAST75] and [JOYCS83]).
The exact mix of transactions to be examined should be determined based upon the
intended environment. If the target environment is not well understood, then the trans-
actions to be included should be representative of many different types.

To perform a simulation experiment, each transaction to be executed must be
defined by creating its transaction skeleton. Various mixes should then be described
which use these skeletons. During simulation, the precise definition and order of trans-
actions within a mix is determined. The order of transactions can be determined by
assuming any distribution of the total number of transactions as long as the correct
number of each type is included. The precise definition of each skeleton occurrence is
obtained by replacing the label of each source node in the skeleton with the name of one
of the relations being considered. To obtain different degrees of conflict across trans-
actions, different distributions for assigning the relation names could be used. For the
same transaction mix, different runs could yield extremely different results based upon
the order of transactions and relations involved.

=57~

4. Example of Use

A new database concurrency control mechanism utilizing specialized data flow
graphs, database flow graphs (DBFG), has been introduced and shown to perform as well
or better than locking in an MIMD DBM environment ([EICH84a] and [EICH84b]). A
database flow graph is a special type of data flow graph used to show dependencies
between database operations (both intra-transaction and inter-transaction). The depen-
dencies shown in a DBFG can be used to define a multiple transaction schedule of data-
base operations which is serializable. With DBFG scheduling, concurrency control is
implicitly obtained by ensuring that all schedules of database operations are valid data
flow schedules.

The performance of DBFG scheduling was evaluated both analytically and through
simulation |[EICH84a]. The simulation utilized the transaction oriented approach to
gather performance statistics. Software parameters used represented CPU processing
times for transaction preprocessing, concurrency control, database operation execution,
and commit processing. Hardware parameters described the number of secondary
storage devices and query processors, as well as the I/O times needed for page access.
The database structure consisted of fifteen relations, each with a predefined number of
pages. Any given simulation run could uniformly change the number of pages for all
relations by providing a page multiple parameter. The actual number of pages per rela-
tion was then calculated by multiplying the base number of pages by the page multiple.

Due to the fact that this was a general simulation with no knowledge of typical
transaction mixes, a general set of transactions was created representing different types
and levels of complexity. The twelve transaction skeletons used are shown in TABLE 2.
Twenty mixes of these twelve transactions were defined by identifying the percentage of
each transaction included. Depending on the experiment, some or all mixes were used.
Some mixes were constructed based upon input to previous simulation experiments
([BORAS81] and [HAWTS2]), some were based upon reasonable and extreme combina-
tions of transactions, and still others were based on the actual usage patterns of
different operations in specific database systems ([EAST75] and [JOYC83]).

TABLE 2
TRANSACTION SKELETONS

Simple Retrievals (SRet 1)
(SRet (SRet 1))
Simple Updates (SUpd 1)
(SRet (SUpd 1))
Complex Retrievals (CRet (SRet (SRet 1)) (SRet 2))
(CRet (SRet (SRet 1)) (SRet (SRet 2)))
(CRet (SRet 1) (SRet 2))
(CRet {CRet {SRet 1) (SRet 2))(SRet 3))
(CRet (CRet (SRet 1) (SRet 2)) (CRet (SRet 3) (SRet 4)))
Complex Updates (CUpd (SRet (SUpd 1)) (2))
(CUpd (SRet 1) (2))
(CRet (SRet (SRet (SUpd 1))) (SRet (SRet (SUpd 2))))

-58-

At run time, the total number of each transaction type was determined based upon
the associated percentage and actual number of transactions desired for that run. The
order of the transactions was determined assuming a uniform distribution of the trans-
actions across the total number of transactions in the run. The number in the trans-
action skeleton indicating the relation, was replaced at run time with one of the actual
relations based upon an input parameter giving the mean of an exponential distribution
whose range is the set of relation numbers. An exponential distribution was used to
mimic the behavior which is found when a small number of relations is accessed more
than the remaining ones. During execution, selection of a page for retrieval or update
was made based upon an input parameter stating the mean of an exponential distribu-
tion from O to 1.

Six experiments were performed. The objectives of the first experiment were to
determine the effect of the number of transactions on performance measures and to
determine the number of transactions required to reach a steady state. The next three
experiments determined the impact on performance of differences in various workload
parameters: number of secondary storage devices, number of pages per relation, and pro-
bability of conflict among transactions. Experiment five examined the effect of different
transaction mixes on the performance measures. The last experiment simulated the use
of data flow processor allocation [BORAS81) techniques across transactions.

The transaction oriented approach used in this simulation made the representation
of different concurrency control processing locations within a transaction possible. A
more simplistic view of transactions would not have allowed this definition of con-
currency overhead during transaction processing. A simple yet flexible definition of
transactions and transaction mixes provided the capability for an unlimited number of
simulated transactions and mixes. While it is not implied that all aspects relating to
DBM performance were included in this simulation, a more complex view of transactions
was used than has been found in previous simulation experiments.

6. Summary

A transaction oriented approach to DBM performance analysis has been proposed.
This technique requires a more precise representation of transactions than has been used
by previous DBM performance studies. Used in conjunction with descriptions for the
hardware, software, and database components of the DBM, this technique defines a
coordinated approach to DBM performance analysis. The transaction orientation pro-
vides a more realistic predictor of DBM performance than would be possible using a sim-
ple reference string, a single transaction, or read only transactions.

8. References

[AGRAS83] Rakesh Agrawal, ‘“Concurrency Control and Recovery in Multiprocessor
Database Machines: Design and Performance Evaluation,” Ph.D. Dissertation,
University of Wisconsin-Madison, September 1983.

[BANE78] Jayanta Banerjee and David K. Hsiao, ‘‘Performance Study of a Database
Machine in Supporting Relational Databases,”” Proceedings 1978 Very Large Data
Bases Conference, 1978, pp. 319-329.

(BANET79] Jayanta Banerjee, David K. Hsiao, and Krishnamurthi Kannan, “DBC - A
Database Computer for Very Large Databases,”” IEEE Transactions on Computers,
Vol. C-28, No. 6, June 1979, pp. 414-429.

-59-

[BORAS1] Haran Boral, “On the Use of Data-Flow Techniques in Database Machines,”
Ph.D. Dissertation, University of Wisconsin-Madison, April 1981.

[CESA83] F. Cesarini, D. DeLuca Cardillo, and G. Soda, “An Assessment of the
Query-Processing Capability of DBMAC,"” Advanced Database Machine Architec-
ture, 1983, Printice-Hall Inc., pp. 109-129.

[DEWI79] David J. DeWitt, “DIRECT - A Multiprocessor Organization for Supporting

Relational Database Management Systems,”” [EEE Transactions on Computers,
Vol. C-28, No. 6, June 1979, pp. 395-4086.

[DEWISL] David J. DeWitt and Paula B. Hawthorn, ‘A Performance Evaluation of
Database Machine Architectures,”” Proceedings of the 1981 Very Large Databases
Conference, pp. 199-213.

[EAST75] M. C. Easton, ‘‘Model for Interactive Data Base Reference String,” IBM
Journal of Research and Development, November 1975, pp 550-555.

[EICH84a] Margaret H. Eich, Concurrency in a Data Flow Database Machine, PhD
Dissertation, Department of Computer Science and Engineering, Southern Metho-
dist University, August 1984.

[EICH84b] Margaret H. Eich and David L. Wells, “Database Flow Graphs,” Proceed-
tngs of the 1984 International Conference on Parallel Processing, August 21-24
1984, pp. 266-268.

[HAWTS2] Paula B. Hawthorn and David J. DeWitt, “‘Performance Analysis of Alter-
native Database Machine Architectures,” IEEE Transactions on Software
Engineering, Vol. SE-8, No. 1, Japuary 1982, pp. 61-75.

[HSIA79] David K. Hsiao, ‘“Data Base Machines Are Coming, Data Base Machines Are
Coming!,”” Computer, March 1979, pp. 7-9.

[JOYCS83] John D. Joyce and David R. Warn, “Command Use in a Relational Data-
base System,” AFIPS Proceedings National Computer Conference, 1983, pp 247-
253.

[0ZKA75] E. A. Ozkarahan, S. A. Schuster, and K. C. Smith, “RAP - An Associative
Processor for Data Base Management,” National Computer Conference, 1975, pp.
379-387.

[OZKAT77] E. A. Ozkarahan, S. A. Schuster, and K. C. Sevcik, “Performance Evalua-
tion of a Relational Associative Processor,” ACM Transaction on Database Sys-
tems, Vol. 2, No. 2, June 1977, pp. 175-195.

[SU80] Stanley Y. W. Su, Hsu Chang, George Copeland, Paul Fisher, Eugene Lowenthal,
and Stewart Schuster, ‘‘Database Machines and Some Issues on DBMS Standards,”
AFIPS Proceedings National Computer Conference, 1980, pp. 191-208.

[VEMU80] V. Vemuri, R. A. Liuzzi, J. P. Cavano, and P. B. Berra, “Evaluation of
Alternate Data Base Machine Designs,”” Proceedings of the Fifthe Workshop on
Computer Architecture for Non-Numeric Processing, March 11-14 1980, pp. 29-38.

[WILK81] William Kevin Wilkinson, “Database Concurrency Control and Recovery in
Local Broadcast Networks,” Ph.D. Dissertation, The University of Wisconsin-
Madison, August 1981.

-60~-

CALL FOR PAPERS The Second

| International Conference on
DATA . .

Data Engineering

Bonaventure Hotel
Los Angeles, California, USA
February 4-6, 1986

Sponsored by the @ IEEE Computer Society

L]

ENGINEERING

Committee SCOPE

Honorary Chairman: Data Engineering is concerned with the role of data and

C. V. Ramamoorty knowledge about data in the design, development, manage-
University of California, Berkeley. CA ment, and utilization of information systems. As such, it en-
Gceneral Chairman: compasses traditional aspects of databases, knowledge bases,
P. Bruce Berra and data management in general. The purpose of this confer
Syracuse University, Syracuse, NY ence is to continue to provide a forum for the sharing of

(315) 423-4445 experience, practice. and theory of automated data and knowl-
Program Chairman: edge management from an engineering point-of-view. The

Gio Wiederhold ' effectiveness and productivity of future information systems
Dept. of Computer Science will depend critically on improvements in their design, organi-

Stanford University, Stanford, CA 94305
(415) 497-0685

zation, and management.
We are actively soliciting industrial contributions. We be-

:"_08':3"' C°‘CS‘(‘)“(5:'P¢"°"5=) lieve that it is critically important to share practical experience.
ris Kameny. SDC, Santa Monica, CA 90406 We look forward to reports of experiments, evaluation, and

Ming T. (Mike) Liu, Ohio State Univ., Columbus, OH 43210
Richard L. Shuey, Schenectady. NY 12309
joseph Urban, Univ. $.W. Louisiana, Lafayette, LA 70504

problems in achieving the objectives of information systems.
Papers which are identified as such will be processed, sched-
uled, and published in a distinct track.

Tutorials: Benjamin Wah, Purdue

Peter Ng. Univ. of Missouri, Columbia, MO TOPICS OF INTEREST

I'n‘le\as;r:eo: IEEE. Silver Spring, MD 20910 « Logical and physical data- . Perf_ormance Evaluation

Aldo Castillo, TRW, Redondo Park. CA 90278 base design * Design of knowledge-

Local Arrangements: « Data management based systems g 4
: i i - an

Walter Bond, Cal State Univ., Dominquez Hills, CA 90747 m'eth.odo‘logles d * CrCh'Itegtu";)s fo; ata-a

1000 East Victoria Street (213) 516-358073398 + Distribution of data an nowledge-based systems

Publicity: ’ information » Data engineering tools

Mas Tsuc'hiya, TRW Colorado Springs, CO 80916 We also are planning a special workshop track: .

1555 North Newport Rd; (303) 570-8376 « Performance models and measurement of relational database

systems
-y ¥ ¥ F §F N N K _ N _N R _JN N and solicit papers which report or evaluate such findings.

™ N T W I D GED G N M Gy,

For further information write to.
Second Data Engineering Conference @
c/o IEEE Computer Society o
P.O. Box 639

Silver Spring, MD 20901 USA

(301) 589-8142

TWX: 7108250437 IEEE COMPSO

Awards, Student Papers. and Subsequent Publication:

An award will be given for the best paper at the conference.

Up to three awards of $500 each to help defray travel costs will
be given for outstanding papers authored by students.
Outstanding papers will be considered for publication in the IEEE
Computer Magazine, the Transactions on Computers, and the Trans-
actions on Software Engineering. For more information, contact
the General Chairman.

Name

Gy e oe o0 En Bn @ =G = e

Paper submission:
——— Four copies of papers should be mailed before July 1, 1985 to:
Affiliation Second Data Engineering Conference
IEEE Computer Society
Addroes 1109 Spring Street, Suite 300
Silver Spring, MD 20910
{301) 598-8142
Conference Timetable:
S _X - ot Manuscripts due: july 1. 1985 i
Acceptance letters sent: October 1, 1985
Camera-ready copy dues November 15, 1985
Tut()_rials: February 3, 1986
Conference: February 4-6. 1986 See you in Los Angeles!
@ IEEE COMPUTER SOCIETY 1864 o-maq THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS. INC.

-61-

IS

TUTORAL

for parsel and distrixried proceesing

Comemty Chusn-in W and Ta-yun Fang

N, Srhari 000 00oonco
Sargur o
000 oo

Computer Society Press tutorial
texts are collections of original
materials and reprinted articles

-area

Tutorlal: Supercomputers: Design and Applications

by Kal Hwang

This tutorial introduces state-of-the-art supercomputers and presents
major design issues and typical applications requirements of
high-performance computer systems. The text is designed for
scientists, systems designers, programmers, and educators, as well
as for people who are involved in the research, development, and
application of high-performance computers. It is intended for novices
as well as for a major reference for computer professionals. Divided
into five main parts, it covers the following aspects of
supercomputers: systems architecture, technology buses, large-scale
computations, vector processing, language extensions, compiling
techniques, commercial and exploratory systems, parallel algorithms,
resource allocation, important applications, data flow and very
large-scale integration computing, and future trends.

BJS81 (ISBN 0-8186-0581-2): August 1984, 648 pp.,

NM, $38.00; M, $24.00

Tutorial: Interconnection Networks for Para'lel and
Distributed Processing

by Chuan-lin Wu and Tse-yun Feng

This tutorial serves as a useful guide for beginners and as a major
reference for all computer professionals. It is hoped that readers, after
going through the text, will be able to design interconnection networks
that fit their computer architecture needs, design better algorithms,
write better programs, and trigger a revolution on the system control
concept. It presents fundamentals in interconnection networks, a
crucial topic in the field of parallel/distributed processing.

BJS74 (ISBN 0-8186-0574-X): August 1984, 656 pp.,

NM, $38.00; M, $24.00

assembled as a coherent package
designed to address a well-defined

Tutorial: Principles of Communication Network Protocols
by Simon S. Lam
This tutorial is a valuable reference for systems engineers and

. analysts who desire an understanding of the technical principles that

underiie the design of communication network software and the
performance tradeoffs involved in its design. It is also an excellant
source of supplemental readings for graduate-level courses on
computer communication networks. Divided into seven chapters, it
covers: the fundamentals of computer communication networks, data
link control protocols, multiple access protocols, local area networks,
resource allocation problems and solution techniques in
store-and-forward networks with point-to-point links, communication
protocols for wide area networks and internetworks, and models and
methods for protocol verification and construction.

BJS582 (ISBN 0-8186-0582-0): October 1984, 528 pp.,

NM, $36.00; M, $25.00 ‘

Selected Reprints on Logic Design for Testability

by Constantin C. Timoc

Interest in designing testable digital logic has grown rapidly in the
past decads, therefore, this collection of reprints was carefully
compiled to discuss the current status and growing trends toward
higher levels of integration and to illustrate the considerable effort
required to test the integrated circuits that perform complex logic
functions. Topics include: testability problems, logic and switch
models of physical failures, test generation and fault simulation, serial
and random scan, and built-in self-testing.

BJ573 (ISBN 0-8186-0573-1): August 1984, 324 pp.,

NM, $25.00; M, $18.75

Tutorial: Computer Text Recognition and Error Correction
by Sargur N. Srihari

Designed for computer researchers interested in developing flexi-
ble techniques for text processing and computer vision, this tuto-
rial is concerned with transferring a degree of intelligence to text
processing systems. In particular, the ability to automatically detect
and correct spelling and typographical errors and to interpret
digitized video images of print and script whose iconic representa-
tions (visual symbols) are ambiguous. Organized into four parts: an
introduction to text error correction, the interpretation of print/
script and their postprocessing, spelling and typographical error
correction, and dictionary organization, the papers included have
appeared in a relatively wide context of computing literature and
encompass a fairly wide span of time.

BJ579 (ISBN 0-8186-0579-0): December 1984, 363 pp., NM,
$36.00; M, $24.00

Selected Reprints on VLSI Technologies and Computer
Graphics

by Henry Fuchs

This compilation or reprints is intended for professionals interested in
the intersection of, and the relationship between, computer graphics
and VLSI. Two major areas are represented: the graphical aspects of
VLS design and the impact of VLS| computing structures on graphics
_hardware. This book contains 56 printed articles that are divided into
eight sections covering the following topics: mask level layout;
symbolic layout; floorplanning, placement, and routing; artwork
analysis; algorithms for layout synthesis and analysis; CAD systems
and related graphics issues; and image analysis.

BJ491 (ISBN 0-8186-0491-3): July 1983, 500 pp.,

NM, $36.00; M, $20.00

Tutorial: VLSI—The Coming Revolution in Applications
and Design

by Rex Rice

Providing a broad interdisciplinary perspective on present and
potential uses of VLS|, this tutorial emphasizes economic
considerations rather than covering details of processes. It includes
both historical background and examples of current VLS| programs.
The main portion of the tutorial traces a VLS! design through the
complete processes from system design through a tested computer,
giving particular emphasis to the hazards to be avoided and
discussing available alternatives and economic considerations for
each step.

BJ288 (ISBN 0-8186-0288-0): February 1980, 316 pp.,

NM, $30.00; M, $20.00

Tutorial: VLSI Technologies—Through the 80’s and
Beyond

by Denis J. McGreivy and Kenneth A. Pickar

The semiconductor industry, now in its fourth decade of growth, is
experiencing unprecedented demands from all facets of government,
industry, and science. This has created highly competitive R&D efforts
to reduce physical size of these chips while improving
performance-to-cost characteristics. In this tutorial, an attempt is
made to chart the most probable path of technology evolution in the
integrated circuit industry through the remainder of this decade.
Parameters with which to identify and describe past and future trends
are discussed, and market demands and projections of anticipated
supply are also presented. A detailed discussion of the trends in
various VLSI technologies in which such factors as size, complexity,
and costs, are also examined.

BJ424 (ISBN 0-8186-0424-7): April 1982, 450 pp.,

NM, $30.00; M, $20.00

Tutorial: VLS| Support Technologies (Computer-Aided
Design, Testing, and Packaging)

by Rex Rice

Designed to answer the question of what technologies one needs to
design and to use custom and “semi-custom” VLS| arrays, this tutorial
attempts to provide a single source of information on the three major
concerns of VLS| designers today. For the least expensive and most
expeditious development of VLSI, the author provides bridging
materials to enable designers, implementers, and users to realize the
effects of their activities on other aspects of VLS! design.

BJ386 (ISBN 0-8186-0386-0): February 1982, 480 pp.,

NM, $30.00: M, $18.75 '

SELECTED REPRINTS ON VLS
TECHNOLOGIES AND COMPUTER
' GRAPHICS

[e

THROUGH THE 60s AND SEYOND
By DENIS J McGREVY and KENNETH A PICKAR

TUTORIAL:
BASE :
INTHE1980°s

snases a0 FREEMAN

Tutorial: Data Base Management in the 80's

by James A. Larson and Harvey A. Freeman

This tutorial addresses the kinds of data base management systems
(DBMS) that will be avaitable through this decade. Interfaces available
to various classes of users are described, including self-contained
query languages and graphical displays. Techniques available to data
base administrators to design both logical and practical DBMS
architectures are reviewed, as are data base computers and other
hardware specifically designed to accelerate database management
functions.

BJ369 (ISBN 0-8186-0369-0): September 1981, 472 pp.,

NM, $27.00; M, $20.00

Database Engineering, Volume 2

Binding the four 1983 issues of the quarterly newsletter of the
Technical Committee on Database Engineering, this book featured
articles covering such topics as: database systems being marketed by
major vendors in Japan, commercial transaction-processing systems,
various approaches to automating office systems, and expert
systems. Includes 37 papers.

BJS53 (ISBN 0-8186-0553-7): February 1984, 274 pp.,

NM, $20.00; M, $15.00

PUBLICATIONS ORDER FORM

Return with remittance to:

IEEE Computer Society Order Department
P.O. Box 80452

Worldway Postal Center

Los Angeles, CA 90080 U.S.A.

Discounts, Orders, and Shipping Policies:

Member discounts apply on the FIRST COPY OF A MULTIPLE-
COPY ORDER (for the same title} ONLY! Additional copies are
sold at list price.

Priority shipping in U.S. or Canada, ADD $5.00 PER BOOK
ORDERED. Airmail service to Mexico and Foreign countries,
ADD $15.00 PER BOOK ORDERED.

Requests for refunds/returns honored for 60 days from date of
shipment {90 days for overseas).

ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
ALL BOOKS SUBJECT TO AVAILABILITY ON DATE OF
PAYMENT.

ALL FOREIGN/OVERSEAS ORDERS MUST BE PREPAID.

Minimum tredit card charges {excluding postage and handling),
$15.00.

Service charge for checks returned or expired credit cards,
$10.00.

PAYMENTS MUST BE MADE IN U.S. FUNDS ONLY,
DRAWN ON A U.S. BANK. UNESCO coupons, International
money orders, travelers checks are accepted. PLEASE DO NOT
SEND CASH.

ORDER HANDLING CHARGES (based on the $ value
of your order—not including sales tax and pnstage)

For orders totaling: Add:
$ 1.00tos 1000 $ 3.00 handling charge
$ 10.01to$ 25.00 $ 4.00 handling charge
$ 25.01to$ 50.00 $ 5.00 handling charge
$ 50.01 to $100.00 $ 7.00 handling charge
$100.01 to $200.00 $10.00 handling charge
over $200.00 $15.00 handling charge

PLEASE SHIP TO:

EREENENEEEEREEEEEENRREREREEN

NAME

LI

JLIT T T1

HNNNENNENNRNNNREE [

AFFILIATION (company or attention of)

SNEEEENEEERENEENEEEEEEEEEAERRER

ADDRESS (Line - 1)

AN N NN

ADDRESS (Line - 2}

AEEEEEEEEEEENEEEEEREREEEERERER

CITY/STATE/ZIP-CODE

L

IENEEENEENEENENEENENEEEREEEE

COUNTRY

|

—[J—[T] (required for discount) -l rl I l l] l l

EEE/COMPUT!

ER SOCIETY MEMBER NUMBER PHONE/TELEX NUMBER

HENEENEEEEEENEREERERE

PURCHASE ORDER NUMBER

AUTHORIZED SIGNATURE

ORDER M/NM
Qty NO. TITLE/DESCRIPTION PRICE AMOUNT
If your selection is no longer SuUB TOTAL $
in print, will you accept CALIFORNIA RESIDENTS ADD 6% SALES TAX §
microfiche at the same price? HANDLING CHARGE (BASED ON SUB-TOTAL) $
O Yes O No OPTIONAL PRIORITY SHIPPING CHARGE ~ §
TOTAL $
METHOD OF PAYMENT (CHECK ONE}
0 CHECK ENCL. O VISA O MASTERCARD (0 AMERICAN EXPRESS
CHARGE CARD NUMBER EXPIRATION 'SIGNATURE ~ BJ

DATE

IEEE COMPUTER SOCIETY

Administrative Office

P.O. Box 639
Silver Spring, Maryland
20901

Non-profit
Organization
U.S. Postage

Paid
Silver Spring, MD
Permit No. 1398

	40979_DataEngineering_Mar1985_Vol 8_No1.pdf

