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Abstract. In 2019, the ANSSI released a protected software implementation of AES
running on an STM32 platform with ARM Cortex-M architecture, publicly available
on Github. The release of the code was shortly followed by a first paper written by
Bronchain et al. at Ches 2020, analyzing the security of the implementation and
proposing some attacks. In order to propose fair comparisons for future attacks on this
target device, this paper aims at presenting a new publicly available dataset, called
ASCADv2 based on this implementation. Along with the dataset, we also provide a
benchmark of deep learning based side-channel attacks, thereby extending the works
of Bronchain et al. Our attacks revisit and leverage the multi-task learning approach,
introduced by Maghrebi in 2020, in order to efficiently target several intermediate
computations at the same time. We hope that this work will draw the community’s
interest towards the evaluation of highly protected software AES, whereas some of
the current public SCA datasets are nowadays reputed to be less and less challenging.
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Introduction
Context. If physical attacks are nowadays seen as the main threat on the security of
cryptographic primitive implementations, rather than algebraic ones, the recent emergence
of Internet-of-Things (IoT) over the past few years has exacerbated them. Such attacks
consist in exploiting (i.e. knowing or even disrupting) some physical properties on the
target device. In particular, Side-Channel Analysis (SCA) benefits from the measurements
of the power consumption or the electro-magnetic (EM) emanations from the device,
in order to easily reveal some chunk of a secret value (e.g. a key) when processing
some intermediate computations (a.k.a. sensitive variables) during the execution. Hence,
combining information about a sensitive variable with the knowledge of the public data
makes possible for an attacker to reduce the key chunk search space. The attack can
then be repeated several times on every single chunk of the secret thanks to a divide-and-
conquer strategy, thereby breaking the high complexity usually required to defeat such
algorithms. Such a strategy is made possible by the nature of many cryptographic primitives
that process some elementary operations bit-wise (e.g. RSA [RSA78]) or byte-wise (e.g.
AES [DR02]).

IoT are not the only devices prone to side-channel attacks. Nevertheless, the fact
that they are often designed based on Commercially available On The Shelf (COTS)
components induces two drawbacks on the hardware security. First, an attacker can
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easily get access to a clone device, and optionally to the source code.1 This may enable
a malicious entity to mount a so-called profiled attack [MOP07]. In this scenario, the
attacker can use the clone device to characterize the behavior of the informative leakage
contained in the physical measurements (a.k.a. traces) in order to optimally extract it
from the target device under attack. Second, the types of components used in the IoT
industry are sometimes designed without any security purpose regarding physical attacks.
They may lack inherent physical2 and software noise,3 thus preventing the target device
from reducing the information contained in the leakage traces.

The lack of noise is highly problematic. Noise provides the device with some robustness
against attacks. Therefore the developer can try to artificially amplify it by using counter-
measures such as secret-sharing (a.k.a. masking). Such counter-measure is known to
provide an exponential increase in the security level with respect to the number of shares
(a.k.a. order) [CJRR99, PR13, DDF19, DFS19, DFS16, PGMP19], though at the cost of
a quadratic runtime and memory overhead [RP10]. To summarize, the lack of noise, the
performance overheads, along with the difficulties for a developer to properly implement
counter-measures4, represent a major challenge towards the secure use of IoT against the
SCA threat.

Evaluating the Security of an Implementation. To circumvent the latter issues, the
security of an implementation may be assessed and improved through an adversarial
game between developers and evaluators, which is hopefully beneficial for both parties.
By making some implementations publicly available, developers may emulate a sane
competition between evaluators who can then compare attacks based on a fair and common
ground. This incentive encourages to improve the global quality of the attacks and leakage
assessment methods, which in turn allow a more precise diagnosis of the released target
implementation in a worst-case scenario – and eventually leads developers to improve their
own implementation.

Over the past few years the SCA community has benefited from the release of several
AES implementations and their corresponding trace datasets, listed in Table 1. The release
of those datasets has been particularly helpful for the emergence and the improvement of
Deep Learning (DL)-based SCA [MPP16, CDP17, KPH+19, ZBHV19]. Although beyond
the scope of this paper, the trend starts to extend as well to other types of symmetric5

and asymmetric6 encryptions.
Nevertheless, as the attacks improve in quality, some implementations become less

challenging to break. Hereupon, Wouters et al. conclude their work at Ches 2020 by
noticing that:

“while [the ASCAD dataset] was likely a good starting point, [the authors] feel
the reduced dataset (which is arguably the most difficult one from the set of
used datasets) has become easy to attack [. . . ]. Additionally, investigating the
resilience of machine learning based methods to other counter-measures (e.g.
clock jitter, instruction shuffling, dummy rounds, etc.) could be interesting as
these could require a different design methodology” [WAGP20].

1See, e.g., the mbedTLS library publicly available for ARM devices (https://tls.mbed.org/).
2Operations on a hardware device are usually done in parallel, thereby mixing the sensitive leakage

with noise from other parallel operations. This does not happen on a software device (unless applying a
so-called bit-slicing [Bih97, KS09]).

3The secret data can be manipulated numerous times under different forms (loadings, storings, interme-
diate computations, etc.) yielding non-correlated informative leakages.

4A series of works is currently investigating the possibility to automatically protect an implementation,
while providing strong guarantees about the security level [BDM+20].

5See, e.g., the Ches 2020 CTF: https://ctf.spook.dev/.
6See, e.g., the Ches 2018 CTF.

https://tls.mbed.org/
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Table 1: List of publicly available datasets of SCA traces for AES.
Name Year Architecture Masking Hiding Paper

AES-RD 2009 Soft 7 RDI [CK10]
DPAv2 2010 FPGA 7 7 [CDD+14]
DPAv4 2013 Soft RSM 7 [BBD+14]

ASCAD 2018 Soft Boolean 3 [BPS+19]
CHES - CTF 2018 Soft Boolean 7

AES-HD 2019 FPGA 7 7 [KPH+19]
ASCADv2 2021 Soft Affine Shuffling This paper

7: Not implemented, 3: synthetic counter-measure

The ANSSI Implementation. In order to contribute to this trend, and somehow related
to the observations of Wouters et al., the Agence Nationale de la Sécurité des Systèmes
d’Information (ANSSI) has recently published a library implementing a secure AES-128
on an ARM Cortex-M4 architecture [BKPT19]. This library uses a combination of state-of-
the-art counter-measures, such as affine secret-sharing [FMPR10], and random shuffling
of independent operations [VMKS12]. A more detailed description of the implementation
is provided in Subsection 1.3.

Shortly after the release of the implementation, a first study of its security was proposed
by Bronchain et al. [BS20]. They studied several attacks on a perfectly open sample, i.e.,
with full knowledge of the source code, the secret key, and the random shares processed
during the profiling phase. Such threat model depicts an attacker with very strong powers.
By carefully analyzing the code, they are able to propose what they call a dissection
attack, that we recall in Subsection 1.4. It results in successful key recoveries within 2, 000
traces acquired on a SAM4L Xplained Pro board, which sounds very efficient regarding the
overhead induced by the counter-measures.

Problem Addressed in this Paper. This work is motivated by the following observations.
First, it appears that the Bronchain et al.’s attacks emphasize what can be seen as

a vulnerability in the ANSSI implementation. More precisely the attacks leverage the
way some of the seeds are used to generate some of the permutations in order to almost
completely annihilate the effect of shuffling, as we develop in Subsubsection 1.4.3. This
vulnerability may be fixed, but interestingly, the comprehensive results of Bronchain et
al. already allow to provide a first picture of the security loss it results in. Rather than
overlapping the latter results by reproducing the authors’ attacks on a fixed implementation,
we think that it would be of better interest to consider other attack paths, in order to give
a more comprehensive overview of the security of the ANSSI implementation.

Second, the SCA scenario considered by Bronchain et al. supposes that the attacker
may access the values of random shares during the profiling. Such hypothesis enables to
easily assess the worst-case scenario [SMY09, ABB+20]. However, having an open access
to the source code does not necessarily mean having access to the source of randomness
used by the target. As a consequence, this evaluation approach is more prone to draw
too pessimistic conclusions, by denying a potential joint effect of the counter-measures,
which relies on hiding the knowledge of the randomness on the clone device. Hence, it
would be interesting to guess to what extent such evaluations could be brought closer to a
realistic scenario from an attacker’s point of view, somehow following the challenge raised
by Bronchain et al. in their paper, namely whether it is possible to break the ANSSI
implementation with black-box models (i.e. not leveraging the knowledge of random shares
during the profiling phase) in less than 2, 000 traces [BS20].
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Our Contributions. In order to tackle the problem listed ahead, we aim at bringing
the following contributions. First, we evaluate the counter-measures provided within the
ANSSI implementation independently from each other. To do so, we mount partial attacks
in order to recover the different shares and permutation indices of which knowledge is
necessary to succeed a global attack. While not necessarily realistic from an attacker point
of view, those SCA scenarios have the advantage of providing clues about the efficiency
of an optimal attack. On the one hand, our deep learning experiments on the affine
masking scheme show that when shifting from an open-sample to a black-box evaluation
framework, the knowledge of the multiplicative mask is crucial to succeed the attack. This
confirms the previous observations of Bronchain et al. on the difficulty of learning the
field multiplication with classic deep learning models. On the other hand, our results show
that the shuffling counter-measure offers small resistance to our deep learning model, even
when targeting the non-weakly random permutations, as we embrace another attack path
compared to the Bronchain et al.’s ones.

By taking into account these results, we propose a trade-off in the evaluation setting
of the implementation. Our final attack still requires the knowledge of the affine masks
during the profiling step. However it relies on a single deep learning model for a whole
key recovery in some automatic fashion. In order to efficiently target all the intermediate
values, we revisit in Subsection 3.2 the Maghrebi approach using the multi-task learning
paradigm [Mag20]. We argue that this methodology is not practically limited to the joint
learning of two variables, as previously claimed by Maghrebi, since we are able to jointly
target up to 34 variables in our experiments. Interestingly, some of our final SCA scenarios
do not require any knowledge about the permutation indices. Moreover we manage to take
into account a target window composed of 15, 000 time samples contained in our extracted
dataset, some of these samples possibly containing no information.

Finally, we ground our results by releasing the traces we acquired for the study of this
implementation. Like the ASCAD database, we provide two datasets: a first one with
the full traces and a second one with the extracted traces focused on a restricted window
of the whole time samples. The choice of this restricted window is justified with a code
analysis that is provided in Section 2. It is worth noting that this extraction process only
required the access to the source code, but did not rely on the knowledge of the random
nonces, nor plaintexts/ciphertexts. Therefore, our extracted dataset encompasses a broad
spectrum of threat scenarios against the implementation, which will hopefully benefit to
the SCA community.

1 Background
This section aims to present some background facts about the implementation under study,
such as its description (see Subsection 1.3) or the attacks already conducted on it (see
Subsubsection 1.4.1), and to introduce some discussions (see Subsubsection 1.4.2) that
will serve as a ground for the presentation of our new public dataset (see Section 2), and
our attacks (see Section 3). Prior to that, some notations and conventions are introduced
in Subsection 1.1 and Subsection 1.2.

1.1 Notations
Throughout this paper, we use calligraphic letters as X to denote sets. If the latter one
is finite, we also denote by |X | its cardinal. Sq denotes the set of permutations over the
finite set J0, q − 1K. We use the corresponding upper-case letter, e.g. X (resp. X) to
denote random variables (resp. random vectors) over X (resp. XD where D denotes the
dimensionality of the vector). The notation x← X (resp. x← X) denotes that x (resp. x)
is a realization of the latter random variable (resp. random vector). Furthermore, we use
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ẋ to denote a hypothetical value that X may take. The i-th entry of a vector x is denoted
by x[i]. In this paper, a cryptographic primitive takes as input a vector pt of plaintext
bytes and a vector k of (secret) key bytes.

1.2 Profiling Attacks
This section presents the global picture of a profiling scenario, when considering a divide-
and-conquer methodology – i.e. when targeting one byte Z = C (Pt,K) of a sensitive
operation at the time, where Pt denotes the plaintext and K the key.

First and foremost, a dataset of independent and identically distributed (i.i.d.) profiling
traces is acquired on the prototype device. Based on those traces, one model fZ is built
for each key chunk. Such a model returns a set of scores for each hypothetical value of
Z, that can be viewed as a probability mass function (p.m.f.). Once the characterization
on the clone device is done, a dataset {(x1, pt1), . . . , (xNa , ptNa)} of Na attack traces is
acquired on the target device. During this step, k? denotes the fixed and unknown key to
be guessed, and for all i, pti ← Pt denotes the associated plaintext while xi stands for the
leakage observed during the encryption of pti when using the secret key k?.

Next, a prediction vector is computed on each attack trace, based on the previously
built model: yi = fZ(xi). For each trace, it assigns a score to each key hypothesis, namely,
for every j ∈ J1, |Z|K, the value of the j-th coordinate of yi corresponds to the score
assigned by the model to the hypothesis “Z = żj” when observing xi. Then, the scores are
combined over all the attack traces according to a maximum likelihood score vector, in
order to sort the key chunk hypotheses k ∈ K by order of preference:

d[k] ,
Na∑
i=1

log (yi[zi]) where zi = C (pti, k) . (1)

Finally, the attacker chooses the key that is ranked first. If it matches with the right key
k?, the attack is considered as successful.

More generally, the rank of the correct key hypothesis k? is defined as the position
of the score corresponding to k? in d when it is sorted in decreasing order. To remove
the contribution of random aspects in the attack, we will rather assess the Guessing
Entropy (GE) [SMY09], i.e., the average rank of the correct key hypothesis with respect
to the number of attack traces Na. In our experiments, the average is estimated over 500
independently repeated attacks. Additionally to the GE, we may also plot the first and
third quartile of the distribution sampled through our repeated attacks, in order to provide
a confidence interval of the rank.

1.3 The Implementation
In this section, we describe the ANSSI implementation that we attack. We target a
software protected implementation of AES running on a 32-bit ARM Cortex M architecture.
The implementation has been developed by the embedded security team of the ANSSI and
is freely available on Github [BKPT19]. The library performs AES-128 encryption and
decryption and makes use of a mix of two counter-measures, namely affine masking and
shuffling, in order to protect the cryptographic operations.7

We provide the reader with a brief description of the implementation, so as to prepare
the ground for the discussions regarding Bronchain et al.’s attacks and ours, which will
in turn justify the choice of new attack paths. More details on the implementation and
previous attacks can be found in [BS20].

7Our attacks target the AES encryption, therefore we do not describe the key schedule operation – very
similar to the ones applied to the AES rounds, up to different fresh random shares – and we assume that
the masked round keys extracted from the different values of maskedStateK have already been computed.
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1.3.1 Affine masking

The practical use of affine masking has been introduced by Fumaroli et al. [FMPR10],
extending the seminal work of von Willich [vW01]. The i-th byte of the AES state, denoted
by state [i], is never directly processed as such by the implementation, but rather under the
form of three independent shares: a non-zero random multiplicative share rm, a random
additive share β and the masked state maskedState [i]:

maskedState [i] = (rm × state [i])⊕ β ,

where × denotes the field multiplication over GF
(
28). More precisely, β may denote:

• stateM [i], the i-th byte of a masking state stateM similar to the AES state, and
initialized with the value M [i] ;

• rin, the random byte used at the input of the re-computed Sbox;

• rout, the random byte used at the output of the re-computed Sbox.

The masking state stateM is used as the additive masks for the linear operations of AES. The
affine sharing is propagated by performing such linear operations on stateM and maskedState
independently. Note that contrary to stateM, rin and rout are used indistinguishably to
mask every byte.

1.3.2 Shuffling

Additionally to affine masking, many sub-operations on the masked AES state are performed
in a random order [VMKS12]: the order in which each byte is processed is defined by a
pre-computed permutation based on the input random values. For the AES rounds, two
types of permutations, respectively from S4 – during MixColumns – and S16 – everywhere
else – are used.

In the former case, the tables permIndicesMC, permIndicesMCbis are applied to shuffle
the columns of respectively the masked state maskedState and the masking state stateM as
follows:

permIndicesMC [i] = i⊕ seed′1 , (2)

where seed′1 is a 2-bits seed derived from the initial value M [0] of maskedState.8
In the latter case, the permutations from S16 are used to shuffle any other elementary

operation of AES. permIndices is applied to shuffle the bytes of maskedState, whereas
permIndicesBis is applied to shuffle stateM. Both tables are generated from four seeds
seed1, . . . , seed4, as follows:

permIndices [i] = pGF(pGF(pGF(pGF(i⊕ seed1)⊕ seed2)⊕ seed3)⊕ seed4) , (3)

where pGF is a tabulated permutation given in Appendix B.9

1.4 Bronchain’s Attack
We now briefly describe the first attacks proposed by Bronchain et al. at Ches 2020.

8A similar formula holds for permIndicesMCbis, using another seed.
9A similar formula holds for the generation of permIndicesBis, replacing i with permIndices [i] in the

right-hand side of Equation 3.
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1.4.1 A High-Level Overview

Bronchain et al. describe five attacks against the ANSSI AES implementation (denoted by
A1 to A5), each of these being composed of profiled attacks exploiting first-order leakage,
separately targeting the masked AES state maskedState, the additive mask stateM, the
multiplicative mask rm and – for some of them – the permutation indices permIndicesMC
and permIndicesMCbis.

The multiplicative mask rm is targeted during the generation of a pre-computation table
GTab corresponding to the field multiplication by rm. When targeting the other shares of
the masking scheme during the MixColumns, namely the bytes of maskedState and stateM,
the authors assume to know the permutation tables in order to refine their leakage models.
Those permutation tables are anyway profiled independently, by leveraging the knowledge
of the initial seeds in the profiling phase, since they are derived from the initial state of
stateM. However, one of Bronchain et al.’s scenarios – denoted by A1 in their paper – does
not require the knowledge of permIndicesMC, since the authors leverage a piece of assembly
code removing the rout mask in the masked state in a non-shuffled order.10

Finally, it is worth noting that four out of the five attacks rely on Gaussian Tem-
plates [CRR02]. The last one, A5, uses two deep neural networks – more precisely
Multi-Layer Perceptrons (MLP) – to retrieve the values of maskedState and stateM from
the leakages. The best attack result is obtained with A5 where the key is directly retrieved
with 2, 000 traces in average and with only 900 traces when using a key enumeration
algorithm [Pou18].

In the next sections, we aim at discussing some details of Bronchain et al.’s attacks,
targeting the permutations leakages. This will serve as a ground for justifying the
introduction of new attacks in this paper.

1.4.2 Diving into the Details

Bronchain et al. use the independence leakage assumption to merge all their partial attacks
described in Subsubsection 1.4.1 according to Equation 4. Such approach allows to get an
estimator of the targeted i-th byte state [i] given the observation x of the leakage. Following
the notations of Bronchain et al., we denote hereafter by xZ the leakage corresponding to
the processing of an intermediate computation Z:

fs[i] (ṡ | x) , Pr (state [i] = ṡ | X = x)

∝
∑

α̇∈GF(28)
α̇6=0

frm (α̇ | xrm) ·
∑

β̇∈GF(28)

fstateM[i]
(
β̇ | xstateM

)
· fc[i]

(
α̇× s⊕ β̇ | xc

)
. (4)

More precisely, the models fstateM[i] (resp. fc[i]) are not estimated as such, but rather
derived from similar templates f ′stateM[i] (resp. f ′c[i]), taking into account the knowledge of
the permutation indices:

fc[i]
(
β̇ | xc

)
=

3∑
ȯ=0

fpMC[i] (ȯ | x) · f ′c[i]
(
β̇ | xc[ȯ]

)
, (5)

where fpMC[i] denotes the model of the i-th index of permIndicesMC.11

1.4.3 Exploiting Weakly Random Permutations

Likewise, the authors derive the models fpMC[i] of the permutation indices from profiled
models targeting the seeds. Indeed, the permutations permIndicesMC and permIndicesMCbis

10This attack still requires the knowledge of the permutation table permIndicesMCbis during the profiling
phase.

11A similar formula holds for permIndicesMCbis.
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computed according to Equation 2 are weakly random, since any permutation index from
those tables is in bijection with its corresponding seed.12

Therefore, this emphasizes that the attacks of Bronchain et al. not only rely on a
careful dissection of the open-source code, but also highlights an intrinsic weakness of the
implementation. Whether changing the generation of permIndicesMC and permIndicesMCbis
could decrease the efficiency of Bronchain et al.’s attacks is yet to be discussed, although
out of the scope of this paper. Instead, we propose in the next section a slightly modified
attack path that does not imply targeting possible vulnerabilities of the permutation
generation algorithm.

1.4.4 Extending to Larger Permutations?

Following our discussion in Subsubsection 1.4.3, we now want to find other attack paths
that do not necessarily leverage the weakly random permutations discussed so far. A
straightforward alternative would be to target intermediate computations that are shuffled
according to the larger permutations over S16. We estimate that discussing to what extent
such a strategy would be possible is of great interest. On the one hand, this may lead to
other attack paths, possibly more efficient – i.e. requiring less attack traces to succeed –
and thereby draw a more comprehensive picture of the security of ANSSI implementation.
On the other hand, dealing with larger permutations may induce more complex attacks,
possibly intractable.13 We discuss hereafter this possibility.

If the attacker wants to recover an intermediate computation shuffled by permIndices
(resp. permIndicesBis) by extending Bronchain et al.’s strategy, he would need to derive
the models fp[i] (resp. fp′[i]) from the models of the seeds, where p [i] denotes the i-th
element of permIndices (resp. permIndicesBis ). This would yield two major issues. First,
the generated permutations are not weakly random anymore. Indeed, the mapping between
the seeds and permIndices is not injective anymore, so the informative leakages should
involve less PoIs, resulting in a less efficient attack. Second, deriving one score for each
attack trace according to this technique would require to sum over the space of joint
hypothetical values of the seeds, thereby increasing the computational complexity by a
factor 216. Hence, this suggests that other attack paths might be more interesting for
breaking the shuffling counter-measure. Rather than profiling the seeds, we propose here
to directly profile the permutation indices.

2 The ASCADv2 Dataset
We present in this section the dataset that we release, named ASCADv2. It is based on the
ANSSI implementation presented in Subsection 1.3. In Subsection 2.1, we describe our
acquisition setup, and we propose in Subsection 2.2 a code analysis in order to help the
reader to use the dataset.

2.1 Description of the Dataset
The source code has been compiled and embedded on an STM32-F303-RCT7 chip using
a Cortex-M4 architecture. The acquisition has been done thanks to a ChipWhisperer
board capturing the power consumption during the execution. The clock-frequency
has been set to 4 MHz, while the clock frequency of the oscilloscope has been set to
100 MHz, which allows for 25 time samples per cycle. The whole execution – i.e. the
pre-processing, the AES rounds, and the post-processing – covers a 1 M time samples

12Figure 14 in Algorithm B illustrates the weakness of the small permutations. Changing the way these
ones are computed in Algorithm 1 is hence a track of improvement of the ANSSI’s implementation.

13Bronchain et al. explicitly mentioned the latter reason as a potential risk that led them to prefer
targeting smaller permutations on the MixColumns operation.
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window picturing the power consumption, and 800, 000 traces have been acquired in
the whole ASCADv2 database, which weights in total around 800 GB. It is then worth
mentioning that our dataset differs from Bronchain et al.’s one in that their own datasets
captured the EM emanation with a near field probe. The database can be downloaded at
https://www.data.gouv.fr/fr/datasets/ascadv2/, under the form of eight h5py files
of 100 GB, each one following the same nomenclature as the ASCAD database proposed
by Benadjilla et al. [BPS+19].14

2.2 Code and Trace Analysis
Since all time samples do not necessarily carry relevant informative leakage to conduct
divide and conquer attacks – i.e. mostly targeting intermediate computations from the
first AES round – we also propose an extracted dataset, from which successful attacks
can be conducted. This lighter dataset contains 15, 000 times samples, which represents a
drastic cut compared to the million time samples from the original traces.

The choice of those targeted windows must represent a trade-off: on the one hand, the
targeted window must cover enough time samples in order for a potential attacker to be
able to succeed an attack. In addition, the larger the traces, the more informative leakage
they may carry, and the most successful an optimal attacker – i.e. with infinite means for
profiling in order to compute the exact maximum likelihood distinguisher [HRG14] – could
be, provided with those traces. On the other hand, the larger the traces, the less tractable
the attacks of an actual attacker – i.e. without infinite means for profiling – may be.

Besides, for the attacks that we will present in the next sections, and since the affine
scheme is a third-order secret sharing,15 we will need some leakage carrying information
about rm,maskedState, rout, and (optionally) permIndices. Those requirements yield a major
difference compared to the extracted dataset of ASCAD: since rm is never manipulated in
the assembly code of the AES rounds, whereas maskedState is only manipulated inside the
latter ones, it is not possible to restrain the extracted dataset to only one contiguous region
of the time samples. Hence, we make the choice to split the extracted dataset into two
contiguous regions. The first one must cover the leakage of rm during the pre-computation
of the field multiplication table GTab, while the second one must target all the remaining
shares and permutation indices manipulated during the SubBytes operation.

Hereafter, we present a brief code analysis that will justify our choice for the targeted
windows in the extracted dataset. This characterization does neither require the knowledge
of the plaintexts, secret keys, nor random shares used during the encryption, but only
requires the knowledge of the assembly code,16 and a thousand traces that we averaged
to remove as much source of randomness as possible. Our technique relies on the fact
that no source of misalignment is present in the acquired traces. Therefore, this extracted
dataset may be used in a large spectrum of threat models, with possibly restricted power
assumption on attackers.

Global Overview of the Trace. As described in Subsection 1.3, the whole implementation
is made of three main steps, namely pre-processing, AES rounds, and post-processing.
From those three main steps, the second one is the easiest to recognize in the traces, thanks
to the 10 rounds. Indeed, they are expected to produce 10 similar patterns in a row.

To precisely localize those steps, we plot in Figure 1 an averaged trace over 1, 000
acquisitions. The 10 similar patterns appear in the second half of the plot, therefore
allowing for identifying the AES rounds. It is then known that the post-processing
operations appear after the last round while the pre-processing operations appear in the

14A permanent download link to the dataset will be added in the final version of this paper.
15Apart from the case where state = 0, which does not requires the knowledge of rm.
16The code is publicly available at https://github.com/ANSSI-FR/SecAESSTM32/blob/master/src/aes/

affine_aes.S.

https://www.data.gouv.fr/fr/datasets/ascadv2/
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/src/aes/affine_aes.S
https://github.com/ANSSI-FR/SecAESSTM32/blob/master/src/aes/affine_aes.S
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Figure 1: Average traces over 1, 000 acquisitions.
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Figure 2: Targeted window for capturing the leakage of rm.

first half. Moreover, the description of the latter step in Subsection 1.3 informs that it is
composed of the alternate pre-computation of three look-up tables corresponding to field
multiplications, namely GTabKS used for the key schedule, GTabK and GTab used for the
AES rounds; and two other look-up tables corresponding to the masked Sbox, namely for
the key schedule and for the AES rounds. Since those tables are of length 256, which is
relatively longer than the different loops inside one AES round, they should yield larger
patterns than one AES round. Indeed, one can recognize three similar patterns (depicted in
green in the first half of Figure 1) alternating with two other similar patterns (depicted in
orange). Therefore, we have identified the location of the look-up tables pre-computation,
which will be useful afterwards to precisely locate the leakages of rm for our attacks.

Refining the Analysis. We may refine the latter analysis, in order to narrow the target win-
dows. Our goal will be to find the region where one can find leakage of rm,maskedState, rout
and the permutation indices permIndices.

Concerning rm, we may focus on the beginning of the GTab pre-computation. Figure 2
depicts the average trace at this moment of the execution. One can recognize 16 similar
short patterns between the time samples 201, 000 and 205, 000, and 8 out of the 256 longer
patterns depicted between the time samples 206, 000 and 215, 000. By referring to the
assembly code, one can deduce that the former patterns correspond to the loading of
the initial values M [i] , i ∈ J0, 15K of the mask state stateM, while the 8 longer patterns
correspond to the loop of the GTab pre-computation. Thereby, one deduces from the
assembly code that the region corresponding to the successive loadings of rin, rout, rm lies
in J205, 000; 206, 000K. Therefore, we propose to keep the range J205, 000; 210, 000K as a
first contiguous window for our extracted dataset. It is depicted in red in Figure 2. It is
expected to contain enough leakage from rm, and some leakage about rout.

Concerning maskedState, we suggest to focus on the leakage occurred during the
SubBytes operation, therefore we need to localize the time samples corresponding to the
latter operation inside the first AES round. Figure 3 depicts the average trace focused on
the R1 zone from Figure 1 corresponding to the first AES round, according to the previous
discussion. This R1 zone can itself be split into 8 sub-zones, listed from Zone 1 to Zone 8,
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Figure 3: The 8 noticeable loop patterns inside the first AES round.
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Figure 4: Second targeted window of the extracted traces.

according to patterns yielded by for loops in the implementation. A careful view of those
zones17 enables to count the number of elementary patterns there is inside each loop:

• Zones 1 - 5 depict loops of 16 similar elementary patterns. By comparing with the
assembly code, we deduce that Zone 1 corresponds to the SubBytes and that the
Zones 2 - 5 correspond to the ShiftRows.

• Zone 6 - 7 depict loops of 4 patterns, each one containing itself 4 sub-patterns. The
assembly code tells us that those zones correspond to the execution of MixColumns.

• Zone 8 depicts a loop of 32 elementary patterns. One can conclude that this zone
corresponds to the AddRoundKey operation.18

Since we aim to capture the leakage on the SubBytes operation, we focus on Zone 1.
Figure 4 depicts the latter zone more precisely. Finally, we choose to keep the red zone,
i.e. the range J455, 000; 465, 000K.

Eventually, we should have extracted enough leakage to be able to mount successful
attacks. Additionally to the code analysis, we afterwards verified the soundness of our
approach with a SNR computation – now involving the knowledge of the random shares.
Our final extracted dataset is made of up to 700, 000 training traces, 20, 000 validation
traces and 50, 000 test traces. We are now ready to present our new attacks in details.

3 Evaluation methodology
In this section, we propose some attack models on the new extracted dataset ASCADv2
that we described in Section 2. To introduce our attacks, we first present in Subsection 3.1
the different models that we used to estimate the probability distribution of the leakages.
Then, we introduce in Subsection 3.2 the major ingredient of our attacks, making use of
the multi-task paradigm. We will then have set the ground for the presentation of our
results in Section 4.

17A zoom on each sub-zone is available in Figure 15.
18This AddRoundKey is the one happening at the end of the first AES round.
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3.1 SCA Models
The attacker’s model we propose in this paper mainly involves deep neural networks.
Nevertheless, for the sake of completeness, we also consider attackers using Gaussian
templates.

3.1.1 Template Attacks

Template Attacks (TAs) generally refer to Gaussian template attacks, introduced by Chari
et al. [CRR02]. They modelize the conditional probability distribution of X | Z by a
multi-variate Gaussian law. Such models can capture leakages at the first order into the
mean vector, and leakages at the second order into the covariance matrix. In this work, we
will use either classic TAs, a.k.a. Quadratic Discriminant Analysis (QDA), or the pooled
version of template attacks, introduced by Choudari et al. [CK13], also known under the
name of Linear Discriminant Analysis (LDA).19 If need be, we may precede a TA by a
dimensionality reduction through a Principal Component Analysis (PCA) [SA08].

3.1.2 VGG-based Models

The choice of the neural network architecture is of crucial importance when applying
deep learning techniques. The VGGNet architecture [SZ15] was first introduced for visual
recognition tasks, as the runner-up of the 2014 ImageNet Large Scale Visual Recognition
Competition. It is an easy-to-apprehend architecture that relies on a high number of
convolutional layers with small size.20

VGGNet has been successful in many real world applications, and among them side
channel attacks [BPS+19]. From the experiments on the first version of ASCAD, several
hyperparameter values have been tested, resulting in a selection of the best parameters for
a VGGNet-based architecture that was named “CNN best”.21 For some of our experiments
on ASCADv2, we decide to reuse the “CNN best” architecture with slight modifications that
we detail here. First, the number of input points is adjusted for each of our experiments.
These values range in the set {200, 300, 400, 800}. The number of input points has an
impact on the depth of our architecture. Indeed, we choose to preserve the dimensional
ratio between consecutive convolutional block in order to limit the subsampling between
layers : only a few input points contains useful information, and a high dimensional
reduction between the layers can discard the information on these points.Therefore, we
use a 6 layer network when the number of input points is equal to 200, a 7 layer network
when the number of input points is equal to 300 or 400 and a 8 layer network when the
number of input points is equal to 800. With this adjustment, we also preserve the number
of parameters of the two last dense layers. Depending on the configuration, it represents
between 67−87% of the total number of trainable parameters, which is similar to the 87% of
trainable parameters for the dense layers of the original VGG16 architecture. Furthermore,
we add Batch Normalization [IS15] to each layer except the last one. Experimentally,
it accelerated the network learning step by increasing the convergence rate of the loss
function during the gradient descent. Moreover, we observed that Batch Normalization
allows us to be less careful about the choice of the optimizer and the initial learning rate.
Contrary to the previous version of CNN best which required RMSProp optimizer with
a learning rate equal to 10−5, we could more easily trained the modified networks with

19This must not be confused with the Fisher’s LDA, often used in SCA as a dimensionality reduction
technique [SA08].

20The ratio behind this choice is to reduce the number of training parameters in the convolutional layers,
while keeping the same receptive field. Nevertheless, this ratio only holds for 2D data such as pictures. For
1D data, the number of training parameters roughly equals the size of the receptive field, regardless the
number of layers.

21CNN standing for Convolutional Neural Network.
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different optimizers and learning rates and we finally choose Adam optimizer with the
default learning rate (10−3). In the rest of this paper, these architectures will be referred
as CNNnpoi where n is the number of input points 22.

3.1.3 ResNet Models

The previously defined VGG-based architectures are suitable when the number of input
points is relatively small (less than 1000 points). However when the number of points is
high, these architectures must be adapted in order to limit the number of parameters of
the last dense layers. Two neural-network parameters can be adjusted in order to achieve
this goal: the downsampling rate between the layers and the depth of the network. In
the first case, a common strategy is to greatly reduce the dimension of the input space of
the first layers by applying pooling layers with high downsampling rates. The first layers
act as data preprocessing steps that consist in a dimensionality reduction, and the rest of
the neural-network is not modified. Therefore the network preserves its depth and the
number of trainable parameters. However in the context of side channel, the points that
contain useful information are sparse and a high dimensional reduction based on pooling
layers may discard information on these points. In the second case, we preserve a small
downsampling rate between the layers but we increase the number of layers. This approach
follows the trend in deep learning research that consists in increasing the depth of the
network in order to obtain better generalization performance. The drawback is that the
number of parameters increase and without further modifications on the VGG architecture,
the back-propagation algorithm fails due to the vanishing gradient problem [HZRS16a].

The ResNet architecture was introduced in [HZRS16a] to circumvent this degradation
issue. It relies on a new type of block of layers, called residual learning block. Residual
learning block are composed of two convolutional layer that are stacked together, and one
shortcut connection layer that is connected in parallel. The idea behind this choice of
architecture is that if we denote H(x) the function that the block layer shall approximate to
improve the performance of the neural-network, thenH(x) can be rewrittenH(x) = F(x)+x
where F is the function that results from the stacked convolutional layers, and x results
from the shortcut connection (in its simplified version). This reformulation is motivated
by the assumption that a residual function F is easier to approximate than the overall
function H since in the highest layers of the neural-network, each block shall account for a
small modification of the inputs. With this design, ResNet architecture supports up to
1000 layers but the most common depth values are 34, 50, 101 and 152. It achieved state
of the art results in real world applications [HZRS16a, HZRS16b, XWA+18, SSS+17] and
it have already been successfully applied to side channel attacks [ZS19, JZHY20, GJS20].

In order to process simultaneously the two large windows of points defined in Subsec-
tion 2.2, we propose a ResNet architecture named ResNetSCA that can fit the 1D-traces
composed of 15, 000 input points formed by the concatenation of the two windows. We
keep a low downsampling rate between the residual block in order to preserve the sparse
information of the input points. We also conserve some of the parameters previously
studied for the side channel VGGNet architectures, as they appear to have experimentally
the best performance: the window size of the convolutional layers is set to 11, dense layers
are added to the bottom of the network for classification, and the model is trained with
Adam optimizer. The total number of stacked convolutional layers is equal to 19. Details
of the residual blocks and the overall architecture can be found in Appendix E, Figure 16.

3.2 Multi-Task Learning
Multi-Task Learning (MTL) is a well-studied technique of machine learning which consists in
training several learning tasks in parallel. This aims to improve the performance of a single

22A detailed description of these architectures can be found in Appendix E, Table 3.
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Figure 5: Comparison of deep learning architectures for multi-task learning in SCA.

task by leveraging information that results from the training of related tasks. The shared
representation learned by the related tasks during the training step spares the learning of
redundant training parameters and therefore improves the generalization performance of
the model, as shown – among others – in the seminal works of Caruana [Car97].23 Since
then, MTL has been widely applied in deep learning [Rud17].

Maghrebi’s Architecture. Maghrebi proposed in 2020 a first architecture to implement
MTL for SCA, depicted in Figure 5a, as a way to “target bigger key chunks without
introducing a learning time overhead and while guaranteeing a similar attack efficiency
compared to the commonly used training strategy” [Mag20]. His idea is to use a common
neural network (here denoted as “Full NN”) taking a trace as an input, and outputting
intermediate results acting as an input for numerous logistic classifiers (here denoted as
“NN”) – i.e. linear layers outputting a scalar, composed with a sigmoid function. More
precisely, one logistic classifier is instantiated for each hypothetical value of any targeted
intermediate computation to learn. This represents 2nφ ×N outputs lying in [0, 1], where
nφ is the number of bits of the targeted variables24 and N is the number of targeted
variables profiled at the same time with multi-task learning. The training is then done by
applying a gradient descent algorithm in order to minimize the sum of all the training losses
induced by the outputs of the logistic classifiers and the expected labels. Unfortunately,
the author precises that such a training must be done with “data that are labeled with
every possible combination” [Mag20], yielding a minimum number of 2nφ×N traces. This
may quickly become intractable for values of N higher than 2, hence the limitation imposed
by the author to target N ≤ 2 different intermediate values.

Our Proposal. In order to circumvent the drawbacks underlined by Maghrebi in his
approach, we propose two main modifications, depicted in Figure 5b.

First, we replace the 2nφ ×N output branches in Figure 5a made of sigmoids by N
Softmax, each one returning a discrete p.m.f. for each targeted variable. The training
is then done by summing the N losses computed on each branch corresponding to each
targeted variables, and by applying a gradient descent algorithm. This alternative to
Maghrebi’s proposal has one main advantage. Contrary to the former architecture, ours
directly encodes the constraint that all the probabilities linked to a given random variable
Zi sum to one, whereas this constraint was implicitly learned in Maghrebi’s architecture,

23A more detailed discussion is provided in Appendix F.
24For conciseness, and without loss of generality, we assume that all the targeted intermediate computa-

tions have the same number of bits.
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by submitting any of the possible combination of the labels. This approach allows to relax
from the prohibitive amount of required profiling traces.

Second, one possible drawback of Maghrebi’s approach is that the different branches
are only made of linear layers, which may not be enough to capture the specificities of the
different leakage models to estimate. Instead, we propose a trade-off by replacing each
one-layer NN branches in Maghrebi’s architecture – denoted by “NN” in Figure 5a – by a
MLP – denoted by “Leaf MLP” in Figure 5b.

Our final architectures for whole key recovery are based on the ResNetSCA architecture
that has been described in Subsubsection 3.1.3, on which we add a branch for each labels
to predict. We named MultiResNetSCA-1 an architecture with 34 outputs corresponding
to rm, rout, maskedState [p [i]] and p [i] for i in J0, 15K. Likewise, MultiResNetSCA-2 is an
architecture with 18 outputs that correspond to rm, rout and maskedState [i].25

The numbers of trainable parameters are equal to 137, 396, 064 and 78, 364, 256 respec-
tively. For comparison, a single branch ResNetSCA model with the same input points has
11, 460, 960 parameters, which means that the classic single task model strategy based on
34 (or 18) different models for each task requires to train 389, 672, 640 (or 206, 297, 280)
parameters. We do not necessarily claim that our multi-task architectures have a better
generalization performance than a combination of single-task architectures whose input
points have been fine selected for each task (by example with a SNR). However, in the
case of a large window of points extracted from the raw trace with a single code analysis
(as described in Subsection 2.2), the multi-task architectures are the most convenient one
in term of GPU resource usage because of the number of parameters to train.

4 Results
In this section, we first present the results of partial attacks (Subsection 4.1 and Subsec-
tion 4.2), i.e. aiming at recovering intermediate variables of the counter-measure schemes.
Those attacks will ground some discussions about the robustness of the counter-measures.
We then introduce our complete attacks in Subsection 4.3, leveraging the multi-task
architectures presented in Subsection 3.2.

4.1 Deep Learning Partial Attacks against Affine Masking
We first evaluate the security of the affine masking against deep learning attacks. We
perform several attacks with different levels of knowledge of the masks during the profiling
and attack steps. We consider the following threat scenarios:

1. The attacker knows the affine shares rm and rout during the profiling and attack steps.

2. The attacker has only access to rm during the profiling and attack steps.

3. The attacker has no access to the affine masks.

To simplify the study, we also assume in these partial attacks that the attacker has always
access to the permutation indexes of the shuffling, even during the attack step.26 From
a security evaluation point of view, this is equivalent to deactivate the shuffling in the
implementation. This allows us to use ASCADv2 database for studying the security impact
of the affine masking as an isolated security mechanism.

25Figure 17 in Appendix E depicts in details the two architectures.
26The partial attacks targeting the permutation indices are considered in Subsection 4.2.
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(a) Peak selection for QDA. (b) Window selection for CNN and PCA/LDA.

Figure 6: PoIs selection by SNR on maskedState [0] for first-order attacks.Top: average
trace with colored PoIs. Bottom: the corresponding SNR.

First Threat Scenario. The first threat scenario can be seen as a first-order attack against
an unprotected implementation of AES, since the knowledge of only one shard of the Sbox
computation (i.e. the masked Sbox output) is sufficient to retrieve the corresponding key
byte. To simulate this setting, we use ASCADv2 database and we labeled each trace of the
training dataset with the value:

c [i] = maskedState [p [i]] = rm × Sbox [pt [p [i]]⊕ k [p [i]]]⊕ rout . (6)

During the attack step, we simulate a fixed key on the test dataset. This is done by
replacing the value of the plaintext byte pt [i] with pt′ [i] = pt [p [i]]⊕ k [p [i]]. Hence for
each trace of the test dataset,

c [i] = rm × Sbox [pt′ [i]⊕ k]⊕ rout , (7)

where k is a fixed key byte equal to 0. For this experiment, we choose i = 0 and we
evaluate the guessing entropy of a trained model with respect to the number of attack
traces used for the key recovery. Since rm and rout are known, the score vector is obtained
by computing:

d[k′] =
∑

x
log fc[0] ( ˙c0,k′ | x) with ˙c0,k′ = rm × Sbox [pt′ [0]⊕ k′]⊕ rout . (8)

We first evaluate the performance of TAs in the first threat setting, as a baseline for
comparison with deep learning attacks. To perform the TAs, we select 4 PoIs with the
best SNR, as described in Figure 6a. Then we train a QDA model on 200, 000 training
traces. An estimation of the GE is depicted in blue on Figure 7a.

We then perform a CNN based attack in the first threat setting. We select 200
PoIs around the SNR peak value (Figure 6b). We train a CNN200poi model on the
200, 000 training traces, by batches of size 128. Furthermore, we use a early-stopping
strategy [GBC16], using a patience of 10 epochs.27 When applied to our experiment, it
results in selecting the model trained after 9 epochs. The accuracy obtained on the test
set equals 1.56 %, which is clearly above the 2−8 = 0.39 % threshold of a random classifier.
Moreover, after computing the GE – whose graph is pictured in Figure 7b – we observe that
the first-order attack with CNNs succeeds in approximately 20 traces, which represents a
huge improvement compared to the 1, 400 attack traces of the TAs. For a comprehensive
comparison, we also performed a PCA-based dimensionality reduction on the 200 PoIs
followed by a QDA or LDA with different numbers of input points (4, 8, 10, 15). The best
attempt is depicted in red on Figure 7a, and is obtained with 10 input points. In other
words, none of these attempts results in a successful attack in less than 5, 000 traces.

Second Threat Scenario. This scenario can be seen as a second-order attack since it
requires to recover two shards for retrieving the corresponding key byte (the masked Sbox

27A detailed explanation of early-stopping is proposed in Appendix H.
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Figure 7: GE and quartiles of order 25% and 75%, for first-order attacks.

Figure 8: PoIs selection for CNN 2nd-order attack. Top: average trace with colored PoIs.
Bottom: the corresponding SNR.

output and the additive mask rout). To perform this attack, we modify Equation 6 used to
labelize the training dataset:

c [i] = rm × Sbox [pt [p [i]]⊕ k [p [i]]] . (9)

Moreover, as previously done in the first threat scenario, we simulate a fixed key k on the
test dataset by replacing the plaintext values. Therefore the labels on the test dataset can
be rewritten in the form

c [i] = rm × Sbox [pt′ [i]⊕ k] . (10)
The guessing entropy is computed by replacing c0,k′ with rm × Sbox [pt′ [0]⊕ k′] in Equa-
tion 8.

Figure 8 depicts the 300 PoIs used for the attack. It actually corresponds to the
200 PoIs previously selected in the first-order attack, augmented with 100 more PoIs
corresponding to the highest values of the rout SNR. We train a CNN300poi model on
400, 000 training traces, with the same training parameters and the same training strategy
as before. The trained model with the best validation cross-entropy was obtained after
28 epochs. The model is then evaluated on the testing traces, resulting in an accuracy of
0.75%. Furthermore, the GE and quartiles are depicted on Figure 9. We observe that the
second-order attack with CNNs succeeds in approximately 130 traces.

Third Threat Scenario. Once we have considered partial attacks of first and second
order, we now embrace a third order attack. It requires recovering of the masked Sbox
output, the additive mask rout, and the multiplicative mask rm from the attack traces. We
modify Equation 6 by targeting:

c [i] = Sbox [pt [p [i]]⊕ k] . (11)

We extract 400 PoIs composed of the 300 previously selected PoIs, and 100 PoIs around
the highest peak of SNR with rm, as shown in Figure 10. We train a CNN400poi model on
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Figure 9: GE for CNN 2nd-order attack (left) and CNN 3rd-order attack (right).

Figure 10: PoIs selection for third-order attack with CNN.

700, 000 training traces. During the training step, we could not observe an improvement of
the loss on the validation dataset. Hence, we decided to train the model until 150 epochs
and computed the GE, as figured in Figure 9. As one can see, the resulting attack indeed
failed to find the correct key within 10, 000 traces.

4.2 Deep Learning Partial Attacks against Shuffling
We evaluate the security of the shuffling counter-measure against deep learning attacks. To
that end, we assume that the attacker has already mounted an attack A on an unshuffled
version of the implementation and wants to extend it to the shuffled version. If we denote
c [i] the sensitive value targeted by A for retrieving the i-th key byte, a direct way to adapt
the A attack to the shuffled version will consist in targeting the sensitive value c

[
p−1 [i]

]
during the attack step, where p−1 [i] is the integer j such that p [j] = i. Therefore the
security of the shuffling counter-measure relies on the difficulty to find the p−1 [i] value
during each execution of the AES encryption.

For our experiment, we choose to target p−1 [0]. We extract the PoIs by computing
the SNR value for each p [i] and by selecting a window of 50 PoIs around the peak of
each SNR, as shown on Figure 11. This results in a total of 800 PoIs. Then we train a

Figure 11: PoIs selection for CNN attack on shuffling.
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(a) First scenario with MultiResNetSCA-1. (b) Second scenario with MultiResNetSCA-2.

Figure 12: GE for full key recovery scenarios.

CNN800poi model on 200, 000 traces. We stop to train the model when the validation
accuracy starts to decrease. The trained model reaches an accuracy of 40% on a separated
test dataset of 50, 000 traces. This means that an attack requiring Na traces to retrieve
the correct key byte in the unshuffled setting will only require in average Na

40% = 2.5 ·Na
traces in the shuffled setting.

4.3 Deep Learning Full Key Recovery Attack
Until now we have evaluated the security of the affine masking and the shuffling counter-
measures independently. In this subsection we show how to perform an attack on the
combination of the counter-measures with a single deep learning model. This attack will
recover all the bytes of the key, which makes it comparable with Bronchain’s attack, though
we do not use any key enumeration techniques.

The targeted points of the traces are the 15, 000 points identified from our code and
trace analysis in Subsection 2.2. Our previous results highlight the strength of the whole
affine masking scheme and the weakness of shuffling. Therefore, for our complete attack
we consider the two following scenarios. In the first one, the attacker has access to all
the affine masks and the shuffling permutation indices during the profiling step, but no
access to these values during the attack step. In the second one, the attacker has only
access to the affine mask. Notice that in the second scenario, the attacker may ignore that
the shuffling is implemented as a counter-measure: the attack is performed in the same
manner than for an unshuffled implementation, as long as the window of targeted points is
large enough to encompass all the leakages.

First Scenario. We train a MultiResNetSCA-1 model with the 34 targeted labels: rm,
rout, c [i] = rm × Sbox [pt [p [i]]⊕ k [p [i]]]⊕ rout for i in J0, 15K and p [i] for i in J0, 15K. The
training set is here composed of 400, 000 traces, gathered by batches of 64. We use the
same training strategy as described in the previous experiments. We monitor the average
cross-entropy of the targeted labels. The training stops after 15 epochs with the maximal
validation cross-entropy. Then the model is evaluated on the test set. We simulate a
fixed key on the dataset by replacing the test plaintexts and we target the sensitive value
s [i] = Sbox [pt′ [i]⊕ k [i]]. The test accuracies are displayed in Table 2. The accuracy
values for rm and p [i] are high, which suggests that a dissection attack that only relies on
the predicted values for rm, p [i] and the probability values for rout and c [i] will likely to
succeed. However since the computation complexity of the estimated probability fs[i](· | x)
obtained from the model is not so expensive, we do not consider any simplification and we
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Table 2: Overall results of attacks on ANSSI’s implementation.

Model Nonces Success Test accuracies (%)
rm β p [i] (# traces) rm β c [i] p [i]

A1, A3, A4 3 3 3 4, 000− 10, 000 100 unknown 98 (seed)
A2, A5 3 3 7 2, 000− 50, 000 100 unknown -

Template 3 3 3 1, 500 - - 0.40 -
CNN200poi 3 3 3 20 - - 1.56 -
CNN400poi 7 3 3 130 - - 0.75 -
CNN600poi 7 7 3 failed - - 0.39 -
CNN800poi 3 3 3 50 - - - 4029

MultiResNetSCA-1 3 3 3 60 99.2 21.1 1.6 88.9
MultiResNetSCA-2 3 3 7 220 99.6 20.5 1.0 -

7: unknown during profiling, 3: known during profiling, 3: known during attack

compute fs[i](· | x) from the formula:

fs[i](ṡ | x) =
∑
j

∑
α̇

∑
β̇

fc[j](α̇× ṡ⊕ β̇ | x) ·frm(α̇ | x) ·frout(β̇ | x) ·fp[j](i | x) , (12)

where s [i] = Sbox [pt [i]⊕ k]. A direct computation of Equation 12 for all the ṡ values will
require O(256 · |j| · |α̇| ·

∣∣β̇∣∣) operations. With a well-chosen combination of the terms, the
complexity can be dropped to O(256 · (|j|+ |α̇|+

∣∣β̇∣∣)) operations.28 For each key byte,
an estimation of the GE is displayed in Figure 12a. We observe that the attack requires
approximately 60 attack traces to retrieve the correct full key.

Second Threat Scenario. We train a MultiResNetSCA-2 model with the 18 targeted
labels: rm, rout, c [i] = rm×Sbox [pt [i]⊕ k [i]]⊕ rout for i in J0, 15K. The training, validation
and test datasets are the same than in the previous scenario. The training step stops after
18 epochs with the maximal validation cross-entropy. The test accuracies are displayed in
Table 2. To compute the rank function, we use:

fs[i](ṡ | x) =
∑
α̇

∑
β̇

fc[i](α̇× ṡ⊕ β̇ | x) · frm(α̇ | x) · frout(β̇ | x) . (13)

The overall computation for all the ṡ values requires O(|ṡ| · (|α̇|+
∣∣β̇∣∣)) operations. Mean

ranks for each key byte are displayed in Figure 12b. The full key recovery attack succeeds
in approximately 220 traces, highlighting the fact that shuffling has poor performances
against deep learning attacks.

Conclusion
So far, this paper presented the ASCADv2 dataset, based on the ANSSI implementation
published in 2019 [BKPT19]. This implementation was addressing the particular need for
open implementations of cryptographic primitives. Since the seminal works of Bronchain
et al. leveraged a particular weakness of the shuffling counter-measure, we considered in
this paper other attack paths not based on this weakness. Despite, our findings confirm
that jointly learning all the random shares from an affine scheme is currently hard without

28The proof of Equation 12 and the partial recombination are provided in Appendix G.
29When targeting p−1 [0].
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the knowledge of those shares during the profiling phase. Being able to relax the latter
assumption is yet to be shown. Nevertheless, our results confirm that the shuffling counter-
measure implemented here, even not based on the weaknesses emphasized so far, is not
robust. More interestingly, the adaption of the multi-task learning – initially introduced
by Maghrebi – to this particular case showed that this approach could scale well to SCA
evaluations. A further study of the advantages and drawbacks of such paradigm is yet to
be done. Still, this could lead to help the SCA practitioner towards new milestones against
protected implementations.
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A Profiling Attacks and their Threat Model
The considered scenario, assuming targeting the intermediate computation Z = C (Pt,K),
requires having a clone device of the target, and is made of the following steps:

• Profiling acquisition: a dataset of Np profiling traces is acquired on the pro-
totype device. It will be seen as a realization of the random variable Sp ,
{(x1, z1), . . . , (xNp , zNp)}, where all the xi (resp. all the zi) are independent and
identically distributed (i.i.d.) realizations of X (resp. Z).

• Profiling phase: based on Sp, a model is built that returns a set of scores for each
hypothetical value of Z, that can be assimilated to a probability mass function
(p.m.f.) (possibly after normalization). fZ : X → P(Z).

• Attack acquisition: a dataset of Na attack traces is acquired on the target device.
It will be seen as a realization of Sa , (k?, {(x1, pt1), . . . , (xNa , ptNa)}) such that
k? ∈ K is the fixed key byte to guess, and for all i ∈ J1, NaK, pti ← Pt and
xi ← (X | Z = C (pti, k?)).

• Predictions: a prediction vector is computed on each attack trace, based on the
previously built model: yi = fZ(xi), i ∈ J1, NaK. For each trace, it assigns a score to
each key hypothesis, namely, for every j ∈ J1, |Z|K, the value of the j-th coordinate
of yi corresponds to the score assigned by the model to the hypothesis “Z = ṡj”
when observing xi.

• Guessing: the scores are combined over all the attack traces to output a score for
each key hypothesis; the candidate with the highest score is predicted to be the right
key. A maximum score score can be used for the guessing. For every key hypothesis
k ∈ K, this score is defined as:

dSa [k] ,
Na∑
i=1

log (yi[zi]) where zi = C (pti, k) . (14)

Based on the scores in Equation 14, the key hypotheses are ranked in a decreasing
order. Finally, the attacker chooses the key that is ranked first. More generally, the
rank g (Sa) [k?] of the correct key hypothesis k? is defined as:

g (Sa) [k?] ,
∑
k∈K

1dSa [k]>dSa [k?]. (15)

If g (Sa) [k?] = 0, then the attack is considered as successful.

Evaluation Metrics. To assess the difficulty of attacking a target device with profiling
attacks (which is assumed to be the worst-case scenario for the attacked device), it has
initially been suggested to measure or estimate the minimum number of traces required to
get a successful attack [Man04]. Observing that many random factors may be involved
during the attack – such as the set of traces Sa acquired by the attacker –, the latter
measure has been refined to study the probability distribution of the rank g (Sa) of the
right key. Based on this distribution, we may derive two statistics on the rank. First, the
Guessing Entropy (GE) [SMY09], is the expected value of the rank:

GE(Na) , E
Sa

[g (Sa) [k?] | |Sa| = Na] . (16)

Based on this metric, we may also derive the minimal number Na(τ) of attack traces
required by a given attacker to get a guessing entropy below the threshold τ – typically,
τ = 1.
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Figure 13: Sketch of result figures.

Second, the cumulant of order β is the β-th percentile of the rank distribution:

CU(Na, β) , max{t | Pr (g (Sa) [k?] < t) = β} . (17)

Although not used – and thereby not validated yet – in the literature so far, such a metric
can provide a confidence interval of the rank.

Figure 13 illustrates how we plot in this paper the performance metrics we introduced.
In practice, to estimate GE(Na), we sample 500 attack sets by randomly choosing Na
attack traces among a test set of 50, 000 traces that are not used during the training.

B Permutation Generation
Small Permutations. Algorithm 1 describes how the permutations over S4 are generated.

Algorithm 1 Compute permIndices Tables MC
Require: i index (0 for permIndicesMC, 1 for permIndicesMCbis), M [i] random byte
Ensure: permIndicesMC/permIndicesMCbis pseudo-random permutation of J1, 4K
1: seed′i ← M [i] & 0x03 . Gets the two least signitifcant bits of M [0]
2: for c← 0, c < 4 do
3: permIndicesMC [c]← c⊕ seed′i . permIndicesMCbis [c] if i = 1
4: end for

For each i, mapping seed′1 7→ permIndicesMC [i] (resp. seed′2 7→ permIndicesMCbis [i]) is
bijective, as depicted in Figure 14.

0 1 2 3

Initial permutation

seed′ pMC [0]pMC [1]pMC [2]pMC [3]
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2
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1
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Figure 14: Scheme of Algorithm 1.

In other words, one can use the leakages about pMC [i] in order to guess the value of the
seed, and so ultimately the values of pMC [j] for j 6= i, which explains why many Points
of Interest (PoIs) appear in [BS20, Fig. 4], where the MixColumns operations leak. This
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enables the attackers A3 and A4 to use 3, 000 PoIs – ultimately reduced to 3 using a
Principal Component Analysis (PCA) – in order to recover the values of the seeds, up to
98% accuracy.

Larger Permutations. Algorithm 2 describes the way the permutations over S16 are
generated.

Algorithm 2 Compute permIndices Tables
Require: M [0] ,M [1] ,M [2] ,M [3] random
Require: permGF permutation in GF(16)
Ensure: Pseudo-random permutation of J1, 16K
1: for j ← 1, j ≤ 4 do . Gets the four random seeds
2: seedj ← M [j] & 0x0f . Keeps the four least signitifcant bits
3: end for
4: for i← 0, i < 16 do . Computes permIndices
5: r ← i
6: for j ← 1, j ≤ 4 do
7: r ← r ⊕ seedj
8: r ← permGF[r]
9: end for
10: permIndices [i]← r
11: for j ← 1, j ≤ 4 do . Computes permIndicesBis
12: r ← r ⊕ seedj
13: r ← permGF[r]
14: end for
15: permIndicesBis [i]← r
16: end for

permGF(24) = 0x0C, 0x05, 0x06, 0x0B, 0x09, 0x00, 0x0A, 0x0D, 0x03, 0x0E, 0x0F,
0x08, 0x04, 0x07, 0x01, 0x02

C The Whole Encryption
A protected AES encryption can be divided into three steps.

Pre-processing. A pre-processing operation is performed. During this step, the random
numbers rm

′, rm, M [0] . . .M [15], rin, rout are generated independently from an uniform
distribution and the four permutations permIndices, permIndicesBis, permIndicesMCbis,
permIndicesMCbis are computed. Then three look-up tables are generated in the fol-
lowing order: GTab, maskedSbox, GTabK. GTab and GTabK are used for computing the
multiplication in the finite field. Therefore,

GTab [x] = rm × x and GTabK [x] = rm × (rm
′)−1 × x

for each byte value x. maskedSbox corresponds to the masked SBox operation, and is
defined by:

maskedSbox [x] = rm × Sbox
[
rm
−1 × (x⊕ rin)

]
⊕ rout , (18)

where rin and rout are two random bytes. At the end of the preprocessing step, the initial
masked state is also computed:

maskedState [i] = GTab [pt [i]]⊕M [i]

where pt [i] denotes the i-th byte of plaintext.
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The AES Rounds. The 10 rounds of the AES encryption are performed. Since the internal
state is masked, each of the round operations AddRoundKey, SubBytes, ShiftRows and
MixColumns are slightly modified to operate on both maskedState and stateM. ShiftRows
and MixColumns operations are linear, therefore the corresponding MaskedShiftRows and
MaskedMixColumns operations are defined immediately from them. Moreover the order
of the byte operations is shuffled with the corresponding permutation, as denoted in
Algorithms 4, 3, 5 and 6.

The multiplicative mask used with the round keys is different to the one used with the
state, hence the round key is updated with GTabK before the AddRoundKey operation. The
SubBytes operation relies on two masks, rin and rout, that are used to protect the Sbox.
Therefore the state is masked additively with rin at the input of the Sbox and with rout
at the output. Note that in this AES implementation, the rin masking operation at the
beginning of the computation and the rout unmasking operation at the end are not shuffled,
since those masks are applied to every byte of the masked state. Likewise, it is worth
emphasizing the affine scheme having the interesting property that, once the multiplicative
mask rm is applied to the initial state, it is then never manipulated during the rounds.

The Post-processing. The final step is a postprocessing step and consists in unmasking
the state at the end of the 10 rounds by computing:

state [i] = rm
−1 × (maskedState [i]⊕ stateM [i])

for each byte index i.

Algorithm 3 MaskedSubBytes(maskedState, stateM)
1: . maskedState = rm × state⊕ stateM
2: for i← 0 to 3 do
3: maskedState [(i ∗ 4) : (i ∗ 4 + 3)]← maskedState [(i ∗ 4) : (i ∗ 4 + 3)]⊕ rin
4: end for
5: for i← 0 to 15 do
6: j ← permIndices [i]
7: maskedState [j]← maskedState [j]⊕ stateM [j]
8: . maskedState [j] = rm × state [j]⊕ rin
9: maskedState [j]← maskedSbox [maskedState [j]]
10: . maskedState [j] = rm × Sbox [state [j]]⊕ rout
11: maskedState [j]← maskedState [j]⊕ stateM [j]
12: end for
13: for i← 0 to 3 do
14: maskedState [(i ∗ 4) : (i ∗ 4 + 3)]← maskedState [(i ∗ 4) : (i ∗ 4 + 3)]⊕ rout
15: . maskedState [i] = rm × Sbox [state [i]]⊕ stateM [i]
16: end for

Algorithm 4 MaskedAddRoundKey(maskedState, stateM,maskedStateK, state′M)
1: for i← 0 to 15 do
2: j ← permIndices [i]
3: stateM [j]← stateM [j]⊕ GTabK [state′M [j]]
4: maskedState [j]← maskedState [j]⊕ GTabK [maskedStateK [j]]
5: end for
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Algorithm 5 MaskedShiftRows(maskedState, stateM)
1: maskedState← ShuffledShiftRows(maskedState, permIndices)
2: stateM ← ShuffledShiftRows(stateM, permIndicesBis)

Algorithm 6 MaskedMixColumns(maskedState, stateM)
1: maskedState← ShuffledMixColumns(maskedState, permIndicesMC)
2: stateM ← ShuffledMixColumns(stateM, permIndicesMCbis)

D Visual Analysis of the Trace

(a) Average trace focused on Zone 1. (b) Average trace focused on Zone 2.

(c) Average trace focused on Zone 3. (d) Average trace focused on Zone 4.

(e) Average trace focused on Zone 5. (f) Average trace focused on Zone 6.

(g) Average trace focused on Zone 7. (h) Average trace focused on Zone 8.

Figure 15: Zoom on each sub-zone of the first AES round in the average trace.
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E Detailed descriptions of the deep learning architectures

Table 3: VGG-based architectures CNN200poi, CNN300poi, CNN400poi and CNN800poi.
conv-n-p denotes a 1D-convolutional layer with a receptive field of size n and p filters,
avgpooling-n-p denotes an 1D-average pooling layer with a pooling window of size n and a
downscaling factor p, fc-n denotes a fully connected layer with output size n.

VGG-based architectures
CNN200poi CNN300poi CNN400poi CNN800poi

6 weight layers 7 weight layers 7 weight layers 8 weight layers
input 200 points input 300 points input 400 points input 800 points

conv11-64 bachnorm relu
avgpooling2-2

conv11-128 bachnorm relu
avgpooling2-2

conv11-256 bachnorm relu
avgpooling2-2

none conv11-256 bachnorm relu
none avgpooling2-2

conv11-512 bachnorm relu
avgpooling2-2

none conv11-512 bachnorm relu
none avgpooling2-2

fc-2048 batchnorm relu
fc-256
softmax

Conv Layer : 16l filters of size 11

Res Block 1

Res Block 2

Res Block 3

Res Block 4

Res Block 5

Res Block 6

Res Block 7

Res Block 8

Res Block 9

Avg Pooling

Flatten

input
15000x1

15000x16

15000x16

7500x32

3750x64

1875x128

938x256

459x256

235x256

118x256

59x256

14x256

3584
output

(a) ResNetSCA architecture

conv layer
t filters of size 11, stride 2

BN

ReLU

conv layer
t filters of size 11, stride 1

BN

shortcut connection
t filters of size 1, stride 2

addition

ReLU

xl

xl+1

(b) l-th Residual Block of ResNetSCA. The number of
filters t of each convolution layer is equal to min(16l, 256).

Figure 16: Description of the ResNetSCA architecture
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F Overview of Multi-task Learning
In his seminal work [Car97], Caruana shows the benefits of such technique by comparing
the performance of several MLPs trained separately for each task with one MLP trained
with all the tasks in parallel. The results obtained on 3 computer vision datasets show
that the MLP trained in the MTL way has the best performance. The explanations of this
performance improvement can be listed as follows:

• data amplification: two related tasks have access to the training data relevant for
both tasks, therefore it increases the size of the available data to train a common
representation in the hidden layers of the network.

• attribute selection: as a consequence of data amplification, the tasks can rely on
more information to determine which inputs to use.

• eavesdropping : if a task is difficult to train, it can eavesdrop the hidden layer learned
by an auxiliary task that is easier to train.

• representation bias: when applied to MTL, the backpropagation algorithm tends to
privilege common representations in hidden layers that fit several tasks. Therefore it
improves generalization and reduces overfitting.

G Key Recovery Complexity for Full Deep Learning At-
tacks

Let v = p [i] and c′ [i] = rm × Sbox [pt [v]⊕ k [v]], i.e. c [i] = c′ [i]⊕ rout. We have:

fc′[i](ż | x) =
∑
β̇

fc′[i](ż | rout = β̇,x) · frout(β̇ | x) . (19)

And then:
fc′[i](ż | x) =

∑
β̇

fc[i](ż ⊕ rout | rout = β̇,x) · frout(β̇ | x) . (20)

We assume that from the model point of view, the knowledge of c′ [i] from x does not
depend of the value of rout, i.e., fc[i](ż ⊕ β | rout = β̇,x) = fc[i](ż ⊕ β̇ | x) . Therefore we
have:

fc′[i](ż | x) =
∑
β̇

fc[i](ż ⊕ β̇ | x) · frout(β̇ | x) . (21)

For each ż in J0, 255K, we compute fc′[i](ż | x) by using the outputs fc[i](· | x) and
frout(· | x) of the trained MultiResNetSCA-1 model. The overall computation complexity
of this first step is equal to O(|ż| ·

∣∣β̇∣∣) operations.
In a similar manner we have:

fs[p[i]](ż | x) =
∑
α̇

fc′[i](α̇× ż | x) · frm(α̇ | x) . (22)

The estimation of the probability for each ż can be compute from fc′[i](· | x) and the
output frm(· | x) of the model. This results in O(|ż| · |α̇|) operations.

Finally, let c′′ [i] = s [p [i]] for simplification. Then, by using the total probability
formula:

fs[i](ṡ | x) =
∑
j

fc′′[j](ṡ | x) · fp[j](i | x) . (23)
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If we sum the number of operations of all the steps, the overall computation takes
O
(
|ż| ·

(
|j|+ |α̇|+

∣∣β̇∣∣)) operations. Note that if the implementation was protected with n
shares, then the computational complexity will be equal to O(|ż| · (o1 +o2 + ...+on)) where
oi is the cardinal of the i-th share set of values. Since in general oi ≈ oj , the complexity
of the recombination step of our multi-classification attack is linear with the number of
shares.

H Early-Stopping
Our training strategy is the following: the profiling traces are randomly partitioned into a
training dataset and a validation dataset. The model is trained on the training dataset
only. During the training and at the end of each epoch, we compute the cross-entropy (or
the accuracy for some of our experiments) on the validation dataset. We stop to train the
model when the validation metric starts to increase (or decrease in the accuracy’s case)
during several epochs and we select the trained backup-model with the highest validation
metric. The patience is the maximal number of epochs to wait before stopping the training
if the validation metric has not reached a new minimal (or maximal) value.

This method prevents overfitting since the metrics computed on the validation dataset
are closed to the one obtained on the test (or attack) dataset. Figure 18 illustrates this
strategy.

Figure 18: Training, validation and testing accuracy with CNN800poi targeting y = p−1 [0].
The maximum validation accuracy is obtained with 20 epochs. The corresponding maximal
testing accuracy is equal to 0.399


	Background
	Notations
	Profiling Attacks
	The Implementation
	Bronchain's Attack

	The ASCADv2 Dataset
	Description of the Dataset
	Code and Trace Analysis

	Evaluation methodology
	SCA Models
	Multi-Task Learning

	Results
	Deep Learning Partial Attacks against Affine Masking
	Deep Learning Partial Attacks against Shuffling
	Deep Learning Full Key Recovery Attack

	Profiling Attacks and their Threat Model
	Permutation Generation
	The Whole Encryption
	Visual Analysis of the Trace
	Detailed descriptions of the deep learning architectures
	Overview of Multi-task Learning
	Key Recovery Complexity for Full Deep Learning Attacks
	Early-Stopping

