
Existential arc consistency:
Getting closer to full arc consistency in weighted CSPs∗

Simon de Givry
degivry@toulouse.inra.fr

Matthias Zytnicki
zytnicki@toulouse.inra.fr

INRA
Toulouse, France

Federico Heras
fheras@lsi.upc.edu

Javier Larrosa
larrosa@lsi.upc.edu

LSI, UPC
Barcelona, Spain

Abstract

The weighted CSP framework is a soft constraint
framework with a wide range of applications. Most
current state-of-the-art complete solvers can be de-
scribed as a basic depth-first branch and bound
search that maintain some form of arc consistency
during the search. In this paper we introduce a new
stronger form of arc consistency, that we call exis-
tential directional arc consistency and we provide
an algorithm to enforce it. The efficiency of the al-
gorithm is empirically demonstrated in a variety of
domains.

1 Introduction
Weighted constraint satisfaction problems (WCSP) is a well-
known optimization version of the CSP framework with
many practical applications. Recently, the celebrated arc
consistency property has been generalized from the classi-
cal CSP framework to WCSP [Cooper and Schiex, 2004;
Larrosa and Schiex, 2004]. There are three known gener-
alizations: AC*, FDAC* and FAC*, all of them collapsing
to classical arc consistency in the CSP case. In [Larrosa and
Schiex, 2003] it was shown that maintaining FDAC* during
search was usually the best option.

In this paper we introduce a new form of local consis-
tency called existential directional arc consistency (EDAC*).
We show that EDAC* is stronger than FDAC* and we in-
troduce an algorithm to enforce EDAC* that runs in time
O(ed2 ×max{nd,>}), where e, n and d are the number of
constraints, variables and domain values, respectively; > is
the upper bound of the WCSP instance (to be defined later).
The main use of EDAC* and its associated filtering algo-
rithm is to embed it into a complete depth-first branch and
bound solver that maintains EDAC* at every visited node.
We have experimentally evaluated this idea on random Max-
SAT, Max-CSP, and uncapacitated warehouse location prob-
lems. We observe that maintaining EDAC* is never worse
than maintaining FDAC* and, in many instances, it is orders
of magnitude better.

∗This research is partially supported by the French-Spanish col-
laboration PICASSO 05158SM - Integrated Action HF02-69 and the
REPLI project TIC-2002-04470-C03.

2 Preliminaries
Valuation structures are algebraic objects to specify costs in
valued constraint satisfaction problems [Schiex et al., 1995].
They are defined by a triple S = (E,⊕,�), where E is the set
of costs totally ordered by �. The maximum and a minimum
costs are noted > and ⊥, respectively. ⊕ is an operation on E
used to combine costs.

Following [Larrosa and Schiex, 2004], the valuation struc-
ture of Weighted CSP (WCSP) is, S(k) = ([0..k],⊕,≥) where
k > 0 is a natural number; ⊕ is defined as a⊕b = min{k,a+
b}; ≥ is the standard order among naturals. Observe that in
S(k), we have 0 = ⊥ and k = >. It is useful to define the
subtraction 	 of costs. Let a,b ∈ [0..k] be two costs such that
a ≥ b,

a	b =

{

a−b : a 6= k
k : a = k

A binary weighted constraint satisfaction problem (WCSP)
is a tuple P = (S(k),X ,D,C). S(k) is the valuation structure.
X = {x1, . . . ,xn} is a set of variables that we will often call
by just their index. Each variable xi ∈ X has a finite domain
Di ∈ D of values that can be assigned to it. (i,a) denotes the
assignment of value a ∈ Di to variable xi. C is a set of unary
and binary weighted constraints (namely, cost functions) over
the valuation structure S(k). A unary weighted constraint Ci
is a cost function Ci(xi) → [0..k]. A binary constraint Ci j is
a cost function Ci j(xi,x j) → [0..k] We assume the existence
of a unary constraint Ci for every variable, and a zero-arity
constraint (i.e. a constant), noted C∅ (if no such constraint
is defined, we can always define dummy ones: Ci(xi) = ⊥,
C∅ = ⊥).

When a constraint C assigns cost >, it means that C forbids
the corresponding assignment, otherwise it is permitted by
C with the corresponding cost. The cost of an assignment
X = (x1, . . . ,xn), noted V (X), is the sum over all the problem
cost functions,

V (X) = ∑
Ci j∈C

Ci j(xi,x j)⊕ ∑
Ci∈C

Ci(xi)⊕C∅

An assignment X is consistent if V (X) < >. The usual
task of interest is to find a consistent assignment with mini-
mum cost, which is NP-hard. Observe that WCSP with k = 1
reduces to classical CSP.

a

b

i

a)

Co=0

j

a

b1

a

b

i

Co=0

j

a

b

10

0

0

0

0

0

1

1

b)

Figure 1: Two equivalent WCSP instances (>= 2).

Algorithm 1: Algorithms to propagate costs.
Function PruneVar(i) : boolean

f lag := false ;
foreach a ∈ Di do

if (C∅ ⊕Ci(a) ≥>) then
Di := Di −{a} ;
f lag := true ;

return f lag ;

Procedure ProjectUnary(i)
α := mina∈Di{Ci(a)} ;
C∅ := C∅ ⊕α ;
foreach a ∈ Di do Ci(a) := Ci(a)	α ;

Procedure Project(i,a, j,α)
Ci(a) := Ci(a)⊕α ;
foreach b ∈ D j do Ci j(a,b) := Ci j(a,b)	α ;

Procedure Extend(i,a, j,α)
foreach b ∈ D j do Ci j(a,b) := Ci j(a,b)⊕α ;
Ci(a) := Ci(a)	α ;

Example 1 Consider the problem depicted in Figure1.a. It
has two variables i, j with two values (a,b) in their domains.
Unary costs are depicted within small circles. Binary costs
are represented by edges connecting the corresponding val-
ues. The label of each edge is the corresponding cost. If two
values are not connected, the binary cost between them is 0.
In this problem the optimal cost is 0 and it is attained with the
assignment (b,a).

3 Some local consistencies in WCSP

Two WCSPs defined over the same variables are said to be
equivalent if they define the same cost distribution on com-
plete assignments. Local consistency properties are widely
used to transform problems into equivalent simpler ones. In
general, constraints can be given explicitly as tables of costs,
or implicitly as mathematical expressions or algorithmic pro-
cedures. For simplicity in our exposition, we will assume the
explicit form. This is done without loss of generality as dis-
cussed in [Cooper and Schiex, 2004]. The simplest form of
local consistency is Node consistency (NC*).

Definition 1 Variable xi is node consistent if: for all values
a ∈ Di, C∅ ⊕Ci(a) <> , and there exists a value a ∈ Di such
that Ci(a) = ⊥. A WCSP is node consistent (NC*) if every
variable is node consistent.

Any WCSP can be easily transformed into an equivalent
NC* instance by projecting every unary constraints towards
C∅ and subsequently pruning every unfeasible value. Func-
tions ProjectUnary and PruneVar (Algorithm1) perform the
projection of a unary constraint towards C∅ and prune unfea-
sible values, respectively.

Arc consistency properties are based on the notion of sim-
ple and full support. Given a binary constraint Ci j, we say
that b ∈ D j is a simple support for a ∈ Di if Ci j(a,b) = ⊥.
Similarly, we say that b ∈ D j is a full support for a ∈ Di if
Ci j(a,b)⊕C j(b) = ⊥.

Definition 2 Variable xi is arc consistent if every value a ∈
Di has a simple support in every constraint Ci j. A WCSP is
arc consistent (AC*) if every variable is node and arc consis-
tent.

Definition 3 Variable xi is full arc consistent if every value
a ∈ Di has a full support in every constraint Ci j . A WCSP is
full arc consistent (FAC*) if every variable is node and full
arc consistent.

Simple supports for a ∈ Di in D j can be enforced by pro-
jecting binary costs Ci j(a, ·) towards Ci(a), as performed by
procedure Project (Algorithm 1). Procedure FindSupports
(Algorithm 2) enforces simple supports in D j for every value
in Di.

Example 2 The WCSP depicted in Figure2.a is not AC* be-
cause value a∈ Di does not have a simple support in variable
j. AC* is enforced by executing FindSupports(i, j) (produc-
ing the problem in 2.b) and then ProjectUnary(i) (producing
the problem in 2.c).

To enforce full supports for Di values in D j (Procedure
FindFullSupports in Algorithm 2) we need to extend unary
costs from C j(·) towards Ci j(·, ·) (procedure Extend in Algo-
rithm 1). Then, binary costs are projected towards Ci(a).

In the CSP case (i.e, k = 1), being a simple support for (i,a)
is equivalent to being a full support for it and both notions re-
duce to the classical notion of support. Therefore, AC* and
FAC* reduce to classical arc consistency. In the WCSP case,
however, being a full support is stronger than being a sim-
ple support. In [Larrosa and Schiex, 2004] it was shown that
every WCSP can be transformed into an equivalent arc con-
sistent one in time O(ed3). Unfortunately, not every WCSP
can be transformed into an equivalent full arc consistent one.

Example 3 The problem in Figure1.a is AC*, but it is not
FAC* because value a ∈ Di is not fully supported. We can en-
force the full support by calling FindFullSupports(i, j). The
resulting problem, depicted in Figure1.b is not FAC* because
value b ∈ D j is not fully supported. If we enforce the full
support by calling FindFullSupports(j, i), we return to the
problem in Figure1.a. It can be easily proved that this prob-
lem does not have an equivalent FAC* one.

Therefore, FAC* is not a practical property. To circumvent
this problem, a weaker property has been proposed. In the
sequel, we assume that the set of variables X is totally ordered
by >.

Definition 4 Variable xi is directional arc consistent if every
value a ∈ Di has a full support in every constraint Ci j such

Algorithm 2: Algorithms to enforce supports.
Function FindSupports(i, j) : boolean

f lag := false ;
foreach a ∈ Di do

α := minb∈D j
{Ci j(a,b)} ;

if (α > ⊥∧Ci(a) = ⊥) then f lag := true ;
Project(i,a, j,α) ;

ProjectUnary(i) ;
return f lag ;

Function FindFullSupports(i, j) : boolean
f lag := false ;
foreach a ∈ Di do

P[a] := minb∈D j
{Ci j(a,b)⊕C j(b)} ;

if (P[a] > ⊥∧Ci(a) = ⊥) then f lag := true ;

foreach b ∈ D j do
E[b] := maxa∈Di{P[a]	Ci j(a,b)} ;

foreach b ∈ D j do Extend(j,b, i,E[b]) ;
foreach a ∈ Di do Project(i,a, j,P[a]) ;
ProjectUnary(i) ;
return f lag ;

Function FindExistentialSupport(i) : boolean
f lag := false ;

1 α := mina∈Di{Ci(a)
L

Ci j∈C s.t. j<i minb∈D j
{Ci j(a,b)⊕C j(b)}};

if (α > ⊥) then
2 foreach Ci j ∈ C s.t. j < i do

f lag := f lag ∨ FindFullSupports(i, j) ;

return f lag ;

that j > i. It is full directional arc consistent (FDAC) if, in
addition, every value a ∈ Di has a simple support in every
constraint Ci j such that j < i. A WCSP is full directional arc
consistent (FDAC*) if every variable is node and full direc-
tional arc consistent.

Example 4 The problem in 2.c is AC* but not FDAC*, be-
cause value a ∈ i does not have a full support in variable
j. FDAC* is enforced by executing FindFullSupports(i, j)
(producing the problem in Figure 2.d).

Every WCSP can be transformed into an equivalent
FDAC* WCSP with time complexity O(end3) [Larrosa and
Schiex, 2003]. In the CSP case, FDAC* also reduces to
classical arc-consistency. In the general case FAC* implies
FDAC* and FDAC* implies AC* (namely, the satisfaction of
one property implies the satisfaction of the other). An im-
portant question is whether it is possible to strengthen the
FDAC* property to make it closer to FAC*, but still having
the guarantee of existence for an arbitrary WCSP instance. In
the next Section we address this issue.

4 Existential arc consistency: a stronger new
property

Consider the FDAC* problem in Figure2.d. Observe that
value a ∈ Dk has a simple support in x j (required by the
FDAC* property) but does not have any full support. We
have the same situation with value b ∈ Dk and variable xi.

a)

a

b

j

a

b

i
k

a

b

2

1

2

Co=0

a

b

j

a

b

i
k

c)

a

b

2

Co=1
a

b

j

a

b

i
k

d)

a

b

1

Co=1

1

a

b

j

a

b

i
k

e)

a

b

Co=1

1

1

a

b

j

k

a

b

Co=2

a

b

i

f)

a

b

j

a

b

i
k

b)

a

b

2

1

1

Co=00

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1 1 1

1

1

1

1 1

1

1 1

1

1

1
1 1

Figure 2: Six equivalent WCSP problems (> = 4): (a) origi-
nal problem (c) made AC*, (d) made FDAC* with i < j < k
and (f) made EDAC*.

As a consequence, the unary cost of both values in Dk can
be increased by enforcing full supports (Figure 2.e). Since all
unary costs of Di values are larger than zero, node consistency
is lost and the lower bound can be increased (Figure 2. f). In
general, full supports can be safely enforced in both direc-
tions if their enforcement produces an increment in the lower
bound. Next, we show that there is a natural local consistency
property behind this observation, that we call existential arc
consistency (EAC*).

Definition 5 Variable xi is existential arc consistent if there
is at least one value a ∈ Di such that Ci(a) = ⊥ and it has a
full support in every constraint Ci j . A WCSP is existential arc
consistent (EAC*) if every variable is node and existential arc
consistent.

All the previous forms of arc consistency required the same
condition for every domain value. However, EAC* requires
the existence for every variable of a special value. The impor-
tant fact to note is: if a variable xi is not EAC*, then for all
domain value a with Ci(a) =⊥ there is a variable x j such that
∀b ∈ D j,Ci j(a,b)⊕C j(b) > ⊥. Thus enforcing full supports
in xi will break the NC* property and it will be possible to in-
crease the lower bound. It is possible to integrate EAC* with
FDAC* in order to exploit the benefits of each. It is achieved
by the existential directional arc consistency (EDAC*) prop-
erty.

Definition 6 A WCSP is EDAC* if it is FDAC* and EAC*.

In words, EDAC* requires that every value is fully sup-
ported in one direction and simply supported in the other di-
rection (to satisfy FDAC*). Additionally, at least one value
per variable must be fully supported in both directions (to
satisfy EAC*). The special value is called the fully supported
value. Observe that in the CSP case EDAC* instantiates to
classical arc consistency. Besides, EDAC* is weaker than
FAC*, but stronger than FDAC*.

5 Algorithm
We present an algorithm for the enforcement of EDAC* in
the case of binary WCSPs. EDAC* (Algorithm 3) trans-
forms an arbitrary problem into an equivalent one verifying
the EDAC* local property. It uses three propagation queues,
Q, R and P, that are implemented as priority queues so that
the lowest or the highest variable in the queue can be popped
in constant time. If j ∈ Q, it means that some value in D j
has been pruned (neighbors of j higher than j may have lost
their simple support and must be revised). If j ∈ R, it means
that some value in D j has increased its unary cost from ⊥
(neighbors of j lower than j may have lost their full support
and must be revised). If i ∈ P, it means that some value in
D j (j < i neighbor of i) has increased its unary cost from ⊥ (i
may have lost the full support of its fully supported value and
must be revised). Besides, there is an auxiliary queue S that
is used to efficiently build P.

The algorithm is formed by a main loop, with four inner
loops. The while loops at lines 5, 8 and 10 respectively en-
force EAC*, DAC* and AC*; the line 11 enforces NC*. Each
time some costs are projected by the enforcement of a local
property, another property may be broken. The variables for
which the local property may be broken are stored in a queue
for revision. The enforcement of NC*, AC* and DAC* is
achieved as proposed in [Larrosa and Schiex, 2003]. Thus,
we focus on the enforcement of EAC*.

EAC* enforcement is mainly encoded by Function Find-
ExistentialSupport(i), which enforces the existential sup-
port in xi by finding full supports wrt. every lower neighbor
x j (it does not have to worry for higher neighbors because
DAC* enforcement takes care of them). While enforcing the
existential support in xi, the cost function C j decreases or re-
mains the same. As a consequence, we do not need to revise
the existential consistency of x j nor the directional arc con-
sistencies of the lowest neighbors of x j. Furthermore, as the
existential consistency is stronger than the arc one, enforc-
ing AC* between xi and x j is useless. However, the direc-
tional arc consistency of variable xi should be checked, be-
cause some unary cost of xi could have been increased (line
6). Similarly, the existential consistency of higher neighbors
of xi should also be verified (line 7).

PruneVar() enforces node consistency after unary cost and
lower bound increments (line 11). This function can be exe-
cuted more often in order to avoid unnecessary value exami-
nations during the while loops. It does not change the worst-
case time complexity. For simplicity reasons, the case of in-
consistent problems where C∅ reaches > is not described.

Theorem 1 The complexity of EDAC* is time
O(ed2 max{nd,>}) and space O(ed).

Algorithm 3: Enforcing EDAC*, initially, Q = R = S = X .
Procedure EDAC*

3 while (Q 6= ∅∨R 6= ∅∨S 6= ∅) do
4 P := {l | i ∈ S, l > i,Cil ∈ C}∪S ;

S := ∅ ;
5 while (P 6= ∅) do

i := popMin(P) ;
if FindExistentialSupport(i) then

6 R := R∪{i} ;
7 foreach Ci j ∈ C s.t. j > i do P := P∪{ j} ;

8 while (R 6= ∅) do
j := popMax(R) ;

9 foreach Ci j ∈ C s.t. i < j do
if FindFullSupports(i, j) then

R := R∪{i} ;
S := S∪{i} ;

10 while (Q 6= ∅) do
j := popMin(Q) ;
foreach Ci j ∈ C s.t. i > j do

if FindSupports(i, j) then
R := R∪{i} ;
S := S∪{i} ;

11 foreach i ∈ X do
if PruneVar(i) then Q := Q∪{i} ;

proof 1 Regarding space, we use the structure suggested by
[Cooper and Schiex, 2004] to bring the space complexity to
O(ed). [Larrosa and Schiex, 2003] proved that ProjectU-
nary, Project, Extend and PruneVar are time O(d); Find-
Supports and FindFullSupports are time O(d2). Let us now
focus on the while loop complexities in EDAC*. The loop at
line 8 enforces DAC*. As described in previous papers, it is
time O(ed2) because each variable is pushed in R at most
once and thus each constraint Ci j is checked once (line 9).
Similarly, the loop at line 10 which enforces AC*, directed
from the lowest variables to the highest ones, is also O(ed2).

The loop at line 5 enforces EAC* directed to the highest
variables. In a single run of this loop, a variable will never
be pushed twice in P because the popped variable xi is always
the lowest one, and the pushed variables are higher than xi.
It implies that the while loop iterates at most n times, leading
to a O(e) time complexity for line 7. The amortized complex-
ity time of FindExistentialSupport is O(ed2) because this
function may be called with each variable, so every binary
constraint at line 1 and 2 is observed once. Thus, the time
complexity of EAC* is also O(ed2).

The line 4 is time O(n). The for at line 11 is time O(nd)
(which is less than O(ed), as the graph is supposed to be
connected). Compiling the different results, the complexity
inside the while at line 3 is O(ed2). It loops when:

• either Q is not empty: the for at line 11 has pruned a
value and this is done at most nd times;

• either R is not empty: AC* has enqueued a variable in R
and by the preceding remark this cannot be done more
than O(nd) times;

• or S is not empty: an element has been enqueued
while enforcing AC* or DAC*. The first case cannot
happen more than O(nd). The second case happens
O(max{nd,>}) times because the condition at line 8 is
true when AC* has added an element in R (O(nd) times)
or EAC* has added an element (O(>) times because
each time EAC* is violated, C∅ increases).

Consequently, the overall complexity is O(ed2 max{nd,>}).

6 Experimental results
In this Section, we perform an empirical comparison of
EDAC* with FDAC* for the task of proving optimality. The
main use of the EDAC* and FDAC* properties is to use them
inside a depth-first branch and bound solver. The idea is to
maintain EDAC* and FDAC* during the search (algorithms
called MEDAC* and MFDAC*, respectively). We have im-
plemented (C code) this idea in an efficient incremental ver-
sion that uses tables of supports à la AC2001 [Bessiere and
Regin, 2001]. In non-binary problems, we delay the propaga-
tion of non-binary constraints until they become binary. For
variable selection we use the dom/deg heuristics which selects
the variable with the smallest ratio of domain size divided by
future degree. For value selection we consider values in in-
creasing order of unary cost Ci. The variable ordering for
directional arc consistency is given by their index. The opti-
mum of each problem instance (except for MAX-SAT where
only a good upper bound is provided) is given to the branch
and bound as a first upper bound. We experimented with
three domains easily modeled as WCSP. Given a CNF for-
mula, Max-SAT is the problem of finding a complete assign-
ment with a maximum number of satisfied clauses. We have
generated and solved 80-variable 2-SAT and 40-variable 3-
SAT instances with varying the number of clauses using Cn-
fgen1, a random k-SAT generator. Note that this generator
prevents duplicate or opposite literals in clauses but not du-
plicate clauses. Given an overconstrained CSP, Max-CSP is
the problem of finding a complete assignment with a maxi-
mum number of satisfied constraints. We have generated 6
classes of binary random problems with domain size set to
10 (Sparse-Loose (constraint graph connectivity of 12% for
40 variables), Sparse-Tight, Dense-Loose (constraint graph
connectivity of 25%), Dense-Tight, Complete-Loose, and
Complete-Tight) as proposed in [Larrosa and Schiex, 2003].
In Max-SAT (resp. Max-CSP), samples have 10 (resp. 50)
instances and we report mean values. In the uncapacitated
warehouse location problem (UWLP) a company considers
opening warehouses at some candidate locations in order to
supply its existing stores. The objective is to determine which
warehouses to open, and which of these warehouses should
supply the various stores, such that the sum of the mainte-
nance and supply costs is minimized. Each store must be
supplied by exactly one open warehouse. We simply model
the problem by l boolean variables for the candidate loca-
tions, s integer variables for the stores with domain size set to
l, l + s soft unary constraints for the costs, and l × s hard bi-
nary constraints connecting stores and warehouses. We took

1A. van Gelder ftp://dimacs.rutgers.edu/pub/challenge/
satisfiability/contributed/UCSC/instances

and solved the problem instances cap71-134 from the stan-
dard OR Library benchmarks for UWLP, as well as the MO*-
MP* instances by courtesy of J. Kratica [Kratica et al., 2001].
The M* instances are very challenging for mathematical pro-
gramming approaches because they have a large number of
suboptimal solutions.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 100 200 300 400 500 600 700

cp
u

tim
e

n. of clauses

CNF2, 80 vars

MFDAC*
MEDAC*

 0

 20

 40

 60

 80

 100

 120

 140

 160

 200 400 600 800 1000 1200 1400

cp
u

tim
e

n. of clauses

CNF3, 40 vars

MFDAC*
MEDAC*

Figure 3: Time in seconds to solve random Max-2SAT and
Max-3SAT problems.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 30 35 40 45

cp
u

tim
e

n. of variables

Sparse Loose

MFDAC*
MEDAC*

 0

 10

 20

 30

 40

 50

 20 25 30 35 40

cp
u

tim
e

n. of variables

Sparse Tight

MFDAC*
MEDAC*

 0

 10

 20

 30

 40

 50

 20 22 24 26 28 30 32 34 36

cp
u

tim
e

n. of variables

Dense Loose

MFDAC*
MEDAC*

 0

 20

 40

 60

 80

 100

 16 18 20 22 24 26 28 30

cp
u

tim
e

n. of variables

Dense Tight

MFDAC*
MEDAC*

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20 22

cp
u

tim
e

n. of variables

Complete Loose

MFDAC*
MEDAC*

 0

 20

 40

 60

 80

 100

 120

 140

 6 8 10 12 14 16

cp
u

tim
e

n. of variables

Complete Tight

MFDAC*
MEDAC*

Figure 4: Time in seconds to prove optimality for binary ran-
dom Max-CSPs.

The experiments were all performed on a 2.0 GHz Pen-
tium 4 computer with 512 MB2. Time results in seconds are
given in Figures 3 and 4, and Table 5. In all Max-SAT (resp.
Max-CSP classes), the search effort seems to grow exponen-
tially with the number of clauses (resp. number of variables).
We summed the computation times for all the samples that
were completely solved by both algorithms and computed

2The program named TOOLBAR and the benchmarks are avail-
able at http://carlit.toulouse.inra.fr/cgi-bin/
awki.cgi/SoftCSP.

the ratio MFDAC*/MEDAC* . In Max-2SAT, MEDAC*
was 5.1 faster than MFDAC*. The improvement is lower
in Max-3SAT. We think this result is due to our simple de-
laying mechanism for tackling n-ary constraints. For Max-
CSP, MEDAC* was faster than MFDAC* by a factor ranging
from 2.0 (Complete-Tight) to 9.52 (Sparse-Tight). The same
results were observed when analyzing the number of nodes
expanded by MEDAC* and MFDAC* (not reported here for
lack of space). In summary, the speed-up obtained was even
more important on problems with small constraint graph con-
nectivity.

Problem Size MFDAC∗ MEDAC∗ CPLEX
cap71 16×50 0.01 0.00 0.02
cap72 16×50 0.01 0.01 0.00
cap73 16×50 0.02 0.01 0.00
cap74 16×50 0.02 0.01 0.02
cap101 25×50 0.03 0.02 0.02
cap102 25×50 0.13 0.03 0.01
cap103 25×50 0.35 0.03 0.01
cap104 25×50 0.24 0.04 0.01
cap131 50×50 65.02 0.11 0.05
cap132 50×50 155.08 0.12 0.04
cap133 50×50 194.36 0.14 0.05
cap134 50×50 44.75 0.12 0.05
MO1 100×100 - 216.57 202.48
MO2 100×100 11775.60 44.45 36.67
MO3 100×100 15123.70 74.60 199.84
MO4 100×100 3525.61 31.74 43.26
MO5 100×100 2354.95 33.98 42.96
MP1 200×200 - 3403.37 2296.65
MP2 200×200 - 1443.93 917.92
MP3 200×200 - 981.28 1209.15
MP4 200×200 - 1768.51 1936.57
MP5 200×200 - 1099.88 697.51

Table 5: Time in seconds to prove optimality for uncapac-
itated warehouse location problems. Problem size is l × s,
with l the number of warehouses and s the number of stores.
A “-” means the instance was not solved in less than 5 hours.

For UWLP, MEDAC* is several orders of magnitude faster
than MFDAC* for problem size l ≥ 50. We concluded that
the lower bound computed by EDAC* for UWLP is stronger
and less variable ordering dependent than the FDAC* one.
Although UWLP is well-solved by dedicated mathematical
programming approaches [Erlenkotter, 1978; Körkel, 1989]
and heuristic search methods [Kratica et al., 2001; Michel
and Hentenryck, 2004], it is worth noticing that our generic
WCSP algorithm was able to solve to optimality moderately-
sized problems in reasonable time (in less than 1 hour).
For comparison purposes, we solved UWLP instances us-
ing a state-of-the-art mixed-integer programming solver Ilog
CPLEX 9.0 with default parameters (and without initial upper
bounds) and a direct formulation of the problem. MEDAC*
and CPLEX obtained results within the same order of magni-
tude in terms of cpu time.

Reversing the order of lines 5 (EAC* loop), 8 (DAC* loop),
and 10 (AC* loop) in MEDAC* slowed down the algorithm

by a factor 3
2 on our Max-CSP benchmarks. It is important to

increase the lower bound as soon as possible as it is done first
by EAC*. We are currently investigating a lazy implemen-
tation of EAC* where the constraints in line 2 are projected
only for the purpose of increasing the lower bound and not
for pruning the values. This allows to reduce the number of
variables inserted in R and P by EAC* and, consequently, the
number of iterations of the different loops.

7 Conclusions and future work
In this paper we have introduced a new local consistency
property called EDAC* and adapted it to WCSP. We have
studied its complexity, and despite its theoretical cost, it has
been shown that maintaining EDAC* is always better than
maintaining FDAC* in a variety of domains. In the future,
we want to study a lazy version of EDAC* and to apply it to
other problems.

Acknowledgments
The authors are grateful to Thomas Schiex for useful com-
ments on an early version of the paper and to Julia Larrosa
for being born after the submission deadline.

References
[Bessiere and Regin, 2001] C. Bessiere and J.C. Regin. Re-

fining the basic constraint propagation algorithm. In
IJCAI-01, pages 309–315, 2001.

[Cooper and Schiex, 2004] M. Cooper and T. Schiex. Arc
consistency for soft constraints. Artificial Intelligence,
154:199–227, 2004.

[Erlenkotter, 1978] D. Erlenkotter. A Dual-Based Procedure
for Uncapacitated Facility Location. Operations Research,
26(6):992–1009, 1978.

[Körkel, 1989] M. Körkel. On the exact solution of large-
scale simple plant location problems. European Journal
of Operational Research, 39:157–173, 1989.

[Kratica et al., 2001] J. Kratica, D. Tosic, V. Filipovic, and
I. Ljubic. Solving the Simple Plant Location Problems by
Genetic Algorithm. RAIRO Operations Research, 35:127–
142, 2001.

[Larrosa and Schiex, 2003] J. Larrosa and T. Schiex. In the
quest of the best form of local consistency for weighted
CSP. In IJCAI-03, pages 239–244, 2003.

[Larrosa and Schiex, 2004] J. Larrosa and T. Schiex. Solving
Weighted CSP by Maintaining Arc-consistency. Artificial
Intelligence, 159(1-2):1–26, 2004.

[Michel and Hentenryck, 2004] L. Michel and P. Van Hen-
tenryck. A Simple Tabu Search for Warehouse Location.
European Journal on Operations Research, 157(3):576–
591, 2004.

[Schiex et al., 1995] T. Schiex, H. Fargier, and G. Verfail-
lie. Valued constraint satisfaction problems: hard and easy
problems. In IJCAI-95, pages 631–637, 1995.

