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Abstract

We introduce Adaptive Extractors, which unlike traditional randomness extractors, guaran-
tee security even when an adversary obtains leakage on the source after observing the extractor
output. We make a compelling case for the study of such extractors by demonstrating their use
in obtaining adaptive leakage in secret sharing schemes.

Specifically, at FOCS 2020, Chattopadhyay, Goodman, Goyal, Kumar, Li, Meka, Zuckerman,
built an adaptively secure leakage resilient secret sharing scheme (LRSS) with both rate and
leakage rate being O(1/n), where n is the number of parties. In this work, we build an adap-
tively secure LRSS that offers an interesting trade-off between rate, leakage rate, and the total
number of shares from which an adversary can obtain leakage. As a special case, when consid-
ering t-out-of-n secret sharing schemes for threshold t = αn (constant 0 < α < 1), we build a
scheme with a constant rate, constant leakage rate, and allow the adversary leakage from all but
t − 1 of the shares, while giving her the remaining t − 1 shares completely in the clear. (Prior
to this, constant rate LRSS scheme tolerating adaptive leakage was unknown for any threshold.)

Finally, we show applications of our techniques to both non-malleable secret sharing and se-
cure message transmission.
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1 Introduction

Randomness extractors [32] are a fundamental primitive in the world of theoretical computer sci-
ence, which have found widespread applications in derandomization techniques, cryptography, and
so on. A randomness extractor Ext is a function that takes as input an n-bit entropic source W , a
uniformly random d-bit string S (seed) and outputs Ext(W ;S) such that Ext(W ;S) “looks uniform”
to an unbounded eavesdropper Eve even given the seed S. Unfortunately, the standard notion of
extractors offers no guarantees whatsoever if the adversary Eve obtains some information about W ,
after observing, the output of the extractor. In this work, we address this gap.

Does the security of extractors hold even after the adversary obtains some information on W ,
“after the fact”?

Naturally, we have to be careful about what information Eve can learn about W and S, after the
fact. For instance, the function f , which on input w, s and the extractor challenge y, outputs 1 if
and only if y = Ext(w; s), is an after the fact leakage function, which can break extractor security,
with high probability, with only 1 bit of leakage. Hence, one needs to define the leakage function
family carefully.

In this work, we introduce the notion of adaptive extractors with respect to an after the fact leakage
family F . Formally, we say that an extractor is an adaptive extractor with respect to a function fam-
ily F , if for each f ∈ F , an adversary cannot (statistically) distinguish (S, f(W,Ext(W ;S)),Ext(W ;S))
from (S, f(W,U), U). Our notion of adaptive extractors can be seen as a generalization of exposure-
resilient extractors introduced by Zimand [39] (Zimand’s extractors allow the adversary to adap-
tively learn up to nδ bits of the source, for some δ < 1 bits; the adversary can determine which bits
to query based on an arbitrary function of the extractor output.), and of the notion of adaptive non-
malleable extractors introduced by Aggarwal et al. in [2] (where adaptive non-malleability particu-
larly guarantees that the adversary cannot distibuish between (S,Ext(W ; g(S,Ext(W ;S))),Ext(W ;S))
and (S,Ext(W ; g(S,U)), U)). We then observe that every randomness extractor is also an adaptive
extractor with respect to a leakage family depending arbitrarily on the source and the output, with
some loss in parameters. We note that this observation is similar to how the authors in [2, Lemma
3.5] show that every non-malleable extractor is adaptive non-malleable, with some loss in parame-
ters. We demonstrate that, in spite of the loss in parameters that adaptivity incurs, such extractors
can be powerful. In particular, we use them to build constant-rate secret sharing schemes resilient
to adaptive leakage. We now describe these contributions in greater detail.

Secret Sharing. Secret sharing schemes [34, 11] are a fundamental cryptographic primitive and
have many applications, such as in multi-party computation [8, 15], and leakage-resilient circuit
compilers [25, 21, 33]. These are cryptographic primitives that allow a dealer to distribute a secret
to n parties, such that only an authorized subset of parties can reconstruct the original secret and
any unauthorized set of parties have no information about the underlying secret (privacy). For
instance, in a t−out-of-n threshold secret sharing scheme, there are n parties, and any collection
of t (t ≤ n) or more parties would correspond to an authorized set, and any collection of less than
t parties would be unauthorized. Note that an implicit assumption is that the unauthorized set of
parties has no information about secrets of the remaining shares. A rich study on leakage attacks
initiated by Kocher [27] tells us that this is an idealized assumption that may not hold in practice.
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Such leakage can be dangerous and completely break the security of the underlying primitive1.

Leakage Resilient Secret Sharing (LRSS). Dziembowski and Pietrzak in [19] introduced the
problem of leakage resilience in secret sharing schemes. This problem has received much attention
(for example, [16, 31, 3, 22, 10, 36, 28, 1, 20, 13], [14, 12]), wherein researchers have strived to
improve various parameters such as its rate (defined as (message length)/(length of longest share)),
leakage model as well as leakage rate (defined as (number of bits of leakage allowed)/(the size of a
share)).

At a high level, in an LRSS, the adversary is allowed leakage on shares of the secret. This is
captured by permitting the adversary to specify functions `1, `2, . . . , and receive, in response, `i(shi)
(where shi denotes the ith share). Informally, security of an LRSS requires that privacy should
hold even given this leakage. In our work, we explore the stronger setting where the adversary
specifies which share to receive leakage from, in an adaptive manner - i.e., the adversary specifies
i, `i and upon learning `i(shi), it may make the next leakage query by specifying j, `j . In this
adaptive leakage setting2, the construction of [14] achieved a rate of O(1/n) as well as a leakage
rate of O(1/n). A consequence of this is that there currently does not exist a scheme with constant
rate and leakage rate for any threshold in this strong leakage model, whereas we do know of such
constructions for the non-adaptive leakage model. Our work fills this gap precisely.

1.1 Our Results

Our first and main result on the LRSS scheme in the adaptive leakage model is as follows. Here n
denotes the number of parties, t denotes the threshold and l denotes the message length.

Result 1: We build an LRSS scheme, tolerating ψ adaptive queries, each dependent on X shares
(with ψ · X ≤ n − t + 1) and the reveal of the remaining t − 1 shares, such that it achieves a
rate of (XΘ(ψX/t))−1, while allowing Θ(l) bits of leakage per query, for threshold access structures.
In particular, for a constant X and n = Θ(t), this gives the first constant-rate adaptive LRSS
scheme for the threshold access structure. Finally, we also generalize our constructions to the first
constant-rate adaptive LRSS for general access structures.

Further, we show the following applications of our LRSS scheme.

Result 2: As an application of our LRSS, we show compilers to get a leakage resilient non-malleable
secret sharing (LRNMSS) scheme (which are LRSS schemes, additionally resilient to tampering at-
tacks), and an information-theoretic secure message transmission protocol (SMT), tolerant against
leakage and tampering attacks. The rates of both these schemes translate appropriately from the rate
of the LRSS. In particular, for a constant LRSS, we get constant-rate schemes for both LRNMSS
and SMTs.

1For example, Guruswami and Wooters [24] show that Shamir’s secret sharing scheme is completely insecure
when the adversary gets some t− 1 shares and just one-bit of leakage from other shares.

2We note that here we only compare in an adaptive leakage model, without any joint leakage queries on multiple
shares (which is called the bounded collusion protocols (BCP) model), for ease of expostion, and discuss the joint
model in the technical section later.

5



1.2 Our Techniques

We begin by describing the leakage model for LRSS and then give a technical overview of our
scheme. For simplicity, we provide our technical overview for threshold access structures (which we
can extend to general access structures as well). Let t denote the threshold and n, the number of
parties.
Leakage Model. We allow the adversary to obtain adaptive leakage on n − (t − 1) shares and
then reveal the full shares of the remaining t− 1 shares. Each adaptive query can be on a set of at
most X shares (where X is some value between 1 and t− 1), and different queries must be on sets
that are disjoint from the prior queries. For the purposes of this exposition, we make the following
restriction to our model: we assume that the adversary makes adaptive queries but only on a single
share each time, i.e., it doesn’t make any leakage query on multiple shares.

Warm-up construction. To motivate our construction, we consider the following modification3

of a construction due to Srinivasan and Vasudevan in [36, Section 3.2.1]. Take any t-out-of-n secret
sharing scheme (MShare,MRec) and then do as follows:

• Sample shares (m1, ..,mn) of the message m using MShare.

• Choose an extractor seed s and split s into (sd1, .., sdn) using a t-out-of-n secret sharing
scheme.

• Now, for every mi, choose an extractor source wi uniformly and compute yi = mi⊕Ext(wi; s).

• Finally, output the final shares {shi} as {(wi, yi, sdi)}.

For now, consider a weak model, where the adversary obtains only non-adaptive and independent
leakage from a total of (say) t− 1 shares, in addition to t− 1 full shares. The hope is to show that
the t − 1 leakage queries are independent of the message shares mi, following which the privacy
of MShare can be used to get the t − 1 full shares. One might hope to show this independence of
leakage from the mi’s, using the security of the extractor as follows: Pick sdi uniformly at random
and independent of s; then the leakage function on {shi}, can be answered as an auxiliary leakage
query on the source wi. Once s is revealed in the extractor security game, the reduction can pick
the other sdj values in a consistent manner. However, this proof strategy has a flaw. For extractor
security, it is important that the auxiliary leakage query on w is independent of s; however, there is
a dependence on s via yi. In other words, it is unclear how to prove that this construction satisfies
leakage resilience even in a weak model where the adversary obtains leakage only independently
and non-adaptively.

Fortunately, with adaptive extractors, we can show that this construction is secure not only in
this weak model but also in a stronger model where the adversary is allowed to leak from t − 1
shares adaptively, before receiving t − 1 full shares. Furthermore, this construction even has a
constant rate! The high-level idea of security is as follows. We wish to reduce the adaptive leakage
queries on the shares to an adaptive extractor leakage query. Since the adaptive leakage query on
wj cannot depend on the seed, we need to first show that the share sdj in the corresponding query
is independent of the seed s. Indeed, using the privacy of secret sharing4, we can show that for

3We note that the original construction of [36] only aimed to achieve non-adaptive security, and we consider a
modification, with the aim to expand to adaptive security.

4Since the leakage queries are adaptive, we require adaptive privacy of the underlying secret sharing scheme, and
we show instantiations of the same.
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the first t − 1 queries, the shares sdj in shj can be replaced with shares of 0 (hence removing the
dependence on s). Then, using the adaptive extractor security, we can replace the yj ’s (for the
first t− 1 queries) with uniform, where the leakage can be asked on the wj ’s. Now, the privacy of
MShare can be invoked to get the t− 1 full shares.

Main construction. Our next goal is to leverage adaptive extractors to go beyond leaking from
just t− 1 shares. The main bottleneck is that for any subsequent leakage query (beyond t− 1), the
sdj ’s will reveal s, and hence the adaptive leakage query on subsequent wj ’s will no longer remain
independent of the seed s. Thus, extractor security fails. This is the challenge we must address to
achieve our main result where the adversary is allowed to obtain adaptive leakage on n − (t − 1)
shares (in total) and reveal t− 1 of the remaining shares.

One approach to facilitating leakage from more than t − 1 shares could be to use independent
extractor seeds to extract independent random masks. Consider the following modification of the
above construction: mask the share of a message mi not just with one extractor output but with
many. In particular, let yi = mi ⊕ Ext(wi; s

1) ⊕ Ext(wi; s
2) . . . ⊕ Ext(wi; s

h), for some parameter
h, where s1 . . . sh are independent seeds. We might hope that because we are using h seeds, we
could hope to leak from h(t− 1) shares and use the security of each seed per batch of t− 1 shares.
Unfortunately, this doesn’t work for the following reason: reconstruction is only possible if we
recover all h seeds. This means that we ultimately need to somehow share all the seeds in a manner
where they can be reconstructed from t− 1 shares. In other words, once we leak from t− 1 shares,
we can no longer argue security by leveraging any of the seeds because they can all be reconstructed
from t− 1 shares. We overcome this challenge by carefully using a multi-layered approach for both
masking the message shares as well as for reconstructing the seeds.

Construction Overview:

1. Pick h extractor seeds s1, . . . , sh and hn extractor sources w1
1, . . . w

h
1 , . . . , w

1
n, . . . , whn.

2. Secret share each of the h seeds using a t-out-of-n secret sharing scheme to obtain shares; let
the share of sj be sdj1, . . . , sd

j
n

3. Each share mj is masked using the h seeds in a layered manner as follows:

(a) In level h+ 1: Set yh+1
j = mj .

(b) For every subsequent lower level i(i ≥ 1), compute xij = yi+1
j ⊕ Exti(wij ; si) and set

yij = (xij ||sdij). [Note that we use a different extractor per-level since the length of the

extractor outputs (and the length of yijs they mask) increase with level.]

Finally set Shj = (w1
j , · · · , whj , y1

j ).

4. Output (Sh1, · · · , Shn)

A pictorial representation of the construction can be found in Figure 1. In order to give an overview
of the proof, we first recall that we are in a setting where each adaptive query of an adversary is a
query on a single share – we can extend our results to the case of joint leakage but, for the sake of
simplicity, we don’t focus on that for now.
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Each entry of the layered maskings matrix appropriately uses the corresponding entries of the sources, seeds and
seed shares matrices. In addition, each entry yji (j ≤ h) also depends on the subsequent value i.e., yj+1

i . Example:
yh1 = m1 ⊕ Exth(wh

1 ; sh)||sdh1 (colored red)

Figure 1: The Main Construction

At a high-level, the idea of the security proof is that we view the leakage queries in batches of t− 1
queries. For the first set of t− 1 queries, we rely on the adaptive security of the extractor outputs
evaluated using seed s1 and, in particular, all of these outputs can be replaced by uniform. (This
also relies on the adaptive privacy of the secret sharing scheme, a notion we define and instantiate.)
For the second set of t − 1 queries, we can no longer assume that s1 is hidden, since we can not
use the privacy of the secret sharing scheme any more. However, two things come to our rescue:
first, the second batch of queries helps unmask at most t − 1 shares of s2 and therefore, adaptive
extractor security on seed s2 can be leveraged; second, the extractor outputs Ext(w1

j ; s
1) (where j

was a share that was leaked from in the first batch) continue to remain uniform. The reason for
the latter is that all extractor sources are uniformly chosen, and our model requires a disjoint set
of indices to be leaked from across batches. In short, for the first batch of queries, we use adaptive
security of the extractor outputs evaluated on the first seed and, for every subsequent batch, we
move to argue extractor security using the subsequent seed. Since we have h independent seeds,
we can do this h times and therefore answer h batches of queries, i.e., we can obtain leakage on
h(t− 1) shares.

1.3 Related Work

We first list out some of the parameters that are relevant to LRSS schemes:

• Rate: This is defined as messagelength
sharelength .

• Global Limit : This refers to the total number of shares on which the leakage queries can
depend on.

• Per-query Limit : This refers to the number of shares that a specific query can depend on.
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• Per-query Leakage Rate: This is the ratio of the total allowable leakage from a single leakage
query to the size of a share.

The problems of leakage resilient and non-malleable secret sharing have seen a flurry of activity
in recent times [31, 10, 22, 6, 36, 1, 20, 13, 28, 30], [14, 12]. Here we compare our work with only
the most relevant works in this area. The only prior LRSS schemes allowing for a joint and adaptive
leakage model are [28, 14]. While our model allows adaptive queries on up to n − t + 1 shares,
each dependent on at most X shares (where X is some value between 1 and t − 1), before fully
revealing the remaining t − 1 shares, [14] allows adaptive queries on all n shares, each dependent
on at most t − 1 shares before revealing t − 1 full shares. Both the schemes require the adaptive
queries to be on disjoint sets of shares. However, our scheme/analysis offers a more fine-grained
trade-off between the various parameters and allows us to obtain better results for certain settings.
In particular, when we consider the instance where X is constant (and t = αn, for a constant
α < 1), we get a constant-rate adaptive LRSS achieving a constant leakage rate, while [14] gets a
rate and leakage rate of O(1/n) each, in all instances. To put this in context, even if [14] makes
independent adaptive leakage queries on all shares, their rate is O(1/n) and the maximum number
of bits they can leak is at most a constant fraction of the size of a single share, while we can leak
close (n− t+ 1) times a constant fraction of the size of a single share!

The work of [14] also consider a variant of joint leakage, allowing overlap of the query sets, the
detailed parameters of which are given in Table 1. We give a detailed comparison of the parameters
achieved by the various schemes in Table 1, for the threshold setting with t = αn (for a constant
α < 1).

Table 1: LRSS Prior Work
• *All works mentioned here are information-theoretic. We write all comparisons for the threshold setting with

threshold t = αn (where α < 1 is a constant and n denotes the total number of parties).

• ** For our result, the unauthorized queries cannot overlap with the leakage queries.

• c is a small constant and lmsg is the message length.

• All schemes (except the joint overlapping schemes of [14] (threshold and n-out-of-n) actually work for general
access structures.

• Full Shares: Number of complete shares that an adversary can see (at the end of all leakage queries, in the
adaptive schemes).
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Open Problems. We believe that it would be interesting to explore the direction of building
adaptive extractors against restricted classes of leakage families such as those captured by compu-
tational/bounded depth circuits, local functions, etc.

1.4 Organization of the Paper

We provide the preliminaries and definitions in Section 2. Then, we define and build adaptive
extractors in Section 3. We define and build leakage resilient secret sharing schemes in Section 4.

2 Preliminaries and Definitions
2.1 Notation

We denote the security parameter by κ. For any two sets S and S′, S\S′ denotes the set of elements
that are present in S, but not in S′. For any natural number n, [n] denotes the set {1, 2, · · · , n}
and [0] denotes a null set. s ∈R S denotes uniform sampling from set S. x← X denotes sampling
from a probability distribution X. The notation PrX [x] denotes the probability assigned by X to
the value x. x||y represents concatenation of two binary strings x and y. |x| denotes length of
binary string x. Ul denotes the uniform distribution on {0, 1}l. All logarithms are base 2. If S is a
subset of [n] :

• If x1, .., xn are some variables or elements, then xS denotes the set {xi such that i ∈ S}.

• For some function f outputting n values y1, · · · , yn on input x, f(x)S denotes (yi)i∈S .

• If T1, .., Tn are sets, then TS denotes the union ∪i∈STi.

Statistical distance. Let X1, X2 be two probability distributions over some set S. Their statis-
tical distance is

SD (X1, X2)
def
= max

T⊆S
{Pr[X1 ∈ T ]− Pr[X2 ∈ T ]} =

1

2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]

∣∣∣∣
(they are said to be ε-close if SD (X1, X2) ≤ ε and denoted by X1 ≈ε X2).
For an event E, SDE(A;B) denotes SD (A|E;B|E).

Entropy. The min-entropy of a random variable W is H∞(W ) = − log(maxw Pr[W = w]).
For a joint distribution (W,Z), following [17], we define the (average) conditional min-entropy of
W given Z as

H̃∞(W | Z) = − log( E
e←Z

(2−H∞(W |Z=z)))

(here the expectation is taken over e for which Pr[E = e] is nonzero).
For any two random variable W,Z, (W |Z) is said to be an (n, t′)-average source if W is over {0, 1}n
and H̃∞(W |Z) ≥ t′.
We require some basic properties of entropy and statistical distance, which are given by the following
lemmata.
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Lemma 1. [17] Let A,B,C be random variables. Then if B has at most 2λ possible values, then
H̃∞(A | B) ≥ H∞(A,B) − λ ≥ H∞(A) − λ and, more generally, H̃∞(A | B,C) ≥ H̃∞(A,B |
C)− λ ≥ H̃∞(A | C)− λ.

Lemma 2. [37] For any random variables A,B, if A ≈ε B, then for any function f, f(A) ≈ε f(B).

Lemma 3. For any random variables A,B over A, and events E,E′ with non-zero probabilities,

SD
(
A ∧ E,B ∧ E′

)
≤ |Pr[E]− Pr[E′]|+ Pr[E′] · SD

(
A|E,B|E′

)
where,

SD
(
A ∧ E,B ∧ E′

) def
=

1

2

∑
a∈A
|Pr[A = a ∧ E]− Pr[B = a ∧ E′]|

and

SD
(
A|E,B|E′

) def
=

1

2

∑
a∈A
|Pr[A = a|E]− Pr[B = a|E′]|

Proof. Let X = {a ∈ A : Pr[A = a ∧ E] > Pr[B = a ∧ E′]}, Y = A/X and ε = |Pr[E]− Pr[E′]|.

2SD
(
A ∧ E,B ∧ E′

)
=
∑
a∈X

(Pr[A = a ∧ E]− Pr[B = a ∧ E′]) +
∑
a∈Y

(Pr[B = a ∧ E′]− Pr[A = a ∧ E])

=
∑
a∈X

(Pr[E] Pr[A = a|E]− Pr[E′][B = a|E′])+∑
a∈Y

(Pr[E′] Pr[B = a|E′]− Pr[E][A = a|E])

≤
∑
a∈X

((Pr[E′] + ε) Pr[A = a|E]− Pr[E′][B = a|E′])+∑
a∈Y

(Pr[E′] Pr[B = a|E′]− (Pr[E′]− ε)[A = a|E])

=
∑
a∈A

ε · Pr[A = a|E] +
∑
a∈A

Pr[E′] · |Pr[A = a|E]− Pr[B = a|E′]|

≤ ε+ 2 Pr[E′]SD
(
A|E,B|E′

)

Lemma 4. [4] Let X,Y,X ′, Y ′ be random variables such that SD ((X,Y ), (X ′, Y ′)) ≤ ε and S be
any set such that Pr[Y ∈ S] > 0 and Pr[Y ′ ∈ S] > 0, then

SD
(
X|Y ∈ S,X ′|Y ′ ∈ S

)
≤ 2ε

Pr[Y ′ ∈ S]

2.2 Secret Sharing Schemes

Secret sharing schemes provide a mechanism to distribute a secret into shares such that only an
authorized subset of shares can reconstruct the secret and any unauthorized subset of shares has
“almost” no information about the secret. We now define secret sharing schemes formally.
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Definition 1. Let M be a finite set of secrets, where |M| ≥ 2 . Let [n] be a set of identities
(indices) of n parties. A sharing function Share : M→ ({0, 1}l)n is a (A, n, εs)- secret sharing
scheme with respect to a monotone access structure5 A if the following two properties hold :

1. Correctness: The secret can be reconstructed by any set of parties that are part of the access
structure A. That is, for any set T ∈ A, there exists a deterministic reconstruction function
Rec : ({0, 1}l)|T | →M such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1

where the probability is over the randomness of the Share function and if (sh1, .., shn) ←
Share(m), then Share(m)T denotes {shi}i∈T . We will slightly abuse the notation and denote
Rec as the reconstruction procedure that takes in T ∈ A and Share(m)T as input and outputs
the secret.

2. Statistical Privacy: Any collusion of parties not part of the access structure should have
“almost” no information about the underlying secret. More formally, for any unauthorized
set U /∈ A, and for every pair of secrets m,m′ ∈M,

∆((Share(m))U ; (Share(m′))U ) ≤ εs

An access structure A is said to be (n, t)-threshold if and only if A contains all subsets of [n] of
size at least t.
Rate of a secret sharing scheme is defined as message size

share size (which would be equal to log |M|
l ).

We now study a stronger privacy requirement, adaptive privacy (introduced by Bellare and Rogaway
[7]6)

2.2.1 Adaptive Privacy

Statistical privacy captures privacy against any non-adaptively chosen unauthorized set U . Adaptive
privacy preserves privacy even when the choice of U to be adaptive, which means the following.
Let U = {i1, .., iq}. We say ij is chosen adaptively, if its choice depended on {sharej}j∈{i1,..,ij−1}.
The choice of which share to query next depends on all the previously observed shares. We give
the formal definition below.
We say a (A, n, εs)-secret sharing scheme satisfies adaptive privacy with error εadp if, for any dis-
tinguisher D, the advantage in the following game is at most εadp.

GameAd−Privacy : For any arbitrary distinct messages m0,m1 ∈M

1. (share1, · · · , sharen)← Share(mb) where b ∈R {0, 1}

2. For j = 1 to q 7

• D queries on a distinct index ij(such that i[j] /∈ A) and receives shareij

3. D outputs the guess b′ for b and wins if b = b′

5A is a monotone access structure if for all A,B such that A ⊂ B ⊆ [N ] and A ∈ A, it holds that B ∈ A.
Throughout this paper whenever we consider a general access structure, we mean a monotone access structure.

6In [7], the authors refer to adaptive privacy as privacy against dynamic adversaries.
7q is arbitrary and chosen by D. It need not be chosen a-priori. We only use it to denote the total number queries

made by D
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While generally, any secret sharing scheme may not be adaptively private, we show in Appendix
A.2.2 that for the threshold setting, the scheme of [34] and for the general access structures, the
scheme of [9] are both adaptively private. We use them to instantiate our schemes.

Consistent Re-sampling. For any (A, n, εs)-secret sharing scheme (Share,Rec), for any message
m and a subset L ⊆ [n], when we say “(sh1, .., shn) ← Share(m) consistent with sh∗L on L” or
“(sh1, .., shn)← Share(m|sh∗L)” we mean the following procedure:

• Sample and output (sh1, .., shn) uniformly from the distribution Share(m) conditioned on the
event that shL = sh∗L

• If the above event is a zero probability event then output a string of all zeroes (of appropriate
length).

We require the following consistent re-sampling feature8, which informally states that for any
(A, n, εs)-secret sharing scheme and any message m, the distribution of shares which are re-sampled
as shares of m, conditioned on some set T of shares (which are also generated as shares of m) chosen
adaptively, is identical to the distribution of shares of m generated directly.

Lemma 5. For any (A, n, εs)-secret sharing scheme (Share,Rec) and for any message m, the fol-
lowing two distributions are identical.

D1 :

• (sh′1, .., sh
′
n)← Share(m)

• (sh1, .., shn)← Share(m|sh′T )

• Output (sh1, .., shn)

D2 :

• (sh1, .., shn)← Share(m)

• Output (sh1, .., shn)

Here, T ⊆ [N ] can be any subset chosen as: every index (except the first) depends arbitrarily on
the shares corresponding to all the previous indices.

We give a full proof of the above lemma in Appendix A.2.1.

3 Adaptive Extractors

Extractors (introduced by Nissan and Zuckerman [32]) output a near uniform string y, from a
source w that only has min-entropy, using a short uniform string s, called the seed, as a catalyst.
Average-case extractors are extractors whose output remains close to uniform, even given the seed
and some auxiliary information (or leakage) about the source (independent of the seed), as long as
the source has enough average entropy given this leakage. We give their formal definition below.

Definition 2. [17] Let Ext : {0, 1}η ×{0, 1}d → {0, 1}l be a polynomial time computable function.
We say that Ext is an efficient average-case (η, µ, d, l, ε)-strong extractor if for all pairs of random
variables (W,Z) such that W is an η-bit string satisfying H̃∞(W |Z) ≥ µ (refer to Appendix ?? for
the definition of min-entropy), we have

Ext(W ;Ud), Ud, Z ≈ε Ul, Ud, Z
8Note that we only use the re-sampling in proofs and do not require the procedure to be efficient.
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3.1 Definition

Average-case extractors, unfortunately, provide no guarantees on the extractor output being uni-
form when an adversary can obtain an ‘adaptive’ leakage on the source, that is dependent on the
extractor output and the seed. This is not surprising, as if an adversary can obtain arbitrary adaptive
leakage on the source, then we cannot hope for the extractor output to remain uniform. For exam-
ple, given y = Ext(w, s), an adversary can distinguish the extractor output from uniform with high
probability by querying a single bit of auxiliary information that tells her whether Ext(w, s) = y.
However, as we will see later, in many applications, the adaptive leakage that the adversary obtains
comes from a specific function family. Hence, by carefully defining this function family, we show
how to obtain useful notions of extractors that guarantee security even in the presence of an adap-
tive auxiliary information. We introduce and call this notion adaptive extractors and now proceed
to formally define them.

Definition 3. An (η, µ, d, l, ε)- extractor Ext is said to be an (F , δ)-adaptive extractor if for all
pairs of random variables (W,Z) such that W is an η-bit string satisfying H̃∞(W |Z) ≥ µ, and any
function f in the function family F , it holds that

Z,Ud, f(W,Ext(W ;Ud), Ud),Ext(W ;Ud) ≈δ Z,Ud, f(W,Ul, Ud), Ul

We call δ, the adaptive error of the extractor.

3.2 Construction

Generic relation. We show that every extractor is in fact an adaptive extractor for the family of
leakage functions where the adaptive leakage depends only on the source and the extractor output
(i.e., it doesn’t depend on the seed except via the extractor output), with some loss in security.
This loss, in fact, depends only on the number of bits of the extractor output that the adaptive
leakage function depends on. For ease of exposition, we omit auxiliary information z that depends
only on the source (but not on the extractor output or seed) from the notation below. We now
explicitly define this family below:

Fa,ζ ⊆ {f ′ : {0, 1}η × {0, 1}l → {0, 1}ζ}

such that for every f ′ ∈ Fa,ζ there exists two functions f : {0, 1}l → {0, 1}a and

g : {0, 1}η+a → {0, 1}ζ such that ∀w, y, f ′(w, y) = g(w, f(y))}

Here, ‘ζ’ denotes the number of bits of adaptive leakage and ‘a’ denotes the number of bits of
the extractor output (or the uniform string) that the adaptive leakage depends on. This is captured
by requiring that every function f ′ has an equivalent representation in terms of some g and f such
that f ′(w, y) = g(w, f(y)) where f ’s output is only a bits long. w and y should be interpreted as
the source and the extractor output (or the uniform string) respectively.

The following theorem shows that any (η, µ, d, l, ε)- average case extractor can be shown to
be adaptive secure against the above family Fa,ζ , with an adaptive error of 2a+2ε. Informally,
we can reduce the adaptive security to the extractor security (as in Definition 2) in the following
way: to answer the adaptive leakage query, the reduction makes a guess, v, for the extractor
challenge dependent value f(yb) (where, yb is the extractor challenge), which is of a-bits, and gets
the leakage g(w, v) from the source. Now, it gets the challenge yb from the extractor challenger
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and if f(yb) matches the guess v, then the reduction can successfully simulate the challenge and
the adaptive leakage response, else it cannot proceed (and aborts). Hence, the winning probability
in the extractor game is the probability of a correct guess (2−a), multiplied with the winning
probability of the adaptive extractor adversary. We formalize this proof in the theorem below.

Theorem 1. Every (η, µ, d, l, ε)- average case extractor Ext is an (η, µ+ ζ, d, l, ε)- extractor that is
(Fa,ζ , 2a+2ε)-adaptive, for any µ+ ζ ≤ η and a ≤ l.
Proof. For simplicity, we omit the auxiliary information Z, that depends only on the source (and
not on the extractor output). Let W be the source of η bits, such that H∞(W ) ≥ µ+ ζ. Consider
f ′ ∈ Fa,ζ , with the corresponding functions (f, g) (recall f ′(w, y) = g(w, f(y)), where f outputs a
bits and g outputs ζ bits). To prove adaptive security (definition 3), we need to show that:

Ud, f
′(W,Y ), Y ≈2a+2ε Ud, f

′(W,Ul), Ul,

where Y is the random variable Ext(W ;Ud). Expanding the description of f ′, this gives:

Ud, g(W, f(Y )), Y ≈2a+2ε Ud, g(W, f(Ul)), Ul

To prove this, we consider the following two sets B = {b : Pr[f(Y ) = b] > 0} and A = {0, 1}d+ζ+l.
For each b ∈ B, we begin by using the statistical distance Lemma 3 with random variables A,B and
events E,E′ set as (Ud, g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul), f(Y ) = b and f(Ul) = b, respectively.
By use of law of total probability and Lemma 3, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ Pr[f(Ul) 6∈ B] +
∑
b∈B

SD
(
A ∧ E,B ∧ E′

)
≤ Pr[f(Ul) 6∈ B] +

∑
b∈B

((|Pr[E]− Pr[E′]|) + Pr[E′] · SD
(
A|E,B|E′

)
)

But now, note that, by extractor security, since Y ≈ε Ul, by applying Lemma 2, we have f(Y ) ≈ε
f(Ul). Further, by the definition of statistical distance, we have that, for each b ∈ B, |Pr[f(Y ) =
b] − Pr[f(Ul) = b]| ≤ ε and Pr[f(Ul) /∈ B] ≤ ε (since Pr[f(Y ) 6∈ B] = 0]). Applying this to above
inequality, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ ε+
∑
b∈B

(ε+ Pr[E′] · SD
(
A|E,B|E′

)
)

= (|B|+ 1)ε+
∑
b∈B

Pr[E′] · SD(A|E, B|E′)

Finally, we apply the statistical distance lemma 4 on the random variables (A, f(Y )) and (B, f(Ul))
with set S = {b}. Note that, given events E and E′ the value of f(Y ) and f(Ul) are fixed to a b,
which means the leakage g(W, b) is only a leakage on W . Thus, we can use extractor security to
get: (Ud, g(W, b), Y ) ≈ε (Ud, g(W, b), Ul). Hence, applying this to the above inequality, we get:

SD((Ud,g(W, f(Y )), Y ), (Ud, g(W, f(Ul)), Ul))

≤ (|B|+ 1)ε+
∑
b∈B

Pr[E′] · 2ε

Pr[f(Ul) = b]

≤ 4|B|ε ≤ 2a+2ε
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Concrete Instantiation. We show that the extractor due to Guruswami et al. [23] is an adaptive
extractor even when the leakage depends on the entire extractor output. We state the result from
[23] below.

Lemma 6. [23] For every constant ν > 0 all integers η ≥ µ and all ε ≥ 0, there is an explicit

(efficient) (η, µ, d, l, ε)−strong extractor with l = (1− ν)µ−O(log(η) + log(
1

ε
)) and d ≤ O(log(η) +

log(
1

ε
)).

Let Fullζ (= Fl,ζ), denote the leakage function family which computes leakage (of size ζ) de-
pendent on the entire extractor output and the source. The following lemma shows that one can
appropriately set the parameters of the [23] extractor to get negligible error, while extracting a
constant fraction of the bits from the source, and while adaptively leaking a constant fraction of
bits from it.

Lemma 7. For all positive integers l, ζ, every constant ν > 1 and ε ≥ 0, there is an explicit (effi-
cient) (η, µ+ ζ, d, l, ε)−extractor that is (Fullζ , δ)-adaptive with d = O(log(ηε )), µ = νl+O(log(ηε )),
any η ≥ µ+ ζ and δ = ε · 2l+2.
On further implication, for any c > 1, there exists constants α, β such that d ≤ αl, µ ≤ βl,
η ≥ βl + ζ, ε = 2−cl and δ = 2(1−c)l+2 when l = ω(log η).

Proof. The proof of the first part of the lemma follows directly from Theorem 1 and Lemma 6 and
the further implication can be obtained by simple substitution.

Further, we use the following generalization of adaptive extractors: for an adaptive extractor
Ext, if we consider k independent sources W1, · · · ,Wk and a single seed S, all the extractor outputs
(Ext(Wi;S))i∈[k] look uniform, even given adaptive leakage on each Wi, dependent on not just
Ext(Wi;S) (or uniform), but also all the prior extractor outputs and adaptive leakages (queried
before i). As the sources are independent, this lemma can be proved using a simple hybrid argument
(the detailed proof is given in Appendix A.1.1).

Lemma 8. Let k be an arbitrary positive integer, W1, · · · ,Wk be k independent (η, µ+ ζ) sources
and S be the uniform distribution on {0, 1}d. Let Ext be an (η, µ + ζ, d, l, δ′)-extractor that is
(Fullζ , δ)-adaptive. For each i ∈ [k], let E0

i denotes Ext(Wi;S), E1
i denotes uniform distribution on

{0, 1}l. For b ∈ {0, 1}, we define AdLeakb as follows. Then for any stateful distinguisher D′ we
have AdLeak0 ≈kδ AdLeak1.

AdLeakb :

• Let Tr and S be a null string and null set respectively.

• For upto k times

– (j, gj)← D′(Tr) where j ∈ [k]\S and gj : {0, 1}η+l → {0, 1}ζ .
– Append (j, gj , gj(wj , E

b
j ), E

b
j ) to Tr.

– Add j to S.

• Output Tr.
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4 Leakage Resilient Secret Sharing

Leakage-resilience of a secret sharing scheme is defined specific to a leakage model/ leakage family.
We begin by formally defining leakage-resilience and then describe the leakage model.

Definition 4. An (A, n, εs)-secret sharing scheme is said to be an (A, n, εs, εl)- leakage resilient
secret sharing scheme against a leakage family F if for all functions f ∈ F and for any two
messages m,m′,SD (f(Share(m)), f(Share(m′))) ≤ εl.

4.1 Leakage Models

We consider two leakage models in this paper. For now, we restrict our discussion to an (n, t)-
threshold access structure.

• Adaptive Leakage and Reveal Model: The adversary can adaptively obtain leakage on
individual shares for any n − t + 1 shares. After this, he can additionally even get all the
remaining t− 1 shares in their entirety.

• Joint Leakage and Reveal Model: The adversary can ask any number of joint leakage
queries on disjoint sets of size X (a parameter). After this, he can additionally get any (at
most t− 1) of the remaining shares in their entirety. While this model completely subsumes
the adaptive leakage and reveal model, the amount of leakage per share supported in the
latter would be lesser.

We provide a formal description of the adaptive leakage and reveal model and the joint leakage
and reveal model in Section 4.1.1 and Section 4.5 respectively. We give a construction that is
leakage resilient with respect to both these models in Section 4.2. We prove leakage resilience of
this scheme in the adaptive leakage and reveal model in Section 4.3. We provide a proof sketch of
leakage resilience in the joint adaptive and reveal model in Section 4.5.2. We also briefly discuss
the extension to general access structures in Section 4.6.

4.1.1 Adaptive Leakage and Reveal Model Fψ,τleak

The model allows for leakage on individual shares and then also reveals at most t−1 of the remaining
shares in clear. We have two parameters in the model τ and ψ where τ denotes the amount of
leakage provided in each leakage query and ψ captures the maximum number of leakage queries
allowed. We allow ψ ranging from 1 to n − t + 1. Though we allow ψ to be n − t + 1, we have it
as an explicit parameter because lower ψ would imply a weaker leakage model and possibly have
better constructions. In fact, our multi-layered construction in Sec. 4.2 becomes compact (and
offers better rate) as ψ decreases.

Let (Share,Rec) (where Share : {0, 1}l → ({0, 1}γ)n) be a t-out-of-n secret sharing scheme.
We formalize leakage obtained in this model on shares of a message m as LeakmShare in Figure 2,
where an arbitrary stateful distinguisher D makes the queries. For any two messages m and m′, we
require LeakmShare ≈εlr Leakm

′
Share, for (Share,Rec) to be εlr leakage resilient against the adaptive

leakage and reveal model.

LeakmShare:

• Initialize Z to be a null string and S to be a null set.
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• (Sh1, · · · , Shn)← Share(m)

• Leakage Phase:

For upto ψ times

– (j, fj)← D(Z) where fj : {0, 1}γ → {0, 1}τ

– If j ∈ [n]\S, add j to S and append (j, fj , fj(Shj)) to Z

• Reveal phase

For upto t− 1 times

– j ← D(Z)

– If j ∈ [n]\S, append (j, Shj) to Z

• D updates Z with any relevant state information.

• Output Z.

Figure 2: LRSS Definition- LeakmShare Distribution

4.2 LRSS Construction for the Adaptive Leakage and Reveal Model

We refer the reader to the Introduction (Section 1.2) for a high-level overview of the construction
and proof. We proceed to describe the construction in detail in Figure 3 and prove its security in
Section 4.3.

Let n be the number of parties and t be the reconstruction threshold. Let h > 0 be a parameter
guaranteed to be less than dn/(t− 1)e.
Building Blocks. Let (MShare,MRec) be an ((n, t), ε, ε)-adaptive secret sharing scheme for
messages in {0, 1}l with share space being {0, 1}l′ . For i ∈ [h], let (SdSharei, SdReci) be an
((n, t), ε′i, ε

′
i)-adaptive secret sharing scheme for messages in {0, 1}di with share space being

{0, 1}d
′
i . For i ∈ [h], let Exti be an (ηi, µi+ τ, di, `i, δ

′
i)-extractor that is (Fullτ , δi)-adaptive. We

set `1 = l′ and for i ∈ [h]\{1} we set li = li−1 + d′i−1.

Shareh(m):

• (m1, · · · ,mn)← MShare(m).

• For i ∈ [h], pick seeds si ∈R {0, 1}di and compute their shares (sdi1, · · · , sdin) ←
SdSharei(si).

• For i ∈ [h] and j ∈ [n], pick sources wij ∈R {0, 1}ηi .

• For j ∈ [n]:

– Define yh+1
j = mj .
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– For i← h to 1, compute xij = yi+1
j ⊕ Exti(wij ; s

i) and yij = (xij ||sdij).

• For j ∈ [n], define Shj = (w1
j , · · · , whj , y1

j ).

• Output (Sh1, · · · , Shn).

Rech(ShT ) : (where T is the reconstruction set)

• For j ∈ T , parse Shj as (w1
j , · · · , whj , y1

j ), where y1
j = x1

j ||sd1
j .

• For i← 1 to h:

– si = SdReci(sdiT ).

– For each j ∈ T , yi+1
j = xij ⊕ Exti(wij ; s

i). For each i ∈ [h − 1], parse yi+1
j as

xi+1
j ||sd

i+1
j .

• Parse yh+1
j as mj . Recover m = MRec(mT ).

• Output m.

Figure 3: LRSS Construction

4.3 Proof of Leakage Resilience in the Adaptive Leakage and Reveal Model

Theorem 2. For any ψ ≤ n − t + 1 and l, τ > 0, (Shareh,Rech) is an ((n, t), ε)-secret sharing
scheme for l bit messages and is 2(ε + h(ε′ + (t − 1)δ))-leakage resilient in the Adaptive Leakage

and Reveal model Fψ,τleak where h = dψ/(t− 1)e.
Further, there exists an instantiation of the scheme with rate is (2Θ(h) + hτ/l)−1. When τ = Θ(l)
and either n = Θ(t) or h is a constant, the scheme achieves constant rate and constant leakage rate
asymptotically.

Proof. The correctness of the scheme follows directly from the correctness of underlying extractors
and secret sharing schemes. The (adaptive) privacy of the scheme is directly implied by the leakage
resilience (against the adaptive leakage and reveal model).

Leakage Resilience. For any message m we define the following the sequence of hybrids. In
these hybrids we assume that D always asks legitimate queries as per the model and won’t write
explicit checks for legitimacy (for example, we assume that D doesn’t ask leakage on same share
twice).
We analyze the leakage queries made by D as bunches of (t− 1) queries. We now introduce some
useful notation. Let S1, · · · ,Sh denote the sets of indices queried by D, where Si contains the
indices queried by D from the ((i − 1)(t − 1) + 1)th query to i(t − 1)th leakage queries (i.e., S1

contains the first t−1 queries, S2 the next t−1 queries and so on). For i ∈ [h], we use S[i] to denote
i⋃

j=1
Sj , which captures the set of indices queried in the first i(t− 1) leakage queries. For i ∈ [h], let

Z[i] denotes the set of leakage queries and the corresponding responses to the first i(t− 1) leakage
queries. Z[h+1] denotes Z[h] together with the final reveal queries as well as any relevant state
information. We prove leakage resilience using a hybrid argument, with the following sequence
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of hybrids, LeakBm0 , {LeakAmq , LeakBmq }q∈[h] and LeakCm. The order of the hybrids is LeakBm0 ,
LeakAm1 , LeakB

m
1 , · · · , LeakAmh , LeakBmh , LeakCm, where we will show that LeakCm is independent

of m, and LeakBm0 will correspond to the distribution Leakm
Shareh

. This will allow us to show that

Leakm
Shareh

is indistinguishable from Leakm
′

Shareh
. We begin by giving an informal description of these

hybrids.

LeakAmq : We start with q = 1. LeakAm1 follows the actual leakage game i.e., LeakmShareh(≡ LeakBm0 )

except for the following change: we replace the shares sd1
j , for each j ∈ S1 (the shares of s1

corresponding to the first t− 1 leakage queries), with shares of a dummy seed s̃1 = 0d. In general,
for each 1 < q ≤ h, the only change we make in LeakAmq (in comparison to the previous hybrid
LeakBmq−1) is that we replace the shares sdqj , for each j ∈ Sq (the shares of sq corresponding to the
q-th set of t − 1 leakage queries), with shares of a dummy seed s̃q. After answering the leakage
queries corresponding to Sq, shares of sq are re-sampled consistent with the dummy seed shares
used so far. The hybrid is formally described in Figure 4.

LeakBmq : For q = 1, LeakBm1 follows the hybrid LeakAm1 except for the following change: in LeakBm1 ,

we replace the values x1
j , for each j ∈ S1 with random, instead of evaluating the h layers of masking

to get x1
j (and hence x1

j ’s for j ∈ S1 are independent of mS1 , si and the shares of si, for each
1 < i ≤ h). Note that in LeakAm1 , the shares Shj corresponding to S1 no longer depend on the
seed s1. We carefully use the adaptive extractor security of Ext1 to move to LeakBm1 . In general,
for each 1 < q ≤ h, the only change we make in LeakBmq (in comparison to the previous hybrid
LeakAmq ) is that we replace the values xqj , for each j ∈ Sq with random, instead of evaluating the

h− (q − 1) layers of masking to get xqj (and hence, for these queries in Sq, si and the shares of si,
for each q < i ≤ h, and the shares m are not used to evaluate xqj). Further, we continue the steps

of masking to evaluate xq−1
j , xq−2

j , · · · , x1
j , for each j ∈ Sq as in the previous hybrid. The hybrid is

formally described in Figure 5.

LeakCm: In the hybrid LeakBmh , all the shares used in the leakage phase are independent of the
shares of the message m. Hence, the only part of the view of D that depends on the shares of m
corresponds to the reveal phase. In the final hybrid LeakCm, we replace the t− 1 shares of m used
in the reveal phase by shares of 0l. This hybrid is formally described in Figure 6.
The formal descriptions of all hybrids are given below with the change from the prior hybrid
highlighted in red color.

LeakAmq :

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.

2. (m1, · · · ,mn)← MShare(m)

3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h] and j ∈ [n], choose wij ∈R {0, 1}ηi

5. For i ∈ [h]\[q], compute (sdi1, · · · , sdin)← SdSharei(si)
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6. For i ∈ [q], let s̃i = 0d

7. For j ∈ [n], define yh+1
j = mj

8. Leakage Phase:

(a) For c← 1 to q

i. (s̃d
c

1, · · · , s̃d
c

n)← SdSharec(s̃c)

ii. For up to (t− 1) times

A. (j, fj)← D(Z)

B. If c < q,

∗ Choose xcj ∈R {0, 1}lc and compute ycj = (xcj ||s̃d
c

j)

∗ For i← c− 1 down to 1,
compute xij = yi+1

j ⊕ Exti(wij ; s
i) and yij = (xij ||sdij)

C. If c = q, for i← h down to 1 compute{
xij = yi+1

j ⊕ Exti(wij ; s
i) and yij = (xij ||sdij) when i 6= q

xij = yi+1
j ⊕ Exti(wij ; s

i) and yij = (xij ||s̃d
i

j) when i = q

D. Define Shj = (w1
j , · · · , whj , y1

j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc1, · · · , sdcn)← SdSharec(sc|s̃d
c

Sc)

(b) For j ∈ [n]\(S[q]) and i← h down to 1,

compute xij = yi+1
j ⊕ Exti(wij ; s

i) and yij = (xij ||sdij)

(c) Define Shj = (w1
j , · · · , whj , y1

j )

(d) For c← q + 1 to h

i. For upto t− 1 times

A. (j, fj)← D(Z)

B. Add j to Sc and append (j, fj , fj(Shj)) to Z

9. Reveal phase

(a) For upto t− 1 times

i. j ← D(Z)

ii. Append (j, Shj) to Z

10. D updates Z with any relevant state information.

11. Output Z.

Figure 4: Hybrid LeakAmq

LeakBmq

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.

21



2. (m1, · · · ,mn)← MShare(m)

3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h] and j ∈ [n], choose wij ∈R {0, 1}ηi

5. For i ∈ [h]\[q], compute (sdi1, · · · , sdin)← SdSharei(si)

6. For i ∈ [q], let s̃i = 0d

7. For j ∈ [n], define yh+1
j = mj

8. Leakage Phase:

(a) For c← 1 to q

i. (s̃d
c

1, · · · , s̃d
c

n)← SdSharec(s̃c)

ii. For upto (t− 1) times

A. (j, fj)← D(Z)

B. Choose xcj ∈R {0, 1}lc and compute ycj = (xcj ||s̃d
c

j)

C. For i← c− 1 down to 1
compute xij = yi+1

j ⊕ Exti(wij ; s
i) and yij = (xij ||sdij)

D. Define Shj = (w1
j , · · · , whj , y1

j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc1, · · · , sdcn)← SdSharec(sc|s̃d
c

Sc)

(b) For j ∈ [n]\S[q] and i← h to 1, (S[q] denotes a null set when q = 0)

compute xij = yi+1
j ⊕ Exti(wij ; s

i) and yij = (xij ||sdij)

(c) Define Shj = (w1
j , · · · , whj , y1

j )

(d) For c← q + 1 to h

i. For upto t− 1 times

A. (j, fj)← D(Z)

B. Add j to Sc and append (j, fj , fj(Shj)) to Z

9. Reveal phase

(a) For upto t− 1 times

i. j ← D(Z)

ii. Append (j, Shj) to Z

10. D updates Z with any relevant state information.

11. Output Z.

Figure 5: Hybrid LeakBmq
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LeakCm

1. Initialize Z to be a null string and S1, · · · ,Sh to be null sets.

2. Let m̃ = 0l and (m̃1, · · · , m̃n)← MShare(m̃)

3. For i ∈ [h], choose si ∈R {0, 1}di

4. For i ∈ [h], let s̃i = 0d

5. For i ∈ [h] and j ∈ [n], choose wij ∈R {0, 1}ηi

6. Leakage Phase:

(a) For c← 1 to h

i. (s̃d
c

1, · · · , s̃d
c

n)← SdSharec(s̃c)

ii. For upto (t− 1) times

A. (j, fj)← D(Z)

B. Choose xcj ∈R {0, 1}lc and compute ycj = (xcj ||s̃d
c

j)

C. For i← c− 1 down to 1
compute xij = yi+1

j ⊕ Exti(wij ; s
i) and yij = (xij ||sdij)

D. Define Shj = (w1
j , · · · , whj , y1

j )

E. Add j to Sc and append (j, fj , fj(Shj)) to Z

iii. (sdc1, · · · , sdcn)← SdSharec(sc|s̃d
c

Sc)

7. Reveal phase

(a) For upto t− 1 times

i. j ← D(Z)

ii. Define yh+1
j = m̃j

iii. For i← h to 1, compute xij = yi+1
j ⊕ Exti(wij ; s

i) and yij = (xij ||sdij)
iv. Define Shj = (w1

j , · · · , whj , y1
j )

v. Append (j, Shj) to Z

8. D updates Z with any relevant state information.

9. Output Z.

Figure 6: Hybrid LeakCm

We begin by proving the statistical closeness of LeakAmq and LeakBmq−1, for each q ∈ [h], which
follows from adaptive privacy of SdShareq, as atmost only t− 1 dummy seed shares are used.

Claim 1. For q ∈ [h], if SdShareq is ε′q-adaptively private against (n, t)-threshold access structures,
then LeakAmq ≈ε′q LeakBmq−1

Proof. Answering the first (q − 1) sets of leakage queries (when q > 1): Observe that the
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hybrids are identical up to answering the first (q− 1)(t− 1) leakage queries and differ in answering

the remaining queries. For any k ∈ [q − 1] and, j ∈ Sk the leakage response only depends on s̃d
k

j ,

w1
j , · · · , whj and {si, sdij}1≤i<k (as xkj is chosen uniformly). We let Pre denote the union of these

random variables upon which the leakage responses to j ∈ S[q−1] depend.

Answering the qth set of leakage queries: Consider j ∈ Sq. To answer this leakage query, it
suffices to compute Shj = (w1

j , · · · , whj , y1
j ). The hybrids only differ in computation of y1

j (particu-

larly in computation of yqj , which is used to compute y1
j ) and the distribution of extractor sources is

identical in both. We highlight the differences here. LeakAmq (Step 8-(a)-ii-C), iteratively computes

yhj , · · · , y
q
j , · · · , y1

j as follows.

• (yhj , · · · , y
q+1
j ) are computed using yh+1

j and {wij , sdij , si}i∈[h]\[q]. Note that the distribution

of yhj , · · · , y
q+1
j is identical in both hybrids.

• xqj is computed using yq+1
j , wq and sq. xqj is also identical in both hybrids.

• yqj is computed as xqj ||s̃d
q

j (where s̃d
q

[n] are shares of a dummy seed s̃q which are generated
before answering any queries in Sq in Step 8-(a)-i (when c = q)). Whereas in LeakBmq−1,
yqj = xqj ||sd

q
j (where sdq[n] are shares of sq)

• (yq−1
j , · · · , y1

j ) are computed using yqj and {sdij , wij , si}i∈[q−1]. The computation of (yq−1
j , · · · , y1

j )
given the later random variables is again identical to LeakBmq−1.

• Now LeakAmq defines Shj = (w1
j , · · · , whj , y1

j )

For convenience, in this proof we distinguish (whenever necessary) the random variables that have
same literal in both the hybrids but are distributionally different with subscripts A and B re-
spectively. For example, yqj,A and yqj,B denote the distributions of yqj in LeakAmq and, LeakBmq−1

respectively.
Let Pre′ = ({wqj , {sdij , wij , si}i∈[h]\{q}}j∈[n]\S[q−1]

). Pre′ captures the information required to
answer all queries after the first q − 1 sets of leakage queries, except for any information regarding
sq, s̃q and their shares. Note that Pre′ is identical in both hybrids9. Since, |Sq| ≤ t − 1, with a
reduction to adaptive privacy of SdShareq we have

Pre,Pre′, sq, s̃q, {s̃d
q

j}j∈Sq,A ≈ε′q Pre,Pre′, sq, s̃q, {sdqj}j∈Sq,B

as (Pre,Pre′) is independent of the randomness used to generate the shares of s̃q and sq. Note that
the information on LHS suffices to answer the first q sets of queries as per LeakAmq . Similarly, RHS
suffices to answer queries in S[q] as per LeakBmq−1. Therefore, we have,

Pre,Pre′, sq, s̃q, {s̃d
q

j}j∈Sq,A , Z[q],A ≈ε′q Pre,Pre′, sq, s̃q, {sdqj}j∈Sq,B , Z[q],B (1)

Answering the leakage and reveal queries made after the qth set of leakage queries: After
all the qth set leakage queries are answered, LeakAmq computes (sdq1, · · · , sd

q
n)← SdShareq(sq|s̃d

q

Sq,A).

9Pre′ possibly repeats some information already there in Pre. For example for q = 2, s1 is there in both Pre and
Pre′. It is for the ease of exposition that we have this repetition.
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Given (sdq1, · · · , sd
q
n), sq,Pre and Pre′, for any j ∈ [n]\Sq, Shj is easily computed (Steps 8-(b) and 8-

(c)). With this, any further queries can be correctly answered as per LeakAmq . Let (ŝd
q

1, · · · , ŝd
q

n)←
SdShareq(sq|sdqSq,B ). By Lemma 2, we have

Pre,Pre′, sq, s̃q, Z[q],A, sd
q
[n],A ≈ε′q Pre,Pre′, sq, s̃q, Z[q],B, ŝd

q

[n],B

Note that ŝd
q

[n] is identical to sdq[n],B (of LeakBmq−1) even given sq and {sdqj}j∈Sq by the property of
consistent resampling in Claim 5. Therefore, we have,

Pre,Pre′, sq, Z[q],A, sd
q
[n],A ≈ε′q Pre,Pre′, sq, Z[q],B, sd

q
[n],B

Since the above LHS and RHS are sufficient to answer any further queries, we have

Z[h+1],A ≈ε′q Z[h+1],B

which proves the claim.

Now, we prove the statistical closeness of LeakAmq and LeakBmq , for each q ∈ [h] using the
adaptive extractor security. The high-level idea behind the reduction is that in hybrid LeakAmq , the
shares corresponding to the first q(t − 1) queries (i.e., S[q]) no longer depend on the seed sq and
hence, we can use the adaptive extractor security of Extq to move to LeakBmq .

Claim 2. For q ∈ [h], if Extq is an (ηq, µq + τ, dq, lq, δ
′
q)- extractor that is (Fullτ , δq)-adaptive, then

LeakAmq ≈(t−1)δq LeakBmq

Proof. Observe that the hybrids are identical up to answering the first (q−1)(t−1) leakage queries
and differ in answering the qth set of queries. Further, after answering the qth set of leakage queries,
the responses to all remaining leakage/reveal queries are answered identically in both hybrids.

Answering the first (q − 1) sets of leakage queries (when q > 1):

For any k ∈ [q−1] and j ∈ Sk the leakage response only depends on s̃d
k

j , w
1
j , · · · , whj , {si, sdij}1≤i<k

and xkj , where the latter is uniformly chosen. We let Pre denote the leakage responses Z[q−1] and
the union of these random variables upon which the leakage responses to j ∈ S[q−1] depend.

Answering the qth set of leakage queries:
Consider j ∈ Sq and fj be the corresponding leakage function. To answer this leakage query, we
require computing fj(Shj) where Shj = (w1

j , · · · , whj , y1
j ). The hybrids only differ in computation

of y1
j (particularly in computation of xqj , which is used to compute y1

j ) and the distribution of

extractor sources is identical in both. The hybrids iteratively computes yqj , · · · , y1
j as follows.

• xqj is chosen uniformly from {0, 1}lq in LeakBmq . In contrast, xqj of LeakAmq depended on

Extq(wqj ; s
q) and yq+1

j .

• (yqj , · · · , y1
j ) is determined given xqj , s̃d

q

j and {sdij , wij , si}i∈[q−1] in both the hybrids.

• Both hybrids define Shj = (w1
j , · · · , whj , y1

j )
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Let Pre′ = {wij , sdij , si, y
h+1
j , s̃d

q

j}i∈[h]\{q},j∈[n]\S[q−1]
.We capture Pre′ as the information which along

with {wqj , sq}j∈Sq is sufficient to answer any leakage queries on j ∈ Sq. Also, Pre′ is identical in
both hybrids.
Let j1, · · · , jt−1 be the order of indices in which leakage queries are made in Sq. Firstly, we prove
that (Pre,Pre′, fj1(Shj1)) of both hybrids are statistically close. After that we proceed to show that
(Pre,Pre′, fj1(Shj1), · · · , fj(t−1)

(Shj(t−1)
)) of both the hybrids are statistically close, which implies

that the hybrids are statistically close up to answering first q sets of queries. For convenience, in
this proof we distinguish (whenever necessary) the random variables that have same literal in the
hybrids but are distributionally different with subscripts A and B respectively. For example, xqj,A
and xqj,B denote the distributions of xqj in LeakAmq and LeakBmq respectively.

Firstly, in both hybrids the distribution of (j1, fj1) only depends on Z[q−1] (and any internal
randomness of D) and hence are identical. Note that given Pre′, fj1(Shj1) in LeakAmq , can be

captured as Fullτ -adaptive leakage on the extractor source wqj1 and (xqj1,A=) Extq(wqj1 ; sq) ⊕ yq+1
j1

.

This is because (yq+1
j1

,Pre′) are independent of (wqj1 , s
q). Let g1 be a function that takes Pre′, wqj1

and xqj1,A(or xqj1,B) as input, computes y1
j1,A

(or y1
j1,B

) and outputs fj(w
1
j1
, · · · , whj1 , y

1
j1,A

) (or

fj(w
1
j1
, · · · , whj1 , y

1
j1,B

)). With a reduction to adaptive security of Extq we have

Pre,Pre′, sq, g1(Pre′, wqj1 ,Ext
q(wqj1 ; sq)⊕ yq+1

j )

≈δq Pre,Pre′, sq, g1(Pre′, wqj1 , Ulq ⊕ y
q+1
j )

≡ Pre,Pre′, sq, g1(Pre′, wqj1 , x
q
j1,B

)

Therefore
Pre,Pre′, sq, fj1(Shj1,A) ≈δq Pre,Pre′, sq, fj1(Shj1,B)

With this, we showed that the hybrids are statistically close up to responding to the first query
in the qth set. Although, superficially, it may seem that all the leakage responses corresponding to
j ∈ Sq can be captured as adaptive extractor leakage on the source wqj , but it’s not the case because
of the following subtlety. The extractor sources used in each query are independent of each other,
but the seed is the same. For example, one cannot directly capture fj2(Shj2) as Fullτ -adaptive
leakage (as we did with fj1(Shj1)). This is because the choice of j2, fj2 depends on fj1(Shj1) which
in turn depends on Extq(wqj ; s

q), and hence is not independent of the seed sq. We observe in Lemma
8 that adaptive extractors allow us to handle even such (stronger) form of adaptive leakages across
different sources with same seed.
Proceeding, with a reduction to Lemma 8 with k = (t − 1), {Wi = W q

ji
: i ∈ [k]}, S = sq and

Ext = Extq and the ith leakage function being gi such that gi (hardwired with Pre′, yq+1
ji

) takes wqji
and Extq(wqji ; s

q)(resp. Ulq) as input, computes y1
ji,A

(resp. y1
ji,B

) and outputs fji(w
1
ji
, · · · , whji , y

1
ji,A

)

(resp. fji(w
1
ji
, · · · , whji , y

1
ji,B

)).

Pre,Pre′, sq, {fji , fji(Shji,A)}ji∈Sq,A ,Sq,A

≈(t−1)δq Pre,Pre′, sq, {fji , fji(Shji,B)}ji∈Sq,B ,Sq,B
This shows that the hybrids are statistically close up to answering the first q sets of leakage queries.

Answering the leakage and reveal queries made after the qth set of leakage queries:
After all the qth set of leakage queries are answered, both hybrids compute (sdq1, · · · , sd

q
n) ←
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SdShare(sq|s̃d
q

Sq). Let Pre′′ = {wqj , sd
q
j , s

q}j∈[n]\Sq . Note that Pre′ in conjunction with Pre′′ com-

pletely defines Shj for any j ∈ [n]\S[q]. Since Pre′′ corresponding to LeakAmq (resp. LeakBmq ) is only

correlated to Sq, sq and s̃d
q

Sq(which is in Pre′) of the respective hybrids, we have

Pre,Pre′,Pre
′′
A, s

q, {fji , fji(Shji,A)}ji∈Sq,A ,Sq,A

≈(t−1)δq Pre,Pre′,Pre
′′
B, s

q, {fji , fji(Shji,B)}ji∈Sq,B ,Sq,B
Since responses to leakage/reveal queries after the qth set are can be derived from the LHS and
RHS respectively depending on the hybrid, we have

Z[h+1],A ≈(t−1)δq Z[h+1],B

This proves the claim.

Finally, we use the adaptive security of MShare to show that LeakCm is statistically close to
LeakBmh .

Claim 3. If MShare is ε-adaptively private against (n, t)-threshold access structures, then LeakCm ≈ε
LeakBmh

Proof. The hybrids answer the leakage queries identically and differ only in answering the reveal
queries.
Answering the leakage queries:

For any k ∈ [h] and j ∈ Sk the leakage response only depends on s̃d
k

j , w
1
j , · · · , whj , {si, sdij}1≤i<k

and xkj , where the latter is uniformly chosen. We let Pre denote the leakage responses Z[h] and the
union of these random variables upon which the leakage responses to j ∈ S[h] depend.

Answering the reveal queries: Let Pre′ = {wij , sdij , si}i∈[h],j∈[n]\S[h]
. Note that given yh+1

j for all

j queried in the reveal phase, (Pre,Pre′) has sufficient information to answer all the reveal queries.

• LeakBmh samples (m1, · · · ,mn) ← MShare(m) and sets yh+1
j = mj for all j queried in the

reveal phase.

• LeakCm samples (m̃0, · · · , m̃)← MShare(m̃) and sets yh+1
j = m̃j for all j queried in the reveal

phase.

Let RevealB and RevealC denote the sets of indices queried in the reveal phase of LeakBmh and
LeakCm respectively. As reveal queries are at most t−1 in number, we now invoke adaptive privacy
of MShare and get

Pre,Pre′, m̃,m, {mj}j∈RevealB ≈ε Pre,Pre′, m̃,m, {m̃j}j∈RevealC

Note that (Pre,Pre′) is independent of the randomness used in generating shares of m and m̃,
therefore adaptive privacy of MShare can be invoked even given these random variables.

Since Shj for j queried in reveal phase of LeakBmh (resp. LeakCm) is determined by the above
LHS (resp. RHS) we have

Z[h+1]︸ ︷︷ ︸
of LeakBm

q

≈ε Z[h+1]︸ ︷︷ ︸
of LeakCm
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With the above claims and use of triangle inequality we know that for any messagem, Leakm
Shareh

≈ε+∑
i∈[h]((t−1)δi+ε′i)

LeakCm. Note that the description of LeakCm is independent of m. Hence for any message m 6= m′,
we have LeakCm ≡ LeakCm

′
. Since, Leakm

′

Shareh
≈hε′+h(t−1)δ+ε LeakC

m′ we get

LeakmShareh ≈2ε+2
∑

i∈[h]((t−1)δi+ε′i)
Leakm

′

Shareh

4.4 Parameters

For i ∈ [h], we instantiate SdSharei on seeds of length di with the (adaptively) private Shamir secret
sharing scheme, which results in individual seed share length being di. We instantiate MShare on
messages of length li with the (adaptively) private Shamir secret sharing scheme, which results in
individual seed share length being li.

Recall Lemma 7 which states that for any c > 1, there exists constants α, β such that d ≤ αl,
µ ≤ βl, η ≥ βl + τ , ε = 2−cl and δ = 2−(c−1)l+2 when l = ω(log η). Fix any c > 1, and constants
α, β corresponding to this c given by Lemma 7. For each i ∈ [h], we instantiate (ηi, µi+ τ, di, li, δ

′
i)-

extractor Exti that is (Fullτ , δi)-adaptive as per this lemma as follows.

• We set l1 = l, δ′1 = 2−cl, δ1 = 2−Ω(l), d1 ≤ αl1, µ1 ≤ βl1 and η1 = βl1 + τ .

• For i > 1, we set li = li−1 + di−1, δ′i = 2−cli , δi = 2−Ω(li), di ≤ αli, µi ≤ βli and ηi = βli + τ .

With this setting, individual share length of Shareh is lh + dh +
∑

i∈[h] ηi = hτ + Θ((1 + α)hl).

Therefore, Shareh acheives constant rate and constant leakage rate whenever τ = O(l) and either
n = Θ(t) or h is a constant.

As our instantiations of SdSharei’s and MShare are perfectly adaptively private, we have Shareh

to be a perfectly adaptively private secret sharing scheme which is t ·2−Ω(l)-leakage resilient against
the adaptive leakage and reveal model.

4.5 LRSS for Joint Leakage and Reveal Model

4.5.1 Joint Leakage and Reveal Model JX,ψ,τ

The model allows for ψ number of joint leakage queries on disjoint sets where each query depends
on X number of shares and additionally also reveals t−1 of the remaining shares (on which leakage
isn’t queried) in clear. The parameter τ captures the amount of leakage provided in each leakage
query.

Let (Share,Rec) (where Share : {0, 1}l → ({0, 1}γ)n) be a secret sharing scheme for an (n, t)-
threshold access structure. We formalize leakage obtained in this model on shares of a message m
as JLeakmShare in Figure 7, where an arbitrary stateful distinguisher D makes the queries. For any
two messages m and m′, we require JLeakmShare ≈εlr JLeakm

′
Share, for (Share,Rec) to be εlr leakage

resilient against this model.

JLeakmShare:

• Initialize Z be a null string and S to be a null set.

• (Sh1, · · · , Shn)← Share(m)
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• Leakage Phase:

For upto ψ times

– (Qj , fj)← D(Z) where Qj ⊆ [n] and fj : {0, 1}|Qj |γ → {0, 1}τ

– If Qj ∈ [n]\S and |Qj | ≤ X,
add elements of Qj to S and append (Qj , fj , fj(ShQj )) to Z

• Reveal phase

For upto t− 1 times

– j ← D(Z)

– If j ∈ [n]\S, append (j, Shj) to Z

• D updates Z to include any relevant state information.

• Output Z

Figure 7: Joint LRSS Definition- JLeakmShare Distribution

4.5.2 Leakage resilience of (Shareh,Rech) in JX,ψ,τ model

Theorem 3. For any ψ,X > 0 such that ψ · X ≤ n − t + 1 and l, τ > 0, (Shareh,Rech) is an
((n, t), ε)-secret sharing scheme for l bit messages and is εlr-leakage resilient in the joint leakage
and reveal model JX,ψ,τ where h = d ψ

b(t−1)/Xce and εlr = 2(ε+ hε′ + (t− 1)
∑

i∈[h] 2Xliδ′i)).

Further, there exists an instantiation of the scheme with rate is (XΘ(h) +hτ/l)−1. When τ = Θ(l),
X is a constant and when either n = Θ(t) or h is a constant, the scheme achieves constant rate
and leakage rate asymptotically.

The proof for the joint leakage setting is very similar to the proof of Theorem 2 for the adaptive
setting (on single shares). For completeness, we give the proof in Appendix B.1. Further, we also
give a detailed analysis of the parameters in Appendix B.2.

4.6 LRSS for General Access Structures

Our construction (Shareh,Rech) can be easily adapted to provide security against general access
structures as well. For (Shareh,Rech) to be secure against a general access structure A, the only
modification is to instantiate MShare and SdSharei in the construction to be secret sharing schemes
that are secure (adaptively private) against A (for instance, the [9] scheme given in A.2.2).

Although, the leakage models we discussed previously in this section are formalized with respect
to threshold access structures, the models naturally extend for general monotone access structures
too. We would like to note that (Shareh,Rech) (with the above modification) is also leakage resilient
against these models for general access structures, and we defer more details on this to full version.

5 Applications of Our LRSS

We give two applications of our LRSS scheme: first, to build a leakage resilient non-malleable
secret sharing scheme in the joint and adaptive leakage model, for the threshold access structure,
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and second, to build a secure message transmission protocol, tolerating leakage and tampering
attacks. We can instantiate these schemes with the constant-rate LRSS, to get a constant-rate
LRNMSS and SMT.

5.1 Leakage Resilient Non-malleable Secret Sharing

Using our LRSS for the threshold access structures, we build an LRNMSS achieving the following
leakage and tampering model: the adversary is allowed ψ joint and adaptive leakage queries on
disjoint sets, with each query depending on X shares (exactly as in our joint leakage model of LRSS
in section 4.5.1), with the restriction that the total number of leakage queries ψ · X ≤ n − t − 2.
Post the leakage queries, the adversary can mention a reconstruction set (of size t), disjoint from
the shares on which leakage queries were made, along with the tampering functions f1, · · · , fn,
acting independently on each share. By non-malleability, the tampered, reconstructed message m̃,
is guaranteed to be either the same as the original message m, or is completely independent of it.

To build such an LRNMSS scheme, we use a modification of the [22] compiler: the message m
is encoded using a 2-split-state non-malleable code10 (Enc,Dec) to (L,R). Now, L is secret shared
using a t-out-of-n LRSS to get (L1, · · · , Ln) and R is secret shared using a t − 1-out-of-n LRSS to
get (R1, · · · ,Rn). The final share is (Li,Ri), for each i ∈ [n].

For proving the leakage resilient non-malleability of this scheme, we need to simulate the tam-
pering as split-state tampering (on the underlying NMC) and also simulate the leakage queries,
independent of the message. The three key observations which capture the crux of our proof are:
First, the joint adaptive leakage queries made in the first phase fit the leakage model of the under-
lying LRSS and hence can be simulated using that. Second, the tampering of R requires t−1 of the
shares of L, which can be obtained as a full share query on the first LRSS scheme (as its threshold
is t). Third, the tampering of L requires t of the shares of R, which exceeds the threshold of the
second LRSS. But, we can get up to t− 2 full shares of R, and obtain two of the tampered shares
of L as leakage queries on the second LRSS. Note that, keeping the underlying leakage model in
mind (and since the reconstruction set must be disjoint from the leakage query set), we restrict the
number of leakage queries to be on at most n− t−2 shares, so that the 2 additional leakage queries
(from the second LRSS) can be obtained. This captures the structure of our proof, but combining
the observations to a formal security proof requires a careful setting of parameters as well as some
additional subtle properties from the underlying LRSS. We provide details of the construction and
proof, along with the rate analysis, in Appendix C.

5.2 Leakage Resilient (Non-malleable) Secure Message Transmission

We apply our LRSS and LRNMSS to the problem of secure message transmission (SMT) introduced
in [18]. In this problem, there is a sender S who needs to transmit a message m to a receiver R,
where S and R are connected by n independent wires. Perfect secrecy is guaranteed even in the
presence of an adversary that can observe at most t− 1 wires and perfect resiliency is guaranteed
(i.e., receiver receives the correct m), even when the adversary can modify the messages sent on
those t wires arbitrarily. In our work, we introduce the notion of leakage resilient SMT, in which an
adversary is additionally allowed to make leakage queries from wires not under its control. Through
an application of our LRSS and LRNMSS, we provide the first constructions of SMT protocols

10A 2-split-state non-malleable code (NMC) gives a guarantee that if the codeword L,R of a message m is tampered
such that L and R are tampered arbitrarily but independent of each other, then the recovered m′ will either be the
same as m or will be independent of it.
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tolerating leakage. First, for the case of passive adversaries (i.e., adversaries who can view but not
modify values on wires), we obtain leakage-resilient SMT protocols where the adversary can obtain
leakage from messages sent on n− t+ 1 wires, in addition to viewing the complete contents on the
t − 1 remaining wires. Next, for the case of active adversaries, we obtain a leakage-resilient non-
malleable SMT11 protocol where the adversary can obtain leakage from messages sent on n− t− 2
other wires in addition to viewing and completely modifying the contents on t wires. The detailed
description of the models, along with the constructions and rate analysis, are given in Appendix D.

Acknowledgement. We thank all the anonymous reviewers who provided their valuable com-
ments on an earlier version of this manuscript.
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A Some Definitions and Preliminary Lemmata

A.1 Properties of Randomness Extractors

We require the following property of strong average case extractors, which essentially states that
the same seed can be used to extract from multiple independently drawn sources.

Lemma 9. If Ext is an (η, µ, d, l, ε)-strong average case extractor, then for any u ≥ 1 and any
δ > 0, Extu is an (uη, (u− 1)η+µ, d, ul, uε)-strong average case extractor, where Extu is defined as
follows:

• Parse w as w1||w2|| · · · ||wu (where wi is η-bit long, for all i ∈ [u])

• Output Ext(w1; s)||Ext(w2; s)|| · · · ||Ext(wu; s)

Further when the source(w) has uniform distribution, Extu is an (uη, uη, d, ul, uε)-extractor that is
(Fullη−µ, 2

ul+2uε)-adaptive.

Proof. Let W |Z be the (uη, (u − 1)η + µ)- average source, (where W is parsed as (W1, · · · ,Wu))
and S ≡ Ud. Then, by Lemma 1, H̃∞(Wu|W1, · · · ,Wu−1, Z) ≥ µ. Therefore, by the security of
Ext, we have

Z,W1, · · · ,Wu−1,Ext(Wu;S), S ≈ε Z,W1, · · · ,Wu−1, Ul, S

Then by Lemma 2 it follows that,

Z,W1, · · · ,Wu−2,Ext(Wu−1;S),Ext(Wu;S), S ≈ε

Z,W1, · · · ,Wu−2,Ext(Wu−1;S), Ul, S

We now aim to show Ext(Wu−1;S) is close to uniform even given Z,W1, · · · ,Wu−2, Ul and S. Also, S
remains uniform given Z,W1, · · · ,Wu−2, Ul. Since Ul is independent of W1, · · · ,Wu−2,Wu−1, Z, we
have H̃∞(Wu−1|W1, · · · ,Wu−2, Z, Ul) = H̃∞(Wu−1|W1, · · · ,Wu−2, Z) By Proposition ??, we have
H̃∞(Wu−1|W1, · · · ,Wu−2, Z) ≥ H̃∞(Wu−1|W1, · · · ,Wu−2, Z,Wu) which is atleast µ(by Lemma 1).
Then by security of Ext, we have

Z,W1, · · · ,Wu−2,Ext(Wu−1;S), Ul, S ≈ε Z,W1, · · · ,Wu−2, U
′
l , Ul, S

12

Thus, by triangle inequality,

Z,W1, · · · ,Wu−2,Ext(Wu−1;S),Ext(Wu;S), S ≈2ε Z,W1, · · · ,Wu−2, Ul, Ul, S

Then by similar arguments, it is easy to see that

Z, (Ext(W1;S), · · · ,Ext(Wu−2;S),Ext(Wu−1;S),Ext(Wu;S)), S ≈uε Z,Uul, S

The adaptivity property follows from application of Theorem 1 on Extu.

Further, we prove Lemma 8 on adaptive extractors, stated in Section 3 and used in our proofs.

12U ′l is a uniform sample from {0, 1}l independent of Ul
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A.1.1 Proof of Lemma 8

We prove the lemma by hybrid approach. If k = 1, the lemma trivially follows from adaptive
security of Ext. Let (j1, gj1) be the first query made by D′. Firstly, as gj1 ∈ Fullm by adaptive
extractor security of Ext on the source Wj1 and the seed S, we have

j1, gj1 , S, E
0
j1 , gj1(E0

1) ≈δ j1, gj1 , S, E1
j1 , gj1(E1

1).

The second query (j0
2 , gj02 ) (resp. (j1

2 , gj12 )) made by D′ in Adleak0 (resp. Adleak1) is a function of

the LHS (resp. RHS). Therefore

j0
2 , gj02 , j1, gj1 , S, E

0
j1 , gj1(E0

1) ≈δ j1
2 , gj12 , j1, gj1 , S, E

1
j1 , gj1(E1

1).

Since Wj02
,Wj12

are identical and independent of Wj1 we have

Wj02
, j0

2 , gj02 , j1, gj1 , S, E
0
j1 , gj1(E0

j1) ≈δ Wj12
, j1

2 , gj12 , j1, gj1 , S, E
1
j1 , gj1(E1

j1).

j0
2 , gj02 , j1, gj1 , S, E

0
j1 , gj1(E0

j1), E0
j02
, gj02 (E0

j02
) ≈δ j1

2 , gj12 , j1, gj1 , S, E
1
j1 , gj1(E1

j1), E0
j12
, gj12 (E0

j12
).

Further by adaptive security of the source Wj12
, we have RHS of the above expression to be δ close

to (j1
2 , gj12 , j1, gj1 , S, E

1
j1
, gj1(E1

j1
), E1

j12
, gj12 (E1

j12
)). By triangle inequality we get,

j0
2 , gj02 , j1, gj1 , S, E

0
j1 , gj1(E0

j1), E0
j02
, gj02 (E0

j02
) ≈2δ j

1
2 , gj12 , j1, gj1 , S, E

1
j1 , gj1(E1

j1), E1
j12
, gj12 (E1

j12
).

With similar arguments, we can show that

S, {j0
i , gj0i

, E0
j0i
, gj0i

(E0
j0i

)}i∈[k] ≈kδ S, {j1
i , gj1i

, E0
j1i
, gj1i

(E1
j1i

)}i∈[k]

which concludes the proof.

A.2 Properties of Secret Sharing Schemes

A.2.1 Proof of Lemma 5

Let message m be fixed. We prove the lemma inductively (on size of T ). First, suppose T = {i1} ⊆
[N ]. Let Share(m;R) ≡ (SHmj )j∈[N ] denote the distribution on the shares of m, where R is the
uniform distribution on space of randomness R. Consider for any (sh1, · · · , shN ) ∈ Share(m;R)
and for (sh′j)j∈[N ] ← Share(m;R):

Pr[D1 = (sh1, · · · , shN )] = Pr[SHmj = shj ∀ j ∈ [N ]|shi1 = sh′i1 ]

= Pr[SHmi1 = sh′i1 ,SH
m
j = shj ∀j 6= i1 ∈ [N ]]

= Pr[D2 = (sh1, · · · , shN )] (2)

The last equality follows since sh′i1 = shi1 .
Now, suppose that the distributions are equivalent for |T | = k−1 (for any 2 ≤ k ≤ N −1), then we
show that for |T | = k as well, they are equivalent. Consider for any (sh1, · · · , shN ) ∈ Share(m;R),
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for (sh′j)j∈[N ] ← Share(m;R) and for T = {i1, · · · , ik} ⊆ [N ], where, for each j ∈ [k]\{1}, ij is
generated as an arbitrary function of {sh′m : m ∈ {i1, · · · , ij−1}}:

Pr[D1 = (sh1, · · · , shN )] = Pr[SHmj = shj ∀ j ∈ [N ]|shij = sh′ij ∀j ∈ [k]]

= Pr[SHmi1 = sh′i1 ,SH
m
j = shj ∀j 6= i1 ∈ [N ]|shij = sh′ij ∀j ∈ [k]\{1}]

= Pr[SHmi1 = shi1 ,SHmj = shj ∀j 6= i1 ∈ [N ]|shij = sh′ij ∀j ∈ [k]\{1}] (3)

which follows by equation 2 (the first case). Now, since, fixing sh′i1 , i2 = f(sh′i1) is a fixed index,
and since the equivalence is true for |T | = k− 1 by the induction hypothesis, the above equation 3
is equal to:

Pr[D2 = (sh1, · · · , shN )]

Hence, we proved the lemma for T ⊆ [N ], for all 1 ≤ |T | ≤ N − 1.

A.2.2 Instantiations of Adaptively Private Secret Sharing Schemes

Adaptive privacy of Shamir Secret Sharing. We begin by looking at the Shamir secret
sharing scheme [34] for threshold access structures and show that it is, in fact, adaptively private.
Consider the field Zq for prime q such that n < q. The shamir secret sharing scheme is described
below.

ShamirSharetn(m) :

• Set a0 = m and pick a1, · · · , at−1 ∈R Zq.

• Define the polynomial p(x) = a0 + a1x+ · · ·+ atx
t−1.

• Output: (p(1), · · · , p(n)).

ShamirRectn({yi}i∈T ) : (where |T | = t is some reconstruction set. For simplicity in writing, say
T = {1, · · · , t})

• Use Lagrange interpolation to reconstruct the polynomial:

– For 1 ≤ i ≤ t: the Lagrange polynomial Li is defined as the degree t polynomial for
which Li(i) = 1 and Li(j) = 0, for each j 6= i, 1 ≤ j ≤ t.

– p(x) =
∑t

i=1 yiLi(x).

• Output m = p(0).

Lemma 10. The Shamir secret sharing scheme (described above) is adaptively private against the
t-threshold access structure.

Proof. To prove that the scheme is adaptively private, according to definition in section 2.2.1, it is
sufficient to prove the following claim.
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Claim 1. For any U ⊆ [n] such that |U | ≤ t− 1 (unauthorized set), the following two distributions
are equivalent.

X :

• a0 = m, a1, · · · , at−1 ∈R Zq.

• p(x) =
∑t−1

i=0 aix
i.

• Output (p(i))i∈U .

Y :

• yi ∈R Zq, for each i ∈ U .

• Output (yi)i∈U .

Proof. Let U = {i1, · · · , it−1}, vandermonde matrix V be defined as: Vkj = ijk, for each k, j ∈ [t−1],
A be the column matrix: (a1 · · · at−1)T , Z be the column matrix (zi1 · · · zit−1)T and A0 be the
(t− 1)× 1 column matrix whose all entries are a0. For any zi1 , · · · , zit−1 from the field Zq,

Pr[X = (zi)i∈U ] = Pr[V A = Z −A0]

= Pr[A = V −1(Z −A0)]

= 1/qt−1 = Pr[Y = (zi)i∈U ]

Given the above claim, clearly, each adaptive unauthorized query can be responded with a
random field element. Hence, the scheme is adaptively private.

Adaptive Privacy of Benaloh-Leichter Secret Sharing. We begin by describing the n-party
Benaloh-Leichter secret sharing scheme [9] for general monotone access structure, A. Any monotone
access structure A can be associated with an equivalent monotone formula F , on n variables (the
access structure A defined by F will be the set of subsets of parties, A, for which F is true when
the variables indexed by A are set to true, and vice versa). Further, any monotone formula can
be implemented using only AND and OR operators. We denote the variables of the monotone
formulae by {vi : i ∈ [n]}. We describe the sharing procedure, BLShare(s, F ), for secret s ∈ Zq
(where Zq is a field of prime order q such that n < q) and a monotone formula F , in a recursive
manner as below.

BLShare(s, F ) :

• BLShare(s, vi) assigns the share s to party Pi.

• BLShare(s,A ∨B) = BLShare(s,A) ∪ BLShare(s,B), for every clause A and B in F .

• BLShare(s,A ∧ B) = BLShare(s1, A) ∪ BLShare(s2, B), where s1 and s2 are uniformly
chosen from Zq such that s = (s1 + s2) mod q, for every clause A and B in F .

In general for operators with more than 2 arguments and if THRESHOLDk operators (which
are true if and only if at least k of its clauses are true) are used, do the following:

• BLShare(s,∨(F1, · · · , Fm)) = ∪1≤i≤mBLShare(s, Fi).

• BLShare(s,∧(F1, · · · , Fm)) = ∪1≤i≤mBLShare(si, Fi), where si’s are chosen uniformly
from Zq such that s =

∑m
i=1 si mod q.
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• BLShare(s,THRESHOLDk(F1, · · · , Fm)) = ∪1≤i≤mBLShare(si, Fi), where (s1, · · · , sm) ←
ShamirSharekm(s).

Lemma 11. For every monotone formula F (with corresponding access structure A), the above
Benaloh-Leichter scheme for n parties (described above) is adaptively private.

Proof. To prove the adaptive privacy of the scheme, according to the definition in section 2.2.1, it
is sufficient to prove the following claim.

Claim 2. For each A 6∈ A (unauthorized set), the following distributions are equivalent.

X :

• Sh1, · · · , Shn ← BLShare(s, F ).

• Output (Shi)i∈A.

Y :

• Shi ∈R Zq, for each i ∈ A.

• Output (Shi)i∈A.

Proof. We prove the claim by induction on the number of operators in the formula F .

• Base Case: A formula with no operators consists of one vaiable vi, for some i ∈ [n] and the cor-
responding access structure will have all subsets of parties containing the i-th one. BLShare(s, vi)
gives s to Pi alone. For each A 6∈ A, i 6∈ A, and hence, parties in A do not get anything in this
case.

• Induction Hypothesis: Suppose the claim holds true for F with < d operators (d > 0).

• Now, let F be formula containing d operators, written as, o(F1, · · · , Fm), where o is one of ∨,
∧ or THRESHOLDk, and each of F1, · · · , Fm is a monotone formula with less than d operators.
The following cases arise depending on which operator o is considered.

– Case 1: For o = ∨, BLShare(s,∨(F1, · · · , Fm)) = ∪1≤i≤mBLShare(s, Fi). By induction hypoth-
esis, for each A 6∈ A, for each 1 ≤ i ≤ m, the shares assigned to parties in A by BLShare(s, Fi)
are identical to random field elements. Moreover, for i 6= j, BLShare(s, Fi) and BLShare(s, Fj)
assign shares independently. Hence, for all parties in A, the shares held by them are identical
to uniform.

– Case 2: For o = ∧, BLShare(s,∧(F1, · · · , Fm)) = ∪1≤i≤mBLShare(si, Fi), where s1, · · · , sm are
chosen at random from Zq such that s =

∑m
i=1 si mod q. Now, for any A 6∈ A, ∃ i, such that,

the shares of BLShare(si, Fi) held by parties in A have no information about si. Further, by
induction hypothesis, since the parties in A corresponding to Fi will be unauthorized, shares of
BLShare(si, Fi) corresponding to them will look uniform. Since the following two distributions
are identical:

∗ s1, · · · , sn ∈R Zq|(s =
m∑
i=1

si mod q).

∗ Output (sj)j 6=i.

∗ sj ∈R Zq, for each j 6= i.

∗ Output (sj)j 6=i.

therefore, the shares of parties in A corresponding to BLShare(sj , Fj), for each j 6= i are also
identical to uniform.
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– For o = THRESHOLDk, BLShare(s,THRESHOLDk(F1, · · · , Fm)) = ∪1≤i≤mBLShare(si, Fi),
where (s1, · · · , sm) ← ShamirSharekm(s). For A 6∈ A, parties in A can only get < k of the si’s
(elseA will be inA), say si1 , · · · , sik−1

are known to parties inA. By the property of k-threshold
Shamir secret sharing (shown in the proof of Lemma A.2.2), (si1 , · · · , sik−1

) ≡ UZk−1
q

. Hence,

the shares obtained by parties in A corresponding to BLShare(sij , Fij ), for each j ∈ [k−1], are
identical to uniform. Further, for each j 6∈ {i1, · · · , ik−1}, since the parties in A are unautho-
rised w.r.t. BLShare(sj , Fj), by induction hypothesis, their shares are identical to uniform.

Hence, by induction, the claim is proved.

Given the above claim, clearly each adaptive unauthorized query can be responded with a
random field element. Hence, the scheme is adaptively private.

B Security Proof and Parameters of LRSS scheme in the Joint
Leakage and Reveal Model

We give a detailed proof sketch of Theorem 3 below, which is very similar to the proof of Theorem
2.

B.1 Proof Sketch of Theorem 3

Correctness and privacy are already discussed in Theorem 2. We discuss leakage resilience against
joint leakage here. The proof idea is similar in spirit to the leakage resilience proof of the adaptive
leakage and reveal model. Let a = b(t − 1)/Xc and h = dψa e. We group the query sets into sets
JS1, · · · ,JSh as follows. For i ∈ [h−1], JSi = Q(i−1)a+1∪· · ·∪Qia. JSh = Q(h−1)a+1∪· · ·∪Qψ.

For any message m we define the following the sequence of hybrids (which are similar to hybrids
in proof of Thm. 2). Without loss of generality, we assume that D always asks legitimate queries
as per the model. The sequence of hybrids is JLeakBm0 , {JLeakAmq , JLeakBmq }q∈[h] and JLeakCm.
Let JLeakBm0 be the distribution JLeakm

Shareh
.

JLeakAmq : For each 1 ≤ q ≤ h, the only change we make in JLeakAmq (in comparison to the previous

hybrid JLeakBmq−1) is that we replace the shares sdqj , for each j ∈ JSq (the shares of sq corresponding
to the q-th set joint leakage queries), with shares of a dummy seed s̃q. After answering the joint
leakage queries corresponding to Sq, sdq[n] is re-sampled as shares of sq conditioned on s̃Sq . The

statistical closeness of hybrids JLeakBmq−1 and JLeakAmq follows from adaptive privacy of SdShareq.
This is because |J Sq| ≤ t−1 and leakage responses to all queries in JS [q−1] would be independent
of sq and its shares.

JLeakBmq : For each 1 < q ≤ h, the only change we make in JLeakBmq (in comparison to the

previous hybrid JLeakAmq ) is that we replace the values xqj , for each j ∈ JSq with random, instead
of evaluating the h − (q − 1) layers of masking to get xqj (and hence the query response for any

Qk ⊆ JSq is independent of mQk
and si for each q ≤ i ≤ h). Further, we continue to evaluate

xq−1
j , xq−2

j , · · · , x1
j , y

1
j , for each j ∈ JSq as in the previous hybrid.

The response to each joint leakage query in JLeakAmq on any set Qk ⊆ JSq depends on
{wqj ,Ext

q(wqj ; s
q)}j∈Qk

along with {wij , si, sdij}i∈[h]\{q},j∈Qk
and shares (corresponding to j ∈ Qk) of
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a dummy seed s̃q (the distribution of the latter two random variables is identical in both hybrids).
Now, consider a mega-extractor EXTq which takes wqQk

, sq as input and outputs {Extq(wqj ; sq)}j∈Qk

(as in Lemma 9 with respect to Extq and u = X). By Lemma 9, we know EXTq is (Fullτ , 4Xδ
′
q ·2Xlq)-

adaptive13. Using adaptivity of this extractor with Lemma 8, we can show that leakage responses
for all queries in Sq are statistically close by (4(t − 1)Xδ′q · 2Xlq) in both hybrids. After answer-
ing queries corresponding to Sq, all further joint leakage/reveal queries are answered in identical
manner in both hybrids.

JLeakCm: In the hybrid JLeakBmh , all the shares used in the leakage phase are independent of the
shares of the message m. Hence, the only part of the view of D that depends on the shares of m
corresponds to the reveal phase. In the final hybrid JLeakCm, we replace the t− 1 shares of m used
in the reveal phase by shares of 0l. This hybrids are close by adaptive privacy of MShare.

B.2 Parameters

For i ∈ [h], we instantiate SdSharei on seeds of length di with the (adaptively) private Shamir secret
sharing scheme, which results in individual seed share length being di. We instantiate MShare on
messages of length li with the (adaptively) private Shamir secret sharing scheme, which results in
individual seed share length being li.

Recall, Lemma 7 that states that for any c > 1, there exists constants α, β such that d ≤ αl,
µ ≤ βl, η ≥ βl + τ , ε = 2−cl and δ = 2−(c−1)l+2 when l = ω(log η). Fix c = 2X, and α, β be values
corresponding to this c given by Lemma 7. For each i ∈ [h], we instantiate (ηi, µi, di, li, δ

′
i)-extractor

Exti as per this lemma as follows14.

• We set l1 = l, δ′1 = 2−cl, d1 ≤ αl1, µ1 ≤ βl1 and η1 = βl1 + τ .

• For i > 1, we set li = li−1 + di−1, δ′i = 2−cli , di ≤ αli, µi ≤ βli and ηi = βli + τ .

With this setting, individual share length of Shareh is lh + dh +
∑

i∈[h] ηi = hτ + Θ((1 +α)hl) =

XΘ(h)l + hτ(as α is specific to c(= 2X)). Therefore, when τ = O(l) and either n = Θ(t) or h is a
constant, Shareh achieves

• Constant rate and constant leakage rate whenever X is constant.

• Inverse poly logarithmic rate when X = log n.

As our instantiations of SdSharei’s and MShare are perfectly adaptively private, we have Shareh

to be a perfectly adaptively private secret sharing scheme which is t
∑

i∈[h] 2Xli ·δ′i = t2−Ω(l)-leakage
resilience against the adaptive leakage and reveal model.

C Leakage Resilient Non-Malleable Secret Sharing for Threshold
Access Structures

We begin by defining an LRNMSS and describing our tampering model, for the threshold access
structure.

13While setting parameters we set ηq − µq ≥ τ
14Adaptivity of Exti isn’t important and hence we don’t mention parameters of adaptivity.
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C.1 Tampering Model

The tampering model with adaptive leakage (Fn−t−2,τ
tamper ), that we consider for our LRNMSS scheme,

is as defined below.
Let Share : M → ({0, 1}γ)n be a sharing function which takes a secret and outputs n shares to
be share1, · · · , sharen. The leakage model we consider is exactly the LRSS leakage model JX,ψ,τ
for the t-threshold access structure, where you do not allow full share queries15 and only allow
the leakage queries (with leakage threshold τ as in JX,ψ,τ ) on at most n − t − 2 shares (i.e.,
ψX ≤ n − t − 2). We denote this family as F leak,τ . More specifically F leak,τ consists of (G,L)
satisfying the following conditions:

• L is the set of indices of shares on which JX,ψ,τ -leakage queries were made.

• G is a function acting on {sharei}i∈L and follows the leakage model of JX,ψ,τ with the added
restriction that |L| ≤ n− t− 2 (i.e., each (adaptive) leakage query can depend on up to t− 1
shares, disjoint from the prior queries and the total number of shares from which leakage is
allowed is |L|).

The threshold τ for leakage is exactly what JX,ψ,τ allows.
The leakage resilient tampering family allows the adversary to get a joint adaptive leakage on the
shares as in F leak,τ and then specify the reconstruction set T along with independent tampering
functions f1, · · · , fn. We require a restriction that the reconstruction set T shares no index with
the set of indices on which leakage queries were made. Formally, we define the leakage resilient
tampering family Fn−t−2,τ

tamper as the set of functions (G,L, f1, · · · , fn, I)16 satisfying the following
conditions:

• (G,L) ∈ F leak,τ .

• Let Leak := G({sharei}i∈L)

• For each i ∈ [n], fi is a function taking input sharei and Leak and outputs the tampered

share s̃harei.

• I is a function taking input Leak and outputs the reconstruction set T such that |T | = t and
L ∩ T = φ.

We now define leakage resilient non-malleable secret sharing with respect to the family Fn−t−2,τ
tamper

defined above, for the threshold access structure17.

Definition 5 (Leakage Resilient Non-Malleable Secret Sharing). Let (Share,Rec) be any (t, n, εs)-
threshold secret sharing scheme for message space M. Let Fn−t−2,τ

tamper be the family of tampering

15Here, we cannot consider full share queries because the tampering functions, which depend on the leakage, will
no longer remain independent then.

16While in regular tampering family, we only consider the tampering functions acting on the shares, here we also
consider the leakage function and the index function which adaptively chooses the reconstruction set dependent on
the leakage.

17This definition can be thought of as a special adaptation of the general definition [22] of non-malleable secret
sharing against a tampering family F

42



functions described above. For each (G,L, f1, · · · , fn, I) ∈ Fn−t−2,τ
tamper , m ∈ M define the tampering

experiment

STamperG,L,f1,··· ,fn,I
m =



(share1, · · · , sharen)← Share(m)

Leak = G({sharei}i∈L)

T = I(Leak)

∀i ∈ [n], s̃harei = fi(sharei, Leak)

m̃ = Rec({s̃harei}i∈T )

Output : Leak, m̃


We say that the (t, n, εs)-threshold secret sharing scheme, (Share,Rec), is εnm-leakage resilient non-
malleable w.r.t to family Fn−t−2,τ

tamper if for each (G,L, f1, · · · , fn, I) ∈ Fn−t−2,τ
tamper there exists a distri-

bution SimG,L,f1,··· ,fn,I over M∪ {same∗,⊥} such that,
∀ m, STamperG,L,f1,··· ,fn,I

m ≈εnm Copy(SimG,L,f1,··· ,fn,I ,m), where

Copy(SimG,L,f1,··· ,fn,I ,m) =


(Leak, m̃) ← SimG,L,f1,··· ,fn,I

Output : (Leak,m) if m̃ = same∗

(Leak, m̃) otherwise


Further, the distribution SimG,L,f1,··· ,fn,I should be efficiently samplable given oracle access to func-
tions G,L, f1, · · · , fn, I.

C.2 Comparison with Prior Work

We give a comparison of our work with the most relevant works on leakage-resilient non-malleable
secret sharing below.

1. In the information theoretic setting, the only known LRNMSS schemes are [28, 13], both of
which achieve a rate of O(1/poly(n)). Their model allows the adversary to get independent
and adaptive leakage before allowing a single independent tampering (each share is tampered
independent of the other shares) query. In comparison, we allow the adversary to get adaptive
and joint leakage on at most n − t − 2 shares in total before allowing a single independent
tampering query, and we achieve a constant rate, for the setting where each query depends
on at most a constant number of shares and t = αn (for constant α < 1). While our leakage
model is incomparable to [28, 13], we get the first constant rate scheme for an adaptive leakage
model.

2. In the computational setting, there are several works [13, 20, 12] which give a LRNMSS in
a joint and adaptive leakage model with continuous non-malleability in a joint tampering
model, of which the most recent work of [12], in combination with the compiler from [20]
gives a rate 1 scheme. There are several variants of joint leakage considered in these works
(allowing overlapping queries), but all variants have a poor rate. We refer the readers to
Table 2 for the exact parameters achieved by these schemes.
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In Table 2 below, we present a detailed comparison of our work with the most relevant NMSS
schemes18.

Table 2: LRNMSS Prior Work

• *[6, 36] and [1] are for 4 and 3-monotone access structures.

• **[1] has a stronger concurrent tampering model than [6].

• n represents the number of parties and t represents the threshold. For our instantiation of constant-rate LRSS,
we set t = αn (for a constant α < 1).

C.3 Building Blocks

Before we describe our construction, we look at the building blocks needed. Specifically, we need a
stronger guarantee of “conditional independence” from the underlying LRSS scheme, and we need
non-malleable codes.

C.3.1 Conditional Independence of LRSS

To instantiate the non-malleable secret sharing construction in Section C.4 with the leakage resilient
secret sharing of Section 4.5, we need an additional stronger property from the LRSS scheme, which
is called conditional independence, defined as below.

Definition 6. [6] A (t, n, εl) secret sharing scheme (LRShare, LRRec) for a message space M is
said to be εl-leakage resilient against the leakage family JX,ψ,τ (for t-threshold access structure)
with conditional independence if, for any K,S ⊆ [n] such that |K| = t− 1 and |K ∩ S| = 0, there
exists a function auxK,S (over appropriate domain) such that the following properties hold:

• Conditional Independence: For any message m ∈ M, the following two distributions are
identical:

1. (share1, · · · , sharen)← LRShare(m; r) (for uniformly chosen r).

2. (shareS , share[n]\S), which are generated by resampling procedure:

18All the schemes mentioned here are in the compartmentalized model or the split-state model which assumes
that the adversary cannot tamper all shares together. The work of [30] is the only one to consider the non-
compartmentalized model and give a leakage resilient non-malleable secret sharing scheme for adaptive affine leakage
and affine tampering dependent on the leakage.
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– Sample (share1, · · · , sharen)← LRShare(m; r).

– Compute a← auxK,S(m; r).

– Let R′ be the set of all r′ such that a = auxK,S(m; r′) and shareK = LRShare(m; r′)K .

– Sample r′ ← R′ and let share′S ← LRShare(m; r′)S

– Output (share′S , share[n]\S) (replacing shares of S with corresponding shares share′S)

• Leakage Resilience (joint and adaptive): For every GL,K ∈ JX,ψ,τ (following the adap-
tive and joint leakage model of JX,ψ,τ ) acting on the total set of leakage query indices L
(excluding the set of indices on which full shares were queried) and making full share queries
on K, for every two messages m0,m1 ∈M,

(auxK,S(m0; r), GL,K(LRShare(m0; r)L∪K))

≈εl (auxK,S(m1; r), GL,K(LRShare(m1; r)L∪K))

Here, since we are in the adaptive world, we should mention that the auxK,S(mb; r) is given
to the leakage adversary after all the leakage and full share queries.

The construction in Section 4.5 satisfies the desired conditional independence property. For
completeness, we show this in the following lemma.

Lemma 12. The LRSS scheme of Section 4.5 is a t-threshold leakage resilient secret sharing
scheme, that is leakage resilient with respect to JX,ψ,τ with conditional independence.

Proof. The proof of correctness and privacy follow directly from Theorem 3. We prove conditional
independence and leakage resilience, as in Definition 6.
Conditional Independence. Fix sets K ⊆ [n] such that |K| = t − 1, S ⊆ [n]\K and T =
[n]\(K ∪ S). Fix some message m ∈M. We consider the construction in Figure 3.
Define auxK,S as a function, which, on input m and randomness rand, outputs aux = s1, · · · , sh,
where s1, · · · , sh are the seed of the extractors (s1, · · · , sh are part of rand).
Now, we fix ShK , aux,m. Then, it is clear that this fixes all the shares (m1, · · · ,mn) of m (since
|K| = t− 1). The only randomness for sampling Shi for any i ∈ [n]\K is in sampling w1

i , · · · , whi ,
which are independent for each i. Hence, conditioned on fixing ShK , aux,m, the set of shares
ShS is independent of ShT . Hence, ShS and Sh′S are distributed identically for every fixed
(s1, · · · , sh,m1, · · · ,mn) (Sh′S is the re-sampled distribution from the conditional independence
definition 6).
Leakage Resilience. By definition of auxK,S , we wish to prove that for every two messages
m0,m1 ∈ M and for every GL,K ∈ JX,ψ,τ (acting on leakage query indices L and full share query
indices K), we have

(auxK,S(m0; r), GL,K(LRShare(m0; r)L∪K))

≈εl (auxK,S(m1; r), GL,K(LRShare(m1; r)L∪K))

And we have that auxK,S(m; rand) = s1, · · · , sh, where s1, · · · , sh are the seeds of the extractors
used.
The proof of the above claim follows almost exactly from the proof of Theorem 3 with the small
observation that all the hybrids in the proof could also output the seeds s1, · · · , sh at the end of all
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the queries. In all the reduction games, observe that the seeds s1, · · · , sh can always be obtained
by the reduction game (in the end) and hence it can complete the simulation, by forwarding the
seeds at the end. This completes the proof of the lemma.

Now, we formally define our second building block, a 2-split-state non-malleable code.

C.3.2 Non-malleable Codes

We use non-malleable codes as a building block in our construction of non-malleable secret sharing.
Non-malleable codes are coding schemes which provide a guarantee that, if the codeword is tam-
pered with, then the message recovered is either same as the original message, or is independent of
it. Formally, we define non-malleable codes w.r.t a tampering family F as below

Definition 7. A coding scheme (Enc,Dec) with message and codeword spaces as {0, 1}l, {0, 1}n
respectively, is ε- non-malleable with respect to a function family F ⊆ {f : {0, 1}n → {0, 1}n} if
∀ f ∈ F , ∃ a distribution Simf over {0, 1}l ∪ {same∗,⊥} such that ∀ m ∈ {0, 1}l

Tampermf ≈ε CopymSimf

where Tampermf denotes the distribution Dec(f(Enc(m))) and CopymSimf
is defined as

m̃← Simf

CopymSimf
=

{
m if m̃ = same∗

m̃ otherwise

Simf should be efficiently samplable given oracle access to f(.).

We also require the following secret sharing property of non-malleable codes in the 2-split-state
model F2. It states that a 2-split-state non-malleable code is a 2-out-of-2 secret sharing scheme.

Lemma 13. [3] Let Enc : {0, 1}k → {0, 1}β1 × {0, 1}β2 and Dec : {0, 1}β1 × {0, 1}β2 → {0, 1}k
be a ε-non-malleable code in the 2-split-state model for some ε < 1/2. For any pair of messages
m0,m1 ∈ {0, 1}k, Rm0 ≈2ε R

m1, where (Lm0 ,Rm0)← Enc(m0) and (Lm1 ,Rm1)← Enc(m1).

C.3.3 Instantiations of our Building Blocks

The detailed parameters corresponding to the building blocks used in our construction are as given
below.

• A 2-split-state ε1-non-malleable code (Enc,Dec) (as defined in Section C.3.2), where Enc
takes messages from M and outputs (L,R), of lengths β1, β2 respectively. Furthermore,
(Enc,Dec) satisfies the secret sharing property that, for any two m,m′ ∈M, R ≈ε2 R′, where
(L,R)← Enc(m) and (L′,R′)← Enc(m′).

• A (t, n, ε′3, ε3)-leakage resilient secret sharing scheme 19 (LRShare1
(t,n), LRRec

1
(t,n)), with joint

and adaptive leakage model JX,ψ,τ1 for t-threshold access structure for message space {0, 1}β1

with conditional independence (as in Definition 6). This means that the adversary can make

19ε′3 denotes the privacy error and ε3 denotes the leakage resilience error
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leakage queries on any n− t + 1 shares adaptively and jointly, with leakage threshold τ1 (as
interpreted in JX,ψ,τ1) and after making all the leakage queries, the adversary can get upto
t− 1 full shares. Let the size of each share be η1.

• A (t−1, n, ε′4, ε4)-leakage resilient secret sharing scheme20 (LRShare2
(t−1,n), LRRec

2
(t−1,n)), with

joint and adaptive leakage model JX,ψ,τ2 for message space {0, 1}β2 with conditional inde-
pendence. This means that the adversary can make leakage queries on any n − t + 2 shares
adaptively and jointly, with leakage threshold τ2 (as interpreted in JX,ψ,τ2) and after making
all the leakage queries, the adversary can get upto t− 2 full shares. Let the size of each share
be η2.

C.4 Construction

We describe the construction formally in Figure 8. Informally, to secret share a secret m, we first
non-malleably encode it to a 2-split-state code (L,R). Then we secret share L using a t-out-of-n
LRSS, (LRShare1

(t,n), LRRec
1
(t,n)), to get the shares (L1, · · · , Ln). Similarly, we secret share R using

the second (t−1)-out-of-n LRSS, (LRShare2
(t−1,n), LRRec

2
(t−1,n)), to get the shares (R1, · · · ,Rn). The

i-th share Shi is then set to be Li,Ri. The reconstruction procedure, given any t shares just uses
the reconstruction algorithms LRRec1

(t,n) to get L and LRRec2
(t−1,n) to get R. Finally, it decodes

(L,R) to get m.

Share(m): The n shares of the secret m are generated as follows:

1. (L,R)← Enc(m).

2. We further secret share L and R as:

(L1, · · · , Ln)← LRShare1
(t,n)(L)

(R1, · · · ,Rn)← LRShare2
(t−1,n)(R)

3. For each i ∈ [n], set Shi = (Li,Ri).

4. Output the shares (Sh1, · · · , Shn)

Rec((Share(m))T ): From an authorized set T = {i1, · · · , it}, to recover m do:

1. For each j ∈ T , parse Shj as (Lj ,Rj).

2. Recover L and R as:

L := LRRec1
(t,n)(Li1 , · · · , Lit)

R := LRRec2
(t−1,n)(Ri1 , · · · ,Rit−1)

3. Output m := Dec(L,R)

Figure 8: LRNMSS Construction

20ε′4 denotes the privacy error and ε4 denotes the leakage resilience error
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Theorem 4. For any n ∈ N and threshold t, if (Enc,Dec) is a 2-split-state ε1-non-malleable
code (with secret sharing error ε2), (LRShare1

(t,n), LRRec
1
(t,n)) and (LRShare2

(t−1,n), LRRec
2
(t−1,n)) are

LRSS schemes as in Section C.3.3, then the construction given in Figure 8 is a (t, n, 2ε′3 +ε2)-secret
sharing scheme, which is (ε1 + ε3 + ε4)-non-malleable against the leakage resilient tampering family
Fn−t−2,τ
tamper .

Proof. Correctness. The correctness of the scheme is straightforward from the correctness of the
underlying non-malleable code and the leakage resilient secret sharing schemes.

Statistical Privacy. To prove the statistical privacy of the scheme, we use a hybrid argument. We
wish to show that, for any unauthorized set T with |T | < t and for any two messages m0 6= m1 ∈M,
Share(m0)T ≈2ε′3+ε2 Share(m1)T . The sequence of hybrids are:

• Hyb0: This corresponds to the distribution of shares of m0 in the unauthorized set T .
Generate (L,R)← Enc(m0). Further, get (L1, · · · , Ln)← LRShare1

(t,n)(L) and (R1, · · · ,Rn)←
LRShare2

(t−1,n)(R). Set Shi = Li,Ri, for each i ∈ T . Output: {Shi}i∈T .

• Hyb1: Replace the shares of L in the set T with the shares of the left state L′ corresponding
to m1.
Generate (L,R)← Enc(m0) and (L′,R′)← Enc(m1). Further, get (L′1, · · · , L′n)← LRShare1

(t,n)(L
′)

and (R1, · · · ,Rn)← LRShare2
(t−1,n)(R). Set Shi = L′i,Ri, for each i ∈ T . Output: {Shi}i∈T .

• Hyb2: Replace the right state R corresponding to m0 in share generation to the right state
R′′ corresponding to m1. Note that, while both Lis and Ris are generated from m1 in this
hybrid, they are generated from different copies of the encoding of m1.
Generate (L′,R′)← Enc(m1) and (L′′,R′′)← Enc(m1). Further, get (L′1, · · · , L′n)← LRShare1

(t,n)(L
′)

and (R′′1, · · · ,R′′n)← LRShare2
(t−1,n)(R

′′). Set Shi = L′i,R
′′
i , for each i ∈ T . Output: {Shi}i∈T .

• Hyb3: This corresponds to the distribution of shares of m1 in the unauthorized set T .
Generate (L,R)← Enc(m1). Further, get (L1, · · · , Ln)← LRShare1

(t,n)(L) and (R1, · · · ,Rn)←
LRShare2

(t−1,n)(R). Set Shi = Li,Ri for each i ∈ T . Output: {Shi}i∈T .

Clearly Hyb0 ≡ Share(m0)T and Hyb3 ≡ Share(m1)T .
Now, by the statistical privacy of (LRShare1

(t,n), LRRec
1
(t,n)), it is straightforward to see that Hyb0 ≈ε′3

Hyb1.
As the NMC satisfies the secret sharing property that R ≈ε2 R′′, for (L,R) ← Enc(m0) and
(L′′,R′′)← Enc(m1), it directly follows that Hyb1 ≈ε2 Hyb2.
Finally, to get the distribution identical to Share(m1)T , we apply the statistical privacy of (LRShare1

(t,n), LRRec
1
(t,n))

again and it follows that Hyb2 ≈ε′3 Hyb3. Hence, we get Hyb0 ≡ Share(m0)T ≈2·ε′3+ε′4
Hyb2 ≡

Share(m1)T

Leakage Resilient Non-Malleability. We prove this through a sequence of hybrids. We first
describe the simulator SimG,L,f1,··· ,fn,I for (G,L, f1, · · · , fn, I) ∈ Fn−t−2,τ

tamper .

SimG,L,f1,··· ,fn,I :

1. (L$,R$)← Enc(m$), where m$ is a random message.

2. (L$
1, · · · , L$

n)← LRShare1
(t,n)(L

$; rL)
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(R$
1, · · · ,R$

n)← LRShare2
(t−1,n)(R

$ : rR)

3. For each i ∈ [n], set Sh$
i = (L$

i ,R
$
i ).

4. Get Leak← G({Sh$
i }i∈L). Recall that |L| ≤ n− t− 2

5. Get the reconstruction set T := I(Leak) = {i1, · · · , it}. Recall that T is such that
L ∩ T = φ.

6. Let aux1 ← aux1
{i1,··· ,it−1},{it}(L

$; rL) and aux2 ← aux2
{i3,··· ,it},{i1,i2}(R

$; rR), where

aux1
{i1,··· ,it−1},{it} and aux2

{i3,··· ,it},{i1,i2} are the functions guaranteed by the conditional

independence of LRShare1
(t,n) and LRShare2

(t−1,n) respectively.

7. Define a hardcoding h, for the tampering functions of underlying NMC as:

Set h := ({L$
ij
, L̃$
ij
}j=1,··· ,t−1, {R$

ij
, R̃$

ij
}j=3,··· ,t−1,R

$
it
, aux1, aux2, Leak),

where (L̃$
k, R̃

$
k) = fk(L

$
k,R

$
k, Leak) ∀k ∈ T

8. Define the tampering functions Fh and Gh on underlying NMC code as:
Fh(L) :

• Pick Lit satisfying the following condition:

Lit is consistent with (L$
i1
, · · · , L$

it−1
, aux1, L).

As in Definition 6, this means that L$
it

= LRShare1
(t,n)(L; r′L)it , where r′L is such

that aux1 = aux1
{i1,··· ,it−1},{it}(L; r′L) and L$

T\{it} = LRShare1
(t,n)(L; r′L)T\{it}.

• If no such Lit is found, output ⊥.

• (L̃it , .) = fit(Lit ,R
$
it
, Leak).

• Output L̃ := LRRec1
(t,n)({L̃

$
ij
}j=1,··· ,t−1, L̃it)

Gh(R) :

• Pick Ri1 ,Ri2 satisfying the following conditions:

a) Ri1 ,Ri2 are consistent with (R$
i3
, · · · ,R$

it
, aux2,R). (Again as in Definition 6)

b) For each j = 1, 2, fij (L
$
ij
,Rij ) = (L̃$

ij
, .).

• If no such sampling is possible, output ⊥.

• For j = 1, 2, (., R̃ij ) = fij (L
$
ij
,Rij , Leak).

• Output R̃ := LRRec2
(t−1,n)(R̃i1 , R̃i2 , {R̃

$
ij
}j=3,··· ,t−1)

9. Obtain m̃← NMSimFh,Gh
and

Output: Leak, m̃.

Now, we follow a sequence of hybrids to show that Copy(SimG,L,f1,··· ,fn,I ,m) ≈ε1+ε3+ε4 STamperG,L,f1,··· ,fn,I
m .

HybG,L,f1,··· ,fn,I
1 : This hybrid is same as Copy(SimG,f1,··· ,fn,I ,m) with SimG,f1,··· ,fn,I as described

above, except we change Step 9 to be the tamper random variable of the underlying NMC,
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NMTampermFh,Gh
.

Claim 3. Copy(SimG,L,f1,··· ,fn,I ,m) ≈ε1 HybG,L,f1,··· ,fn,I
1

Proof. The proof of the claim is straightforward. We reduce the indistinguishability to the non-
malleability of the underlying split-state NMC (Enc,Dec). The reduction algorithm can generate
the leakage Leak and the hardcoding bit h completely on its own. Hence, the functions Fh, Gh
(which are in the split-state model) for the tampering of the NMC code can be forwarded to the
NMC challenger, along with message m. The response of the challenger exactly decides whether it
is Copy(SimG,L,f1,··· ,fn,I ,m) or HybG,L,f1,··· ,fn,I

1 . Hence, this claim is proved.

HybG,L,f1,··· ,fn,I
2 : In this hybrid, we replace the use of shares L$

1, · · · , L$
N in the hardcoding h and

in generating the leakage Leak, with the left shares L1, · · · , LN corresponding to the actual message
m. So, instead of using L$, we use L generated from m in the whole hybrid. Rest of the steps are
exactly as in HybG,L,f1,··· ,fn,I

1 .

Claim 4. HybG,L,f1,··· ,fn,I
1 ≈ε3 HybG,L,f1,··· ,fn,I

2

Proof. Suppose for contradiction that the statistical distance between HybG,L,f1,··· ,fn,I
1 and HybG,L,f1,··· ,fn,I

2

is greater than ε3. Here is the reduction, which breaks the leakage resilience of (LRShare1
(t,n), LRRec

1
(t,n))

(as in Defintion 6):

1. Generate (L,R)← Enc(m) and (L$,R$)← Enc(m$).

2. Further generate (R$
1, · · · ,R$

n)← LRShare2
(t−1,n)(R

$; rR) and

aux2 ← aux2
{i3,··· ,it−1},{i1,i2}(R

$; rR).

3. Give L and L$ as the two messages to the leakage resilience challenger.

4. For the leakage function G over the total set of indices L, forward the leakage queries G{R$
k}k∈L

,

with the corresponding Rk’s hardwired. Hence, the leakage Leakb := G({Lbk,R
$
k}k∈L) can be

obtained from the leakage resilience challenger. Here b denotes the choice bit of the leakage
resilience challenger.

5. After all leakage queries, generate T := I(Leakb) = {i1, · · · , it}.

6. Now query the leakage challenger for t−1 full shares {Lbi1 , · · · , L
b
it−1
}. Further, it also receives

aux1
b from the leakage resilience challenger. Now, evaluate (L̃bij , R̃

$
ij

) = fij (L
b
ij
,R$

ij
, Leakb), for

each j = 1, · · · , t− 1.

7. Set h := ({Lbij , L̃
b
ij
}j=1,··· ,t−1, {R$

ij
, R̃$

ij
}j=3,··· ,t−1,R

$
it
, aux1

b , aux
2, Leakb).

8. Now the reduction outputs m̃ ← NMTampermFh,Gh
, where Fh and Gh are as defined in

SimG,L,f1,··· ,fn,I and the leakage Leakb.

The reduction makes joint and adaptive leakage queries on at most |L| ≤ n− t−2 < n− t+1 shares
in all. At the end of the joint and adaptive leakage queries, it makes the full share queries for t− 1
fresh shares (since T ∩ L = φ). So clearly the leakage model is in the family JX,ψ,τ1 , for τ1 = τ
(since no additional leakage queries are made by the reduction to the leakage resilience challenger).
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If the leakage challenger uses L$, then the reduction output is identical to HybG,L,f1,··· ,fn,I
1 and else,

if it uses L, then the reduction output is identical to HybG,L,f1,··· ,fn,I
2 . Hence, this breaks the leakage

resilience of (LRShare1
(t,n), LRRec

1
(t,n)).

HybG,L,f1,··· ,fn,I
3 : In this hybrid, instead of the function Fh sampling Lit again such that it

satisfies the consistency condition, we now let Fh use the same share Lit that was used to generate
h.

Claim 5. HybG,L,f1,··· ,fn,I
2 ≡ HybG,L,f1,··· ,fn,I

3

Proof. The proof of this claim is direct from the conditional independence of LRShare1
(t,n) (with

K = {i1, · · · , it−1} and S = {it}).

HybG,L,f1,··· ,fn,I
4 : In this hybrid, we replace the use of the R$

1, · · · ,R$
N in the hardcoding h and in

generating the leakage Leak, with the right shares R1, · · · ,Rn corresponding to the actual message
m. So, instead of using R$, we use R generated from m in the whole hybrid. Rest of the steps are
exactly as in HybG,L,f1,··· ,fn,I

3 .

Claim 6. HybG,L,f1,··· ,fn,I
3 ≈ε4 HybG,L,f1,··· ,fn,I

4

Proof. Suppose for contradiction that the statistical distance between HybG,L,f1,··· ,fn,I
3 and HybG,L,f1,··· ,fn,I

4

is greater than ε4. Here is the reduction, which breaks the leakage resilience of (LRShare2
(t−1,n), LRRec

2
(t−1,n))

(as in Definition 6):

1. Generate (L,R)← Enc(m) and (L$,R$)← Enc(m$).

2. Further generate (L1, · · · , Ln)← LRShare1
(t,n)(L; rL) and

aux1 ← aux1
{i1,··· ,it−1},{it}(L; rL)21.

3. Give R and R$ as the two messages to the leakage resilience challenger.

4. For the leakage function G over the total set of indices L, forward the leakage queries G{Lk}k∈L ,

with corresponding Lk’s hardwired. Hence, the leakage Leakb := G({Lk,Rbk}k∈L) can be
obtained from the leakage resilience challenger. Here b denotes the choice bit of the leakage
resilience challenger.

5. After all leakage queries, generate T := I(Leakb) = {i1, · · · , it}.

6. Now, we make an additional joint leakage query on indices i1, i2 /∈ L (Since T ∩ L = φ).
Query the leakage resilience challenger on leakage function gi1,i2 on set of indices {i1, i2},
with hardcoded values Leakb and {Li1 , Li2}. gi1,i2 is defined as:

On Input: {Rbi1 ,R
b
i2
}

Evaluate (L̃ij , .) = fij (Lij ,R
b
ij
, Leakb), for j = 1, 2.

Output: {L̃i1 , L̃i2}
21We are defining aux1 only for completion in setting h but note that aux1 will not be used anymore, as we are not

resampling shares of L anymore
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7. Now query the leakage challenger for t− 2 full shares {Rbi3 , · · · ,R
b
it
}. Further, it also receives

aux2
b from the leakage resilience challenger. Now, evaluate (L̃ij , R̃

b
ij

) = fij (Lij ,R
b
ij
, Leakb), for

each j = 3, · · · , t.

8. Reconstruct to get L̃ = LRRec1
(t,n)(L̃i1 , · · · , L̃it).

9. Set h := ({Lij , L̃ij}j=1,··· ,t−1, {Rbij , R̃
b
ij
}j=3,··· ,t−1,R

b
it
, aux1, aux2

b , Leakb).

10. With Gh as defined in SimG,f1,··· ,fn,I , get R̃ = Gh(R).

11. The reduction outputs m̃ = Dec(L̃, R̃) and the leakage Leakb.

The reduction makes joint and adaptive leakage queries on at most |L| + 2 ≤ (n − t − 2) + 2 =
n− t < n− t+2 shares in all. At the end of all these queries, it makes the full share queries for t−2
fresh shares (as T ∩ L = φ). So clearly the leakage model is in the family JX,ψ,τ2 , for τ2 = τ + η1

(since |L̃k| = η1 and the query made can be viewed as independent query on two shares of R). If

the leakage challenger uses R$, then the reduction output is identical to HybG,L,f1,··· ,fn,I
3 and else, if

it uses R, then the reduction output is identical to HybG,L,f1,··· ,fn,I
4 . Hence, this breaks the leakage

resilience of (LRShare2
(t−1,n), LRRec

2
(t−1,n)).

HybG,L,f1,··· ,fn,I
5 : Finally, we repeat what we did in HybG,L,f1,··· ,fn,I

3 with respect to the right
shares. Instead of Gh sampling Ri1 ,Ri2 again such that they satisfy the consistency conditions, we
let Gh use the same shares Ri1 ,Ri2 that were used in generating h.

Claim 7. HybG,L,f1,··· ,fn,I
4 ≡ HybG,L,f1,··· ,fn,I

5

Proof. The proof of this claim is direct from the conditional independence of LRShare2
(t−1,n) (with

K = {i3, · · · , it−1} and S = {i1, i2}).

Now, notice that HybG,L,f1,··· ,fn,I
5 ≡ STamperG,f1,··· ,fn,I

m . Hence,

Copy(SimG,f1,··· ,fn,I ,m) ≈ε1 HybG,L,f1,··· ,fn,I
1 ≈ε3 HybG,L,f1,··· ,fn,I

2 ≡ HybG,L,f1,··· ,fn,I
3 ≈ε4 HybG,L,f1,··· ,fn,I

4 ≡
HybG,L,f1,··· ,fn,I

5 ≡ STamperG,f1,··· ,fn,I
m . This proves the leakage resilient non-malleability of the con-

struction.

C.5 Rate Analysis

We instantiate our leakage resilient non-malleable secret sharing construction for Fn−t−2,τ
tamper with the

following underlying primitives:

• We use the constant rate 2-split-state non-malleable code of [5]:

Theorem 5. [5] There exists an efficient, information-theoretically secure ε-non-malleable

code in the 2-split-state model with rate O(1) and error ε = 2−k
Ω(1)

, where k is the message
length.

Hence, for |m| = k, we get ε1 = 2−k
Ω(1)

, |L| = O(k) bits and |R| = O(k) bits.
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• Further, we instantiate (LRShare1
(t,n), LRRec

1
(t,n)) and (LRShare2

(t−1,n), LRRec
2
(t−1,n)) with the

construction from Section 4.5, specifically for n = Θ(t) and a constant X (which gives a rate
of O(1)), with leakage thresholds τ1 = τ and τ2 = τ + η1 respectively (η1 = |Li|). This gives
us that η1 = |Li| = O(|L|) = O(k) and η2 = |Ri| = O(k). Further ε3 = 2−Ω(k) and ε4 = 2−Ω(k)

22.

Combining these two instantiations, we get: |Shi| = |Li| + |Ri| = O(k) and hence, we get the rate

of Ω(1). The error is ε1 + ε3 + ε4 = 2−k
Ω(1)

.
We obtain the following corollary:

Corollary 1. For any n ∈ N, there exists a leakage resilient non-malleable secret sharing scheme
against Fn−t−2,τ

tamper with rate Ω(1) and simulation error ε+ 2−k
Ω(1)

.

D Leakage Resilient and Non-malleable Secure Message Trans-
mission

The problem of perfectly secure message transmission (SMT) was introduced in [18], where the
goal is the following: the sender S needs to transmit a message m to a receiver R, where S
and R are connected by some n number of wires, such that perfect secrecy is guaranteed even in
the presence of an adversary which can see a bounded number of wires and perfect resiliency is
guaranteed (i.e., receiver receives the correct m), even in the presence of an adversary controlling
a bounded number of wires completely. The notion of non-malleable secure message transmission
was introduced in [22], where the goal is to guarantee that the receiver either receives the original
message m or m is destroyed and R gets an “unrelated” message, when an adversary is allowed to
tamper with the n wires (according to a certain tampering model). Further, they build this non-
malleable secure transmission using a non-malleable secret sharing scheme. However, neither the
original perfect SMT [18, 35, 38, 29, 26] nor the non-malleable SMT [22] support a model allowing
leakage on the wires. We give two models of SMT: a leakage resilient SMT and a leakage resilient
non-malleable SMT. Further, we show how to get these variants using our LRSS and LRNMSS with
good communication (O(|m|) per wire, for message m being transmitted). We formally describe
these models and their constructions below.

D.1 Leakage Resilient Message Transmission

We begin by describing the communication model. The sender S and receiver R are connected
by n wires and the sender S transmits some message m ∈ M to R through these wires. We use
π(m,S,R) to denote the whole protocol execution (to transmit message m) between the sender S
and receiver R. For leakage resilience, we consider an eavesdropping adversary A, who can not
only see a bounded number of wires completely, but also get a leakage on additional wires. Then,
leakage resilience guarantees that the view of the adversary, denoted by πA(m,S,R) is independent
of m. We formalize this notion of leakage resilience below. We begin by defining a secure message
transmission protocol (against an eavesdropping adversary) and then define the leakage resilient
variant of it.

22We take the R with appropriate padding to ensure that additional leakage of size η1 can be obtained from Ri,
but this is only a constant blow-up in size and hence η2 remains O(k)
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Definition 8 (Secure Message Transmission). Let S and R denote the sender and receiver of
the message transmission protocol, respectively and M be the message space from which S wants to
transmit a message m to R. S and R are connected by n wires. Let the messages sent through these
wires be denoted by m1, · · · ,mn, during an execution of the protocol π(m,S,R) for transmitting
the message m and let t ∈ [n]. We say that the protocol π(., S,R) is a (t, n, εs)-secure message
transmission protocol if it satisfies the following properties.

1. Correctness: For every message m ∈ M, at the end of an honest execution of the proto-
col execution π(m,S,R), where the sender S is transmitting the message m, the receiver R
receives m with probability 1.

2. Statistical Privacy: For every adversary A that can see the messages sent through at most
t− 1 of the wires between S and R and for each pair of messages m,m′ ∈M,

SD
(
πviewA (m,S,R), πviewA (m′, S,R)

)
≤ εs,

where πviewA (m,S,R) denotes the distribution corresponding to the view of A in the execution
of the protocol π(m,S,R), which includes the messages sent through at most t−1 wires between
S and R.

Further, communication cost of the message transmission protocol is the total number of bits that
the sender S sends per wire.

We now define a leakage resilient message transmission protocol with respect to some leakage
family F , which captures all the information that the adversary gets.

Definition 9 (Leakage Resilient Message Transmission). A (t, n, εs)-secure message transmission
protocol π(., S,R) is said to be a (t, n, εs, εl)-leakage resilient message transmission protocol against
a leakage family F , if for all functions f ∈ F and for any pair of messages m,m′ ∈M,

SD
(
f(πview(m,S,R)), f(πview(m′, S,R))

)
≤ εl,

where πview(m,S,R) denotes the complete view (i.e., all messages sent) in the execution π(m,S,R),
of the protocol. Hence, f(πview(m,S,R)) represents the complete view of the adversary, with respect
to the leakage model allowed by F .

We now describe our leakage model.

Joint and Adaptive Leakage Model. We allow the adversary Aleak to first, get an arbitrary
bounded leakage from at most n − t + 1 wires, jointly and adaptively and then see the messages
sent through the remaining t − 1 fresh wires (on which leakage queries were not made) in clear,
exactly like our LRSS leakage model (section 4.5), JX,ψ,τ . Clearly, this model is stronger than
the standard statistical privacy in definition 8. We denote this leakage family by F leakt,τ . Formally,

this model is defined by taking the joint and adaptive leakage model JX,ψ,τ of our LRSS scheme,
for the t-threshold access structure, and replacing the role of the shares share1, · · · , sharen in the
queries in JX,ψ,τ with the messages πview(m,S,R) = m1, · · · ,mn, composing the complete view of
the protocol π(m,S,R).
We now give a construction of a leakage resilient message transmission protocol against the joint
adaptive leakage model F leakt,τ .
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D.1.1 Construction:

Let (LRShare(t,n), LRRec(t,n)) be a (t, n, εs, εl)-LRSS against JX,ψ,τ (from section 4.5). We run
the message transmission protocol π(m,S,R) as follows: the Sender S with message m, generates
the shares (share1, · · · , sharen) ← LRShare(t,n)(m) and sends sharei through the wire i, for each
i ∈ [n]. The receiver R has all shares and can choose any subset T = {i1, · · · , it} ⊆ [n] to get
m← LRRec(t,n)(sharei1 , · · · , shareit).

Theorem 6. Let n ∈ N, t ∈ [n] and M be the message space. If (LRShare(t,n), LRRec(t,n)) is a

(t, n, εs, εl)-LRSS against JX,ψ,τ (for messages in M) with rate O(1), then the protocol π(., S,R)
described above is a (t, n, εs, εl)-leakage resilient message transmission protocol against F leakt,τ with
a communication cost of O(log2(|M|)) per wire.

Proof. Correctness. The correctness follows directly from the correctness of the LRSS scheme.

Leakage Resilience. As the privacy is subsumed by leakage resilience, it suffices to prove leak-
age resilience. Now, observe that for any f ∈ F leakt,τ and any m ∈ M, f(πview(m,S,R)) ≡
f(share1, · · · , sharen) (where, (share1, · · · , sharen) ← LRShare(t,n)(m)). Moreover, by the de-

scription of the leakage model, f ∈ JX,ψ,τ . Hence, by the leakage resilience of the underlying
secret sharing scheme, it directly follows that for any pair of messages m,m′ ∈ M and for all
f ∈ F leakt,τ , SD

(
f(πview(m,S,R)), f(πview(m′, S,R))

)
≤ εl.

Communication Cost. By theorem 3, taking X to be constant and n = Θ(t), we get a constant-
rate LRSS, and hence the LRSS shares are each of size O(log2(|M|)). Thus, we get the desired
communication for our message transmission protocol.

D.2 Leakage Resilient Non-malleable Message Transmission

The communication model is exactly as described above in section D: the sender S and receiver
R are connected by n wires and S wishes to transmit some message m ∈ M to R. For the
non-malleability of the protocol π(m,S,R), we consider an active adversary A, who can first get
a leakage on some bounded number of wires, which then get destroyed and then A can tamper
the messages sent through the remaining wires to R. Then, non-malleability guarantees that the
modified message m′ recovered by R is either the actual message m or is completely “unrelated” to
and independent of m. We first describe our adversarial model, which gives both leakage resilience
and non-malleability and then formalize the notion of non-malleable message transmission (similar
to [22], but for our model).

Leakage Resilient Tampering Model. We allow the adversary Atamper to first get an arbitrary
bounded leakage from at most n− t− 2 wires, jointly and adaptively (i.e., queries can be combined
leakage on non-overlapping subsets of wires, of size upto n − t − 2, made adaptively). Let L be
the set of all wires on which the leakage queries were made. The messages on the wires in L are
destructed and not delivered to the receiver. Now, Atamper can tamper the messages sent through
the remaining wires arbitrarily, but independent of each other and also mention a subset of size t
that the receiver must use to recover the message23. Finally, the receiver recovers a modified message

23We consider a setting where the receiver requires only t messages to recover the message and here, we allow the
adversary to even pick that set. Note that t ∈ [n] and in particular if t = n, no leakage can be received in our model
(but all can be tampered), as all messages are required by the receiver to recover the message.
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m′ from the t messages mentioned by the adversary. Formally, we capture this model by F tampert,τ ,

which is defined exactly like the leakage-resilient tampering family Fn−t−2,τ
tamper of our LRNMSS scheme

(section C.1), with the only difference that here, the queries are made (by Atamper) on the messages
πview(m,S,R) = (m1, · · · ,mn), composing of the complete view of the protocol π(m,S,R) (instead
of the shares share1, · · · , sharen, of m in the description of Fn−t−2,τ

tamper ). Hence, F tampert,τ consists of
functions of the form (G,L, {fi}i∈[n]\L, I), where G is the leakage function (capturing the leakage
model described above), L consists of the total set of wires on which leakage queries were made, I
is the function that takes all the leakage responses and outputs the set T (|T | = t) of wires which
the receiver must use to recover the message and fi’s are the tampering functions used to modify
the messages sent through these remaining wires.
We now define leakage-resilient non-malleable message transmission.

Definition 10 (Leakage Resilient Non-malleable Message Transmission). A (t, n, εs)-secure mes-
sage transmission protocol π(., S,R) is said to be εnm-leakage resilient non-malleable against the
corruption model F tampert,τ (described above) if for each (G,L, {fi}i∈[n]\L, I) ∈ F tampert,τ , there exists

a distribution SimG,L,{fi}i∈[n]\L,I over M∪ {same∗,⊥} such that, for all m ∈M,

SD
(
Tamper

G,L,{fi}i∈[n]\L,I
m , Copy(SimG,L,{fi}i∈[n]\L,I ,m)

)
≤ εnm,

where Tamper
G,L,{fi}i∈[n]\L,I
m is defined as

Tamper
G,L,{fi}i∈[n]\L,I
m =



(m1, · · · ,mn)← π(m,S,R)

Leak = G({mi}i∈L)

T = I(Leak)

∀i ∈ [N ]\L, m̃i = fi(mi, Leak)

∀i ∈ L, set m̃i = ⊥
m̃← R({m̃i}i∈T )

Output : Leak, m̃


and Copy(SimG,L,{fi}i∈[n]\L,I ,m) is defined as

Copy(SimG,L,{fi}i∈[n]\L,I ,m) =


(Leak, m̃) ← SimG,L,{fi}i∈[n]\L,I

Output : (Leak,m) if m̃ = same∗

(Leak, m̃) otherwise


Further, SimG,L,{fi}i∈[n]\L,I should be efficiently samplable given oracle access to the functions G,L, {fi}i∈[n]\L, I.

We now show how to get a leakage resilient non-malleable message transmission protocol.

D.2.1 Construction:

We consider the same construction of the message transmission protocol as for the leakage resilient
case (section D.1.1), with the only difference that we use the (t, n, εs, εnm)-LRNMSS, (Share,Rec)
against Fn−t−2,τ

tamper (from section C.4) to generate the shares (share1, · · · , sharen) ← Share(m) (in-
stead of the LRSS).
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Theorem 7. Let n ∈ N, t ∈ [n] and M be the message space. If (Share,Rec) is a (t, n, εs, εnm)-
LRNMSS against Fn−t−2,τ

tamper (for messages in M) with rate O(1), then the protocol π(., S,R) de-
scribed above is a (t, n, εs, εnm)-leakage resilient non-malleable message transmission protocol against
F tampert,τ with a communication cost of O(log2(|M|)) per wire.

Proof. Correctness. The correctness directly follows from the correctness of the LRNMSS scheme.

Statistical Privacy. The statistical privacy directly follows from the statistical privacy of the un-
derlying LRNMSS.

Leakage Resilient Non-malleability. For any (G,L, {fi}i∈[n]\L, I) ∈ F tampert,τ and for any m ∈
M, clearly Tamper

G,L,{fi}i∈[n]\L,I
m is identical to the tampering distribution of the underlying LRN-

MSS (as (G,L, {fi}i∈[n]\L, I) ∈ Fn−t−2,τ
tamper ). Hence, by the non-malleablity of the LRNMSS, there ex-

ists a distribution SimG,L,{fi}i∈[n]\L,I such that for allm ∈M, SD
(
Tamper

G,L,{fi}i∈[n]\L,I
m , Copy(SimG,L,{fi}i∈[n]\L,I ,m)

)
≤

εnm.

Communication Cost. By corollary 1, our LRNMSS scheme can be instantiated to have rate
O(1), and hence the LRNMSS shares are each of size O(log2(|M|)). Thus, we get the desired
communication for our message transmission protocol.
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