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Abstract. We present a novel three-party sorting protocol secure against passive adversaries in the
honest majority setting. The protocol can be easily combined with other secure protocols which work on
shared data, and thus enable different data analysis tasks, such as data deduplication, set intersection,
and computing percentiles.
The new sorting protocol is based on radix sort. It is asymptotically better compared to previous sorting
protocols since it does not need to shuffle the entire length of the items after each comparison step. We
further improve the concrete efficiency by using not only optimizations but also novel protocols, which
are independent of interest.
We implemented our sorting protocol with those optimizations and protocols. Our experiments show
that our implementation is concretely fast. For example, sorting one million 20-bit items takes 4.6
seconds in 1G connection. It enables a new set of applications on large-scale datasets since the known
implementations handle thousands of items about 10 seconds.
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1 Introduction

Sorting is a basic building block for many data analysis tasks such as private set intersection between many
parties, join and equi-join, or data deduplication. We present an extremely efficient secure protocol for sorting
data that is shared between three parties. Our new protocol is based on radix sort. It can be easily composed
with circuits or other protocols on shared data which can implement arbitrary pre-sorting and post-sorting
computations on the data, in order to compute more advanced functionalities that depend on sorting as a
building block.

In order to describe and compare the asymptotic communication complexity of secure sorting, let us use
the following notation: Let m be the number of items. We assume each item to be a (key, value) pair, where
` is the bit-length of the key (which is used for ordering the items in the sorting algorithm), and `′ is the
bit-length of the value associated with the item.

Our new sorting protocol has a better asymptotic communication complexity than that of previous
protocols for the same task — a sorting protocol based on the Sharemind system [27], oblivious quicksort [18],
and secure sorting using a Batcher sorting network. (All protocols are run between three parties which share
the data.) The different communication complexities are described in Table 1.

We further improve the concrete efficiency by using not only optimizations but also novel protocols:
multiplication for Shamir’s scheme, resharing, and shuffling protocols. These protocols are fundamental and
independent of interest. Those optimizations and novel protocols significantly improve efficiency by reducing
roughly 85% of communication.

We then implement our sorting protocol with the optimization techniques and novel protocols. We demon-
strate in Section 6.2 that our implementation is, concretely, substantially efficient. For example, sorting one
million keys of length ` = 20 bits, our implementation takes 1.2 and 4.6 seconds in 10G and 1G connec-
tions. It enables a new set of applications on large-scale datasets, such as a multiset operation on 10 million



items, since the known best implementation [17] can handle only thousands of items within 10 seconds. We
demonstrate it to implement data deduplication protocol by using sorting protocol. The protocol elminates
duplicated items from one million 20-bit items within 1.4 and 5.3 seconds in 10G and 1G connections.

Table 1. Asymptotic Communication of secure sorting protocols.

Protocol Communication (bits)

Ours O(`m logm+ `′m)

Sharemind system [27, 6] O(`m logm+ `2m+ ``′m)

Quicksort [18] O(`m logm+ `′m logm)

Batcher sorting network O(`m log2 m+ `′m log2 m)

1.1 Sorting for MPC

Sorting is a basic building for many data analysis tasks. We present a sorting protocol in a setting of three
servers, and data that is shared between these servers. This building block enables much greater flexibility
compared to previous solutions to data analysis problem.

As an example for a data analysis task, consider the private set intersection problem (PSI) and its
variants (see, e.g. [29] and references within). Previous solutions for this problem were mostly in the two-
party setting, between two parties that have access to their own private input sets. Most of these solutions
consisted of protocols that were specific for PSI, and were not easily composable with other secure protocols.
For example, it is hard to use these protocols to compute the maximum of the values which appear in the
intersection.

There are a few protocols that compute PSI using a circuit (e.g. [20, 30]). Such circuit-based protocols
can be easily used to compose the result of the intersection with another computation which computes a
function of the intersection. Existing circuit-based protocols have an overhead which is greater than that of
specific PSI protocols. There are also a few protocols for PSI in the multi-party setting (with more than two
parties) [23, 5]. See [25] and references within.

A sorting protocol enables to easily compute the intersection of n inputs sets (by sorting the union of the
input sets and then looking in the sorted union for n consecutive items which are equal to each other [20]).
A sorting protocol on shared data solves many of the issues associated with previous PSI protocols: Many
parties (data owners) can share their data between three servers, which then run the secure computation.
This communication pattern is very appealing for data owners since they do not need to communicate
with (or even be aware of) other data owners. Furthermore, since sorting is computed using a circuit, it
is easy to compose different functions on top of the result of the sorting algorithm. We describe here
different examples of tasks which can efficiently and securely be computed with this new building block:

Threshold multi-party PSI Assume that many parties have private sets of data and wish to compute the
intersection of these sets. Furthermore, assume that they wish to compute a relaxed version of the intersection
functionality, which identifies each item which appears in at least 75% of the sets. This computation can be
relevant for example for sharing cyber threat information between different companies, which collaborate in
order to achieve better security through their combined knowledge: As the simplest example assume that
the companies wish to identify if the same Indicator of Compromise – IOC (for example, a suspicious IP
address) was observed by many of the companies.

Sorting enables an easy solution to computing this functionality: Suppose that there are n companies.
Each company separately shares its data between the servers. The servers compute a circuit which first
sorts all inputs, and then scans the list of sorted values looking for an item that appears in at least 0.75n
consecutive locations. (This final scan is done in linear time.)
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Data deduplication A specific example of threshold multi-party PSI is data deduplication: Many parties
submit data sets that might contain duplicate items, and the goal is to compute a set which contains a
single copy of each item which appeared in the input sets. This computation is useful for cleaning data from
duplicates before further analyzing it. It was also suggested in the iDash 2017 privacy challenge, in a context
where many hospitals have private lists of patients, and it is needed to find patients which are registered in
more than one hospital.3

Computing percentiles Assume that there are multiple employers, and each of them has a database of
contractors with their salaries. The total number m of contractors is known. The goal is to output the salaries
at the 10%, 20%,. . .,90% percentiles. Sorting enables to securely implement this computation by sorting the
salary of each contractor, and the output is the values at locations 0.1m, 0.2m, . . ..

1.2 Sorting

We review previous work on secure protocols for sorting in Section 1.5. In short, secure sorting can be
implemented using sorting networks, such as Batcher’s merge sort [4] with a complexity of O(m log2m)
comparisons with a small constant factor. (Huang et al. [19] used a Bitonic merger network for sorting two
sets for computing their intersection). Secure sorting can also be implemented using data-oblivious sorting
algorithms, in which the control flow of the algorithm is independent of the input. For example, using the
randomized Shellsort algorithm [15] was suggested by Goodrich. Hamada et al. [18] described a secure sorting
algorithm that first randomly shuffled the data, and then applied quicksort to the shuffled data. The control
flow of quicksort is data dependent, but since it is applied to a random permutation of the data it does not
leak any information.

Bogdanov et al. proposed a secure sorting protocol which is based on radix sort and is the most similar to
our protocol [6]. That protocol repeatedly sorts the items according to the successive bits of the keys starting
from the least significant bit. For each bit, the parties compute a (shared) permutation which represents how
to sort items based on that bit, and then permute the items according to this permutation.

The sorting protocol that we present, on the other hand, does not need to permute the full values in
each of the bit-sorting steps of the protocol. Instead, it uses a new protocol component that computes the
composition of shared permutations, in order to compose the permutations that sort by each of the key bits.
As a result, the protocol only permutes the items once, instead of ` times in [8]. This significantly improves
the performance since the bulk of the communication was previously used to permute the items according
to each bit.

1.3 Contributions

Our contribution is a new sorting protocol based on radix sort and its optimized implementation. Our
protocol and implementation have the following advantages compared to previous works on secure sorting
of shared data.

– Low communication complexity. The asymptotic communication complexity of our sorting protocol is
O(`m logm + m`′) bits, which improves the communication of all previous protocols (as described in
Table 1).

– Novel fundamental protocols. Novel multiplication for Shamir’s scheme, resharing, and shuffling protocols
are proposed to improve concrete efficiency. These protocols are independent of interest since they can
be used for another protocol. Combining dedicated optimizations for the sorting protocol, we reduce
roughly 85% of communication.

3 Track 1: De-duplication for Global Alliance for Genomics and Health (GA4GH), http://www.humangenomeprivacy.
org/2017/competition-tasks.html
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– Concretely efficient implementation. We implemented our sorting protocol with the novel protocols and
optimizations. Our implementation showed that, within 20 seconds, we can sort one million 60-bit items
in 1G and 10G connections and 10, 000 items even in Internet simulation (50Mbps and 20ms roundtrip
latency), while known implementations [6, 18] takes 10 seconds to handle a thousand items in 1G con-
nection.

Therefore, our implementation enables a new set of applications on datasets whose sizes were before
beyond the reach of secure sorting protocols. We demonstrate it to implement sorting-based data dedu-
plication protocol. In our experiment, we showed that it is possible to eliminate the duplication in one
million 20-bit items within several seconds in both 10G and 1G connections.

– Stable sort. Our protocol implements stable sort, meaning that two items with the same key are always
ordered according to their initial position. Stable sort reorders a vector of values in a reproducible fashion.
Previous sorting protocols based on quicksort are unstable [18].

1.4 Goal

Our goal in this paper is to provide an implementation of efficient secure sorting protocol on shared data
to enable sorting-based applications on large-scale datasets in practice. This is why we improve not only
asymptotic complexity but also concrete efficiency through optimizations. To sort large-scale data, our most
important measure is the throughput with respect to the number of items. Furthermore, the input and output
of the protocol must be shared between the servers, so that the protocol can serve as a building block of a
general secure computation framework. For example, the protocol is expected to PSI which are the results
of secure computation, and the output of the protocol might be input to other secure protocols.

1.5 Related Work

Efficient sorting for MPC can be implemented based on sorting networks. Ajtai et al. proposed an asymp-
totically optimal sorting network known as the AKS sorting network, which has a complexity of O(m logm)
comparisons, where m is the number of input items [1]. However, this algorithm is not practical since its con-
stant factor is very large. By contrast, Batcher’s merge sort [4] has a complexity of O(m log2m) comparisons
with a small constant, and is more efficient for any reasonable input size.

Recently, data-oblivious sorting algorithms have been studied with the aim of using them in MPC schemes.
We say that an algorithm is data-oblivious if the control flow of the algorithm is independent of the input.
Similar to sorting networks, data-oblivious sorts are also efficiently applied to MPC protocols. Goodrich
proposed a data-oblivious sort called randomized Shellsort [15]. Although randomized Shellsort returns a
wrong output with low probability, it exhibits a complexity of O(m) rounds and O(m logm) comparisons.

Quicksort is very efficient in practice, but the control flow of this algorithm is data dependent and therefore
might leak information about the inputs, even if the comparisons themselves are implemented using a secure
algorithm. Hamada et al. [18] describe a secure sorting algorithm that first randomly shuffles the data, and
then applies quicksort to the shuffled data. Therefore, since quicksort is applied to a random permutation
of the data, the control flow of the algorithm is independent of the original order of the inputs and is easily
simulatable.

Zhang proposed several data-oblivious sorting algorithms [32]. Zhang’s bead-sort and counting-sort clev-
erly compute the sorted list of items without comparisons. They convert the input key values into an aggre-
gated form and then reveal the keys in a sorted form. These algorithms require O(Rm) comparisons, where
R represents the range of input values. However, these algorithms can handle only keys. That is, all the
values to be sorted must be treated as keys. Zhang also proposed an algorithm with O(m2) comparisons,
which can also handle key indexed data. Hamada et al. proposed a method for converting sorting algorithms
into corresponding sorting protocols [18]. Their quicksort protocol exhibits O(logm) rounds and O(m logm)
comparisons on average. However, O(logm) communication overhead is required to resolve the case in which
the input values include duplications.
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Jónsson et al. studied a general method to hide the number of input values for sorting protocols [23].
Goodrich and Mitzenmacher proposed a method to extend internal-memory sorting algorithms to external-
memory sort [16].

As for implementations, Jónsson et al. [23] implemented Batcher’s merge sort and other sorting protocols
on the Sharemind MPC system [7]. Their implementation is optimized by using a technique called vectoriza-
tion, and the vectorized Batcher’s merge sort sorts 16, 384 secret-shared values in 197 seconds. Hamada et
al. [18] implemented their quicksort protocol using a (2, 3)-Shamir’s secret-sharing scheme with a corruption
tolerance of 1 [31]. It sorts 1 million 32-bit word secret-shared values in 1, 227 seconds. Thus, the sorting
operation in MPC schemes is still expensive, and improving efficiency is an important issue to address.

2 Preliminaries

We describe here the notations and definitions used in this paper, and fundamental protocols used in our
protocol.

Let a := b denote that a is defined by b, a||b denote the concatenation of a and b, and G , R, F , Z, and
Z2 be a group, a ring, a field, the set of integers, and Z/2Z, respectively. If a is an `-bit element, a(i) denotes
the i-th bit of a, where we count the indices in the right-to-left order with 1 being the initial index, i.e.,
a := a(`)|| · · · ||a(1). If A is a probabilistic algorithm, a← A(b) means a is an output of A on input b. If A is
a set, |A| denotes the required bits to represent an element in A.

2.1 Setting and security model

We assume a setting of three servers, of which at most one server might be passively corrupt. This is the
same setting and security model as in [3].

We consider secret-sharing (SS)-based three-party computation secure against a single static corruption:
There are three parties P1, P2, P3, a secret is shared among these parties via SS, any two parties can recon-
struct the secret from their shares, and an adversary corrupts up to a single party at the beginning of the
protocol.

For notational simplicity, when we use an index to denote the i-th party, i − 1 and i + 1 refer to the
previous and subsequent party. There are three parties so we define the party following P3 as P1. For example,
Pi+1 means P3 if i = 2, Pi+1 means P1 if i = 3, and Pi−1 means P3 if i = 1.

We consider the client/server model. This model is used to outsource secure computation, where any
number of clients send shares of their inputs to the servers. Therefore, both the input and output of the
servers are shares, and both of our protocols are therefore share-input and share-output protocols.

Regarding adversarial behavior, we consider a passive (semi-honest) adversary: In passive security, cor-
rupted parties follow the protocol but might try to obtain private information from the transcripts of messages
that they receive. Formally, we say that a protocol is passively secure if there is a simulator that simulates
the view of the corrupted parties from the inputs and outputs of the protocol [14].

We prove the security of our protocols in a hybrid model, where parties run a protocol with real messages
and also have access to a trusted party computing a subfunctionality for them. When the subfunctionality
is g, we say that the protocol works in the g-hybrid model.

2.2 Secret sharing

We use linear SS in two rings: one is an arbitrary ring R (for which we denote a share x as [x]), whereas the
other is another ring R′ that is sufficiently large to contain an order of items (for which we denote a share
x as [[x]]). The input of our protocols consists of shares in R but some shares are converted into those in R′

in the internal processing.
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Linear secret sharing scheme. We use a linear SS scheme satisfying the following properties. A concrete
example is Shamir’s scheme [31] and the replicated SS scheme [22, 11].

– Share and ShareSim: On input a ∈ R, this algorithm outputs shares of a. This algorithm is denoted by
[a] ← Share(a), where [a]i denotes Pi’s share, and [a] denotes a tuple of all shares, ([a]1, [a]2, [a]3). Let
[−→a ] (resp. [−→a ]i) denote a vector of shares ([a1], . . . , [am]) (resp. ([a1]i, . . . , [am]i)). In addition, there is
an algorithm ([a]i+1, [a]i−1) ← ShareSim([a]i, a), which computes the other shares from a single share
and the secret.

– Reveal: Revealing is the protocol that on input a pair of shares, outputs a secret. For simplicity, we
consider a simple revealing in which each Pi sends [a]i to Pi+1 and then reconstructs a from [a]i and
[a]i−1.

– Local operations: Given shares [a], [b], and a scalar α ∈ R the parties can generate shares of [a+ b], [αa],
[α+ a], and [−a] using only local operations. The notations [a] + [b], α[a], α+ [a], and −[a] denote those
local operations, respectively.

– LocalAdditive: This is an algorithm that on input [a]i and [a]i+1 for Pi and Pi+1, respectively, Pi and
Pi+1 individually generates βi and βi+1 such that a = βi + βi+1.

– Reshare: This is a protocol that “re-randomizes” a share by two parties. The protocol is denoted by
[a]← Reshare([a]i, [a]i+1). Given a share [a]i for Pi and [a]i+1 for Pi+1, this protocol guarantees that at
the end of the execution, each party Pi has a renewed share [a]i for i ∈ {1, 2, 3}, where [a]i−1 is uniformly
random for Pi−1. A näıve resharing protocol is that Pi and Pi+1 generate βi and βi+1 via LocalAdditive,
and secret-share them. The parties then add their shares to obtain a renewed share.

We specifically use the notation [[·]]i (resp. [[·]]) for a share in a restricted ring R′. Informally, R′ should
satisfy that |R′| > logm, where m is the number of rows to be sorted. The above properties of a linear SS
also hold for [[·]].

Shamir’s scheme In the three-party case, a secret a ∈ F lies on a polynomial f(x) := a+rx, where r ← F ,
and each share is a coordinate of the polynomial. If [·] is a share of the Shamir’s scheme, for any pair of parties
(Pi, Pi+1), there exists the Lagrange coefficients (λ

(i,i+1)
i , λ

(i,i+1)
i ) such that a = λ

(i,i+1)
i [a]i + λ

(i,i+1)
i [a]i+1. We

will describe λ(i,i+1)
i as λi if it is obvious.

Replicated secret sharing scheme A replicated SS scheme [11, 22] is an SS scheme in a group. Let ◦ be a
group operation. In the three-party case, a secret π ∈ G is divided into three sub-shares as π = π1 ◦ π2 ◦ π3,
and Pi has (πi, πi+1). Here, a single party Pi cannot obtain any information about π since Pi does not know
πi−1. In this paper, we use two groups for the replicated SS scheme. We use the notation 〈·〉i (resp. 〈·〉) for
a share of Z2, and 〈〈 · 〉〉i (resp. 〈〈 · 〉〉) for a share of a permutation.

Pseudorandom secret sharing It is well known that the parties can generate shares of a random number
without interaction. This is called pseudorandom secret sharing (PRSS) [11]. In PRSS, each pair of parties
preliminary shares a key, i.e., Pi share key i with Pi−1 and key i+1 with Pi+1. When the parties compute
shares of a random number α, each party Pi computes a pseudorandom function with their keys as αi :=
Funckeyi

(ctr) and αi+1 := Funckeyi+1
(ctr) for some onetime counter ctr, and regard (αi, αi+1) as the share

of a random number. Formally, PRSS securely computes the following functionality Frand.

FUNCTIONALITY 2.1 (Frand – Generate shares of a random value)

When Frand is invoked by Pi for 1 ≤ i ≤ 3, Frand randomly chooses α, α1, α2 ← G , chooses α3 satisfying
α = α1 ◦ α2 ◦ α3, and sends (αi, αi+1) to Pi.
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2.3 Permutation

The permutation

σ =

(
1 2 · · · m

σ(1) σ(2) · · · σ(m)

)
reorders (1, 2, . . . ,m) into (σ(1), σ(2), . . . , σ(m)). For example, if σ(1) = 3, σ(2) = 4, σ(3) = 2, and σ(4) = 1,
an input (A,B,C,D) is reordered into (C,D,B,A) by σ.

For notational simplicity, σ · −→a denotes applying σ to −→a = (a1, . . . , am), and the output is (a′1, . . . , a
′
m)

such that a′i = aσ(i). Similar to that, [[σ · −→a ]] denotes that each Pi applies σ to [[−→a ]]i = ([[a1]]i, . . . , [[am]]i),
and obtains ([[a′1]]i, . . . , [[a

′
m]]i) such that a′j = aσ(j). [σ · −→a ] also denotes the same operation. Note that the

application operation is right-associative. That is, π · σ · −→a = π · (σ · −→a ) holds.

It is known that permutations form a non-abelian group. Therefore, one can compose two permutations,
σ and π, as

σ ◦ π =

(
1 2 · · · m

σ(π(1)) σ(π(2)) · · · σ(π(m))

)
,

and there exists the inverse for any permutation. In fact, it holds that

σ−1 =

(
σ(1) σ(2) · · · σ(m)

1 2 · · · m

)
.

Here, to compute σ−1 · −→a , σ(i) can be regarded as the destination of i, i.e., the i-th item is moved by σ−1

to be the σ(i)-th item. Therefore, if σ(1) = 3, σ(2) = 4, σ(3) = 2, and σ(4) = 1, an input (A,B,C,D) is
reordered into (D,C,A,B) by σ−1.

In the context of secure computation, there are several representations to secretly share a permutation
σ among the parties. In this paper, we use two representations: share-vector and replicated representations.
The share-vector representation of σ, denoted by [[−→σ ]], is

[[−→σ ]] = ([[σ(1)]], . . . , [[σ(m)]]),

where each party Pi has [[−→σ ]]i := ([[σ(1)]]i, . . . , [[σ(m)]]i) and the parties can obtain σ by reconstructing
(σ(1), . . . , σ(m)). Alternatively, the replicated representation of π, denoted by 〈〈π 〉〉, shares π via replicated
SS in the following way: π is shared as π = π1 ◦ π2 ◦ π3 for random permutations π1 and π2, and Pi has
〈〈π 〉〉i := (πi, πi+1). Frand can generate 〈〈π 〉〉 for a random permutation π since this is in fact shares of a
random number in the replicated SS. In both representations, a permutation can be reconstructed by two
parties while a single corrupted party cannot obtain information about the permutation.

We show two observations that are useful to see the correctness of our protocols.

Observation 2.2 Let π and ρ be permutations of order n. Let −→v be a vector of length n. Then ρ · (π · −→v ) =
(π ◦ ρ) · −→v .

Proof. Let −→x = π · −→v and −→y = ρ · −→x = ρ · (π · −→v ). By the definition, xi = vπ(i) and yi = xρ(i) = vπ(ρ(i)) =
v(π◦ρ)(i) for 1 ≤ i ≤ n. Therefore, by the definition of application, we have −→y = (π ◦ ρ) · −→v . Consequently,
we have ρ · (π · −→v ) = (π ◦ ρ) · −→v .

Observation 2.3 Let ρ, σ and π be permutations of order n. Let −→ρ = (ρ(1), . . . , ρ(n)) and −→σ = (σ(1), . . . , σ(n)).
If −→ρ = π · −→σ then ρ = σ ◦ π.

Proof. By the definition of application and −→ρ = π ·−→σ , we have ρi = σπ(i) for 1 ≤ i ≤ n. By the definitions of
−→ρ and −→σ , we have ρi = ρ(i) and σi = σ(i) for 1 ≤ i ≤ n. Therefore ρ(i) = ρi = σπ(i) = σ(π(i)) = (σ ◦ π)(i)
holds. Thus, we have ρ = σ ◦ π.
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3 Component protocols

In this section we specify the fundamental protocols used as the components of our new sorting protocol.
Note that if the input of a protocol is shares of a (general) linear SS scheme ([·]) then the protocol also
accepts shares of a linear SS ([[·]]) and the replicated SS scheme in Z2 (〈·〉).

3.1 Multiplication

This is a (passively secure) protocol that on input [a] and [b] outputs [ab]. The functionality of the multi-
plication protocol appears in Functionality 3.1. There are known protocol that securely compute Fmult [13,
12].

FUNCTIONALITY 3.1 (Fmult – Multiplication)

Upon receiving ([a], [b]) from Pi for 1 ≤ i ≤ 3, Fmult reconstructs (a, b), computes c = ab, obtain shares
[c]← Share(c), and sends [c]i to Pi.

3.2 Bit decomposition and modulus conversion

The bit-decomposition protocol decomposes a shared secret from shares of an integer to shares of its bits.
We use a bit-decomposition protocol that on an input consisting of shares of a linear SS, [a], outputs shares
of the replicated SS in Z2, (〈a(1)〉, . . . 〈a(`)〉), where a = a(`)|| · · · ||a(1). We give the functionality of the
bit-decomposition protocol in Functionality 3.2. If the ring R of a linear SS is Zp for a prime number p, a
protocol that securely computes Fbitdecomp appears in [24].

The modulus-conversion protocol changes the underlying group or ring while maintaining the secret. We
use a specific case of a modulus-conversion protocol in which shares in Z2 are converted into shares in R′.
We give the functionality of the modulus-conversion protocol in Functionality 3.3. A protocol that securely
computes Fmodconv appears in [24].

FUNCTIONALITY 3.2 (Fbitdecomp
[·],〈·〉 – Bit decomposition)

Upon receiving [a], Fbitdecomp reconstructs a, generates shares 〈〈 a(1) 〉〉, . . . , 〈〈 a(`) 〉〉, and sends
〈a(1)〉i, . . . , 〈a

(`)〉i to Pi

FUNCTIONALITY 3.3 (Fmodconv
〈·〉,[[·]] – Modulus conversion)

Upon receiving 〈a〉, Fmodconv reconstructs a, generates shares [[a]] whose shares are in R′, and sends [[a]]i
to Pi

3.3 Shuffling and Unshuffling

We describe in Algorithm 1 the shuffling protocol proposed by Laur et al. [28]. The protocol is defined with
the shuffling permutation given as an input (which will be equal to a random permutation), rather than
generated in the protocol. This is because we apply the same (unknown) permutation to multiple vectors.
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The parties prepare before the protocol a random permutation 〈〈π 〉〉 by using Frand, where π = π1◦π2◦π3
and Pi has (πi, πi+1). In the shuffling protocol, on inputs [−→a ] and 〈〈π 〉〉, any pair of parties, Pi and Pi+1,
applies the permutation πi+1 to their shares, [−→a ]i and [−→a ]i+1, and then reshares all the shares for 1 ≤ i ≤ 3.
As a result, the parties obtain [π3 · π2 · π1 · −→a ] = [π · −→a ]. Each party cannot know π since the shares are
reshared in each step of applying πi.

Algorithm 1 Shuffling protocol

Notation: [−→a ′]← Shuffle(〈〈π 〉〉; [−→a ]).
Input: A secret-shared vector [−→a ] and permutation 〈〈π 〉〉.
Output: The secret-shared shuffled vector [−→a ′] = [π · −→a ].
1: Let 〈〈π 〉〉i = (πi, πi+1).
2: for i = 1 to 3 do
3: Pi−1 and Pi compute [

−→
a′ ]i−1 := [πi · −→a ]i−1 and [

−→
a′ ]i := [πi · −→a ]i, respectively.

4: [
−→
a′ ]← Reshare([

−→
a′ ]i−1, [

−→
a′ ]i).

5: The parties set [−→a ] := [
−→
a′ ].

6: return [−→a ].

Laud [26] extended Shuffle to support unshuffle, which applies the reverse of the random permutation
to a given vector. We describe the unshuffling protocol in Algorithm 2.

Algorithm 2 Unshuffling protocol

Notation: [−→a ′]← Unshuffle(〈〈π 〉〉; [−→a ]).
Input: A secret-shared vector [−→a ] and permutation 〈〈π 〉〉
Output: The secret-shared shuffled vector [−→a ′] = [π−1 · −→a ].
1: Let 〈〈π 〉〉i = (πi, πi+1).
2: for i = 3 to 1 (in the descent order) do

3: Pi−1 and Pi compute [
−→
a′ ]i−1 := [π−1

i · −→a ]i−1 and [
−→
a′ ]i := [π−1

i · −→a ]i, respectively.

4: [
−→
a′ ]← Reshare([

−→
a′ ]i−1, [

−→
a′ ]i).

5: The parties set [−→a ] := [
−→
a′ ].

6: return [−→a ].

4 The Secure Sorting protocol

4.1 Setting

The input to the sorting protocol consists of shares of a key and of a value. Without loss of generality, we
assume that each item consists of a single key and a single value. Denote the bit-length of the key as `, the

bit-length of the value as `′, and let [
−→
k ] and [−→v ] denote the key and value columns of the input. Here, [−→v ]

can be the same as [
−→
k ].

The sorting protocol implements a stable sort: it rearranges the order of the items based on the keys,
and maintains the relative order of items that have equal keys. In other words, the protocol outputs [−→v ′] =
([v′1], . . . , [v′m]) satisfying the following condition. Let σ be the permutation that satisfies −→v ′ = σ · −→v , and
−→
k ′ := σ ·

−→
k . It holds that ki ≤ ki+1, and if ki = kj , then σ−1(i) < σ−1(j) only when i < j.

9



4.2 Asymptotic improvement over previous work

Bogdanov et al. proposed a sorting protocol [6] which is based on radix sort. We describe the protocol in
Section 4.3. In a nutshell, that protocol works by repeatedly sorting the items, where in each step the items
are ordered according to a bit of the keys, starting from the least significant bit. For each bit, the parties learn
shares of a permutation that sorts the values according to that bit, and then run a protocol which permutes
the shared items using that shared permutation. (This protocol requires composing the permutation with a
random shuffle permutation and then opening the result.) Note that for each bit it is required to permute
and shuffle all items in their full length (including the key and the value).

Our protocol, on the other hand, uses a new protocol component that computes the composition of shared
permutations. This enables us to compute the composition of the permutations which sort according to each
bit of the keys. Consequently, there is no need to permute the full values in the bit-sorting steps of the
protocol, but rather only the keys. As a result, we need much less communication (since these permutations
constitute the bulk of the communication), and achieve much better performance.

4.3 Existing secure stable sort from radix sort

The protocol of Bogdanov et al. [6] (implicitly) uses two component protocols: GenBitPerm and ApplyInv.

GenBitPerm, described in Algorithm 3, is a protocol that computes the inverse of the permutation of
a stable sort for a single bit. We say that this protocol outputs the inverse since it computes the destinations
for the input vector. For example, if an input is [[−→a ]] = ([[1]], [[1]], [[0]]), the output of GenBitPerm is [[−→ρ ]] =
([[2]], [[3]], [[1]]), and the values satisfy (0, 1, 1) = ρ−1 · −→a .

Intuitively, GenBitPerm proceeds as follows. If an input is [[−→a ]] = ([[1]], [[1]], [[0]]), the parties compute

f
(0)
i and f

(1)
i , which represent whether or not the i-th secret is 0 and 1, respectively. By concatenating

them, the parties obtain [[
−→
f ]] := ([[0]], [[0]], [[1]], [[1]], [[1]], [[0]]), where the former three elements are the flags

f
(0)
i . For example, the second element of the input is 1 so the second and fifth elements of [[

−→
f ]] are 0

and 1, respectively. The parties then count the concatenated flags from the initial element and obtain

[[−→s ]] := ([[0]], [[0]], [[1]], [[2]], [[3]], [[3]]). By multiplying [[
−→
f ]] with [[−→s ]], we obtain [[

−→
t ]] := ([[0]], [[0]], [[1]], [[2]], [[3]], [[0]]),

where the non-zero values are destinations of corresponding shares. The parties finally obtain the destination
of i-th element of the input by adding the i-th and (i+ 3)-th elements of [[

−→
t ]].

Algorithm 3 Generating permutation of stable sort for a single bit

Notation: [[−→ρ ]]← GenBitPerm([[
−→
k ]]).

Input: Secret-shared bit-wise keys [[
−→
k ]], where

−→
k = (k1, . . . , km) and ki ∈ {0, 1} for 1 ≤ i ≤ m.

Output: The secret-shared permutation [[−→ρ ]] such that ρ−1 is the stable sorting by
−→
k .

1: for 1 ≤ i ≤ m do
2: [[f

(0)
i ]] := 1− [[ki]].

3: [[f
(1)
i ]] := [[ki]].

4: [[s]] := [[0]].
5: for j = 0 to 1 do
6: for i = 1 to m do
7: [[s]] := [[s]] + [[f

(j)
i ]].

8: [[s
(j)
i ]] := [[s]].

9: for 1 ≤ i ≤ m do
10: The parties send ([[f

(0)
i ]], [[s

(0)
i ]]) and ([[f

(1)
i ]], [[s

(1)
i ]]) to Fmult, and receive [[t0]] and [[t1]].

11: [[ρ(i)]] := [[t0]] + [[t1]].
12: return [[−→ρ ]] = ([[ρ(1)]], . . . , [[ρ(m)]]).

10



The size of the ring R′ for a linear SS [[·]] at least dlogme since s ≤ m. Therefore, the communication
complexity of GenBitPerm is O(m logm) bits if we regard the complexity of an instance of Fmult as
O(logm).

ApplyInv, described in Algorithm 4, is a protocol that applies the inverse of a shared permutation to
a shared-vector representation. To simplify the description, Algorithm 4 assumes that the input is a single
vector (if one wants to apply ρ−1 to multiple vectors, the parties shuffle the vectors in Step 2, and apply

(ρ′′)−1 to each vector in Step 5). Intuitively speaking, if −→ρ is revealed, the parties can apply ρ−1 to [
−→
k ] in

the clear. However, we cannot do that since −→ρ discloses the permuted order of
−→
k . Therefore, the parties

first shuffle [
−→
k ] and [[−→ρ ]] by using the same permutation, and reveal a shuffled −→ρ . Even though [

−→
k ] and [[−→ρ ]]

are shuffled, the revealed values are the destinations of the corresponding items of [
−→
k ], and the parties can

therefore compute [ρ−1 ·
−→
k ]. Regarding security, an adversary can only obtain a shuffled −→ρ , i.e., ρ ◦π, which

is just a random permutation.

Algorithm 4 Applying the inverse of a share-vector permutation

Notation: [[
−→
k ′]]← ApplyInv([[−→ρ ]]; [

−→
k ]).

Input: A secret-shared permutation [[−→ρ ]] and a secret-shared vector [
−→
k ] = ([k1], . . . , [km]).

Output: The secret-shared vector [[k′]] such that
−→
k ′ = ρ−1 ·

−→
k .

1: The parties call Frand and receive 〈〈π 〉〉.
2: [[−→ρ ′′]]← Shuffle(〈〈π 〉〉; [[−→ρ ]]).
3: The parties reveal [[−→ρ ′′]] and obtain ρ′′.

4: [
−→
k ′′]← Shuffle(〈〈π 〉〉; [

−→
k ]).

5: The parties apply (ρ′′)−1 with [
−→
k ′′] and obtain [

−→
k ′].

6: return [
−→
k ′].

The sorting protocol in [6] uses GenBitPerm and ApplyInv. It assumes that a key is shared in a bit-wise

fashion, i.e., ([[
−→
k (1)]], . . . , [[

−→
k (`)]]) where [[

−→
k (j)]] = ([[k

(j)
1 ]], . . . , [[k

(j)
m ]]) and ki = k

(`)
i || · · · ||k

(1)
i for 1 ≤ i ≤ m

and 1 ≤ j ≤ `. Informally, the secure sorting protocol based on the radix sort in [6] is as follows:

For 1 ≤ j ≤ `,

1. The parties obtain the stable sort [[−→ρj ]] of the j-th bit by using GenBitPerm with input [[
−→
k (j)]].

2. The parties apply ρ−1j to the value and the remaining bits of the key, [[
−→
k (j+1)]], . . . , [[

−→
k (`)]], and [[−→v ]], by

using ApplyInv.4

3. The parties go back to (1) with j := j + 1.

The communication complexity of this protocol is O(`m(logm+ `+ `′)) bits since in Step 2 the parties
reshare all the elements, and this requires communication of O(m(logm+`+`′)) bits in each step (of sorting
by one of the bits). Although this protocol securely computes a radix sort, Bogdanov et al. empirically
concluded that this protocol was less efficient than other secure sorting protocols, such as a secure quicksort
[6].

4.4 Our sorting protocol

We point out that (2) of the sorting protocol of [6] (applying ρ−1j to all items) incurs a large amount of
communication. We avoid this step in our protocol by separating the generation of the permutation from
sorting the items, and instead computing a composition of the relevant permutations.

4 In [6] the protocol is described as sorting only the key, rather than a key and an associated value.
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In our protocol the parties have a “current” permutation [[−→σj ]] which is the composition of the permutations
as σj := ρj ◦ · · · ◦ ρ1.5 In other words, (the inverse of) σj sorts the lower significant j bits. When the parties
obtain [[−→ρ j+1]], they compose it with the current temporary permutation to obtain [[−−→σj+1]] := [[−−−−−−→ρj+1 ◦ σj ]].
After the parties compute the stable sort of all bits of the key, they apply (the inverse of) σ to the items.
Consequently, in the j-th iteration it is not required to apply ρ−1j to the values of the items and to the most
significant `− j bits of the keys. This reduces the communication complexity significantly.

Composition of permutations We describe how to compose [[−→σ ]] and [[−→ρ ]] by using Shuffle and
Unshuffle. We can compose two permutations that are shared by the share-vector representation as de-
scribed in Algorithm 5. One can confirm the completeness as

σ′ = ρ′ ◦ π−1 = (ρ ◦ σ′′) ◦ π−1 = ρ ◦ (σ ◦ π) ◦ π−1 = ρ ◦ σ.

Algorithm 5 Composition of two share-vector permutations

Notation: [[
−→
σ′ ]]← Compose([[−→σ ]], [[−→ρ ]]).

Input: Secret-shared two permutations ([[−→σ ]], [[−→ρ ]]).

Output: The secret-shared permutation [[
−→
σ′ ]], where σ′−1 = σ−1 ◦ ρ−1.

1: The parties call Frand and obtain 〈〈π 〉〉.
2: [[−→σ ′′]]← Shuffle(〈〈π 〉〉; [[−→σ ]]).
3: The parties reveal [[−→σ ′′]] and obtain σ′′.

4: The parties apply σ′′ to [[−→ρ ]] and obtain [[
−→
ρ′ ]].

5: [[−→σ ′]]← Unshuffle(〈〈π 〉〉; [[−→ρ ′]]).
6: return [[−→σ ′]].

Generating the permutation of stable sort We describe in Algorithm 6 how to obtain the permutation
of stable sort. The input of this protocol is shares of integers in a linear SS scheme, and we therefore convert
them into shares of another linear SS scheme in a sufficiently large ring, i.e., |R′| > dlogme, by using
Fbitdecomp and Fmodconv.

Each permutation [[−→σ j ]] is a temporary permutation whose inverse sorts the least significant j bits. To

obtain [[−→σ j ]] from [[
−→
k (j)]] and [[−→σ j−1]], the parties compute σ−1j−1 ·

−→
k (j) (that is, the j-th bit of the keys

reordered by the permutation that sorts the least significant j − 1 bits), compute ρj , and compose σj−1 and

ρj to obtain σj . Note that since GenBitPerm outputs the destination of the items, σ−1 ·
−→
k is the sorted

vector.

Putting it all together To sort the values [−→v ] with the keys [
−→
k ], the parties compute the permutation

of the stable sort by using Algorithm 6 as [[−→σ ]] ← GenPerm([
−→
k ]), and then compute the sorted values by

using Algorithm 4 as [−→v ′]← ApplyInv([[−→σ ]]; [−→v ]).

Note, by using similar technique, we can “unsort” a vector of shares, which restores the original order of
a vector from the sorted vector. This “unsorting” may be useful for some applications using sorting, and the
protocol appears in Appendix B.

5 GenBitPerm outputs [[−→ρ i]] such that ρ−1
i is the stable sort of the i-th bit. Therefore, the stable sort of the all

bits, σ−1
j , satisfies σ−1

j := ρ−1
1 ◦ · · · ◦ ρ

−1
j , which is the same as σj := ρj ◦ · · · ◦ ρ1.
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Algorithm 6 Generating permutation of stable sort

Notation: [[−→σ ]]← GenPerm([
−→
k ]).

Input: Secret-shared keys [
−→
k ] = ([k1], . . . , [km]).

Output: The secret-shared permutation [[−→σ ]] such that σ−1 is the stable sorting of
−→
k .

1: If [
−→
k ] is not shares of the linear SS scheme in R′, the parties call Fbitdecomp and Fmodconv, and obtain bit-wise

shares in R′: ([[
−→
k (1)]], . . . , [[

−→
k (`)]]).

2: [[−→ρ 1]]← GenBitPerm([[
−→
k (1)]]).

3: [[−→σ 1]] := [[−→ρ 1]].
4: for j = 2 to ` do

5: [[
−→
k ′(j)]]← ApplyInv([[−→σ j−1]]; [[

−→
k (j)]]).

6: [[−→ρ j ]]← GenBitPerm([[
−→
k ′(j)]]).

7: [[−→σ j ]]← Compose([[−→σ j−1]], [[−→ρ j ]]).
8: return [[−→σ `]].

4.5 Communication complexity

We examine the communication complexity (in bits) of our sorting protocol. To obtain the exact numbers,
we assume that Shamir’s scheme is the underlying SS scheme of [·] and [[·]],6 Fmult is instantiated by [13],
Fbitdecomp and Fmodconv are instanciated by [24], and Frand requires no communication by using PRSS.
We count the sum of communicated bits of all the parties since several protocols, such as Reshare, is
asymmetric protocol and it is hard to count that per party. For example, if each party sends |R′| bits to
another, the communication complexity is 3 |R′|. For simplicity, we say “m Shuffle for [[·]]” if the parties
invoke Shuffle m times with (a vector of) shares in R′.

The communication complexities of GenPerm to the key and ApplyInv to the value are as follows. The
complexities of several steps are reduced to components protocols.

– GenPerm:
1. The bit-decomposition [24] of [

−→
k ] (an m-length vector of `-bit key shares): 3(5`+ 2)m bits commu-

nication.
2. The modulus-conversion [24] of the decomposed shares: 3(1 + |R′|)m bits.
3. GenBitPerm: 2m Fmult.
4. `− 1 invocations of:
• ApplyInv: Two Shuffle and m revealing.
• GenBitPerm: 2m Fmult.
• Compose: single Shuffle, single Shuffle, and m revealing.

– ApplyInv to the value: single Shuffle for 〈〈π 〉〉, single Shuffle for the value shares, and m revealing.

In addition, the complexities of component protocols are as follows.

– Multiplication protocol [13]: 6 |R′| bits.
– Reveal: 3 |R′| bits.
– Reshare: 4 |R′| bits.
– Shuffle and Unshuffle for [[·]]: 12m |R′| bits.
– Shuffle of for `′-bit shares, i.e., the value shares: 12m`′ bits.

Therefore, the total communication complexity is

3(5`+ 2)m+ 3(1 + |R′|)m+ 18m |R′|
+(`− 1) ((24 + 3)m |R′|+ 12m |R′|+ (24 + 3)m |R′|) + 12m |R′|+ 12m`′

= m ((66`− 33) |R′|+ 15`+ 12`′ + 9) .

6 Although recent results of high-throughput secure computation [3, 2, 10] used the replicated SS scheme, we chose
Shamir’s scheme. This is because efficient bit-decomposition and modulus-conversion protocols are known for
Shamir’s scheme, and small share-size is preferable to manage a large amount of data.
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This is regarded as O(`m logm+m`′) by setting |R′| = O(logm). Note that the size of the database itself is
already m(`+ `′) bits, and therefore the communication of our protocol is close to optimal, especially when
the length of the keys ` is much smaller than the size of the values `′. This communication complexity is
asymptotically better than that of all the previous protocols, as depicted in Table 1.

4.6 Security

In order to prove security, we first define the functionality of stable sorting. Our sorting protocol supports
three functionalities: It can generate the permutation of a stable sort, and can sort a vector of shares
by applying this permutation. Therefore, we define the functionality to support these two functions. The
functionality Fsort is defined in Functionality 4.1. Algorithms GenPerm and ApplyInv correspond to
GenPerm and Sort of Functionality 4.1.

Therefore, we claim the following theorem.

FUNCTIONALITY 4.1 (Fsort – Stable sorting)

GenPerm: Upon receiving (GenPerm, [
−→
k ] = ([k1], . . . , [km])), Fsort reconstructs

−→
k , computes σ such

that k′j ≤ k′j+1 for
−→
k′ = σ−1 ·

−→
k , and σ(j) < σ(j′) if kj = kj′ and j < j′, generates [[−→σ ]], and sends

[[−→σ ]]i to Pi.
Sort: Upon receiving (Sort, [[−→σ ]], [−→v ] = ([v1], . . . , [vm])), Fsort reconstructs −→v and σ, computes −→v ′ :=
σ−1 · −→v , generates [−→v ′], and sends [−→v ′]i to Pi.

Theorem 4.2. (GenPerm, ApplyInv) securely compute Fsort in the (Frand,Fbitdecomp,Fmodconv)-hybrid
model against a single corruption by a passive adversary.

Proof. Algorithms GenPerm and ApplyInv use smaller algorithms as components. Three of these compo-
nent algorithms, GenBitPerm, ApplyInv, and Shuffle, have already been proved in [28, 6] to be secure
against a single corruption by a passive adversary, and the simulator can simulate the views of these proto-
cols. The only remaining algorithm which is used in the constructions is Compose. Therefore, in order to
fully simulate the view of our new we discuss here the security of Compose.

Note that the only step in Compose which does not use an existing algorithm which was already proved
is Step 3, where the parties reveal the permutation σ′′. Without loss of generality, we assume that P1 is
corrupted. Then all steps except for Step 3 can be simulated in a straightforward way. In step 3, the simulator
generates a random permutation σ̃′′, and simulates the received value, [[−→σ ′′]]3, by using ShareSim: The

simulator computes (·, ˜[[σ′′(i)]]3) ← ShareSim([[σ(i)]]1, σ̃
′′(i)) for 1 ≤ i ≤ m, where ˜[[σ′′(i)]]3 is the simulated

value. Here, σ′′ is a random permutation due to shuffling, and therefore the distributions of σ̃′′(i) and ˜[[σ′′(i)]]3
are identical to those in the real execution.

5 Improve concrete efficiency

In this section, we propose efficient multiplication, resharing, and shuffling protocols, and optimization tech-
niques to improve concrete efficiency of our sorting protocol. These protocols are not only useful for the
sorting protocol but also other protocols since they are fundamental protocols. Due to space limitation, the
functionalities of those appear in Appendix F. In this section, we use ShareSim and LocalAdditive of a linear
SS scheme.
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5.1 Novel protocols

Optimized multiplication and sum-of-product for Shamir’s scheme We propose an optimized mul-
tiplication protocol in which each party sends a single element to another per multiplication in Frand-hybrid
model. If an input is shares in R′, the communication complexity, 3 |R′|, is a half of the one of the original
protocol [13], 6 |R′|, and the same as the one of multiplication protocols for the replicated SS scheme [3, 21,
10].

The optimized multiplication protocol appears in Algorithm 7. This protocol is the same as the original
one except the step of secret-sharing β̂i. Instead of generating shares honestly, each Pi sets [β̂i]i+1 := αi+1,
where αi+1 is a random value from Frand and common in Pi and Pi+1.

Algorithm 7 Optimized multiplication protocol for Shamir’s scheme

Notation: [c]← OptMult([a], [b]).
Input: Two secret-shared values ([a], [b]).
Output: A secret-shared value ([c]), where c = ab.

1: Each Pi for 1 ≤ i ≤ 3 computes β̂i := λ̂i[a]i[b]i, where λ̂i are Lagrange coefficients satisfying ab =
∑3

i=1 λ̂i[a]i[b]i.
2: The parties call Frand and receive (αi, αi+1) for Pi.
3: for i = 1 to 3 (in parallel) do

4: Pi and Pi+1 set [β̂i]i+1 := αi+1.

5: Pi computes ([β̂i]i, [β̂i]i−1)← ShareSim(β̂i, [β̂i]i+1).

6: Pi sends [β̂i]i−1 to Pi−1.

7: [c] := [β̂1] + [β̂2] + [β̂3].
8: return [c].

Theorem 5.1. Algorithm 7 securely computes Fmult in the Frand-hybrid model against a single corruption
by a passive adversary.

Proof. Without loss of generality, assume an adversary corrupts Pi∗ . In the protocol, Pi∗ receives [β̂i∗+1]i∗

only. The simulator randomly picks (α̃1, α̃2, α̃3) to simulate Frand, computes [β̂i∗ ]i∗ and [β̂i∗−1]i∗ by following

the protocol, and computes the simulated value as [ci]− [β̂i∗ ]i∗ − [β̂i∗−1]i∗ .

The multiplication protocol can be extended to a sum-of-product protocol that on input ([a1], . . . , [am])
and ([b1], . . . , [bm]) outputs [c], where c =

∑m
j=1 aibi [9]. The functionality Fproduct and the sum-of-product

protocol, OptProduct, appears in Appendix A. The communication and round complexities are the same
as the multiplication protocol.

Optimized resharing We propose an optimized resharing protocol whose communication complexity is
2 |R′|. It is a half of the näıve resharing protocol in Section 2.2.

The optimized resharing protocol appears in Algorithm 8. Here, an input of the optimized resharing
protocol is not [a]i and [a]i+1 but βi and βi+1, where a = βi + βi+1. We change the input syntax to later
combine it with the optimized shuffling protocol. The parties invoke LocalAdditive before OptReshare to
obtain a resharing protocol with an ordinary input.

Theorem 5.2. Algorithm 8 securely computes Freshare in the Frand-hybrid model against a single corruption
by a passive adversary.

Proof. [βi]i+1 and [βi+1]i are generated by ShareSim, where on of the input of ShareSim is a random ele-
ment. Therefore, those elements are uniformly random and the simulator chooses random elements for the
simulation.
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Algorithm 8 Optimized resharing protocol

Notation: [a]← OptReshare(βi, βi+1).
Input: βi and βi+1 for Pi and Pi+1, respectively, where a = βi + βi+1.
Output: A (re-randomized) secret-shared value [a].
1: The parties call Frand and receive (αi, αi+1) for Pi.
2: Pi−1 and Pi set [βi]i−1 := αi, and Pi+1 and Pi−1 set [βi+1]i−1 := αi−1.
3: Pi computes ([βi]i, [βi]i+1)← ShareSim(βi, [βi]i−1).
4: Pi+1 computes ([βi+1]i+1, [βi+1]i)← ShareSim(βi+1, [βi+1]i−1).
5: Pi and Pi+1 send [βi]i+1 and [βi+1]i to each other.
6: The parties compute [a] := [βi] + [βi+1].
7: return [a].

Optimized shuffling The shuffling protocol (Alg. 1) invokes the resharing protocol three times. Therefore,
even if we use the optimized resharing protocol, the communication complexity is 6m |R′|. We show the
optimized shuffling protocol in Algorithm 9 whose communication complexity is 4m |R′| bits.

Recall that the shuffling protocol repeatedly permutes shares by πi three times. The idea is that P1 knows
π2 and π1 that used for the first and second shuffling steps, and the randomness used in resharing also can
be obtained via Frand beforehand. Therefore, P1 can permute −→a using π2 and π1 at once.

Algorithm 9 Optimized shuffling protocol

Notation: [−→a ′]← OptShuffle(〈〈π 〉〉; [−→a ])
Input: A secret-shared vector [−→a ] and a permutation 〈〈π 〉〉.
Output: The secret-shared shuffled vector [−→a ′] = [π−→a ].
1: Let 〈〈π 〉〉i = (πi, πi+1).
2: The parties call Frand m times and obtain (−→α i,

−→α i+1) for Pi.

3: P1 and P3 compute
−→
β 1 and

−→
β 3 from [−→a ]1 and [−→a ]3, respectively, via LocalAdditive.

4: P3 computes −→γ := π1 ·
−→
β 3 +−→α 1 and sends it to P2.

5: P1 computes
−→
δ := π2 · (π1 ·

−→
β 1 −−→α 1)−−→α 2 and sends it to P3.

6: P2 computes
−→
β ′2 := π3 · (π2 · −→γ +−→α 2).

7: P3 computes
−→
β ′3 := π3 ·

−→
δ .

8: [−→a ′]← OptReshare(
−→
β ′2,
−→
β ′3)

9: return [−→a ′]

First, let us confirm completeness. Regarding
−→
β′2 and

−→
β′3,

−→
β ′2 = π3 · (π2 · −→γ +−→α 2) = π3 · (π2 · (π1 ·

−→
β 3 +−→α 1) +−→α 2)

= π3 · π2 · π1 ·
−→
β 3 + π3 · π2 · −→α 1 + π3 · −→α 2

and

−→
β ′3 = π3 ·

−→
δ = π3 · (π2 · (π1 ·

−→
β 1 −−→α 1)−−→α 2)

= π3 · π2 · π1 ·
−→
β 1 − π3 · π2 · −→α 1 − π3 · −→α 2.

Therefore,
−→
β ′2 +

−→
β ′3 = π3 · π2 · π1(

−→
β 1 +

−→
β 3) = π · −→a .

It means that the optimized resharing protocol accepts
−→
β ′2 for P2 and

−→
β ′3 for P3 as an input.

Theorem 5.3. Algorithm 9 securely computes Fshuffle in the Frand-hybrid model against a single corruption
by a passive adversary.
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Proof. The all values that Pi receives in the protocol is masked by −→α i−1, which is uniformly random for Pi.

Therefore, the simulator can simulate −→γ and
−→
δ .

Optimized unshuffling By changing the order of parties, we have the optimized unshuffling protocol,
OptUnshuffle. Due to space limitation, the protocol appears in Appendix C.

Shuffling with reveal We observe that in the step 2-3 of ApplyInv and Compose (Alg. 4 and 5) the output
of shuffling is to be revealed. The communication complexity of a sequential invocation of the (optimized)
shuffling and reveal protocols is 4m |R′|+ 3m |R′| bits. We can reduce that into 4m |R′| bits by combining
the shuffling and reveal protocols.

The shuffling with reveal protocol appears in Algorithm 10. We can confirm completeness as

−→
a′ = π3 · π2 · (−→γ +

−→
δ ) = π3 · π2 · (π1 ·

−→
β 3 +−→α 1 + π1 ·

−→
β 1 −−→α 1) = π3 · π2 · π1 · (

−→
β 3 +

−→
β 1) = π · −→a .

Theorem 5.4. Algorithm 9 securely compute FShuffleReveal in the Frand-hybrid model against a single cor-
ruption by a passive adversary.

Proof. The simulator can simulate the view of P2 by choosing random vector −̃→γ and
−̃→
δ such that −̃→γ +

−̃→
δ =

π−12 · π
−1
3 ·
−→a ′.

Algorithm 10 Combining shuffling and Reveal

Notation: −→a ′ ← ShuffleReveal(〈〈π 〉〉; [−→a ])
Input: A secret-shared vector [−→a ] and a permutation 〈〈π 〉〉.
Output: The shuffled vector −→a ′ = π−→a .
1: Let 〈〈π 〉〉i = (πi, πi+1).
2: The parties call Frand m times and obtain (−→α i,

−→α i+1) for Pi.

3: P1 and P3 compute
−→
β 1 := λ1[−→a ]1 and

−→
β 3 := λ3[−→a ]3, respectively.

4: P3 computes −→γ := π1 ·
−→
β 3 +−→α 1 and sends it to P2.

5: P1 computes
−→
δ := π1 ·

−→
β 1 −−→α 1 and sends it to P2.

6: P2 computes
−→
a′ = π3 · π2 · (−→γ +

−→
δ ) and send it to P1 and P3.

7: return
−→
a′

5.2 Optimizations

Reusing permutation in shuffling We observe that the first shuffling in Compose (Alg. 5) can be omitted
by reusing a permutation. In both steps 5 and 7 in Alg. 6, the parties receive a random permutation and
invokes shuffle with reveal. Thus, we can commonalize them: the parties skip Steps 1 to 3 in Alg. 5 by reusing
the values in Steps 1 to 3 in Alg. 4.

Regarding security, this reuse does not affect the construction of a simulator. The simulator uniformly
randomly permuted vectors of (1, . . . ,m) as a simulated value of a permutation, and it applies the permuta-

tion to [[
−→
k (j)]] and [[−→ρj ]] in the simulation.

Changing the order of modulus conversion and shuffling from second bit We reduce the commu-
nication complexity of one shuffling protocol in the step 5 of GenPerm (Alg. 6) by changing the order of
modulus conversion and shuffling protocols. This changes the communication complexity of the corresponding
shuffling protocol from 2m |R′| to 2m bits.
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In Algorithm 6, the key shares are decomposed to bit-wise shares in Z2 and converted to those in R′ at
first. These shares of 2nd and latter bits then shuffled in the step 5. Here, the shuffling protocol accepts not
only shares of [[·]] but also 〈·〉, and the communication complexity of the protocol depends on the group/ring

size of shares. Therefore, we can reduce the communication complexity by shuffling 〈
−→
k (i)〉 for 2 ≤ i ≤ `

before converting them to [[
−→
k (i)]].

Algorithm 11 Generating permutation of stable sort for multiple bits

Notation: [[−→ρ ]]← GenMultiBitSort([[
−−→
k(1)]], . . . , [[

−−→
k(L)]]).

Input: Secret-shared L vectors of keys [[
−−→
k(1)]], . . . , [[

−−→
k(L)]].

Output: Shares of the permutation [[−→ρ ]] of the stable sorting by (
−→
k (1), . . . ,

−→
k (L))

1: for j = 0 to 2L − 1 do
2: Regard j as an L-bit element j = B(L)|| · · · ||B(1).
3: for k′ = 1 to L do
4: The parties locally compute [[Dk′ ]] := [[B(k′)−→k (k′) + (1−B(k′))(1−

−→
k (k′))]].

5: The parties compute [[
−→
f (j)]] := [[

∏L
i=1 Di]] by using OptMult.

6: [[s]] := [[0]]
7: for j = 0 to 2L − 1 do
8: for i = 1 to m do
9: [[s]] := [[s]] + [[f

(j)
i ]].

10: [[s
(j)
i ]] := [[s]].

11: for 1 ≤ i ≤ m do in parallel

12: [[ρ(i)]]← OptProduct(([[f
(0)
i ]], . . . , [[f

(2L−1)
i ]]), ([[s

(0)
i ]], . . . , [[s

(2L−1)
i ]]))

13: return [[−→ρ ]] = ([[ρ(1)]], . . . , [[ρ(m)]]).

Batch processing of bitwise keys We improve both communication and round complexities of GenPerm
(Alg. 6) by processing multiple bitwise keys at a time.

In Algorithm 6, we iteratively compute a secret-shared permutation that represents the stable sort by
lower bits of the key by adding bits one by one. Roughly speaking, the number of invocations of permutation-
related protocols such as ApplyInv or Compose is reduced to 1/L by processing L bits at a time.

We extend Algorithm 3, which can only handle single bit keys, to an algorithm that can handle L-bit keys.
The extended algorithm is shown in Algorithm 11. In the extended algorithm, we compute the appearance

order of each key from 0 to 2L − 1 in order. The number of invocations of OptMult to compute [
−→
f (j)] for

0 ≤ j ≤ 2L − 1 is m(2L −L− 1) by reusing previously computed values.7 Since the sum-of-product protocol
requires the same communication cost as a single multiplication,p the total communication complexity is the
same as m(2L − L) invocations of multiplications.

Although the round complexity gets better for larger L, too large L causes worse communication com-
plexity. We rigorously evaluated the communication complexity and show that L = 3 was reasonable in
Section 5.3.

5.3 The optimized sorting protocol

We finally obtain the optimized sorting protocol (OptGenPerm,OptApplyInv,OptCompose) in Algo-

rithm 12, 13, and 14 by applying all the protocols and techniques in this section. Let ̂̀ := d `Le.

7 The parties prepare all the combinations of {
−→
k (k′)}1≤k′≤L, which costs m(2L − L − 1) multiplications. Then the

parties can obtain
∏L

i=1 Dk′ from a linear combination of the prepared combinations since Dk′′ is either Dk′ or
(1−Dk′) for any k′ and k′′.
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Algorithm 12 Optimized permutation generation of stable sort

Notation: [[−→σ ]]← OptGenPerm([
−→
k ]).

Input: Secret-shared keys [
−→
k ] = ([k1], . . . , [km]).

Output: The secret-shared permutation [[−→σ ]] such that σ−1 is the stable sorting of
−→
k .

1: If [
−→
k ] is not shares of the linear SS scheme in R′, the parties call Fbitdecomp, and obtain bit-wise shares in Z2:

(〈
−→
k (1)〉, . . . , 〈

−→
k (`)〉).

2: The parties send (〈
−→
k (1)〉, . . . , 〈

−→
k (L)〉) to Fmodconv, and receive ([[

−→
k (1)]], . . . , [[

−→
k (L)]]).

3: [[−→ρ 1]]← GenMultiBitSort([[
−→
k (1)]], . . . , [[

−→
k (L)]]).

4: [[−→σ 1]] := [[−→ρ 1]].

5: for j = 2 to ̂̀do

6:
(

[[
−→
k ′((j−1)̂̀+1)]], . . . , [[

−→
k ′(j

̂̀)]], 〈〈π 〉〉, σ′′j−1

)
← OptApplyInv

(
[[−→σ j−1]]; 〈

−→
k ((j−1)̂̀+1)〉, . . . , 〈

−→
k (j ̂̀)〉)

7: [[−→ρ j ]]← GenMultiBitSort([[
−→
k ′((j−1)̂̀+1)]], . . . , [[

−→
k ′(j

̂̀)]]).
8: [[−→σ j ]]← OptCompose([[−→σ j−1]], [[−→ρ j ]], 〈〈π 〉〉, σ′′j−1).
9: return [[−→σ ̂̀]].

Algorithm 13 Optimized inverse application of a permutation

Notation:
(

[[
−→
k ′(1)]], . . . , [[

−→
k ′(L)]], 〈〈π 〉〉, σ′′

)
← OptApplyInv

(
[[−→σ ]]; 〈

−→
k (1)〉, . . . , 〈

−→
k (L〉

)
.

Input: A secret-shared permutation [[−→σ ]] and a secret-shared vector 〈
−→
k (1)〉, . . . , 〈

−→
k (L)〉.

Output: The secret-shared vector [[
−→
k ′(1)]], . . . , [[

−→
k ′(L)]] such that

−→
k ′(i) = σ−1 ·

−→
k (i) for 1 ≤ i ≤ L, a shared permu-

tation 〈〈π 〉〉, and a s permutation σ′′ such that π · σ.
1: The parties call Frand and receive 〈〈π 〉〉.
2: −→σ ′′ ← ShuffleReveal(〈〈π 〉〉; [[−→σ ]]).
3: for 1 ≤ i ≤ L (in parallel) do

4: 〈
−→
k ′′(i)〉 ← OptShuffle(〈〈π 〉〉; 〈

−→
k (i)〉).

5: The parties send 〈
−→
k ′′(i)〉 to Fmodconv, and receive [[

−→
k (i)]].

6: The parties apply (σ′′)−1 with [[
−→
k ′′(i)]] and obtain [[

−→
k ′(i)]].

7: return
(

[[
−→
k ′(1)]], . . . , [[

−→
k ′(L)]], 〈〈π 〉〉, σ′′

)
.

Communication improvement The communication complexity of the optimized sorting protocol is as
follows.

– GenPerm:

1. The bit-decomposition and modulus-conversion protocols [24]: 3(5`+ 2)m and 3(1 + |R′|)m bits.
2. GenMultiBitSort: m(2L − L− 1) OptMult and m OptProduct.

3. ̂̀− 1 invocations of:

• OptApplyInv: single ShuffleReveal for [[·]] and L OptShuffle for 〈·〉 (the communication
of modulus-conversion has already counted in (1)).

• GenMultiBitSort: m(2L − L− 1) OptMult and m OptProduct.
• Compose: single OptUnshuffle for [[·]].

– OptApplyInv to the value: single ShuffleReveal for [[·]] and single OptShuffle for the key shares.

In addition, the communication complexity of component protocols are as follows.

– OptMult and OptProduct: 3 |R′| bits.
– OptReshare: 2 |R′| bits.
– OptShuffle, OptUnshuffle, and ShuffleReveal for [[·]]: 4m |R′| bits.
– OptShuffle for 〈·〉: 4m bits.
– OptShuffle for the key shares: 4m`′ bits.
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Algorithm 14 Optimized composition of two permutations

Notation: [[
−→
σ′ ]]← OptCompose([[−→σ ]], [[−→ρ ]], 〈〈π 〉〉, σ′′).

Input: Secret-shared two permutations ([[−→σ ]], [[−→ρ ]]).

Output: The secret-shared permutation [[
−→
σ′ ]], where σ′−1 = σ−1 ◦ ρ−1.

1: The parties apply σ′′ to [[−→ρ ]] and obtain [[
−→
ρ′ ]].

2: [[−→σ ′]]← OptUnshuffle(〈〈π 〉〉; [[−→ρ ′]]).
3: return [[−→σ ′]].

Therefore, the total communication complexity is

3(5`+ 2)m+ 3(1 + |R′|)m+ 3m(2L − L) |R′|
+(̂̀− 1)

(
4m |R′|+ 4mL+ 3m(2L − L) |R′|+ 4m |R′|

)
+ 4m |R′|+ 4m`′

= m
(

15`− 13 |R′|+ 9 + 4`′ + ̂̀(8 |R′|+ 4L+ 3(2L − L) |R′|)
)

For simplicity, assuming ̂̀= `/L, we have

m

(
15`− (13 + 3`) |R′|+ 9 + 4`′ + 4`+

`

L
(8 |R′|+ 2L3 |R′|)

)
.

Here, we determine the exact value of L. The part of the equation depending on L is 1
L (8 |R′|+32L |R′|),

and this is 4.67, 3.33, and 3.56 if L = 1, 2, 3, respectively, and larger than 4.5 when L > 3. Therefore, with
regard to the communication complexity, L = 2 and 3 are reasonable options. On the other hand, larger
L reduces the round complexity since the parties invoke OptCompose roughly 1/L times. Therefore, we
choose L = 3.

Substituting L = 3, we have

m

(
15`+ (

23

3
`− 13) |R′|+ 4`′ + 4`+ 9

)
.

Now we compare the communication complexity of the non-optimized sorting protocol,

m ((66`− 33) |R′|+ 15`+ 12`′ + 9) .

We example the communication bits with parameters ` = 20, 40, 60, |R′| = 31, 61, and `′ = 20, 200, 2000. In
any case of the above parameters, 80-88% of the communication bits are cut by the optimization.

6 Implementation and Experiment

We describe in this section the experimental measurements of our implementations of the sorting protocol.

6.1 Settings

Domain of input/output shares The input and output of our protocols are shares of Shamir’s scheme
in Zp, where p = 261 − 1.

Component protocols We used the following protocols as instantiations of the different functionalities:
pseudorandom secret sharing (PRSS) with AES was used as a PRF for Frand, Algorithm 7 and 15 were
used for Fmult and Fproduct, the bit-decomposition and modulus-conversion protocols of [24] were used for
Fbitdecomp and Fmodconv.
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Table 2. Processing times (ms) of our implementation.

Network Number of rows
Processing time (ms)

` = 20 ` = 40 ` = 60

1× 104 58 117 168

10G
1× 105 159 319 470
1× 106 1,190 2,398 3,602
1× 107 15,562 31,887 47,134

1× 104 92 187 273

1G
1× 105 490 990 1,463
1× 106 4,555 9,064 13,497
1× 107 47,714 95,472 141,658

1× 104 1,402 2,860 4,220
Internet 1× 105 6,342 12,794 19,032

simulation 1× 106 55,367 111,575 167,517
1× 107 570,208 1,144,491 1,717,884

Implementation Our implementation utilized asynchronous processing, multi-threading, pipelining of CPU
and network, and fast implementation of low level cryptographic operations such as a pseudorandom function.
We utilized the extended instructions of AES-NI, RdRand, and SSE4.

Software We implemented the protocols in C++11, on CentOS 7.2.1511, using GCC 4.8.5 and our original
cryptography library.

Hardware Each party consisted of a server with two Intel Xeon Gold 6144 3.50GHz and 768GB memory.
We prepared three networks for the experiments: as Internet simulation, 1G (Gigabit Ethernet), and 10G
(10G Ethernet). For the Internet simulation we limited the network connection by 50 Mbps with 20 ms of
roundtrip latency. Regarding network topologies, each server connects through a Gigabit L2 switch, Intel(R)
I210, for Internet simulation and 1G connection, and connects with each other directly via an Intel(R) X550T
dual port for 10G connection.

The processing times described in this section are the average time in five executions.

6.2 Experiments

We set the bit-length of the key to be ` ∈ {20, 40, 60}. The input shares are converted into bit-wise shares
in Z2 by the bit-decomposition protocol, and then converted into shares in Zp′ , where p′ = 231 − 1. In the
experiment, the parties sorted the keys themselves.

We present the experimental result of our sorting protocol for 10G, 1G, and the Internet simulation
connections in Table 2. We measured the total time to obtain the permutation via Algorithm 6 and apply
it to the key via Algorithm 4. The results demonstrate that within several seconds we can sort a million
records in 1G and 10G connections, and 100,000 records in the Internet simulation.

When the number of rows is 106 and 107, the processing time in the 10G (resp. 1G) connection is
roughly 3 (resp. 12) times faster than that in 1G (resp. Internet). These speedups of the processing times are
smaller than the bandwidth speedup. One reason is that local computations may not be negligible in terms
of processing time. For example, each party locally shuffles m elements in the Shuffle step, which causes
many random memory accesses. Another possible cause is that the execution of the Prefix-sum algorithm
since it cannot be parallelized.

6.3 Sorting-based data deduplication

We implemented the data deduplication protocol to show that we can construct an application protocol that
handles large-scale dataset by using our implementation of the sorting protocol. Suppose that m elements
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Table 3. Processing times (ms) of data deduplication.

Network Number of rows Processing time (ms)

10G
1× 106 1,391
1× 107 18,836

1G
1× 106 5,293
1× 107 55,479

are secret-shared among three parties. The data deduplication protocol proceeds as follows. First, the parties
sort the input as key and value. For each element, the parties compute a secret-shared flag that is 1 when
a corresponding element equals to the previous one and 0 otherwise. The parties reveal the sum of flags, f ,
which represents the number of replicated items. The parties then sort the (sorted) input by the flags as a
key. Here, the replicated elements are located at the last of the output since their flags are 1. Finally, the
parties discard the last f elements and obtain non-duplicated elements. We describe the precise algorithm
in Appendix E.

We experimented the protocol in 1G and 10G connection with large-scale data. The result is shown in
Table 3. The data deduplication of 106 and 107 items takes 1.4 and 19 seconds in 10G connection. It means
that the data deduplication of even one million records can be computed efficiently by using our sorting
protocol.

7 Conclusion

We proposed a novel three-party sorting protocol secure against passive adversaries in the honest majority
setting. The new sorting protocol is based on radix sort and therefore it is stable. It is asymptotically better
compared to previous sorting protocols since it does not need to shuffle the entire length of the elements
after each comparison step. We then proposed novel protocols and optimizations that reduce about 85% of
communication.

We implemented our protocol with those protocols and optimizations. Our experiments showed that
our implementation of the sorting protocol is faster by more than two orders of magnitude compared to
existing implementations. Our implementation can enable a new set of applications on datasets whose sizes
were beyond the reach of secure sorting protocols. We demonstrate it to experiment sorting-based data
deduplication protocol. As a result, our implementation did the task in one million items within two seconds
in 10G connection. It means that it is now possible to construct applications that handle millions of items.
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A Sum-of-product protocol

Several multiplication protocols [13, 12] can be extended to compute sum-of-product with no extra commu-
nication cost [9]. This functionality appears in Functionality A.1.

We show the sum-of-product protocol in Algorithm 15.

The security proof is almost the same as that of OptMult so we omit it.
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FUNCTIONALITY A.1 (Fproduct – Sum-of-product)

Upon receiving (([a1], . . . , [am]), ([b1], . . . , [bm])) from Pi for 1 ≤ i ≤ 3, Fproduct reconstructs (aj , bj) from
the inputs for 1 ≤ j ≤ m, computes c =

∑m
j=1 aibi, obtains shares [c]← Share(c), and sends [c]i to Pi.

Algorithm 15 Optimized sum-of-product protocol

Notation: [c]← OptProduct(([a1], . . . , [am]), ([b1], . . . , [bm])).
Input: Secret-shared values ([a1], . . . , [am]), ([b1], . . . , [bm]).
Output: A secret-shared value ([c]), where c =

∑m
j=1 ajbj .

1: Each Pi for 1 ≤ i ≤ 3 computes β̂j,i := λ̂i[aj ]i[bj ]i for 1 ≤ j ≤ m, where λ̂i are Lagrange coefficients, i.e.,

ab =
∑3

i=1 λ̂i[aj ]i[bj ]i.
2: The parties call Frand m times and receive (αj,i, αj,i+1) for Pi and 1 ≤ j ≤ m.
3: for i = 1 to 3 (in parallel) do

4: Pi and Pi+1 set [β̂j,i]i+1 := αj,i+1 for 1 ≤ j ≤ m.

5: Pi computes [β̂i]k :=
∑m

j=1[β̂j,i]k for 1 ≤ k ≤ 3.

6: Pi computes ([β̂i]i, [β̂i]i−1)← ShareSim(β̂i, [β̂i]i+1).

7: Pi sends [β̂i]i−1 to Pi−1.

8: [c] := [β̂1] + [β̂2] + [β̂3].
9: return [c].

B Applying a share-vector permutation

Algorithm 5 can be regarded as a protocol applying a share-vector permutation: If we replace [[−→ρ ]] with [
−→
k ],

the output is [σ ·
−→
k ], which is applying a share-vector permutation to a vector of shares. We denote this

protocol as Apply, and describe that in Algorithm 16. The completeness can be confirmed as

−→
k ′ = π−1 ·

−→
k ′′ = π−1 · (σ ◦ π) ·

−→
k = ((σ ◦ π) ◦ π−1) ·

−→
k = σ ·

−→
k .

Algorithm 16 Applying a share-vector permutation

Notation: [
−→
k ′]← Apply([[−→σ ]]; [

−→
k ]).

Input: A secret-shared permutation [[−→σ ]] and vector of shares [
−→
k ]

Output: A vector of shares [
−→
k ] such that

−→
k ′ = σ

−→
k .

1: The parties call Frand and obtain 〈〈π 〉〉.
2: [[−→σ ′′]]← Shuffle(〈〈π 〉〉; [[−→σ ]])
3: The parties reveal [[−→σ ′′]] and obtain σ′′.

4: The parties apply σ′′ with [
−→
k ] and obtain [

−→
k ′′].

5: [
−→
k ′]← Unshuffle(〈〈π 〉〉; [

−→
k ′′])

6: return [
−→
k ′].

By using Apply, we can “unsort” a vector of shares, which restores the order of a vector from the sorted
vector.

C Optimized unshuffling

We show the optimized unshuffling protocol in Algorithm 17. Similar to the optimized shuffling protocol,
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Algorithm 17 Optimized unshuffling protocol

Notation: [[−→a ′]]← OptUnshuffle(〈〈π 〉〉; [−→a ])
Input: A secret-shared vector [−→a ] and a permutation 〈〈π 〉〉.
Output: The secret-shared shuffled vector [−→a ′] = [π−1−→a ].
1: Let 〈〈π 〉〉i = (πi, πi+1).
2: The parties call Frand m times and obtain (−→α i,

−→α i+1) for Pi.

3: P2 and P3 compute
−→
β 2 and

−→
β 3 from [−→a ]2 and [−→a ]3, respectively, via LocalAdditive.

4: P3 computes −→γ := π−1
3 ·
−→
β 3 +−→α 3 and sends it to P1.

5: P2 computes
−→
δ := π−1

2 · (π−1
3 ·
−→
β 2 −−→α 3)−−→α 2 and sends it to P3.

6: P1 computes
−→
β ′1 := π−1

1 · (π−1
2 · −→γ +−→α 2).

7: P3 computes
−→
β ′3 := π−1

1 ·
−→
δ .

8: [−→a ′]← OptReshare(
−→
β ′1,
−→
β ′3).

9: return [−→a ′]

Table 4. Comparison with existing sorting protocols in 1G connection

Number of rows Processing time [ms]

Radix sort in [6]
1× 104 40,000
1× 105 400,000

Quicksort in [6]
1× 104 10,000
1× 105 150,000

1× 104 9,859
Quicksort in [18] 1× 105 93,674

1× 106 1,226,267

1× 104 273
Ours (` = 60) 1× 105 1,463

1× 106 13,497

regarding
−→
β′1 and

−→
β′3,

−→
β ′1 = π−1

1 · (π−1
2 · −→γ +−→α 2) = π−1

1 · (π−1
2 · (π−1

3 ·
−→
β 3 +−→α 3) +−→α 2)

= π−1
1 · π−1

2 · π−1
3 ·
−→
β 3 + π1 · π2 · −→α 3 + π1 · −→α 2

and
−→
β ′3 = π−1

1 ·
−→
δ = π−1

1 · (π−1
2 · (π−1

3 ·
−→
β 2 −−→α 3)−−→α 2)

= π−1
1 · π−1

2 · π−1
3 ·
−→
β 2 − π1 · π2 · −→α 3 − π1 · −→α 2.

Therefore, −→
β ′1 +

−→
β ′3 = π−11 · π

−1
2 · π

−1
3 (
−→
β 2 +

−→
β 3) = π−1 · −→a .

The security proof of OptUnshuffle is almost the same as that of OptShuffle so we omit it.

D Running times of other implementations of sorting protocol

A comparison with the existing sorting protocols is given in Table 4. The table shows running times for
sorting the keys themselves. The comparison is over a 1G connection since the existing results were tested in
that setting. As for the results of [6] and [18], it is difficult to simply compare our results with the run times
that were reported in these papers, since the experiments reported in the papers were held in 2012-2014 and
therefore used weaker machine specs.

If the number of rows is 105 or 106, our new protocol is about 100 times faster than the best reported
result. In addition, we recall that all these experiments tested sorting of records which include only the keys.
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If the records include values in addition to keys then our protocol performs even better compared to existing
protocols.

E Algorithm for data deduplication

We show the data-deduplication protocol in Algorithm 18, where Eq([a′′i ], [a′′i−1]) outputs 〈1〉 if a′′i = a′′i−1
and 〈0〉 otherwise.

Algorithm 18 Sorting-based data deduplication

Input: Secret-shared values that may have duplication [−→a ] := ([a1], . . . , [am]).
Output: Secret-shared values [−→a ′] := ([a′1], . . . , [a′m′ ]), where a′i 6= a′j for i 6= j and 1 ≤ i, j ≤ m′.
1: [[σ]]← OptGenPerm([−→a ])
2: [−→a ′′]← OptApplyInv([[σ]]; [−→a ])
3: [f1] := [0]
4: for 2 ≤ i ≤ m (in parallel) do
5: [fi]← Eq([a′′i ], [a′′i−1])

6: [[σ′]]← OptGenPerm(〈
−→
f 〉)

7: [−→a ∗]← OptApplyInv([[σ′]]; [−→a ′′])
8: Reveal f :=

∑m
i=1[fi].

9: [−→a ′] := ([a∗1], . . . , [a∗m−f ])
10: return [−→a ′].

F Functionalities

FUNCTIONALITY F.1 (Freshare – Resharing)

Upon receiving [a], Freshare reconstructs a, generates shares [a]← Share(a), and sends [a]i to Pi

FUNCTIONALITY F.2 (Fshuffle – Shuffling)

Upon receiving [−→a ] and 〈〈π 〉〉, Fshuffle reconstructs −→a and π, computes −→a ′ := π · −→a , generates shares
[−→a ′]← Share(−→a ′), and sends [−→a ′]i to Pi
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FUNCTIONALITY F.3 (Funshuffle – Unshuffling)

Upon receiving [−→a ] and 〈〈π 〉〉, Funshuffle reconstructs −→a and π, computes −→a ′ := π−1 · −→a , generates shares
[−→a ′]← Share(−→a ′), and sends [−→a ′]i to Pi

FUNCTIONALITY F.4 (FShuffleReveal – Shuffle with reveal)

Upon receiving [−→a ] and 〈〈π 〉〉, FShuffleReveal reconstructs −→a and π, computes −→a ′ := π · −→a , and sends −→a ′
to Pi
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