
This paper is included in the Proceedings of the
27th Large Installation System Administration Conference (LISA ’13).

November 3–8, 2013 • Washington, D.C., USA

ISBN 978-1-931971-05-8

Open access to the
Proceedings of the 27th Large Installation

System Administration Conference (LISA ’13)
is sponsored by USENIX.

Managing Smartphone Testbeds with SmartLab
Georgios Larkou, Constantinos Costa, Panayiotis G. Andreou, Andreas Konstantinidis,

and Demetrios Zeinalipour-Yazti, University of Cyprus

https://www.usenix.org/conference/lisa13/technical-sessions/papers/larkou

USENIX Association 	 27th Large Installation System Administration Conference  115

Managing Smartphone Testbeds with SmartLab

Georgios Larkou
Dept. of Computer Science

University of Cyprus

glarkou@cs.ucy.ac.cy

Constantinos Costa
Dept. of Computer Science

University of Cyprus

costa.c@cs.ucy.ac.cy

Panayiotis G. Andreou
Dept. of Computer Science

University of Cyprus

panic@cs.ucy.ac.cy

Andreas Konstantinidis
Dept. of Computer Science

University of Cyprus

akonstan@cs.ucy.ac.cy

Demetrios Zeinalipour-Yazti
Dept. of Computer Science

University of Cyprus

dzeina@cs.ucy.ac.cy

Abstract
The explosive number of smartphones with ever grow-

ing sensing and computing capabilities have brought a

paradigm shift to many traditional domains of the com-

puting field. Re-programming smartphones and instru-

menting them for application testing and data gathering

at scale is currently a tedious and time-consuming pro-

cess that poses significant logistical challenges. In this

paper, we make three major contributions: First, we pro-

pose a comprehensive architecture, coined SmartLab1,

for managing a cluster of both real and virtual smart-

phones that are either wired to a private cloud or con-

nected over a wireless link. Second, we propose and

describe a number of Android management optimiza-

tions (e.g., command pipelining, screen-capturing, file

management), which can be useful to the community for

building similar functionality into their systems. Third,

we conduct extensive experiments and microbenchmarks

to support our design choices providing qualitative evi-

dence on the expected performance of each module com-

prising our architecture. This paper also overviews expe-

riences of using SmartLab in a research-oriented setting

and also ongoing and future development efforts.

1 Introduction

Last year marked the beginning of the post PC era2, as

the number of smartphones exceeded for the first time

in history the number of all types of Personal Comput-

ers (PCs) combined (i.e., Notebooks, Tablets, Netbooks

and Desktops). According to IDC3, Android is projected

to dominate the future of the smartphone industry with a

share exceeding 53% of all devices shipped in 2016. Cur-

rently, an Android smartphone provides access to more

than 650,000 applications, which bring unprecedented

possibilities, knowledge and power to users.

1Available at: http://smartlab.cs.ucy.ac.cy/
2Feb. 3, 2012: Canalys, http://goo.gl/T81iE
3Jul. 6, 2012: IDC Corp., http://goo.gl/CtDAC

Re-programming smartphones and instrumenting

them for application testing and data gathering at scale

is currently a tedious, time-consuming process that poses

significant logistical challenges. To this end, we have im-

plemented and demonstrated SmartLab [21], a compre-

hensive architecture for managing a cluster of both An-

droid Real Devices (ARDs) and Android Virtual Devices

(AVDs), which are managed via an intuitive web-based

interface. Our current architecture is ideal for scenar-

ios that require fine-grained and low-level control over

real smartphones, e.g., OS, Networking, DB and stor-

age [20], security [5], peer-to-peer protocols [22], but

also for scenarios that require the engagement of physical

sensors and geo-location scenarios [38],[24]. Our pre-

liminary release has been utilized extensively in-house

for our research and teaching activities, as those will be

overviewed in Section 7.

SmartLab’s current hardware consists of over 40 An-

droid devices that are connected through a variety of

means (i.e., wired, wireless and virtual) to our private

cloud (datacenter), as illustrated in Figure 1. Through

an intuitive web-based interface, users can upload and

install Android executables on a number of devices con-

currently, capture their screen, transfer files, issue UNIX

shell commands, “feed” the devices with GPS/sensor

mockups and many other exciting features. In this

work, we present the anatomy of the SmartLab Architec-

ture, justifying our design choices via a rigorous micro-

benchmarking process. Our findings have helped us

enormously in improving the performance and robust-

ness of our testbed leading to a new release in the coming

months.

Looking at the latest trends, we observe that open

smartphone OSs, like Android, are the foundation

of emerging Personal Gadgets (PGs): eReaders (e.g.,

Barnes & Noble), Smartwatches (e.g., Motorola MO-

TOACTV), Rasberry PIs, SmartTVs and SmartHome ap-

pliances in general. SmartLab can be used to allow

users manage all of their PGs at a fine-grain granular-

116  27th Large Installation System Administration Conference	 USENIX Association

Figure 1: Subset of the SmartLab smartphone fleet

connected locally to our datacenter. More devices are

connected over the wireless and wired network.

ity (e.g., screen-capture, interactivity, filesystem). Ad-

ditionally, we anticipate that the overtake of PC sales

by Smartphone sales will soon also introduce the notion

of Beowulf-like or Hadoop-like smartphone clusters for

power-efficient computations and data analytics.

Moreover, one might easily build powerful comput-

ing testbeds out of deprecated smartphones, like Micro-

cellstores [16], as users tend to change their smartphones

more frequently than their PC. Consequently, provid-

ing a readily available PG management middleware like

SmartLab will be instrumental in facilitating these direc-

tions. Finally, SmartLab is a powerful tool for Inter-

net service providers and other authorities that require

to provide remote support for their customers as it can be

used to remotely control and maintain these devices. The

contributions of this work are summarized as follows:

i) Architecture: We present the architecture behind

SmartLab, a first-of-a-kind open smartphone pro-

gramming cloud that enables fine-grained control

over both ARDs and AVDs via an intuitive web-

based interface;
ii) Microbenchmarks: We carry out an extensive ar-

ray of microbenchmarks in order to justify our im-

plementation choices. Our conclusions can be in-

strumental in building more robust Android smart-

phone management software in the future;
iii) Experiences: We present our research experiences

from using SmartLab in four different scenarios in-

cluding: trajectory benchmarking [38], peer-to-peer

benchmarking [22], indoor localization testing [24]

and database benchmarking; and
iv) Challenges: We overview ongoing and future de-

velopments ranging from Web 2.0 extensions to

urban-scale deployment and security studies.

The rest of the paper is organized as follows: Section 2

looks at the related work, Section 3 presents our Smart-

Lab architecture, while subsequent sections focus on the

individual subsystems of this architecture: Section 4 cov-

ers power and connectivity issues, Section 5 provides a

rigorous analysis of the Android Debug Bridge (ADB)

used by our SmartLab Device Server (DS) presented in

Section 6. Section 7 summarizes our research and teach-

ing activities using SmartLab, Section 8 enumerates our

ongoing and future developments while Section 9 con-

cludes the paper.

2 Related Work

This section provides a concise overview of the related

work. SmartLab has been inspired by PlanetLab [30]

and Emulab [17], both of which have pioneered global

research networks; MoteLab [37], which has pioneered

sensor network research and Amazon Elastic Compute

Cloud (EC2). None of the aforementioned efforts fo-

cused on smartphones and thus those testbeds had fun-

damentally different architectures and desiderata. In the

following subsections, we will overview testbeds that are

related to SmartLab.

2.1 Remote Monitoring Solutions

There are currently a variety of Remote Monitoring So-

lutions (RMSs), including Nagios [26], a leading open-

source RMS for over a decade, the Akamai Query Sys-

tem [9], STORM [14] and RedAlert [34]. All of these

systems are mainly geared towards providing solutions

for web-oriented services and servers. Moreover, none

of those RMSs provide any tools related to the configu-

ration and management of smartphone clusters. Smart-

Lab focuses on providing a remote monitoring solution

specifically for a smartphone-oriented cloud.

2.2 Wireless Sensor Network Testbeds

MoteLab [37] is a Web-based sensor network testbed de-

ployed at Harvard University that has pioneered sensor

network research. CitySense [27] has been MoteLab’s

successor enabling city-scale sensor network deploy-

ments. Mobiscope [1] is a federation of distributed mo-

bile sensors into a taskable sensing system that achieves

high density sampling coverage over a wide area through

mobility. EU’s WISEBED project [11] also federated dif-

ferent types of wireless sensor networks. Microsoft has

made several attempts in building Sensor Networks with

mobile phones [18], but none of these efforts has focused

on smartphones in particular and their intrinsic character-

istics like screen capturing, interactivity and power.

2

USENIX Association 	 27th Large Installation System Administration Conference  117

2.3 Smartphone Testbeds

There are currently several commercial platforms provid-

ing remote access to real smartphones, including Sam-

sung’s Remote Test Lab [33], PerfectoMobile [29], De-

vice Anyware [19] and AT&T ARO [3]. These platforms

differ from SmartLab in the following ways: i) they are

mainly geared towards application testing scenarios on

individual smartphones; and ii) they are closed and thus,

neither provide any insights into how to efficiently build

and run smartphone applications at scale nor support the

wide range of functionality provided by SmartLab like

sensors, mockups and automation.

Sandia National Laboratories has recently developed

and launched MegaDroid [36], a 520-node PC clus-

ter worth $500K that deploys 300,000 AVD simulators.

MegaDroid’s main objective is to allow researchers to

massively simulate real users. Megadroid only focuses

on AVDs while SmartLab focuses on both ARDs and

AVDs as well as the entire management ecosystem, pro-

viding means for fine-grained and low-level interactions

with real devices of the testbed as opposed to virtual

ones.

2.4 People-centric Testbeds

There is another large category of systems that focuses

on opportunistic and participatory smartphone sensing

testbeds with real custodians, e.g., PRISM [13], Crowd-

Lab [12] and PhoneLab [4], but those are generally com-

plementary as they have different desiderata than Smart-

Lab.

Let us for instance focus on PhoneLab, which is a

participatory smartphone sensing testbed that comprises

of students and faculty at the University of Buffalo.

PhoneLab does not allow application developers to ob-

tain screen access, transfer files or debug applications,

but only enables programmers to initiate data logging

tasks in an offline manner. PhoneLab is targeted towards

data collection scenarios as opposed to fine-grained and

low-level access scenarios we support in this work, like

deployment and debugging. Additionally, PhoneLab is

more restrictive as submitted jobs need to undergo an

Institutional Review Board process, since deployed pro-

grams are executed on the devices of real custodians.

Finally, UC Berkeley’s Carat project [28] provides

collaborative energy diagnosis and recommendations for

improving the smartphone battery life from more than

half a million crowd-powered devices. SmartLab is com-

plementary to the above studies as we provide insights

and micro-benchmarking results for a variety of modules

that could be exploited by these systems.

�����������������������

�������������������������

�����
	��������
����������������������

���������������������������������������	���
����

�
�������������������������

����

����

� �� ���� ���

­����

��	��������

����	����

���

������

���	���

������

���

��

�

��

��

���

��

�

��

��

���

�����������������������

����
����

������������

���� � �� ���� ��� ���

Figure 2: The components of the SmartLab Archi-

tecture: We have implemented an array of mod-

ules wrapped around standard software to bring for-

ward a comprehensive smartphone testbed manage-

ment platform.

3 SmartLab Architecture

In this section, we overview the architecture of our

testbed starting out from the user interface and data layer

moving on to the device server layer and concluding with

the hardware layer, as illustrated in Figure 2. We con-

clude with an overview of our security measures and de-

sign principles.

3.1 User Interface and Data Layers

Interaction Modes: SmartLab implements several

modes of user interaction with connected devices (see

Figure 2, top-left layer) using either Websocket-based in-

teractions for high-rate utilities or AJAX-based interac-

tions for low-rate utilities. In particular, SmartLab sup-

ports: i) Remote File Management (RFM), an AJAX-

based terminal that allows users to push and pull files

to the devices; ii) Remote Control Terminals (RCT), a

Websocket-based remote screen terminal that mimics

touchscreen clicks and gestures but also enables users

recording automation scripts for repetitive tasks; iii) Re-

mote Debug Tools (RDT), a Websocket-based debugging

extension to the information available through the An-

droid Debug Bridge (ADB); iv) Remote Shells (RS), a

Websocket-based shell enabling a wide variety of UNIX

commands issued to the Android Linux kernels of allo-

cated devices; v) Remote Mockups (RM), a Websocket-

based mockup subsystem for feeding ARDs and AVDs

with GPS or sensor data traces encoded in XML for

trace-driven experimentation.

3

118  27th Large Installation System Administration Conference	 USENIX Association

�������������� ����������� ���������

���������
�

��
�	��� ��������

�������
�

��
����

��������

��
��� ��
������

���

���������
� ���������
� ���������
�

��
����

��������

 �
�����

��� ��� ��� ���

Figure 3: Connection Modalities supported by SmartLab. ARD-Local: Android Real Device (ARD) mounted

locally to the Device Server (DS) through USB; ARD-Remote: ARD mounted through a USB port on a gateway PC

to DS through a wired network; ARD-WiFi: ARD connected to DS through a WiFi AP; and AVD: Android Virtual

Device running on DS.

WebSockets/HTML5: In order to establish fast and reli-

able communication between the User Interface and the

underlying Device Server (DS), SmartLab has adopted

the HTML5 / WebSockets (RFC6455) standard thus

enabling bi-directional and full-duplex communication

over a single TCP socket from within the web browser.

WebSockets are preferable for high-rate HTTP interac-

tions, necessary in certain SmartLab subsystems, as op-

posed to AJAX calls that are translated into individual

HTTP requests. WebSockets comprise of two parts: i)

an HTTP handshake, during which certain application-

level protocol keys are exchanged; and ii) a data transfer

phase, during which data frames can be sent back and

forth in full-duplex mode.

Currently, there are different types of Websocket hand-

shakes implemented by web browsers (e.g., Hixie-75,

76, 00 and HyBi-00, 07 and 10). In order to support

websockets on as many browsers as possible, we have

modified an open-source plugin, the kanaka websockify

plugin4 formerly known as wsproxy, part of the noVNC

project. The given plugin takes care of the initial Web-

socket handshake from within the browser but also shifts

over to an SWF implementation (i.e., Adobe Flash), in

cases where a browser is not HTML5-compliant, en-

abling truly-compliant cross-browser compatibility.

File System: SmartLab currently utilizes a standard

ext4 local file system on the webserver. Upon user reg-

istration, we automatically and securely create a /user

directory on the webserver with a given quota. Our

filesystem is mounted with sshfs to all DS images run-

ning in our testbed, enabling in that way a unified view

of what belongs to a user. In respect to the connectiv-

ity between the filesystems of smartphones, we currently

support two different options: i) mounting the /user

4Kanaka, https://github.com/kanaka/websockify

directory on the devices with sshfs; and ii) copying data

from/to the devices through ADB. The former option is

good for performance reasons, but it is only available on

Android 4.0 ICS, which provides in-kernel support for

user-space filesystems (i.e., FUSE). On the contrary, the

latter option is more universal, as it can operate off-the-

shelf and this will be the major focus in this work.

SSHFS & MySQL: Communication between the web

server file system and the device server’s remote file sys-

tem is transparently enabled through the SSHFS proto-

col. The same protocol can also be utilized for offering

a networked file system to the smartphones, as this will

be explained later in Section 6. Finally, the web server

also hosts a conventional MySQL 5.5 database utilized

for storing data related SmartLab users, devices and re-

mote device servers.

3.2 Device Server (DS) Layer

Overview: DS is the complete Linux OS image having

the SmartLab subsystems and ADB installed, which con-

nects an ARD or AVD to our User Interface (UI). Cur-

rently, we are using CentOS 6.3 x64 with 4x2.4GHz vir-

tual CPUs, 8GB RAM, 80GB hard disk for our images.

User interface requests made through Websockets reach

DS at a Prethreaded Java TCP Server with Non-blocking

I/O and logging.

ATP: We have implemented a lightweight protocol on

top of websockets, coined ATP (ADB Tunnel Protocol)

for ease of exposition, in order to communicate DS

data to the UI and vice-versa (see Figure 2). Down-

ward ATP requests (from UI to DS) are translated into

respective calls using the ddmlib.jar library (including

AndroidDebugBridge) for file transfers, screen cap-

ture, etc., as well as monkeyrunners and chimpchat.jar

4

USENIX Association 	 27th Large Installation System Administration Conference  119

for disseminating events (e.g., UI clicks). Alternatively,

one Downward ATP request might also yield a stream of

Upward ATP responses, as this is the case in our screen

capturing subsystem (i.e., one screenshot request yields

a stream of images) presented in Section 6.2.

Device Plug-n-Play: Physically connecting and discon-

necting smartphones from DS should update the respec-

tive UI status as well. Consequently, we’ve exploited the

respective AndroidDebugBridge interface listeners,

issuing the SQL statements to our MySQL database and

updating the device status changes on our website.

DS Limitations: Currently, each DS can only support

up to 16 AVDs and theoretically up to 127 ARDs, due

to limitations in the ADB server that will be presented

in Section 5. In order to support a larger number of

connected devices with the current ADB release, we

utilize multiple-DSs on each physical host of our dat-

acenter each connecting 16 devices (ARDs or AVDs).

This design choice is inspired from cloud environments

and shared-nothing architectures deployed by big-data

testbeds providing linear scalability by linearly engaging

more resources.

DS Administration: In addition to the custom made

Java Server each DS is also equipped with Apache and

PHP. The local web server is responsible to host the

administrative tools required for maintenance purposes

similarly to routers and printers.

3.3 Hardware Layer

Hardware & OS Mix: SmartLab’s hardware comprises

both of Android Smartphones and our Datacenter. The

latter encompasses over 16TB of RAID-5 / SSD stor-

age on an IBM X3550 as well as 320GB of main mem-

ory on 5 IBM / HP multiprocessor rackables. We addi-

tionally deploy over 40 Android smartphones and tablets

from a variety of vendors (i.e., HTC, Samsung, Google,

Motorola and Nokia). The majority of our smartphones

came with pre-installed Android 2.1-2.3 (Eclair, Froyo,

Gingerbread). These devices were “rooted” (i.e., the

process of obtaining root access) and upgraded to An-

droid 4.0.4 (Ice Cream Sandwich), using a custom XDA-

Developers ROM, when their warranty expired. Notice

that warranty and rooting are claimed to be irrelevant in

Europe5.

In SmartLab, rooted devices feature more functional-

ity than non-rooted devices. Particularly, rooted devices

in SmartLab can: i) mount remote filesystems over ssh;

ii) provide a richer set of UNIX shell commands; and

iii) support a higher performance to the screen captur-

ing system by incorporating compression. Nevertheless,

5Free Software Foundation Europe, http://goo.gl/fZZQe

SmartLab has been designed from ground up for non-

rooted devices, thus even without applying the rooting

process will support all features other than those enu-

merated above.

Physical Connections: We support a variety of connec-

tion modalities (see Figure 3) that are extensively evalu-

ated in Sections 4 and 5. In particular, most of our de-

vices are connected to the server in ARD-Local mode,

utilizing USB hubs, as this is explained in Section 4.

Similarly, more smartphones are also connected from

within our research lab, in the same building, using the

ARD-Remote mode.

This mode is particularly promising for scenarios

we want to scale our testbed outside the Department

(e.g., ARD-Internet mode, where latencies span beyond

100ms), which will be investigated in the future. Finally,

a few devices within the Department are also connected

in ARD-WiFi mode, but additional devices in this mode

can be connected by users as well.

3.4 Security Measures

Security is obviously a very challenging task in an en-

vironment where high degrees of flexibility to users are

aimed to be provided. In this section, we provide a con-

cise summary of how security is provided in our current

environment.

Network & Communication: SmartLab DS-servers

and smartphones are located in a DMZ to thwart the

spread of possible security breaches from the Internet

to the intranet. Although nodes in our subnet can reach

the public Internet with no outbound traffic filtering, in-

bound traffic to smartphones is blocked by our firewall.

Interactions between the user and our Web/DS servers

are carried out over standard HTTPS/WSS (Secure Web-

sockets) channels. DS-to-Smartphone communication is

carried out over USB (wired) or alternatively over se-

cured WiFi (wireless), so we increase isolation between

users and the risk of sniffing the network.

Authentication & Traceability: Each smartphone con-

nects to the departmental WiFi using designated creden-

tials and WPA2/Enterprise. These are recorded in our

SQL database along with other logging data (e.g., IP, ses-

sion) to allow our administrators tracing users acting be-

yond the agreed “Use Policy”.

Compromise & Recovery: We apply a resetting pro-

cedure every time a user releases a device. The re-

setting procedure essentially installs a new SmartLab-

configured ROM to clear settings, data and possible mal-

ware/ROMs installed by prior users. Additionally, our

DS-resident home directory is regularly backed up to

prevent accidental deletion of files. Finally, users have

the choice to shred their SDCard-resident data.

5

120  27th Large Installation System Administration Conference	 USENIX Association

3.5 Design Methodology/Principles

SmartLab’s architecture focuses on a number of desider-

ata such as modularity, openness, scalability and ex-

pandability. Its design was developed using a “greedy”

bottom-up approach; in each layer/step, all alternative

options that were available at the time it was designed

were taken into consideration and the most efficient one

was implemented. This was primarily because the re-

search community long craved for the ability to test ap-

plications on real smartphone devices at the time Smart-

Lab was designed. Because of this, we believed that

there was no abundant time to dedicate for design-

ing a clean slate architecture, like PlanetLab [30] and

other similar testbeds. Additionally, some of the soft-

ware/hardware technologies pre-existed in the laboratory

and there was limited budget for upgrades. However,

careful consideration was taken for each design choice

to provide flexibility in accommodating the rapid evolu-

tion of smartphone hardware/software technologies.

4 Power and Connectivity

In this section, we present the bottom layer of the Smart-

Lab architecture, which was overviewed in Section 3.3,

dealing with power and connectivity issues of devices.

In particular, we will analyze separately how wireless

and wired devices are connected to our architecture us-

ing a microbenchmark that provides an insight into the

expected performance of each connection modality.

4.1 Wired Devices

SmartLab wired devices (i.e., ARD-Local and ARD-

Remote) are powered and connected through D-Link

DUB-H7 7x port USB 2.0 hubs inter-connected in a cas-

cading manner (i.e., “daisy chaining”), through standard

1.8mm USB 2.0 A-connectors rated at 1500mA. One sig-

nificant advantage of daisy chaining is that it allows over-

coming the limited number of physical USB ports on the

host connecting the smartphones, reaching theoretically

up-to 127 devices.

On the other hand, this limits data transfer rates (i.e.,

1.5 Mbps, 480 Mbps and 5 Gbps for USB 1.0, 2.0

and 3.0, respectively). D-Link DUB-H7 USB 2.0 hubs

were selected initially because they guarantee a supply

of 500mA current on every port at a reasonable price, un-

like most USB hubs available on the market. At the time

of acquisition though, we were not sure about the exact

incurred workloads and USB 3.0 hubs were not available

on the market either.

USB 3.0: SmartLab is soon to be upgraded with USB

3.0 hubs that will support higher data transfer rates than

USB 2.0. This is very important as in the experiments

of Section 6.2, we have discovered that applications re-

quiring the transfer of large files are severely hampered

by the bandwidth limitation of USB 2.0 hubs (max. 480

Mbps). We have already observed that newer hubs on the

market are offering dedicated fast-charging ports (i.e., 2x

ports at 1.2A per port and 5x standard ports at 500mA per

port) in order to support more energy demanding devices

such as tablets.

Power-Boosting: Instead of connecting 6x devices plus

1x allocated for the next hub in the chain, we have de-

cided to use 3x Y-shaped USB cables in our release. This

allows ARDs to consume energy from two USB ports

simultaneously (i.e., 2x500mA), similarly to high-speed

external disks, ensuring that the energy replenishment ra-

tio of smartphones will not become negative (i.e., battery

drain) when performing heavy load experiments such as

stress testing or benchmarks (e.g., AnTuTu) on certain

Tablets (e.g., Galaxy Tab drew up to 1.3A in our tests).

A negative replenishment ratio might introduce an erratic

behavior of the smartphone unit, failure to function, or

overloading/damaging the ports.

Power Profiling: In order to measure physical power

parameters in our experiments, we employed the Plogg

smart meter plug connected to the USB hub, which

transmits power measurements (i.e., Watts, kWh Gen-

erated, kWh Consumed, Frequency, RMS Voltage, RMS

Current, Reactive Power, VARh Generated, VARh Con-

sumed, and Phase Angle) over ZigBee to the DS. These

measurements are provided on-demand to the DS admin-

istrator through the Administrative Tools subsystem. Ad-

ditionally, we have installed a USB Voltage/Ampere me-

ter (see Figure 1 top-left showing 4.67V), offering on-site

runtime power measurements of running applications.

4.2 Wireless Devices

In our current setup, wireless devices (i.e., ARD-WiFi)

are operated by the SmartLab research team that pow-

ers the devices when discharged. Additionally, users can

connect their own device remotely and these will be pri-

vately available to them only (e.g., see Figure 14 center).

This particular feature is expected to allow us offering

a truly programmable wireless fleet in the near future,

as this is explained in Section 8. In this subsection, we

will overview the underlying logistics involved in get-

ting a wireless device connected to SmartLab over wire-

less ADB. Note that this process is automated through

the SmartLab UI. In particular, the following commands

have to be issued on rooted devices such that a smart-

phone can accept commands from the device server:

On Smartphone (rooted):

Enable ADB over wireless

#(to disable set port -1):

6

USENIX Association 	 27th Large Installation System Administration Conference  121

setprop service.adb.tcp.port 5555

stop adbd

start adbd

On PC:

adb connect <device-ip>:5555

4.3 Connectivity Microbenchmark

In order to evaluate the time-efficiency of various con-

nection modalities (i.e., wired or wireless) to our DS, we

have performed a microbenchmark using wired ARDs

(i.e., ARD-Local and ARD-Remote) and wireless ARDs

(i.e., ARD-WiFi). The wireless connectivity is handled

by a 802.11b/g/n wireless router (max. 300 Mbps) de-

ployed in the same room as the ARDs and connected di-

rectly to the DS.

Those experiments were conducted for calculating the

time needed for transferring 2.5MBs to up to 16 devices.

As we already mentioned in Section 3.2, those results

can be generalized to larger configurations by increasing

the number of DS images. In our experimentation, we

observed that ARD-WiFi features the worst time com-

pared to the other two alternatives. For example, in the

case of 16 ARDs, the time required for sending the file

reaches 12 seconds as opposed to 4.8 seconds and 1.4

seconds for ARD-Remote and ARD-Local, respectively,

as this is summarized in Table 1. One reason for this is

because the cascading USB 2.0 hubs offer much higher

transfer rate (max. 480Mbps) than the wireless router,

which never reached over 130Mbps.

Table 1: Transferring a 2.5MB file to 16 Devices

Connectivity Mode Average Time (10 trials)

ARD-Local 1.4 seconds

ARD-Remote 4.8 seconds

ARD-WiFi 12 seconds

Another observation is that ARD-Local devices out-

perform ARD-Remote devices, as the former are locally

mounted to DS, thus avoid the overhead of transferring

data via a network. Yet, ARD-Remote devices are par-

ticularly promising for scaling our testbed outside the

server room, thus are considered in this study.

5 Android Debug Bridge (ADB)

In this section, we provide an in-depth understanding of

the Android Debug Bridge (ADB), which handles the

bulk of communication between the connected smart-

phones and the Device Server (DS) (see Figure 2).

The ADB command (version 1.0.31, in this study) is

part of the platform tools (version 16.0.1, in this study),

provided by the Android development tools enabling the

��������������������� android, ddms, emulator

����������������������� monkey, monkey runner

���
������
dmtracedump, systrace,

traceview, hprof-conv

����
	�����������

����	�����

hierarchyviewer,

draw9patch, layout-opt

������������ proguard, zipalign

�	������������ mksdcard, sqllite3

�����	��������������������

��
�
��
�
�
��
�

�
��

�
��

��
�
�
��
�

/tools (as of 21.0.1)

/platform-tools (as of 16.0,1)

��

 (as (

misc

���������� adb

�
���������� shell, bmgr, logcat

�	����������� aidl, aapt, dexdump, dx misc

Figure 4: The Android Development Tools.

development, deployment and testing of applications us-

ing ARDs and AVDs. These tools are classified into two

categories (see Figure 4): i) the SDK tools, which are

platform-independent; and ii) the Platform tools, which

are customized to support the features of the latest An-

droid platform.

In the latter category, there are also some shell tools

that can be accessed through ADB, such as bmgr, which

enables interaction with the backup manager of an An-

droid device, and logcat, which provides a mecha-

nism for collecting and viewing system debug output.

Additionally, there platform tools such as aidl, aapt,

dexdump, and dx that are typically called by the An-

droid build tools or Android development tools.

5.1 Debugging Android Applications

Android applications can be developed using any

Android-compatible IDE (e.g., Eclipse, IntellijIDEA,

Android Studio) and their code is written using

the JAVA-based Android SDK. These are then con-

verted from Java Virtual Machine-compatible (.class)

files (i.e., bytecode) to Dalvik-compatible Executables

(.dex) files using the dx platform tool, shrinked and ob-

fuscated using the proguard tool and ported to the de-

vice using the adb install command of ADB. The

compact .dex format is specifically tailored for systems

that are constrained in terms of memory and processor

speed.

As illustrated in Figure 5 (right), each running appli-

cation is encapsulated in its own process and executed in

its own virtual machine (DalvikVM). Additionally, each

DalvikVM exposes a single unique port ranging from

8600-8699 to debugging processes running on both local

and remote development workstations through the ADB

7

122  27th Large Installation System Administration Conference	 USENIX Association

Development Workstation

ddms

IDE

ddms-
startup

device
monitor

VM
monitor
thread

debug
listener

debug
server

#8
7

0
0

adb

Target Device
AVD or ARD

adb daemon

Dalvik Virtual Machines

VM1 VM2

Application

Application
Framework

s
Services

Application

Application
Framework

s
Services

shell

jdwp

User

ddmlib

#5037 #8600-8699

Figure 5: Android Debug Bridge (ADB). Overview of

components involved in the debugging/deployment pro-

cess of Android applications.

daemon (adbd) shown in Figure 5 (left). The adbd is run-

ning on each target device and facilitates the connection

with server processes (i.e., stream sockets) through the

java debug wire protocol (jdwp-adb) transport protocol.

Debugging applications can be accomplished through

the Dalvik Debug Monitor Server (DDMS), or its super-

set tool Android Device Monitor. DDMS can be exe-

cuted as: i) a stand-alone application (ddms.jar); ii) ini-

tiated by the IDE; or iii) embedded to a java applica-

tion (ddmlib.jar). All communication between DDMS

and target devices is handled via ADB, which deploys

a background process on the development machine, i.e.,

the ADB server that manages communication between

the ADB client and the ADB daemon.

5.2 ADB Pipelining Microbenchmark

As mentioned in the previous section, users must con-

nect directly on ADB or through a mediator library such

as ddmlib, monkeyrunner or chimpchat both of

which connect to ADB, in order to perform any action

on a target device. However, initiating individual ADB

connections for each action introduces a significant time

overhead as it involves scanning for existing connections

or creating new connections each time.

In order to justify this, we have conducted a mi-

crobenchmark using the Android chimpchat SDK tool,

which allows amongst other functionality propagating

events (e.g., mouse clicks) to a target device. More

specifically, we generate 100 mouse click events and dis-

tribute them up to 16 ARD-Locals using two different

settings: i) a new connection is initiated for each ADB

call, denoted as No Pipelining (np); and ii) a single

 0.01

 0.1

 1

 10

 100

1 2 4 8 16

T
im

e
 (

s)

Number of Devices (n)

Evaluation of Pipelining adb Calls
 (Event Type: click, Average time for 1 click over 100 trials

 using Pipelining (p) and No Pipelining (np) calls)

No Pipelining (np)
Pipelining (p)

Figure 6: ADB Pipelining Microbenchmark. Evalu-

ating the average time for one click with pipelining and

no-pipelining. SmartLab utilizes pipelining.

persistent connection is utilized for pipelining all ADB

calls, denoted as Pipelining (p). The latter can be ac-

complished through the creation of a connection at the

start of the script and then utilizing that connection for all

propagated events. Note that the reason we have selected

mouse click events is because they are extremely light-

weight and do not introduce other time-demanding over-

heads (e.g., I/O), thus allowing us to focus on the time-

overhead incurred by each connection when pipelining

ADB calls or not.

Figure 6 shows the results of our evaluation (averaged

over 100 trials). We observe that the overhead of not

pipelining ADB calls is extremely high. In particular,

1 click on 16 AVDs using no-pipelining requires 23s,

as opposed to pipelining that only requires 0.47s (i.e.,

a 98% improvement.) Such extreme time overheads may

be a prohibiting factor for some applications, thus care-

ful consideration must be taken to ensure that applica-

tions communicate with target devices through a single

connection.

In SmartLab, we utilize a single persistent ADB

connection for each particular component (e.g., sepa-

rate ADB for Screen Capture and Shell Commands.)

Through the persistent connection, all ADB calls are

pipelined thus alleviating the aforementioned ineffi-

ciency. The above configuration offloads the issue of

concurrent ADB calls to a single device from different

components, to ADB and the OS, as a device is allocated

to only one user at-a-time (thus high concurrency pat-

terns are not an issue.)

8

USENIX Association 	 27th Large Installation System Administration Conference  123

6 Device Server (DS)

In this section, we present the middle layer of the Smart-

Lab architecture, which was overviewed in Section 3.2

and illustrated in Figure 2, dealing with device man-

agement. In particular, we will explain and evaluate

the following subsystems: Filesystem and File Manage-

ment, Screen Capture, Logging, Shell Commands and

Sensor/GPS Mockups.

6.1 File Management (RFM) Subsystem

We start out with a description of the File Management

UI and finally present some performance microbench-

marks for pushing a file and installing an application on

a device using ADB pipelining.

Remote File Management (RFM) UI: We have con-

structed an intutitive HTML5/AJAX-based web inter-

face, which enables the management of the local filesys-

tems on smartphones individually but also concurrently

(see Figure 7). In particular, our interface allows users

to perform all common file management operations in a

streamlined manner. The RFM interface starts by launch-

ing a separate window for each AVD or ARD that is

selected by the user and displays a tree-based repre-

sentation of its files and directories under the device’s

/sdcard directory. Similarly, it launches two addi-

tional frames (i.e., JQuery dialogs): i) one frame displays

the users’ “Home” directory (top-left); and ii) another

frame displays a /share directory, which is illustrated

in Figure 7 (top-center). The user is then able to move a

single file or multiple files to multiple target devices.

The File Management subsystem is also responsible

for replicating any files moved to the /share direc-

tory to each target device’s /sdcard/share directory.

Furthermore, an Update All button and a Push All button

have been placed below the /share directory in order to

support simultaneous updating or merging the /share

directory on existing and newly reserved devices. In or-

der to accomplish these operations, the RFM UI issues

separate web requests, which include: i) the target device

id (or multiple devices ids); ii) the absolute location of a

single file (or multiple files); and iii) the type of opera-

tion. Requests are transmitted using AJAX, to the device

server, which is responsible to execute the appropriate

adb push and adb pull commands to transfer files

to or from a device, respectively, all over the ATP proto-

col discussed earlier.

File-Push Microbenchmark: The time required to

transfer files from and to target devices differs signif-

icantly according to the type of device. In order to

investigate this, we have conducted a microbenchmark

that measures the time overhead for transferring files

to/from the aforementioned different types of target de-

Figure 7: Remote File Management (RFM) UI. A

share folder enables to push/pull files to devices concur-

rently. FUSE-enabled devices can feature sshfs shares.

vices. More specifically, we have utilized a 10MB file

and distributed this file to up to 16 AVDs, ARD-WiFi,

ARD-Remote and ARD-Local, respectively. The ARD-

WiFi devices were assigned to students that were moving

around our department premises in order to provide a re-

alistic mobility scenario. Each experiment was executed

10 times and we recorded the average at each attempt.

The results are shown on the left side of Figure 8,

which clearly illustrates the advantage of using ARD-

Local devices in experiments requiring large amounts of

data to be transferred to devices (e.g., large trajectory

datasets). Additionally, the results show that the disk

I/O overhead introduced by the usage of the emulated de-

vices (i.e., AVDs) justifies the linearly increasing amount

of time for transferring files on those devices. In the case

of remotely connected ARDs (ARD-Remote) the large

time delays are attributed to communicating over the net-

work. Finally, the ARD-WiFi devices feature the worst

time overhead because the file transfer is hampered by

the wireless network’s low bandwidth in mobility sce-

narios.

File-Install Microbenchmark: In order to examine the

cost of installing applications, which include transferring

the application file (.apk) and its installation, we have

conducted another microbenchmark that calculates the

required time. Similarly to the previous experimental set-

ting, we measure the time for transferring and installing

a sample application of typical 1MB size, to each type

of target devices. The results are shown on the right side

of Figure 8. We observe that transferring and installing

the selected sample application introduces an additional

time overhead. For example, in the 1x target device sce-

nario, the sample application requires a total of ≈2.2s

9

124  27th Large Installation System Administration Conference	 USENIX Association

 1

 10

 100

 1000

1 2 4 8 16 1 2 4 8 16

T
im

e
 (

s)

Number of Devices (n)

Evaluation of File Management operations
 (Push File Size: 10MB, Install Application File Size: 1MB)

AVD

ARD-WiFi

ARD-Remote

ARD-Local

installpush

Figure 8: File Management Microbenchmark. Evalu-

ating the average time for transferring files and installing

applications on different types of target devices.

from which 0.7s accounts for file transfer and 1.5s for

installing the application. The results provide a clear

indication that emulated devices are not the appropriate

type of Android devices for performing I/O intensive ex-

periments such as evaluating network performance and

database benchmarking. Additionally, the sample appli-

cation utilized in the experiments did not perform any

specialized deployment functions during setup (e.g., ex-

tracting other files, installing database), thus its instal-

lation overhead is minimal. The time required for in-

stalling more complex applications varies greatly accord-

ing to the requirements of the application.

6.2 Screen Capture (RCT) Subsystem

The Screen Capture subsystem enables capturing the ac-

tual screen of a target device so that it can be displayed

to the user through the Remote Control Terminal (RCT)

UI component (see Figure 9). Additionally, it supports

a variety of events using the chimpchat library such as:

i) control events (e.g., power button, home button); ii)

mouse events (e.g., click, drag); and iii) keyboard events

(e.g., key press).

Screen-Capture Alternatives: Capturing a screenshot

of an ARD or AVD can be accomplished through the

following means (either directly or through an applica-

tion): i) on ARDs using the cat command (/dev/fb0

or dev/graphics/fb0 according to the target de-

vice version) and redirecting the output to an image file;

ii) on both using the Android monkeyrunner script

command takeSnapshot(); iii) on both by continu-

ously invoking the getScreenShot() command pro-

vided by the ddmlib library; and iv) on both similarly

Figure 9: Remote Control Terminal (RCT) UI. Our im-

plementation allows concurrent interaction (e.g., clicks,

drag gestures, key press) on multiple devices.

to (iii), by continuously listening to the direct stream

that contains the contents of each consecutive screenshot

(i.e., readAdbChannel() in ddmlib). The Smart-

Lab screen capture component has been developed us-

ing the (iv) approach because it is more efficient both

in terms of memory and time as it utilizes buffered-

oriented, non-blocking I/O that is more suitable for ac-

cessing and transferring large data files as shown next.

Screen-Capture Microbenchmarks: In order to jus-

tify our selection, we have performed a microbenchmark

that evaluates the time required to generate and trans-

fer 100 consecutive screenshots from up to 16 ARD-

Local devices using the (ii) and (iv) approaches de-

noted as monkeyrunner python scripts and Screen Cap-

ture, respectively. Approaches (i) and (iii) were omit-

ted from the experiment because the former cannot pro-

vide a continuous stream of screenshots required by RCT

and the latter does not provide any guarantee that a

screenshot image will be ready when the ddmlib library’s

getScreenShot() command is invoked, which may

lead to presentation inconsistencies. The experiment was

performed only on ARD-Local devices that outperform

AVD, ARD-Remote and ARD-WiFi devices w.r.t. file

transfer operations as is the case of capturing and dis-

playing a screenshot image.

The results of our microbenchmark, depicted in Fig-

ure 10 (left), clearly justify our selection. In particu-

lar, SmartLab’s Screen Capture subsystem always main-

tains a competitive advantage over monkeyrunner python

scripts for all number of target devices. Additionally,

we notice that the time required for processing images

for up to 8 devices is almost identical at 0.97±0.03s.

However, when 16 devices are used, the time required

10

USENIX Association 	 27th Large Installation System Administration Conference  125

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16

T
im

e
 (

s
)

p
e

r
s
c
re

e
n

s
h

o
t

Number of Devices (n)

Evaluation of Screen Capture Mechanisms
 (Target Device: ARD-Local)

monkeyrunner python scripts
Screen Capture

Screen Capture (compression)

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Time (s)

CPU Utilization of SmartLab Screen Capture Mechanisms
 (Target Device: ARD-Local, Mode: continuous)

Screen Capture (no compression)
Screen Capture (compression)

 0

 50

 100

 150

 200

 0 100 200 300 400 500

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

m
W

)

Time (s)

Power Consumption of SmartLab Screen Capture Mechanisms
 (Target Device: ARD-Local, Mode: continuous)

Screen Capture (no compression)
Screen Capture (compression)

Figure 10: Screen Capture Subsystem Microbenchmarks on ARD-Local devices. (left) Evaluating the time over-

head of capturing screenshot images using monkeyrunner python scripts and SmartLab’s Screen Capture subsystem;

Evaluation of SmartLab Screen Capture compression mechanism w.r.t.: (center) CPU Utilization.; and (right) Power

Consumption.

for processing the screenshot images increases by ≈30%

(i.e., 1.33s±0.6s). This may be inefficient in the case of

applications requiring real-time control of the target de-

vices. On the other hand, for automated bulk tests the

above is not a big problem, as these are not affected by

the interaction latency that is inherent in any type of re-

mote terminal like ours. By performing a number of file

transfer benchmarks on our USB 2.0 hubs, we discovered

that this happens because the maximum available band-

width for file transfer was approximately 250Mbps (the-

oretically up-to 480Mbps). Consequently, it was not ade-

quate to support the necessary 320Mbps USB bandwidth

incurred by the 16 devices each transferring a 480x800

screenshot with an approximate size of 2.5MB per shot

(i.e., 16 x 2.5MB x 8bps = 320Mbps).

On-Device Compression: Currently, producing large

screenshot files cannot be avoided as there are no mech-

anisms for reducing the file size (i.e., compression). In

order to alleviate this problem, we experimented with

an in-house module for rooted devices that provides the

ability to generate compressed screenshot images (e.g.,

JPEG, PNG) locally at the device prior to transmitting

them over the network. We evaluated the revised Screen

Capture subsystem, denoted Screen Capture (compres-

sion) using the same configuration as in the previous ex-

periment.

We observe in Figure 10 (left) that the Screen Capture

(compression) clearly outperforms the Screen Capture

(with no compression), as expected. This is because the

files generated by Screen Capture (compression) never

reached over 45KBs. As a result, the revised Screen Cap-

ture subsystem is not affected by the limitation of the

USB 2.0 hub as the combined bandwidth rate required

was 5.7Mbps (i.e., 16 x 45KB x 8bps) and this is the rea-

son why the time required per screenshot for all number

of devices remains persistent at 0.6±0.05s.

Power and CPU issues: Compressing images though,

requires additional CPU effort as well as increased power

consumption on a smartphone. In order to investigate

these parameters, we have utilized a custom SmartLab

System Monitor application (see Figure 9, third screen-

shot on top row for overview) and PowerTutor tools (see

on the same figure the second screenshot on bottom row),

in order to measure CPU utilization and power consump-

tion, respectively. Our findings are illustrated in Fig-

ure 10 (center and right). We observe that the CPU uti-

lization in the compression scenario reaches 28±15% as

opposed to 7±3% when no compression is performed.

This is important as applications requiring high CPU uti-

lization should use the conventional (i.e., no compres-

sion) approach. Similarly, the power consumption of

compression is higher. However, the difference is very

low compared to other smartphone functions (e.g., 3G

busy ≈ 900mW [8]). In the future, we aim to investigate

automated techniques to switch between available screen

capture modes.

6.3 Logging (RDT) Subsystem

The SmartLab Logging subsystem is responsible for

parsing the debug data generated locally at each target

device and providing comprehensive reports regarding

the status of each target device to the user. The log data is

generated automatically by the Android OS and includes

various logs such as system data, system state and error

logs. These can be accessed directly through the ADB

commands dumpsys, dumpstate, and logcat re-

spectively or through the bugreport command, which

combines all previous logs into a comprehensive log file.

The Logging subsystem is accessible through the Re-

mote Debug Tools (RDT) component of the web server.

The logging process starts with the RDT component,

which upon a user request for logs initiates a web request

11

126  27th Large Installation System Administration Conference	 USENIX Association

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16

Ti
m

e
(s

)

Number of Devices (n)

Evaluation of SmartLab’s Log Reporting
 (Logs: system data/state, bug reports)

AVD

ARD-Local

ARD-Remote

Figure 11: Logging (RDT) Microbenchmark. Time re-

quired for retrieving the report log from different target

devices.

including the target device id (or multiple devices ids) us-

ing AJAX. The Logging subsystem receives this request

and propagates an adb bugreport command to the

target devices selected by the user. Consequently, the re-

sulting log report is saved to a separate directory inside

the user home directory and the user is able to choose

whether to manually traverse the report or to use a more

sophisticated tool such as the ChkBugReport tool 6 that is

able to illustrate the results in a comprehensive graphical

manner. If the latter is chosen, the Logging subsystem in-

vokes the ChkBugReport tool, passing the log report file

as a parameter. Finally, the resulting HTML files gener-

ated by the ChkBugReport tool are stored in the users’

“Home” directory.

Currently, the Logging subsystem (using ChkBugRe-

port) extracts the following information: i) Stacktraces;

ii) Logs; iii) Packages; iv) Processes; v) Battery statis-

tics; vi) CPU Frequency statistics; vii) Raw data; and

viii) Other data. Additionally, each ChkBugReport plu-

gin can detect (possible) errors, which are highlighted in

the errors section of the HTML report files. For instance,

by looking at the Stack-trace section the user might ob-

serve deadlocks or strict mode violations in addition to

other useful information.

We have conducted a microbenchmark in order to

evaluate the time overhead for gathering log reports from

the target devices. More specifically, we gathered the bu-

greports from up to 16 AVDs, ARD-Remote and ARD-

Local devices, respectively. The results, shown in Fig-

ure 11 clearly illustrate that ARD-Remote and ARD-

Local devices outperform AVDs. This confirms again

that utilizing real devices can speed up the experimental

process and produce output results more efficiently.

6Check Bug Report, http://goo.gl/lRPUW.

Figure 12: Remote Shell (RS) UI. Allows concurrent

UNIX command executions on multiple devices.

6.4 Shell Commands (RS) Subsystem

The Shell Command subsystem works in collaboration

with the web server’s Remote Shells (RS) component

(see Figure 12) in order to execute shell commands from

SmartLab to all target devices selected by the user. These

commands include every available adb shell com-

mand supported by the Android OS on rooted devices

and a considerable subset on non-rooted devices. The

RS component propagates each shell command through

a bi-directional WebSocket to the Shell Commands sub-

system, which in turn executes each command on the tar-

get devices and returns the resulting data back to the RS

web interface. More specifically, it allows a user to se-

lect a set of target devices and launch a separate window

consisting of frames (JQuery dialogs) for each target de-

vice. Each frame represents an interactive shell on the

selected device allowing the user to remotely issue shell

commands to single or multiple devices at the same time.

6.5 Sensor/GPS Mockup (RM) Subsystem

A mockup provides part of a system’s functionality en-

abling testing of a design. In the context of Android,

Mockup refers to the process of extending an AVD’s or

ARD’s particular sensor or GPS with custom values. Ad-

ditionally, one important benefit of Mockups is that these

can support the addition of sensors that may not exist in

the hardware of a particular ARD (e.g., NFC). The An-

droid SDK 4.0 supports the mockup of GPS data through

the following command sequence:

On PC running AVD (5554: emulator)

telnet localhost 5554

geo fix latitude longitude

In order to support both GPS and other sensor mock-

ups in SmartLab, (e.g., accelerometer, compass, orienta-

12

USENIX Association 	 27th Large Installation System Administration Conference  127

<state>

<sensor type="proximity">

<value>0.0</value>

</sensor>

<sensor type="linear

acceleration">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="orientation">

<value>31.0</value>

<value>6.0</value>

<value>60.0</value>

</sensor>

<sensor type="pressure">

<value>0.0</value>

</sensor>

<sensor type="gyroscope">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="rotation

vector">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="light">

<value>0.0</value>

</sensor>

<sensor type="magnetic field">

<value>-43.7625.0</value>

<value>27.275002</value>

<value>-8.587501</value>

</sensor>

<sensor type="accelerometer">

<value>9.0057745</value>

<value>-1.23400</value>

<value>4.655435</value>

</sensor>

<sensor type="gravity">

<value>0.0</value>

<value>0.0</value>

<value>0.0</value>

</sensor>

<sensor type="temperature">

<value>0.0</value>

</sensor>

</state>

Figure 13: Sensor/GPS Mockup (RM): (left, center)

A data trace of various sensor measurements encoded in

XML. The given file can be loaded to ARDs and AVDs

through this subsystem; (right) An application built with

SLSensorManager using the measurements.

tion, temperature, light, proximity, pressure, gravity, lin-

ear acceleration, rotation vector and gyroscope sensors)

on both ARDs and AVDs, we opted for a custom module.

In particular, we have been inspired by the Sen-

sorSimulator7 open source project, which establishes

a socket server on DS feeding devices with sensor

or GPS readings encoded in XML (see Figure 13

left). As this functionality is completely outside the

ADB interaction stream, we were required to pro-

vide each application with a custom library, coined

SLSensorManager.jar.

SLSensorManager Library: Our library can be embed-

ded to any Android application enabling interaction with

the SmartLab GPS/Sensor subsystem running on DS. For

example, Figure 13 (right) shows how a sample applica-

tion has been constructed with this library. In fact, our

library has precisely the same interface with the Android

SDK SensorManager, consequently a user can override

Android’s default behavior very easily achieving in that

way to feed its allocated device from a real and realistic

sensor dataset.

Hardware Emulation: With Android Tools r18 and An-

droid 4.0, developers have the opportunity to redirect

real sensor measurements, produced by the ARDs, to the

AVDs for further processing. It is important to mention

that this functionality is the reverse of what we are of-

fering. In our case, we want to be able to redirect data

from a text file to an ARD, such that a given experiment

on ARDs or AVDs uses a data file to drive its sensors.

Recording sensor readings to text files can be carried out

very easily with a variety of tools.

7Openintents, http://goo.gl/WkuN

7 Experiences using SmartLab

In this section, we present four different research efforts,

including: GPS-trajectory benchmarking [38], peer-to-

peer search [22], indoor positioning [24] and database

benchmarking (the last carried out in the context of a

graduate course.) None of the following studies would

have been feasible with AVDs, as all of the below scenar-

ios require fine-grained and low-level access (e.g., sd-

card, WiFi, real CPU and mobility).

7.1 Trajectory Benchmarking

SmartLab has been utilized in the context of the

SmartTrace[38] project8, which is a prototype crowd-

sourced trajectory similarity search framework enabling

analytic queries over outdoor GPS traces and indoor

WiFi traces, stored on users’ smartphones.

SmartLab was utilized to carry out a GPS mockup

study with the GeoLife GPS Trajectories [39]. The

SmartLab file management functionality was extremely

useful in disseminating input traces and collecting our

experimental results from the local sdcards of smart-

phones. Additionally, the Remote Control Terminals

were equally important in order to setup and run the ex-

periments. Finally the device diversity allowed us to test

trajectory comparison algorithms on many smartphones

(see Figure 14, left).

As SmartLab is currently firewalled (i.e., the device

server is only accessible through the webserver), it is

not feasible to have some outside process connect to the

SmartLab smartphone processes internally. In order to

overcome this correct security configuration, we wrote

our Smarttrace smartphone clients in a manner that these

only issued outgoing TCP traffic (i.e., connecting to the

outside server) as opposed to incoming TCP traffic.

Finally, in order to scale our experiments to 200 smart-

phone processes, in the absence of such a large number,

we launched 10 concurrent threads to each of our 20 re-

served ARD devices.

7.2 Peer-to-Peer Benchmarking

SmartLab was also utilized in the context of a Peer-

to-Peer benchmarking study (i.e., the SmartP2P [22]

project). SmartP2P offers high-performance search and

data sharing over a crowd of mobile users participating

in a social network. Similarly to SmartTrace, the ex-

perimental evaluation of SmartP2P was performed on

real devices reserved through SmartLab. A subtle dif-

ference of this study was that the UI interactions were

recorded from within RCT into automation scripts stored

on SmartLab. Those scripts, running on our Device

8SmartTrace, http://smarttrace.cs.ucy.ac.cy/

13

128  27th Large Installation System Administration Conference	 USENIX Association

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

Linear LCSS DTW ERP EDR

T
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s
 (

lo
g

-s
c
a

le
)

Trajectory Matching Technique (slower to faster)

Time Required for different Trajectory Comparison Functions on 5 devices
 (l=1000 points; LCSS, DTW, ERP and EDR with no δ and no ε)

HTC Hero (528MHz Qualcomm MSM7600A)�

HTC Desire (1GHz Qualcomm S1 QSD8250)

HTC Incredible S (1GHz Qualcomm S2 MSM8255)

Motorola Xoom Tablet (1GHz dual-core Nvidia Tegra 2 T20)

Samsung Galaxy SII (1.2GHz dual core ARM Cortex-A9)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

100 1000 5000 10000 100000

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Number of Inserts (n)

Sequential Insert Benchmark
 (SQLite version 3.7.11)

Default Insert
Journal:OFF

Synchronous:OFF

Figure 14: Research with SmartLab. (Left) Testing trajectory comparison algorithms on a diverse set of smartphones

in SmartTrace [38]; (Center) Testing indoor localization using ARD-WiFi mode in Airplace [24]; (Right) Testing

various SQLite tuning parameters in the context of an advanced databases course.

Server, would automatically repeat an experimental sim-

ulation improving automation and repeatability of the ex-

perimental evaluation process.

7.3 Indoor Localization Testing

WiFi-based positioning systems have recently received

considerable attention, both because GPS is unavail-

able in indoor spaces and consumes considerable en-

ergy. In [24], we have demonstrated an innovative in-

door positioning platform, coined Airplace, in order to

carry out fine-grained localization with WiFi-based Ra-

dioMaps (i.e., 2-4 meters accuracy). SmartLab has fa-

cilitated the development, testing and demonstration of

Airplace and its successor project Anyplace9 consider-

ably as explained next.

Firstly, we extensively used the ARD-WiFi mode,

which allowed us to move around in a building local-

izing ourselves while exposing the smartphone screen on

a remote web browser through SmartLab (e.g., see Fig-

ure 14, center). The particular setting has proved con-

siderably useful for demonstrations at conferences as the

bulk of existing AndroidScreenCapture software are both

USB-based, which hinders mobility, but are also ineffi-

cient as they provide no compression or other optimiza-

tions.

Secondly, SmartLab allowed us to collect and com-

pare Received Signal Strength (RSS) indicators from dif-

ferent WiFi chip-sets, which is important for RSS mea-

surements and would not be possible with AVDs. Finally,

SmartLab allowed us to test the generated APK on a va-

riety of devices.

7.4 DB Benchmarking

A recent study by NEC Labs America [20], has shown

that underlying flash storage on smartphones might be

9Anyplace, http://anyplace.cs.ucy.ac.cy/

a bottleneck in many smartphone applications, which

cache results locally.

In the context of an Advanced DB course at our de-

partment, students were asked to carry out an extensive

experimental evaluation of SQLite, the most widely de-

ployed SQL database engine in the world that is readily

available by the Android SDK. One particular objective

of this study was to find out how the reads and writes

could be optimized. For the given task students parsed

the sqlite data files stored by various smartphone apps

in their sqlite dbs. Subsequently, students carried out a

number of trace-driven experimentations.

Figure 14 (right) for example, shows how sequen-

tial inserts are affected by disabling the PRAGMA

synchronous and PRAGMA journal mode run-

time options on a smartphone storing its data on a

FAT32-formatted sdcard. In respect to SmartLab, it is

important to mention that APK and data trace files were

seamlessly transferred to target devices. Additionally, af-

ter installing the APKs it was very efficient working on

several RCT control terminals concurrently, carrying out

the experimental study quickly.

8 Future Developments

In this section, we outline some of our current and future

development plans:

8.1 Experimental Repeatability

Allowing seamless experimental repeatability and stan-

dardization is a challenging task for smartphone-oriented

research. Looking at other research areas, somebody

will realize that open benchmarking datasets and asso-

ciated ground truth datasets have played an important

role and academic and industrial research over the last

decades. For instance, the TREC Conference series co-

sponsored by National Institute of Standards and Tech-

14

USENIX Association 	 27th Large Installation System Administration Conference  129

nology (NIST) of the U.S. Commerce Department is

heavily embarked by the information retrieval commu-

nity. Similarly, the TPC (Transaction Processing Perfor-

mance Council) non-profit corporation, founded to de-

fine transaction processing and database benchmarks, is

heavily embarked by the data management community.

In the context of our project we are: i) collecting our

own data on campus (e.g., WiFi RSS data [24]) and ad-

ditionally trying to convince other research groups con-

tributing their own data to the SmartLab repository. In re-

spect to storage, we are using a prototype Apache HBase

installation within our datacenter, to store sensor read-

ings in a tabular and scalable (i.e., column-oriented) for-

mat.

Apache HBase is an open-source version of Google’s

Bigtable [7] work utilized to store and process Crawling

data, Maps data, etc., without the typical ACID guaran-

tees that are slowing and scaling down distributed rela-

tional databases (e.g., MySQL-Cluster-like DBs). The

given store can be utilized to store billions of sensor read-

ings that can be advantageous to our GPS/Sensor Mockup

subsystem. This will allow a researcher to test an al-

gorithm or application using tens or hundreds of smart-

phone devices using automated scripts, similarly to [36]

but with bigger data. Another envisioned scenario would

be to enable smartphone experimentation repeatability

and standardization.

8.2 Urban-scale Deployment

We are currently working with local telecommunication

authorities in order to obtain mobile data time for our

mobile fleet and local transportation companies in order

to have them move our devices around in a city, with pos-

sible free WiFi access to their customers as an incentive.

The envisioned scenario here is to be able to test an

algorithm, protocol or application with ARD-Mobile de-

vices in an urban environment, providing in that way an

open mobile programming cloud. This could, for exam-

ple, support data collection scenarios, e.g., VTrack [35],

CitySense [27], and others, which rely on proprietary

software/hardware configurations, but also online traf-

fic prediction scenarios, trajectory and sensor analytics,

crowdsourcing scenarios, etc.

Such ARD-Mobile devices need of course limiting

the capabilities of users (e.g., prohibit the installation of

custom ROMs, disable camera, sound and microphone.)

We are addressing this with a customized after-market

firmware distribution for Android (i.e., ROM), named

CyanogenMod 10. We did not opt for the Android Open

Source Project (AOSP), as it was fundamentally diffi-

cult to port the drivers of all ARD we have ourselves.

10CyanogenMod, http://www.cyanogenmod.org/

Moreover, notice that the AOSP project currently sup-

ports only the Google Nexus family 11 of phones off-the-

shelf. Enabling urban sensing scenarios also has a legal

dimension as Europe has a strict Data Protection Policy

(e.g., Directive 95/46/EC on the protection of individuals

with regard to the processing of personal data and on the

free movement of such data.)

8.3 Web 2.0 API

We are currently working on a Web 2.0 JSON-based

API of our testbed using the Django framework12.

Django comes with rich features including a Model-

View-Controller (MVC) architecture that separates the

representation of information from the users’ interaction

with it. In particular, this effort will allow users to access

the subsystems of our testbed in a programmable manner

(i.e., Web 2.0 JSON interactions) and write applications

to extend SmartLab, similarly to NagMQ [32].

Consider for instance the Eclipse IDE, which we are

currently extending with Smartlab integration function-

ality through its API. The high level idea here is to al-

low developers to compile their code and deploy it im-

mediately on available devices accessible on SmartLab,

by having the Smartlab UI become part of the Eclipse

IDE.

Finally, we are considering the integration with

Google App Inventor13, such that programmers can see

their developments immediately on SmartLab.

8.4 Federation Issues and PG Management

Our Web 2.0 API will allow us to implement Smart-

Lab federation scenarios. For example, groups around

the globe can interface with SmartLab enabling a truly

global smartphone programming cloud infrastructure.

Additionally, we aim to develop a SmartLab derivative

for Personal Gadget (PG) management, which was mo-

tivated in the introduction. This will be facilitated by the

fact that personal gadgets are quantitatively and qualita-

tively increasing but more importantly, by the fact that

PGs are reusable after they become deprecated as they

are programmable and feature-rich.

8.5 Security Studies

SmartLab can be utilized in order to conduct experiments

related to enhanced smartphone security and privacy.

SmartLab smartphones can be used as honey pots for

investigating intruders’ behavior. Additionally, smart-

phones can be used as replicas of real devices enabling

11Nexus Factory Images, http://goo.gl/v1Jwd
12Django Framework, https://www.djangoproject.com/
13MIT AppInventor, http://appinventor.mit.edu/

15

130  27th Large Installation System Administration Conference	 USENIX Association

the replication of real event execution performed on real

devices. As a result, researchers can use SmartLab in

order to identify newly introduced threats by gathering

statistics from multiple replicas. Furthermore, SmartLab

can be utilized in the context of projects using replicated

execution [31] for validation and verification purposes.

Carefully investigating the security aspects related to

SmartLab will be a topic of future research. At the end,

SmartLab’s administrators will be able to present their

experiences related to managing security in a distributed

mobile environment similarly to the work presented by

Intel on how to secure PlanetLab [6].

9 Conclusions

In this paper, we have presented the first comprehensive

architecture for managing a cluster of both real and vir-

tual Android smartphones. We cover in detail the subsys-

tems of our architecture and present micro-benchmarks

for most of the internally components.

Our findings have helped us enormously in improving

the performance and robustness of our testbed. In partic-

ular, by pipelining Android Debug Bridge (ADB) calls

we managed to improve performance by 98%. Addition-

ally, by compressing screen capture images with mod-

erate CPU overhead we improve capturing performance

and minimize the network overhead.

This paper has also presented four different research

and teaching efforts using SmartLab, including: GPS-

trajectory benchmarking, peer-to-peer search, indoor po-

sitioning and database benchmarking. Finally, this paper

has overviewed our ongoing and future SmartLab devel-

opments ranging from Web 2.0 extensions to urban-scale

deployment primitives and security.

Our long-term goal is to extend our testbed by engag-

ing the research community that can envision and realize

systems-oriented research on large-scale smartphone al-

locations but also enable a platform for Personal Gadget

(PG) management.

Acknowledgments

We would like to thank Matt Welsh (Google) and Stavros

Harizopoulos (HP Labs) for the useful discussions that

lead to the realization of this work. Finally, we would

like to thank our USENIX LISA’13 shepherds, Carolyn

Rowland and Adele Shakal, and the anonymous review-

ers for their insightful comments. This work was finan-

cially supported by the last author’s startup grant, funded

by the University of Cyprus. It has also been supported

by EU’s COST Action IC903 (MOVE), by EU’s FP7

MODAP project and EU’s FP7 Planetdata NoE.

References

[1] Tarek Abdelzaher, Yaw Anokwa, Peter Boda, Jeff

Burke, Deborah Estrin, Leonidas Guibas, Aman

Kansal, Sam Madden, and Jim Reich. “Mobiscopes

for Human Spaces”, IEEE Pervasive Computing,

Volume 6, Issue 2, April 2007.

[2] David G. Andersen, Jason Franklin, Michael Kamin-

sky, Amar Phanishayee, Lawrence Tan, and Vijay

Vasudevan. “FAWN: A fast array of wimpy nodes”,

In Proceedings of the ACM SIGOPS 22nd sympo-

sium on Operating systems principles (SOSP’09).

ACM, New York, NY, USA, 1-14, 2009.

[3] AT&T Application Resource Optimizer (ARO), Free

Diagnostic Tool: http://goo.gl/FZnXS

[4] Rishi Baldawa, Micheal Benedict, M. Fatih Bu-

lut, Geoffrey Challen, Murat Demirbas, Jay In-

amdar, Taeyeon Ki, Steven Y. Ko, Tevfik Kosar,

Lokesh Mandvekar, Anandatirtha Sathyaraja, Chun-

ming Qiao, and Sean Zawicki. “PhoneLab: A large-

scale participatory smartphone testbed (poster and

demo)”, 9th USENIX conference on Networked sys-

tems design & implementation (NSDI’12). USENIX

Association, Berkeley, CA, USA, 2012.

[5] Jeffrey Bickford, H. Andrs Lagar-Cavilla, Alexan-

der Varshavsky, Vinod Ganapathy, and Liviu Iftode.

“Security versus energy tradeoffs in host-based mo-

bile malware detection”, In Proceedings of the

9th international conference on Mobile systems, ap-

plications, and services (MobiSys’11). ACM, New

York, NY, USA, 225-238, 2011.

[6] Paul Brett, Mic Bowman, Jeff Sedayao, Robert

Adams, Rob Knauerhase, and Aaron Klingaman.

“Securing the PlanetLab Distributed Testbed: How

to Manage Security in an Environment with No Fire-

walls, with All Users Having Root, and No Direct

Physical Control of Any System”, In Proceedings of

the 18th USENIX conference on System administra-

tion (LISA’04). USENIX Association, Berkeley, CA,

USA, 195-202, 2004.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-

son C. Hsieh, Deborah A. Wallach, Mike Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gru-

ber. “Bigtable: a distributed storage system for

structured data”, In Proceedings of the 7th sym-

posium on Operating systems design and implemen-

tation (OSDI’06). USENIX Association, Berkeley,

CA, USA, 205-218, 2006.

[8] Georgios Chatzimilioudis, Andreas Konstantini-

dis, Christos Laoudias, and Demetrios Zeinalipour-

16

USENIX Association 	 27th Large Installation System Administration Conference  131

Yazti. “Crowdsourcing with smartphones”, In IEEE

Internet Computing, Volume 16, 36-44, 2012.

[9] Jeff Cohen, Thomas Repantis, Sean McDermott,

Scott Smith, and Joel Wein. “Keeping track of

70,000+ servers: the akamai query system”, In

Proceedings of the 24th international conference on

Large installation system administration (LISA’10).

USENIX Association, Berkeley, CA, USA, 1-13,

2010.

[10] Cory Cornelius, Apu Kapadia, David Kotz, Dan

Peebles, Minho Shin, and Nikos Triandopoulos.

“Anonysense: privacy-aware people-centric sens-

ing”, In Proceedings of the 6th international confer-

ence on Mobile systems, applications, and services

(MobiSys’08). ACM, New York, NY, USA, 211-224,

2008.

[11] Geoff Coulson, Barry Porter, Ioannis Chatzigian-

nakis, Christos Koninis, Stefan Fischer, Dennis

Pfisterer, Daniel Bimschas, Torsten Braun, Philipp

Hurni, Markus Anwander, Gerald Wagenknecht,

Sndor P. Fekete, Alexander Krller, and Tobias Baum-

gartner. “Flexible experimentation in wireless sen-

sor networks”, In Communications of the ACM,

Volume 55, Issue 1, 82-90, 2012.

[12] Eduardo Cuervo, Peter Gilbert, Bi Wu, and Lan-

don Cox. “CrowdLab: An Architecture for Volunteer

Mobile Testbeds”, In Proceedings of the 3rd Interna-

tional Conference on Communication Systems and

Networks (COMSNETS’11), IEEE Computer Soci-

ety, Washington, DC, USA, 1-10, 2011.

[13] Tathagata Das, Prashanth Mohan, Venkata N. Pad-

manabhan, Ramachandran Ramjee, and Asankhaya

Sharma. “PRISM: platform for remote sensing using

smartphones”, In Proceedings of the 8th interna-

tional conference on Mobile systems, applications,

and services (MobiSys’10). ACM, New York, NY,

USA, 63-76, 2010.

[14] M. Dehus, and D. Grunwald. “STORM: simple

tool for resource management”, In Proceedings of

the 22nd conference on Large installation system ad-

ministration conference (LISA’08). USENIX Associ-

ation, Berkeley, CA, USA, 109-119, 2008.

[15] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan

Newton, Samuel Madden, and Hari Balakrishnan.

“The pothole patrol: using a mobile sensor network

for road surface monitoring”, In Proceedings of the

6th international conference on Mobile systems, ap-

plications, and services (MobiSys’08). ACM, New

York, NY, USA, 29-39, 2008.

[16] Stavros Harizopoulos, and Spiros Papadimitriou.

“A case for micro-cellstores: energy-efficient data

management on recycled smartphones”, In Pro-

ceedings of the Seventh International Workshop on

Data Management on New Hardware (DaMoN’11),

ACM, New York, NY, USA, 50-55, 2011.

[17] David Johnson, Tim Stack, Russ Fish, Daniel Mon-

trallo Flickinger, Leigh Stoller, Robert Ricci, and Jay

Lepreau. “Mobile Emulab: A Robotic Wireless and

Sensor Network Testbed”, In Proceedings of the 25th

IEEE International Conference on Computer Com-

munications (INFOCOM’06), IEEE Computer Soci-

ety, Washington, DC, USA, 1-12, 2006.

[18] Aman Kansal, Michel Goraczko, and Feng Zhao.

“Building a sensor network of mobile phones”,

In Proceedings of the 6th international confer-

ence on Information processing in sensor networks

(IPSN’07). ACM, New York, NY, USA, 547-548,

2007.

[19] Keynote Systems Inc., Device Anywhere:

http://goo.gl/mCxFt

[20] Hyojun Kim, Nitin Agrawal, and Cristian Ungure-

anu. “Revisiting storage for smartphones”, In Pro-

ceedings of the 10th USENIX conference on File and

Storage Technologies (FAST’12). USENIX Associa-

tion, Berkeley, CA, USA, 17-31, 2012.

[21] Andreas Konstantinidis, Constantinos Costa, Geor-

gios Larkou, and Demetrios Zeinalipour-Yazti.

“Demo: a programming cloud of smartphones”,

In Proceedings of the 10th international conference

on Mobile systems, applications, and services (Mo-

biSys’12). ACM, New York, NY, USA, 465-466,

2012.

[22] Andreas Konstantinidis, Demetrios Zeinalipour-

Yazti, Panayiotis G. Andreou, Panos K. Chrysanthis,

and George Samaras. “Intelligent Search in Social

Communities of Smartphone Users”, In Distributed

and Parallel Databases, Volume 31, 115-149, 2013.

[23] Emmanouil Koukoumidis, Li-Shiuan Peh, and

Margaret Rose Martonosi. “SignalGuru: leveraging

mobile phones for collaborative traffic signal sched-

ule advisory”, In Proceedings of the 9th interna-

tional conference on Mobile systems, applications,

and services (MobiSys’11). ACM, New York, NY,

USA, 127-140, 2011.

[24] Christos Laoudias, George Constantinou, Mar-

ios Constantinides, Silouanos Nicolaou, Demetrios

Zeinalipour-Yazti, and Christos G. Panayiotou. “The

Airplace Indoor Positioning Platform for Android

17

132  27th Large Installation System Administration Conference	 USENIX Association

Smartphones”, In Proceedings of the 13th IEEE

International Conference on Mobile Data Manage-

ment (MDM’12), IEEE Computer Society, Washing-

ton, DC, USA, 312-315, 2012.

[25] Kaisen Lin, Aman Kansal, Dimitrios Lymberopou-

los, and Feng Zhao. “Energy-accuracy trade-off for

continuous mobile device location”, In Proceed-

ings of the 8th international conference on Mobile

systems, applications, and services (MobiSys’10).

ACM, New York, NY, USA, 285-298, 2010.

[26] Nagios Enterprises LLC.,

http://www.nagios.org/.

[27] Rohan Narayana Murty, Geoffrey Mainland, Ian

Rose, Atanu Roy Chowdhury, Abhimanyu Gosain,

Josh Bers, and Matt Welsh. “CitySense: An Urban-

Scale Wireless Sensor Network and Testbed”, In

Proceedings of the 2008 IEEE Conference on Tech-

nologies for Homeland Security (HST’08), IEEE

Computer Society, Washington, DC, USA, 583-588,

2008.

[28] Adam J. Oliner, Anand P. Iyer, Eemil Lagerspetz,

Ion Stoica and Sasu Tarkoma. “Carat: Collabo-

rative Energy Bug Detection (poster and demo)”,

9th USENIX conference on Networked systems de-

sign & implementation (NSDI’12). USENIX Asso-

ciation, Berkeley, CA, USA, 2012.

[29] Perfecto Mobile, http://goo.gl/DSlP9.

[30] Larry Peterson, Tom Anderson, David Culler, and

Timothy Roscoe. “A Blueprint for Introducing Dis-

ruptive Technology into the Internet”, A blueprint

for introducing disruptive technology into the Inter-

net. SIGCOMM Comput. Commun. Rev. 33, 1 (Jan-

uary 2003), 59-64, 2003.

[31] Georgios Portokalidis, Philip Homburg, Kostas

Anagnostakis, and Herbert Bos. “Paranoid Android:

versatile protection for smartphones”, In Proceed-

ings of the 26th Annual Computer Security Appli-

cations Conference (ACSAC’10). ACM, New York,

NY, USA, 347-356, 2010.

[32] Jonathan Reams. “Extensible Monitoring with Na-

gios and Messaging Middleware”, In Proceedings

of the 26th international conference on Large Instal-

lation System Administration: strategies, tools, and

techniques (LISA’12). USENIX Association, Berke-

ley, CA, USA, 153-162, 2012.

[33] Samsung, Remote Test Lab:

http://goo.gl/p7SNU

[34] Eric Sorenson and Strata Rose Chalup. “RedAlert:

A Scalable System for Application Monitoring”, In

Proceedings of the 13th USENIX conference on Sys-

tem administration (LISA’99). USENIX Association,

Berkeley, CA, USA, 21-34, 1999.

[35] Arvind Thiagarajan, Lenin Ravindranath, Katrina

LaCurts, Samuel Madden, Hari Balakrishnan, Sivan

Toledo, and Jakob Eriksson. “Vtrack: accurate,

energy-aware road traffic delay estimation using mo-

bile phones”, In Proceedings of the 7th ACM Con-

ference on Embedded Networked Sensor Systems

(SenSys’09). ACM, New York, NY, USA, 85-98,

2009.

[36] Tim Verry. “MegaDroid simulates network of

300,000 Android smartphones”, Extremetech.com,

Oct 3, 2012. http://goo.gl/jMaS8.

[37] Geoffrey Werner-Allen, Patrick Swieskowski, and

Matt Welsh. “MoteLab: a wireless sensor network

testbed”, In Proceedings of the 4th international

symposium on Information processing in sensor net-

works (IPSN’05). IEEE Press, Piscataway, NJ, USA,

Article 68, 2005.

[38] Demetrios Zeinalipour-Yazti, Christos Laoudias,

Costantinos Costa, Michalis Vlachos, Maria I. An-

dreou, and Dimitrios Gunopulos. “Crowdsourced

Trajectory Similarity with Smartphones”, IEEE

Trans. on Knowl. and Data Eng. 25, 6 (June 2013),

1240-1253, 2013.

[39] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying

Ma. “Mining interesting locations and travel se-

quences from GPS trajectories”, In Proceedings of

the 18th international conference on World wide web

(WWW’09). ACM, New York, NY, USA, 791-800,

2009.

18

