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Abs t rac t 

In tree search, depth-first search (DFS) often 
uses ordering successor heuristics. If the heuris­
tic makes a mistake ordering a bad successor 
(without goals in its subtree) before good ones 
(wi th goals in their subtrees), DFS has to unsuc­
cessfully traverse the whole bad subtree before 
f inding a goal. To prevent this useless work, we 
present a new strategy called interleaved depth-
first search ( I D F S ) , which searches depth-first 
several subtrees —called active— in parallel. 
IDFS assumes a single processor on which it in­
terleaves DFS on active subtrees. When IDFS 
finds a mistake, it traverses part ial ly the bad 
subtree. IDFS does not reexpand nodes and uses 
a memory amount linear in search depth (wi th 
a bounded number of active subtrees). IDFS 
outperforms DFS if the heuristic improves from 
the first to the second tree level. Experimental 
results on hard solvable problems confirm the 
practical val idity of IDFS . 

1 I n t r o d u c t i o n 

In tree search wi th bounded depth, depth-first search 
(DFS) is widely used because it is simple and its space 
requirement is linear in search depth. Often, DFS is com­
bined wi th some heuristic which estimates the likelihood 
of goal existence in subtrees rooted at internal nodes. 
In this case, DFS is called ordered because node succes­
sors are ordered f rom left to right by decreasing heuristic 
value. We say that an internal node is good if the subtree 
below it has goal nodes, and bad otherwise. W i t h this 
definit ion, heuristic ordering tries to move good succes­
sors to the left and bad successors to the right. Given 
that DFS starts searching on the left, heuristic ordering 
tries to speed up goal f inding. 

'This research is supported by the Spanish CICYT 
proyect TIC96-0721-C02-02. 

Heuristic advice is not perfect and, in occasions, it may 
be wrong. A heuristic makes a mistake when it orders a 
bad successor before a good one. Ordered DFS falls into 
a mistake when it visits the bad node. If mistakes appear 
in the ordering of current node successors, ordered DFS 
falls into them as it progresses from left to r ight, unt i l 
it finds a good node. Falling into a mistake at shallow 
levels of the search tree is quite costly, because DFS is 
forced to unsuccessfully traverse a large subtree without 
goals. Falling into a mistake at deep levels is less costly, 
because DFS has to traverse a smaller subtree. Typically, 
heuristics provide better advice at deep levels than at 
shallow levels, so mistakes are more likely to appear at 
shallow levels, where they are more costly to recover. 
The presence of mistakes, specially at shallow levels, is 
a weak point for DFS performance, against which this 
algorithm has no defense. 

In this paper, we present a new approach to prevent — 
at least part ia l ly— ordered DFS fal l ing into mistakes. We 
call this approach Interleaved Depth-First Search (IDFS), 
and it works as follows. Whi le DFS searches sequentially 
— from left to right — subtrees at each tree level, IDFS 
searches in parallel several subtrees at some tree level. 
Call ing active those subtrees being searched in parallel, 
IDFS searches depth-first the current active subtree unt i l 
it finds a leaf. If it is a goal, search terminates. Oth­
erwise, the state of the current subtree is recorded and 
added to a fifo queue of active subtrees, f rom which it wi l l 
be taken later to resume search at the point it was sus­
pended. IDFS selects another active subtree as the new 
current subtree and repeats the process. IDFS simulates 
parallel DFS on active subtrees using a single processor. 
In this sense, IDFS interleaves depth-first search on active 
subtrees. If the heuristic orders successors wi th mistakes, 
IDFS avoids fal l ing completely into them by distr ibut ing 
search among active subtrees, which are expected to in­
clude some good subtree. 

IDFS provides advantages over DFS in average perfor­
mance on hard solvable problems. Performance improve­
ment is directly related to mistake occurence: the more 
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mistakes there are, the higher the performance improve­
ment of IDFS over DFS. If no mistakes occur DFS is the 
best algori thm. IDFS is meaninful for solvable problems 
only. Unsolvable problems require both IDFS and DFS to 
traverse the whole search tree to detect goal absence, so 
they wi l l expand the same nodes —although in different 
order— causing no difference in performance1. IDFS pro­
vides practical advantages over DFS on hard problems, 
where many mistakes are likely to occur at shallow lev­
els. On easy problems, heuristics make few mistakes 
and IDFS benefits do not pay off the overhead of search­
ing simultaneously active subtrees. On the other hand, 
IDFS requires more memory than DFS because it has to 
store active subtrees. At shallow levels, each active sub­
tree requires almost as much storage as single DFS, so 
its number should be bounded to allow for the practical 
applicabil i ty of this algori thm. 

This paper is organized as follows. In Section 2 we 
describe related approaches. In Section 3 we provide 
a detailed explanation of the IDFS algorithm, analyzing 
its performance in Section 4. In Section 5 we give ex­
perimental results of this algori thm on different search 
problems, showing its practical applicability. Finally, in 
Section 6 we summarize the contributions of this work. 

2 Rela ted W o r k 
In the context of binary search trees, the idea of mis­
takes was introduced in the limited discrepancy search 
algorithm (LDS) [Harvey and Ginsberg, 1995]. Given a 
heuristic to order successors, a discrepancy is not to fol­
low the heuristic preference at some node, that is, to 
select the right successor as the next node. LDS visits 
first the leftmost leaf of the tree, following a path wi th­
out discrepancies. If it is not a goal, LDS visits leaves 
with at most one discrepancy in their paths, visit ing first 
paths wi th discrepancies at early levels, where the heuris­
tic is supossed to be less accurate. If no goal is found, 
LDS visits leaves wi th at most two discrepancies in their 
paths, etc. The proccess continues unt i l it reaches the 
maximum number of discrepancies and the whole tree 
is searched. LDS space requirement is linear in search 
depth and it has to reexpand nodes previously visited. 
From the analysis given in [Harvey and Ginsberg, 1995], 
LDS outperforms DFS on easy problems. 

This approach has been enhanced by the improved lim-
ited discrepancy search algori thm ( I LDS) [Korf, 1996]. At 
the iteration for k discrepancies, LDS generates all paths 
wi th k or less discrepancies. But al l paths wi th less than 
k discrepancies have already been visited in previous iter­
ations. This is corrected by ILDS, which at each iteration 
generates only those paths wi th exactly k discrepancies. 

l I n fact, IDFS will require more time than DFS due to over­
head of switching active subtrees. 

Figure 1: Example search tree. First line is pure IDFS leaf 
visiting order; second line is limited IDFS leaf visiting order, 
as explained in the text. 

However, different from LDS, ILDS visits first paths wi th 
discrepancies at deep levels. Regarding results on num­
ber part i t ioning, DFS outperforms ILDS when no perfect 
part i t ion exists. On problems wi th perfect partitions, 
DFS outperforms ILDS using a simple heuristic, while ILDS 
outperforms DFS when using the KK heuristic. 

The efficiency of parallel DFS is analyzed in [Rao and 
Kumar, 1993]. Regarding search on ordered-bounded 
binary trees, parallel DFS expands no more nodes on the 
average than sequential DFS. On easy problems, those in 
which heuristics give good advice at early levels, parallel 
DFS offers no advantadge over sequential DFS. On hard 
problems, parallel DFS obtains substantial speedup over 
sequential DFS. 

3 Inter leaved Depth-F i rs t Search 
3 .1 P u r e IDFS 

Pure IDFS interleaves search among all successor subtrees 
of any internal node at any level of the search tree. IDFS 
searches depth-first in a subtree unt i l it finds a leaf. If 
it is a goal, search terminates. Otherwise, it stores the 
search state of those subtrees traversed by the leaf path, 
and switches to the next subtree at the earliest level of 
the search tree. Successors of a node are ordered, from 
left to right, by decreasing value of some heuristic esti­
mation of good node likelihood. Successor list is circular, 
so the next successor of the rightmost is the leftmost. 

Pure IDFS is better explained wi th the example of Fig­
ure 1, a ternary tree of depth 3. IDFS interleaves search 
among subtrees at level 1, A, B and C in turn, switching 
from one to the next after reaching a leaf. When search­
ing A, IDFS interleaves search among its successors D, E 
and F, switching from one to the next each time subtree 
A is searched. When searching D, IDFS visits its leaf 
successors a, 6 and c in turn , one each t ime subtree D is 
searched. The same process occurs for subtrees B and C. 
IDFS execution is as follows. It expands 5, A, D and vis­
its a, a non-goal leaf. IDFS stops visit ing subtrees D and 
A} stores their states and switches to B, the next subtree 
at level 1, where IDFS repeats the process: it expands B, 
G and visits ;, a non-goal leaf. IDFS stops visiting sub­
trees G and B, stores their states and switches to (7, 
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Figure 2: Pure IDFS algorithm. 

the next subtree at level 1, where IDFS repeats the pro­
cess: it expands C, J and visits r, a non-goal leaf. IDFS 
stops visit ing subtrees J and C, stores their states and 
switches to A. Now, IDFS resumes search on A, mov­
ing to the next successor E. This process is repeated 
again and again unt i l a goal is found or the whole tree is 
searched. The first line in Figure 1 indicates the order in 
which pure IDFS visits leaves in the example search tree. 
The algori thm for pure IDFS appears in Figure 2. It is a 
function that takes node s as input and can return: 

success: a goal has been found, 
failure: no goal found, tree exhausted, 
continue: no goal found, tree not exhausted. 

When this function returns continue, it modifies the 
state of s as a side-effect, to record the search progress 
in the subtree rooted at s. 

In its current implementation, pure IDFS requires an 
amount of memory exponential in search depth, which 
renders it unapplicable. We have presented pure IDFS for 
clarity purposes. In the next subsection we introduce the 
practical version of IDFS. 

3.2 L i m i t e d IDFS 

Limited IDFS interleaves search among a l imited number 
of successor subtrees at some levels of the search tree. 
L imi ted IDFS distinguishes between two kinds of levels: 
parallel levels, where search is interleaved among some 
of its subtrees, and sequential levels, where search is se­
quential. For simplicity, we wi l l assume that parallel 
levels start at level 1 and they are consecutive. Given 
a node wi th successors in a parallel level, we call ac­
tive those successors (and their subtrees) on which IDFS 
interleaves search. L imi ted IDFS performs as pure IDFS 
on active subtrees at parallel levels, and as DFS on se­
quential levels unt i l it reaches a leaf. If it is a goal, 
search terminates. Otherwise, it stores current subtrees 
and switches to the next active subtree at the earliest 
parallel level. As in the pure case, active successors are 

Figure 3: Limited IDFS algorithm. 

heuristically ordered, and the next active sucessor of the 
rightmost is the leftmost. In the example of Figure 1, 
assuming that the only parallel level is level 1 and the 
number of active subtrees is 2, l imited IDFS works as fol­
lows. It expands 5, taking A and B as active subtrees. 
It expands A, D and visits a, a non-goal leaf. It stops 
searching A, stores its state and switches to B, the next 
active successor at level 1, where it repeats the same 
process: it expands B, G and visits j, a non-goal leaf. 
IDFS stops searching B, stores its state and switches to 
A, where it resumes depth-first search visi t ing 6, another 
non-goal leaf. IDFS stops searching A and resumes search 
on Bf where it visits k. The same process goes on unt i l 
an active subtree, say A, is exhausted (assuming that no 
goal has been found). Then, A is replaced by C. The 
whole process terminates after f inding a goal or exhaust­
ing the complete search tree. The second line in Figure 
1 indicates the order in which this execution of l imited 
IDFS visits leaves in the example search tree. The algo­
r i thm for l imi ted IDFS appears in Figure 3. It is worth 
noting that l imited IDFS does not reexpand nodes and, 
if the number of active subtrees is bounded to a number 
independent f rom the problem size, l imi ted IDFS requires 
a memory space linear in search depth. 
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4 Efficiency Analysis 
In the fol lowing we provide a probabilistic efficiency anal­
ysis of l imi ted IDFS versus ordered DFS. Following the 
approach of [Rao and Kumar, 1993], efficiency is eval­
uated by the average number of leaves visited by each 
algori thm. We work on a search tree of depth d and 
uniform branching factor 6 containing goal nodes. For 
simplicity, we assume that no pruning is done. At the 
first level, there are b subtrees ordered from left to right, 
and we denote as the probabil i ty of goal existence in 
the i- th subtree. 

Regarding DFS, the probabil i ty of finding a goal in the 
subtree i is the probabil i ty of goal existence at subtree 
t\ under the condit ion that no goal has been found in 
subtrees before i, that is, 

If the problem has solution, the probabil i ty that DFS 
finds a goal in the last subtree depends only on proba­
bilities that no goal has been found in previous subtrees. 
This probabil i ty is, 

S(d) is the average number of leaves visited by DFS in a 
tree of depth d w i th goals. F(d) is the number of leaves 
visited by DFS in a tree of depth d wi thout goals (it is 
equal to S(d) is, 

(1) 

where summand i-th is the expected number of visited 
leaves by DFS if it finds the goal in the i-th subtree and 
not before. Expressions S(d - 1) and T are, 

(2) 

(3) 

Regarding I D F S , we assume that level 1 is the only 
parallel level and all its subtrees are active. 1(d) is the 
average number of leaves visited by IDFS in a tree of 
depth d w i th goals. 1(d) is, 
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depends on the quali ty of the heuristic at level 1, while 
T i depends on the best quality of the heuristic at level 
2. Given a problem and a heuristic, 1DFS outperforms 
DFS if there is a significant difference of heuristic quality 
between level 1 and level 2, enough to satisfy expression 
(4). Observe that the best should be better than T, to 
overcome the factor Otherwise, if heuristic quality 
is similar in both levels, DFS is the algorithm of choice. 

In general, heuristic qual i ty improves wi th tree depth. 
This quali ty improvement increases wi th problem diffi­
culty. On easy problems, heuristics are able to give good 
advice at shallow levels, leaving no room for significant 
improvement as they move to deeper levels. On hard 
problems, heuristic advice is not very good at shallow 
levels, and it improves as it goes into deeper levels. Hard 
problems are good candidates to satisfy condition (4), for 
which we believe that IDFS is a suitable algori thm. 

In the previous analysis we assume that all subtrees of 
first level are active. If we suppose that a goal exists in 
the first k subtrees, we take these subtrees as active and 
the whole analysis can be repeated. Expressions (1) (2) 
and (3) are truncated at the k-th subtree (instead of in­
cluding contributions unt i l the 6-th subtree), expression 
(4) remains invariant and the discussion about heuristic 
quali ty is restricted to the first k subtrees. 

5 Expe r imen ta l Results 
A binary CSP is defined by a finite set of variables tak­
ing values on finite domains under a set of binary con­
straints. CSPs are search tree problems wi th fixed depth 
—the number of variables— for which several ordering 
heuristics exist, so they are adequate to test IDFS per­
formance. We have taken forward checking (FC), a DFS 
based algor i thm, substi tut ing its DFS structure by IDFS, 
obtaining We have tested FC and on a 
variety of random CSP instances. A random binary CSP 
[Prosser, 1996] is defined by where n is the 
number of variables, m is the number of values for each 
variable, p\ is the proport ion of existing constraints, and 
•pi is the proport ion of forbidden value pairs between two 
constrained variables. Constrained variables and their 
forbidden value pairs are randomly selected. 

In CSPs, heuristics to order successors are value order­
ing heuristics. We have used the highest support heuris­
tic for value ordering, and the lowest support heuristic for 
variable ordering [Larrosa and Meseguer, 1995] 2. They 
are computed incrementally, and the consistency checks 
performed in their computation are included in the re­
sults. 

We have tested FC and (both using the same 
heuristics) on diff icult solvable instances in the left side 

2 In that paper, both heuristics were considered under the 
generic name of "lowest support". Current names represent 
more faithfully the heuristic criterion behind each one. 

Figure 4: Visited nodes by FC and for four random 
CSP classes 

of the of c o m p u t a t i o n a l ( i n s i d e the "mushy 
region'1 [Smith and Dyer, 1996], where solvable and un-
solvable instances coexist), for the fol lowing problem 
classes ( (n, rn,pi)), 

where constraint density varies from very low (a) to to­
tally connected (d). For all experiments, takes 
level 1 as the only parallel level, w i th 2 active subtrees for 
class (a), 4 active subtreees for classes (b) and (c), and 
9 active subtrees for class (d). Results are contained in 
Figures 4, and 5, w i th p2 as the varying parameter. Each 
point is the average over 100 solvable instances. Regard­
ing the number of visited nodes (Figure 4), on the left 
side of the plots problems are relatively easy, and both 
FC and visit a similar number of nodes. Go­
ing to the right, problems become more diff icult and the 
number of visited nodes increases, but the increment for 
FC is much higher than the increment for (note 
the logarithmic scale). In this part, outperforms 
FC in a factor varying from 2 to 100. The rightmost 
point corresponds to the peak (or the point previous to 
the peak when the density of solvable problems at the 
peak is too low). At this point problems are very diff i­
cult and the number of visited nodes is similar for both 
algorithms. Regarding the number of consistency checks 
(Figure 5), we observe a similar picture w i th a linear 
scale. On easy problems at the left, both algorithms 
perform a similar number of checks. When problems be­
come harder, the number of consistency checks increases, 
but FC performs more consistency checks than 
In this part, outperforms FC in a factor f rom 1.1 
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Figure 5: Consistency checks performed by FC and 
for four random CSP classes. 

to 2. For very diff icult problems at the rightmost point, 
both algorithms perform a similar number of consistency 
checks. It is worth noting that always performs 
better than or approximately equal to F C , but never 
significantly worse. 

These results can be interpreted in ful l agreement wi th 
the efficiency analysis of Section 4. For easy problems, 
the heuristic is good enough at the first level of the tree 
to provide almost always the good advice. Mistakes are 
very rare so 1DFS provides no advantages over DFS. When 
problems become harder, more and more mistakes occur. 
For these problems, the heuristic can improve when it is 
computed at the second level of the tree, wi th respect to 
the same heuristic computed at the first level. It seems 
to do so because IDFS outperforms DFS on these prob­
lems, in both number of visited nodes and consistency 
checks. For the hardest problems, going down a single 
level in the tree is not enough to improve significantly 
the heuristic quality. This is in agreement with the ex­
perimental results, since IDFS and DFS behave similarly 
on the hardest instances. 

6 Open Issues and Conclusions 

Experimental results confirm the efectiveness of IDFS 
over DFS on hard solvable problems. However, some im­
portant questions to use IDFS as a general search pro­
cedure remains to be answered, such as the depth of 
parallel levels in the search tree, their distr ibution (con­
secutive or not) and their number. Related to this is the 
number of active subtrees in each parallel level, which 
could vary f rom one subtree to another inside the same 
parallel level. Dynamic selection of these parameters, to 

adjust the procedure to specific problem characteristics, 
can also be devised. Besides, given the close relation 
between IDFS benefits and heuristics, further knowledge 
about the variation of heuristic quality wi th search depth 
is needed. A l l these issues remain to be investigated in 
the future. 

In [Korf, 1996), Korf concludes: "the weakness of LDS 
is dilettantism, whereas the weakness of DFS is excessive 
diligence. An ideal algorithm should strike the right bal­
ance between these two properties." We have conceived 
IDFS with this aim, trying to keep the right balance be­
tween exploration of the search tree and exploitation of 
heuristic advice, inside a complete algorithm. As in the 
case of LDS and ILDS, IDFS is a new search strategy which 
outperforms classical ones on several problem classes, 
demonstrating how imaginative ways of search can ef­
fectively improve the current state of the art in search 
procedures. 
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