
Inter leaved Depth -F i rs t Search *

Pedro Meseguer
Institut d'Investigacio en Intel.ligencia Artificial
Consejo Superior de Investigaciones Cientificas

Campus UAB, 08193 Bellaterra, Spain

Abs t rac t

In tree search, depth-first search (DFS) often
uses ordering successor heuristics. If the heuris­
tic makes a mistake ordering a bad successor
(without goals in its subtree) before good ones
(wi th goals in their subtrees), DFS has to unsuc­
cessfully traverse the whole bad subtree before
f inding a goal. To prevent this useless work, we
present a new strategy called interleaved depth-
first search (I D F S) , which searches depth-first
several subtrees —called active— in parallel.
IDFS assumes a single processor on which it in­
terleaves DFS on active subtrees. When IDFS
finds a mistake, it traverses part ial ly the bad
subtree. IDFS does not reexpand nodes and uses
a memory amount linear in search depth (wi th
a bounded number of active subtrees). IDFS
outperforms DFS if the heuristic improves from
the first to the second tree level. Experimental
results on hard solvable problems confirm the
practical val idity of IDFS .

1 I n t r o d u c t i o n

In tree search wi th bounded depth, depth-first search
(DFS) is widely used because it is simple and its space
requirement is linear in search depth. Often, DFS is com­
bined wi th some heuristic which estimates the likelihood
of goal existence in subtrees rooted at internal nodes.
In this case, DFS is called ordered because node succes­
sors are ordered f rom left to right by decreasing heuristic
value. We say that an internal node is good if the subtree
below it has goal nodes, and bad otherwise. W i t h this
definit ion, heuristic ordering tries to move good succes­
sors to the left and bad successors to the right. Given
that DFS starts searching on the left, heuristic ordering
tries to speed up goal f inding.

'This research is supported by the Spanish CICYT
proyect TIC96-0721-C02-02.

Heuristic advice is not perfect and, in occasions, it may
be wrong. A heuristic makes a mistake when it orders a
bad successor before a good one. Ordered DFS falls into
a mistake when it visits the bad node. If mistakes appear
in the ordering of current node successors, ordered DFS
falls into them as it progresses from left to r ight, unt i l
it finds a good node. Falling into a mistake at shallow
levels of the search tree is quite costly, because DFS is
forced to unsuccessfully traverse a large subtree without
goals. Falling into a mistake at deep levels is less costly,
because DFS has to traverse a smaller subtree. Typically,
heuristics provide better advice at deep levels than at
shallow levels, so mistakes are more likely to appear at
shallow levels, where they are more costly to recover.
The presence of mistakes, specially at shallow levels, is
a weak point for DFS performance, against which this
algorithm has no defense.

In this paper, we present a new approach to prevent —
at least part ia l ly— ordered DFS fal l ing into mistakes. We
call this approach Interleaved Depth-First Search (IDFS),
and it works as follows. Whi le DFS searches sequentially
— from left to right — subtrees at each tree level, IDFS
searches in parallel several subtrees at some tree level.
Call ing active those subtrees being searched in parallel,
IDFS searches depth-first the current active subtree unt i l
it finds a leaf. If it is a goal, search terminates. Oth­
erwise, the state of the current subtree is recorded and
added to a fifo queue of active subtrees, f rom which it wi l l
be taken later to resume search at the point it was sus­
pended. IDFS selects another active subtree as the new
current subtree and repeats the process. IDFS simulates
parallel DFS on active subtrees using a single processor.
In this sense, IDFS interleaves depth-first search on active
subtrees. If the heuristic orders successors wi th mistakes,
IDFS avoids fal l ing completely into them by distr ibut ing
search among active subtrees, which are expected to in­
clude some good subtree.

IDFS provides advantages over DFS in average perfor­
mance on hard solvable problems. Performance improve­
ment is directly related to mistake occurence: the more

1382 SEARCH

mistakes there are, the higher the performance improve­
ment of IDFS over DFS. If no mistakes occur DFS is the
best algori thm. IDFS is meaninful for solvable problems
only. Unsolvable problems require both IDFS and DFS to
traverse the whole search tree to detect goal absence, so
they wi l l expand the same nodes —although in different
order— causing no difference in performance1. IDFS pro­
vides practical advantages over DFS on hard problems,
where many mistakes are likely to occur at shallow lev­
els. On easy problems, heuristics make few mistakes
and IDFS benefits do not pay off the overhead of search­
ing simultaneously active subtrees. On the other hand,
IDFS requires more memory than DFS because it has to
store active subtrees. At shallow levels, each active sub­
tree requires almost as much storage as single DFS, so
its number should be bounded to allow for the practical
applicabil i ty of this algori thm.

This paper is organized as follows. In Section 2 we
describe related approaches. In Section 3 we provide
a detailed explanation of the IDFS algorithm, analyzing
its performance in Section 4. In Section 5 we give ex­
perimental results of this algori thm on different search
problems, showing its practical applicability. Finally, in
Section 6 we summarize the contributions of this work.

2 Rela ted W o r k
In the context of binary search trees, the idea of mis­
takes was introduced in the limited discrepancy search
algorithm (LDS) [Harvey and Ginsberg, 1995]. Given a
heuristic to order successors, a discrepancy is not to fol­
low the heuristic preference at some node, that is, to
select the right successor as the next node. LDS visits
first the leftmost leaf of the tree, following a path wi th­
out discrepancies. If it is not a goal, LDS visits leaves
with at most one discrepancy in their paths, visit ing first
paths wi th discrepancies at early levels, where the heuris­
tic is supossed to be less accurate. If no goal is found,
LDS visits leaves wi th at most two discrepancies in their
paths, etc. The proccess continues unt i l it reaches the
maximum number of discrepancies and the whole tree
is searched. LDS space requirement is linear in search
depth and it has to reexpand nodes previously visited.
From the analysis given in [Harvey and Ginsberg, 1995],
LDS outperforms DFS on easy problems.

This approach has been enhanced by the improved lim-
ited discrepancy search algori thm (I LDS) [Korf, 1996]. At
the iteration for k discrepancies, LDS generates all paths
wi th k or less discrepancies. But al l paths wi th less than
k discrepancies have already been visited in previous iter­
ations. This is corrected by ILDS, which at each iteration
generates only those paths wi th exactly k discrepancies.

l I n fact, IDFS will require more time than DFS due to over­
head of switching active subtrees.

Figure 1: Example search tree. First line is pure IDFS leaf
visiting order; second line is limited IDFS leaf visiting order,
as explained in the text.

However, different from LDS, ILDS visits first paths wi th
discrepancies at deep levels. Regarding results on num­
ber part i t ioning, DFS outperforms ILDS when no perfect
part i t ion exists. On problems wi th perfect partitions,
DFS outperforms ILDS using a simple heuristic, while ILDS
outperforms DFS when using the KK heuristic.

The efficiency of parallel DFS is analyzed in [Rao and
Kumar, 1993]. Regarding search on ordered-bounded
binary trees, parallel DFS expands no more nodes on the
average than sequential DFS. On easy problems, those in
which heuristics give good advice at early levels, parallel
DFS offers no advantadge over sequential DFS. On hard
problems, parallel DFS obtains substantial speedup over
sequential DFS.

3 Inter leaved Depth-F i rs t Search
3 .1 P u r e IDFS

Pure IDFS interleaves search among all successor subtrees
of any internal node at any level of the search tree. IDFS
searches depth-first in a subtree unt i l it finds a leaf. If
it is a goal, search terminates. Otherwise, it stores the
search state of those subtrees traversed by the leaf path,
and switches to the next subtree at the earliest level of
the search tree. Successors of a node are ordered, from
left to right, by decreasing value of some heuristic esti­
mation of good node likelihood. Successor list is circular,
so the next successor of the rightmost is the leftmost.

Pure IDFS is better explained wi th the example of Fig­
ure 1, a ternary tree of depth 3. IDFS interleaves search
among subtrees at level 1, A, B and C in turn, switching
from one to the next after reaching a leaf. When search­
ing A, IDFS interleaves search among its successors D, E
and F, switching from one to the next each time subtree
A is searched. When searching D, IDFS visits its leaf
successors a, 6 and c in turn , one each t ime subtree D is
searched. The same process occurs for subtrees B and C.
IDFS execution is as follows. It expands 5, A, D and vis­
its a, a non-goal leaf. IDFS stops visit ing subtrees D and
A} stores their states and switches to B, the next subtree
at level 1, where IDFS repeats the process: it expands B,
G and visits ;, a non-goal leaf. IDFS stops visiting sub­
trees G and B, stores their states and switches to (7,

MESEGUER 1383

Figure 2: Pure IDFS algorithm.

the next subtree at level 1, where IDFS repeats the pro­
cess: it expands C, J and visits r, a non-goal leaf. IDFS
stops visit ing subtrees J and C, stores their states and
switches to A. Now, IDFS resumes search on A, mov­
ing to the next successor E. This process is repeated
again and again unt i l a goal is found or the whole tree is
searched. The first line in Figure 1 indicates the order in
which pure IDFS visits leaves in the example search tree.
The algori thm for pure IDFS appears in Figure 2. It is a
function that takes node s as input and can return:

success: a goal has been found,
failure: no goal found, tree exhausted,
continue: no goal found, tree not exhausted.

When this function returns continue, it modifies the
state of s as a side-effect, to record the search progress
in the subtree rooted at s.

In its current implementation, pure IDFS requires an
amount of memory exponential in search depth, which
renders it unapplicable. We have presented pure IDFS for
clarity purposes. In the next subsection we introduce the
practical version of IDFS.

3.2 L i m i t e d IDFS

Limited IDFS interleaves search among a l imited number
of successor subtrees at some levels of the search tree.
L imi ted IDFS distinguishes between two kinds of levels:
parallel levels, where search is interleaved among some
of its subtrees, and sequential levels, where search is se­
quential. For simplicity, we wi l l assume that parallel
levels start at level 1 and they are consecutive. Given
a node wi th successors in a parallel level, we call ac­
tive those successors (and their subtrees) on which IDFS
interleaves search. L imi ted IDFS performs as pure IDFS
on active subtrees at parallel levels, and as DFS on se­
quential levels unt i l it reaches a leaf. If it is a goal,
search terminates. Otherwise, it stores current subtrees
and switches to the next active subtree at the earliest
parallel level. As in the pure case, active successors are

Figure 3: Limited IDFS algorithm.

heuristically ordered, and the next active sucessor of the
rightmost is the leftmost. In the example of Figure 1,
assuming that the only parallel level is level 1 and the
number of active subtrees is 2, l imited IDFS works as fol­
lows. It expands 5, taking A and B as active subtrees.
It expands A, D and visits a, a non-goal leaf. It stops
searching A, stores its state and switches to B, the next
active successor at level 1, where it repeats the same
process: it expands B, G and visits j, a non-goal leaf.
IDFS stops searching B, stores its state and switches to
A, where it resumes depth-first search visi t ing 6, another
non-goal leaf. IDFS stops searching A and resumes search
on Bf where it visits k. The same process goes on unt i l
an active subtree, say A, is exhausted (assuming that no
goal has been found). Then, A is replaced by C. The
whole process terminates after f inding a goal or exhaust­
ing the complete search tree. The second line in Figure
1 indicates the order in which this execution of l imited
IDFS visits leaves in the example search tree. The algo­
r i thm for l imi ted IDFS appears in Figure 3. It is worth
noting that l imited IDFS does not reexpand nodes and,
if the number of active subtrees is bounded to a number
independent f rom the problem size, l imi ted IDFS requires
a memory space linear in search depth.

1384 SEARCH

4 Efficiency Analysis
In the fol lowing we provide a probabilistic efficiency anal­
ysis of l imi ted IDFS versus ordered DFS. Following the
approach of [Rao and Kumar, 1993], efficiency is eval­
uated by the average number of leaves visited by each
algori thm. We work on a search tree of depth d and
uniform branching factor 6 containing goal nodes. For
simplicity, we assume that no pruning is done. At the
first level, there are b subtrees ordered from left to right,
and we denote as the probabil i ty of goal existence in
the i- th subtree.

Regarding DFS, the probabil i ty of finding a goal in the
subtree i is the probabil i ty of goal existence at subtree
t\ under the condit ion that no goal has been found in
subtrees before i, that is,

If the problem has solution, the probabil i ty that DFS
finds a goal in the last subtree depends only on proba­
bilities that no goal has been found in previous subtrees.
This probabil i ty is,

S(d) is the average number of leaves visited by DFS in a
tree of depth d w i th goals. F(d) is the number of leaves
visited by DFS in a tree of depth d wi thout goals (it is
equal to S(d) is,

(1)

where summand i-th is the expected number of visited
leaves by DFS if it finds the goal in the i-th subtree and
not before. Expressions S(d - 1) and T are,

(2)

(3)

Regarding I D F S , we assume that level 1 is the only
parallel level and all its subtrees are active. 1(d) is the
average number of leaves visited by IDFS in a tree of
depth d w i th goals. 1(d) is,

MESEGUER 1385

depends on the quali ty of the heuristic at level 1, while
T i depends on the best quality of the heuristic at level
2. Given a problem and a heuristic, 1DFS outperforms
DFS if there is a significant difference of heuristic quality
between level 1 and level 2, enough to satisfy expression
(4). Observe that the best should be better than T, to
overcome the factor Otherwise, if heuristic quality
is similar in both levels, DFS is the algorithm of choice.

In general, heuristic qual i ty improves wi th tree depth.
This quali ty improvement increases wi th problem diffi­
culty. On easy problems, heuristics are able to give good
advice at shallow levels, leaving no room for significant
improvement as they move to deeper levels. On hard
problems, heuristic advice is not very good at shallow
levels, and it improves as it goes into deeper levels. Hard
problems are good candidates to satisfy condition (4), for
which we believe that IDFS is a suitable algori thm.

In the previous analysis we assume that all subtrees of
first level are active. If we suppose that a goal exists in
the first k subtrees, we take these subtrees as active and
the whole analysis can be repeated. Expressions (1) (2)
and (3) are truncated at the k-th subtree (instead of in­
cluding contributions unt i l the 6-th subtree), expression
(4) remains invariant and the discussion about heuristic
quali ty is restricted to the first k subtrees.

5 Expe r imen ta l Results
A binary CSP is defined by a finite set of variables tak­
ing values on finite domains under a set of binary con­
straints. CSPs are search tree problems wi th fixed depth
—the number of variables— for which several ordering
heuristics exist, so they are adequate to test IDFS per­
formance. We have taken forward checking (FC), a DFS
based algor i thm, substi tut ing its DFS structure by IDFS,
obtaining We have tested FC and on a
variety of random CSP instances. A random binary CSP
[Prosser, 1996] is defined by where n is the
number of variables, m is the number of values for each
variable, p\ is the proport ion of existing constraints, and
•pi is the proport ion of forbidden value pairs between two
constrained variables. Constrained variables and their
forbidden value pairs are randomly selected.

In CSPs, heuristics to order successors are value order­
ing heuristics. We have used the highest support heuris­
tic for value ordering, and the lowest support heuristic for
variable ordering [Larrosa and Meseguer, 1995] 2. They
are computed incrementally, and the consistency checks
performed in their computation are included in the re­
sults.

We have tested FC and (both using the same
heuristics) on diff icult solvable instances in the left side

2 In that paper, both heuristics were considered under the
generic name of "lowest support". Current names represent
more faithfully the heuristic criterion behind each one.

Figure 4: Visited nodes by FC and for four random
CSP classes

of the of c o m p u t a t i o n a l (i n s i d e the "mushy
region'1 [Smith and Dyer, 1996], where solvable and un-
solvable instances coexist), for the fol lowing problem
classes ((n, rn,pi)),

where constraint density varies from very low (a) to to­
tally connected (d). For all experiments, takes
level 1 as the only parallel level, w i th 2 active subtrees for
class (a), 4 active subtreees for classes (b) and (c), and
9 active subtrees for class (d). Results are contained in
Figures 4, and 5, w i th p2 as the varying parameter. Each
point is the average over 100 solvable instances. Regard­
ing the number of visited nodes (Figure 4), on the left
side of the plots problems are relatively easy, and both
FC and visit a similar number of nodes. Go­
ing to the right, problems become more diff icult and the
number of visited nodes increases, but the increment for
FC is much higher than the increment for (note
the logarithmic scale). In this part, outperforms
FC in a factor varying from 2 to 100. The rightmost
point corresponds to the peak (or the point previous to
the peak when the density of solvable problems at the
peak is too low). At this point problems are very diff i­
cult and the number of visited nodes is similar for both
algorithms. Regarding the number of consistency checks
(Figure 5), we observe a similar picture w i th a linear
scale. On easy problems at the left, both algorithms
perform a similar number of checks. When problems be­
come harder, the number of consistency checks increases,
but FC performs more consistency checks than
In this part, outperforms FC in a factor f rom 1.1

1386 SEARCH

Figure 5: Consistency checks performed by FC and
for four random CSP classes.

to 2. For very diff icult problems at the rightmost point,
both algorithms perform a similar number of consistency
checks. It is worth noting that always performs
better than or approximately equal to F C , but never
significantly worse.

These results can be interpreted in ful l agreement wi th
the efficiency analysis of Section 4. For easy problems,
the heuristic is good enough at the first level of the tree
to provide almost always the good advice. Mistakes are
very rare so 1DFS provides no advantages over DFS. When
problems become harder, more and more mistakes occur.
For these problems, the heuristic can improve when it is
computed at the second level of the tree, wi th respect to
the same heuristic computed at the first level. It seems
to do so because IDFS outperforms DFS on these prob­
lems, in both number of visited nodes and consistency
checks. For the hardest problems, going down a single
level in the tree is not enough to improve significantly
the heuristic quality. This is in agreement with the ex­
perimental results, since IDFS and DFS behave similarly
on the hardest instances.

6 Open Issues and Conclusions

Experimental results confirm the efectiveness of IDFS
over DFS on hard solvable problems. However, some im­
portant questions to use IDFS as a general search pro­
cedure remains to be answered, such as the depth of
parallel levels in the search tree, their distr ibution (con­
secutive or not) and their number. Related to this is the
number of active subtrees in each parallel level, which
could vary f rom one subtree to another inside the same
parallel level. Dynamic selection of these parameters, to

adjust the procedure to specific problem characteristics,
can also be devised. Besides, given the close relation
between IDFS benefits and heuristics, further knowledge
about the variation of heuristic quality wi th search depth
is needed. A l l these issues remain to be investigated in
the future.

In [Korf, 1996), Korf concludes: "the weakness of LDS
is dilettantism, whereas the weakness of DFS is excessive
diligence. An ideal algorithm should strike the right bal­
ance between these two properties." We have conceived
IDFS with this aim, trying to keep the right balance be­
tween exploration of the search tree and exploitation of
heuristic advice, inside a complete algorithm. As in the
case of LDS and ILDS, IDFS is a new search strategy which
outperforms classical ones on several problem classes,
demonstrating how imaginative ways of search can ef­
fectively improve the current state of the art in search
procedures.

Acknowledgments
I thank Lluis Godo, Javier Larrosa, Carme Torras and
the anonimous reviewers for their constructive com­
ments. I thank Josep Lluis Arcos for Latex support.
I also thank Romero Donlo for her collaboration on the
preparation of this work.

References
[Harvey and Ginsberg, 1995] Wi l l iam D. Harvey and

Matthew L. Ginsberg. Limited discrepancy search.
In Proc. of the 14th Int. Joint Conf. on Artificial In­
telligence, pages 607-613, Montreal, Canada, 1995.

[Korf, 1996] Richard E. Korf. Improved l imited discrep­
ancy search. In Proc. of the 13th National Conf on
Artificial Intelligence, pages 286-291, Portland, Ore­
gon, 1996.

[Larrosa and Meseguer, 1995] Javier Larrosa and Pedro
Meseguer. Optimization-based heuristics for maxi­
mal constraint satisfaction. In Proc. of the 1th Int.
Conf. on Principles and Practice of Constraint Pro-
gramming, pages 103-120, Cassis, France, 1995.

[Prosser, 1996] Patrick Prosser. An empirical study
of phase transitions in binary constraint satisfaction
problems. Artificial Intelligence, 81:81-109, 1996.

[Rao and Kumar, 1993] V. N. Rao and Vipin Kumar.
On the efficiency of parallel backtracking. IEEE
Transactions on Parallel and Distributed Systems,
4(2):427-437, 1993.

[Smith and Dyer, 1996] Barbara M. Smith and M. E.
Dyer. Locating the phase transition in binary con­
straint satisfaction problems. Artificial Intelligence,
81:155-181, 1996.

MESEGUER 1387

