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Abstract: The act of writing letters or words in free space with body movements is known as air-
writing. Air-writing recognition is a special case of gesture recognition in which gestures correspond
to characters and digits written in the air. Air-writing, unlike general gestures, does not require
the memorization of predefined special gesture patterns. Rather, it is sensitive to the subject and
language of interest. Traditional air-writing requires an extra device containing sensor(s), while the
wide adoption of smart-bands eliminates the requirement of the extra device. Therefore, air-writing
recognition systems are becoming more flexible day by day. However, the variability of signal
duration is a key problem in developing an air-writing recognition model. Inconsistent signal
duration is obvious due to the nature of the writing and data-recording process. To make the signals
consistent in length, researchers attempted various strategies including padding and truncating,
but these procedures result in significant data loss. Interpolation is a statistical technique that can
be employed for time-series signals to ensure minimum data loss. In this paper, we extensively
investigated different interpolation techniques on seven publicly available air-writing datasets
and developed a method to recognize air-written characters using a 2D-CNN model. In both
user-dependent and user-independent principles, our method outperformed all the state-of-the-art
methods by a clear margin for all datasets.

Keywords: air-writing recognition; interpolation; time-series data; human–computer interaction;
convolutional neural network

1. Introduction

In the last decade, we have grown accustomed to interacting with the digital world in
various ways. Touchscreens and other electronic devices are common means for people to
connect to the internet. The use of smartphones and other physical devices imposes the
additional burden of transporting them and taking them out of one’s pocket to interact with
them. The primary goal of next-generation technologies is to eliminate the necessity for
intermediary physical devices, for instance, smartphones [1]. Virtual and augmented reality
appears to be leading the way for the next generation of such technology, with output being
projected directly into the eyes of the user(s) via specialized glasses [2]. Speech recognition
is a well-studied approach that is thought to be a natural and intuitive way of interacting
with technologies. However, speech recognition does not fulfill all parameters needed to
communicate with technologies [1]. Gesture recognition is a method that has received a
lot of interest in recent years which can be a communication method for next-generation
technologies [2]. New technologies based on cameras, acceleration sensors, photosensors,
and electromagnetic and auditory signals are emerging as new mediums of interaction em-
ploying gestures as an alternative to standard keyboards, touchpads, or other pushing and
touching instruments [3]. In particular, for writing methods, traditional writing in touch
sensors does not fit into Virtual Reality (VR), Augmented Reality (AR), and gesture-based
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technologies. To meet the requirement of touchless writing methods of next-generation
technologies, air-writing is a promising solution. Air-writing is known as the act of writing
letters or words with fingers or hand movements in free space [4]. It can be regarded as a
special case of gesture, while the gesture is performing any kind of predefined movement
in the air.

However, the recognition of air-writing characters is not a simple task [4]. Charac-
ters are distinguished from generic gestures by their fine-grained movement and they can
be written in various ways by different people. In conventional writing, alphabets and
numbers are written in a multi-stroke way in pen-and-paper-like systems [5]. Air-writing
is different from the conventional writing system. Movements caused by lifting a pen are
significantly less noticeable while writing in the air. Since users do not have the sense
of touching anything, such as a pen or a piece of paper, they cannot see what is being
written as they could see while writing on a piece of paper. As a result, the users may lose
their sense of writing orientation in the space [2]. Despite all these difficulties, the recent
advancements in the domain are promising.

In recent years, smartphones with in-built sensors have become widely available.
Sensor data can be collected and preprocessed as per user requirement by creating a
mobile application for the data collection process [2]. Hence, the domain of sensor datasets
generated by smartphones is becoming larger day by day. Generally, while collecting the
sensor data for gesture recognition, a user makes a gesture while holding or wearing motion
sensors such as a gyroscope and/or an accelerometer [2,5,6]. On the other hand, the main
challenge of building an air-writing recognition model using sensor data is the variability of
signal length. Due to the nature of writing and data-recording procedures, variable signal
length is evident [2], whereas deep learning methods such as the convolutional neural
network require fixed-length signals in the training and prediction process. Fixed-length
padding and truncation is a widely used process that pads or discards values from the start
and/or end of a signal [7]. It is a simple method to implement but results in huge data
loss, and therefore, the model is unable to capture significant features. On the contrary,
interpolation is a statistical technique that predicts unknown values based on known
values [8]. It ensures the fixed length of the signals by mapping the signal data into a
predefined fixed length as a whole without discarding any portion of the signal. Therefore,
data loss is minimal. Multiple interpolation techniques are available and well studied in the
domain of image processing [9,10]. We investigated those various interpolation techniques
on time-series data to obtain the fixed-length signals, i.e., employed interpolation methods
on one-dimensional data instead of two-dimensional data. Furthermore, a well-structured,
fine-tuned deep learning model can ease the training process and yield better accuracy
in prediction. We designed a 2D-CNN model following the best practices proved in the
literature and obtained state-of-the-art accuracy on seven publicly available datasets.

The organization of the rest of this paper is presented as follows: Section 2 presents
the related works. Section 3 describes the dataset and the recognition methodology.
In Section 4, the experimental analysis and evaluation of the methods are reported. Section 5
summarizes the paper emphasizing our contributions.

2. Related Work

Several researchers have recommended using motion sensors for gesture detection in
recent years [6,11]. Liu et al. used an accelerometer signal which was captured from
a Wii remote and recognized a predefined set of eight gestures using a DTW-based
method [6]. The DTW-based method is a well-studied approach to deal with time-series
data and air-writing recognition [12–14]. Chen et al. determined air-writing to be better
than virtual keyboards in typing accuracy [4,15]. The authors also looked into identifying
the beginning and end of each letter by the segments of the writing signal in a continuous
data stream. A Wii remote was also used by Xu and Xue, where the users were given
instructions about the order of movement for each of the air-written letters [16]. Li et al.
used mobile-phone-captured motion signals performed by users and an LSTM-based
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deep neural network architecture to differentiate between twelve different handwritten
characters consisting of six uppercase letters and six digits [17].

Since users perform air-writing by hand, the signals received from palm-worn de-
vices may lead it to be harder to recognize the activities [2]. However, several studies
have depicted that it is possible to classify the gestures from palm-worn devices [18,19].
Amma et al. recognized air-written letters with high accuracy using motion sensors posi-
tioned on the palm [20]. Xu et al. recognized textual input from wrist sensor data obtaining
an accuracy of 98% [21]. Lin et al. investigated the orientations of the surfaces in which
users were to write characters, the stabilization (support) point of the hand, and the rotation
injection technique for data augmentation which uses a rotation matrix [22]. They obtained
a remarkably high accuracy of 99.99% to recognize 62 characters by 10 subjects with a
machine-learning-based approach. Chen et al. investigated real-time fingertip detection
in frames captured from smart glasses. They built a synthetic dataset using Unity3D and
proposed a modified mask regional convolutional neural network. Their method could
detect fingertip for air-writing in a minimal length of time for each frame [23]. Kim et al.
experimented with the WiTA dataset, which contains air-writing data for Korean and
English alphabets collected by RGB cameras [24]. Bastas et al. experimented with handwrit-
ten digits, ranging from 0 to 9, which were structured as a multidimensional time-series
data obtained via a Leap Motion Controller (LMC) sensor [25]. Tsai et al. suggested a
reverse time-ordered algorithm to efficiently filter out unnecessary lifting strokes while
writing in the air. To overcome the problem of different writing styles of different users,
a tiered arrangement structure was presented by sampling the air-writing results with
varied sample rates [26]. Arsalan et al. suggested an air-writing system based on a network
of sparse radars and a 1D DCNN-LSTM-1D transposed DCNN architecture that can rebuild
and identify the drawn character [27].

Moazen et al. attempted to recognize air-writing with a dataset containing 100 sets of
samples of all 26 English letters collected from a single subject [28]. Uysal et al. proposed
RF-Wri, a device-free machine-learning-based air-writing recognition framework that can
differentiate 26 capital letters [29]. Yanay et al. allowed the users to write with their
hands in the air naturally while capturing the motion signals by smart-bands [2]. In this
experiment, the accelerometer and gyroscope signals were collected from the smart-bands
to create a dataset of 15 sets of English alphabet for 55 subjects each. Finally, an average
accuracy of 83.20% with the user-independent method and 89.20% with the user-dependent
method was obtained in their experiment. To extract air-writing trajectories captured by
a single web camera, Hsieh et al. proposed a hand-tracking algorithm [30]. Alam et al.
experimented with a trajectory-based air-writing system where a depth camera was used
which could track the fingertip to collect three-dimensional (3D) trajectories. They collected
21,000 trajectories and developed LSTM, CNN, and nearest-neighbor-based approaches
and managed to obtain 99.17% accuracy [5]. Alam et al. proposed a trajectory-based
air-writing character recognition system called CNN-LSTM, which used a combination of
convolutional neural networks (CNNs) and long short-term memory (LSTM) to achieve
99.63 percent and 98.74 percent accuracy in the RTD and RTC datasets, respectively [31].
Alam et al. developed a technique for a finger-joint tracking-based character recognition
system that uses 3D information to monitor the finger-joint and use the distance between
the thumb tip and another finger-joint to identify a numerical digit, alphabet, character,
special key, or symbol. Firstly, a single-hand-based digit recognition system was pre-
sented, which could be utilized with either the left or right hand. Secondly, a two-handed
writing method was demonstrated, in which both hands were engaged at the same time.
They achieved an overall accuracy of 91.95% for single-hand recognition and 91.85% for
double-hand recognition, respectively [32]. In the absence of paired inertial and trajec-
tory data, Xu et al. suggested an Air-Writing Translator model for learning bi-directional
translation between trajectory and inertial domains. The researchers tested the suggested
model on two publicly available datasets, 6DMG (in-air handwriting dataset) and CT
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(handwritten trajectory dataset), and showed that the model can reliably translate between
the inertial and trajectory domains [33].

Our study differs from that of the existing studies in multiple aspects: (1) Though inter-
polation techniques are well studied in the digital image domain, they are often overlooked
for time-series data [34]. In this paper, we experimented with various interpolation tech-
niques on different publicly available air-writing datasets [2,5,35,36] and yielded the best
interpolation technique for air-writing time-series data. (2) Proposing a well-structured,
tuned deep learning model is necessary to gain the most of the data. We proposed a
2D-CNN model following the best practices proved in the literature [37–39]. These mea-
sures result in state-of-the-art performance, outperforming all the existing methods in both
user-dependent and user-independent training principles by a clear margin for each of the
seven air-writing datasets.

3. Materials and Methods
3.1. Dataset Description

We used a total of seven publicly available air-writing datasets in this
research [2,5,35,36]. All of the datasets are different in the number of classes, the number
of users or subjects (interchangeably used throughout the paper), the number of features,
and the data acquisition method. Among the datasets, all of them were experimented
with a user-dependent training principle and five of them were experimented with a
user-independent training principle. In the user-dependent principle, samples from all
users were considered for training and cross validation was employed for testing purposes.
This is also known as the user-mixed principle [33]. Meanwhile, the user-independent
principle overcame the necessity of the user registration process prior to testing. Here,
one user was held off from testing while the rest of the users’ data were used for training.
In Table 1, we present the summary of the datasets used in this study.

Table 1. Summary of the datasets used in this study.

Dataset No. of Classes, n No. of Features, n No. of Users No. of Samples
Training Principle

User Dependent User Independent

RTD * [5] 10 2 10 20,000 3 7
RTC * [36] 26 3 10 30,000 3 7
Smart-band [2] 26 6 55 21,450 3 3
6DMG-digit [35] 10 13 6 600 3 3
6DMG-lower [35] 26 13 6 1470 3 3
6DMG-upper [35] 26 13 25 6500 3 3
6DMG-all [35] 62 13 25 8570 3 3

* The authors did not disclose user data. Therefore, training in user-independent principle cannot be performed.

3.1.1. Smart-Band Dataset

The smart-band dataset created by Yanay et al. contains air-writing data collected
from 55 subjects [2]. Each subject wrote 15 sets of all 26 letters in the English alphabet in the
air wearing a smart-band on their wrist. So, the dataset contains 390 samples of air-written
letters per subject and there are 21,450 samples in total in the dataset.

The subjects wore the ‘Microsoft Band 2’ smart-band. The smart-band motion sensors,
e.g., accelerometer and gyroscope, were used to record motion measurements in each
sample. Both the accelerometer and gyroscope data were taken from three different axes (X,
Y, and Z) with a maximum sampling rate of 62 Hz. To collect the signals from the motion
sensors, an android mobile application was developed which ran on a Samsung Galaxy S8
smartphone. The smart-band was worn in the wrist of the hand with which the subject
normally wrote, and the smartphone was held with another hand. The smartphone was
connected to the smart-band via Bluetooth to collect data. Among the 55 subjects, 28 were
females and the rest were males, while 46 subjects were right-handed, and the remaining
9 subjects were left-handed.
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3.1.2. Six-Dimensional Motion Gesture (6DMG) Datasets

The 6DMG dataset is a collection of alphanumeric air-writing characters, numerics,
and gestures [35]. It was gathered using a hybrid framework in which an inertial sensor
recorded tri-axial acceleration and tri-axial angular velocity, and an optical tracking device
recorded the spatial coordinate trajectory. As a result, the 6DMG dataset includes both
inertial and trajectory domain information. There is a total of 62 characters in this dataset,
with 26 uppercase letters, 26 lowercase letters, and 10 numerals. The uppercase letters’
data were collected from 25 subjects, whereas only 6 subjects were used to compile data
for the digit and lowercase dataset. Overall, the dataset comprises a total of 8570 samples,
with 600 numeric samples, 6500 uppercase letter samples, and 1470 lowercase letter samples.

3.1.3. RealSense-Based 3D Trajectory Digit and Character (RTD-RTC) Datasets

RealSense-based 3D Trajectory Digit and Character Datasets, abbreviated as RTD and
RTC, respectively, are publicly available air-writing datasets containing the sequence of
trajectory captured while writing English alphabets or digits in the free space. Both of the
datasets were collected by Alam et al. [5,36]. In the RTC dataset, users wrote the English
alphabets in front of sensor devices. The sensor data were gathered as a trajectory sequence.
The fingertip was considered a substitute for a pen in the conventional pen–paper writing
method. Users could write a character in front of an Intel RealSense SR300 camera, and the
camera recognized the fingertip and collected it as a trajectory sequence. The direction of
writing was a little different from the conventional multistroke style of writing, and it was
written in a unistroke style [36]. In the RTD dataset, users wrote digits in front of the same
device settings as RTC. The digits were written by the users in a defined manner [5].

Both the RTD and RTC datasets contain data as a sequence of trajectory, where each tu-
ple indicates a trajectory. In each of the tuples, there are values of X-coordinate, Y-coordinate
and Z-coordinate in the 3D Cartesian coordinate system, which was taken from the sensor
device. However, in our experiment, we found that considering all three of the coordinate
values from the RTD dataset produced meaningless output. Rather, only considering the X
and Y coordinates made sensible outputs for the dataset. Therefore, the number of features
for RTD and RTC dataset is 2 and 3, respectively, (see Table 1).

3.2. Data Preprocessing

In this work, we experimented with various interpolation methods while maintaining
a fixed signal length of the air-writing sensor data. As the dataset is well balanced across the
letters and free from missing values, no further data processing measures were necessary.

3.2.1. Optimal Signal Length Selection

To feed the data into deep learning architectures such as the convolutional neural
network for training and prediction, maintenance of a fixed length is a must. Due to the
nature of the data acquisition procedure, the length of the signals is likely to differ. As we
used interpolation techniques described in the previous section (see Section 3.2.2), we had
to find a suitable length to shape all the signals. We applied two following techniques to
obtain this goal:

1. We could consider the mean of the signal lengths such that the fixed length nearly
split the data in half. Half of the signal length was less than the fixed length, so we
had to upsample the data to increase the length. We downsampled the other half of
the signals where the length of the signals was greater than the fixed length.

2. As loss occurs in downsampling the data, we could consider upsampling the maxi-
mum number of signals so that the data loss was kept to a minimum and the signal
length was manageable.

3.2.2. Fixed-Length Signals Using Interpolation Techniques

Interpolation is a statistical technique to predict probable unknown values based on
known values [8]. It is widely used in image processing for reshaping images without the
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loss of the quality of the image or the visual experience and for improving the quality of
the image. We used these interpolation techniques to obtain fixed-length signals to feed
into the deep learning model without aggressive data loss.

In recent years, image processing methods with interpolation have gained importance
for the capability of improving bad resolution images preserving the characteristics of the
image [9]. The quality of the processed image is dependent on the chosen interpolation
algorithm. There are different types of interpolation algorithms that have previously been
developed. Among those algorithms, nearest neighbor, Bilinear, Bicubic, and Lanczos
interpolation methods are widely used in different fields [10]. In Figure 1, we show the
effects of different interpolation methods for upsampling and downsampling time-series
signals. The interpolation techniques used in this paper are described below.

A Bicubic Interpolation: The Bicubic interpolation is the advanced version of cubic
interpolation in a two-dimensional regular grid. The interpolation surface obtained
here was smooth. Polynomial, cubic, or cubic convolution algorithm was used here.
The cubic convolution determines the gray level value using the 16 closest pixels
to the specified input coordinates and assigns the value to the output coordinates.
The Bicubic interpolation kernel, W(x) [40] is defined as follows,

W(x) =


(a + 2)|x|3 − (a + 3)x2 + 1 f or |x| ≤ 1
a|x|3 − 5a|x|2 + 8a|x| − 4a f or 1 < |x| < 2
0 otherwise

(1)

where a is generally −0.50 or −0.75.
B Lanczos Interpolation: To smoothly interpolate the value of a digital signal between

samples, the Lanczos filter is employed. Here, each sample of the given signal was
mapped to a translated and scaled copy of the Lanczos kernel, L(x). The Lanczos
kernel is a normalized sinc function which is windowed by a sinc window. The sinc
window used is defined as the central lobe of a horizontally stretched sinc function
sinc(x/a) for −a ≤ x ≤ a.

L(x) =

{
sinc(x)sinc( x

a ) i f − a < x < a
0 otherwise

(2)

Equivalently,

L(x) =


1 i f x = 0
asin(πx)sin( πx

a )

π2x2 i f − a ≤ x < a and x 6= 0
0 otherwise

(3)

where a is a positive integer determining the size of the kernel, generally 2 or 3.
The Lanczos kernel contains 2a − 1 lobes. Among them, the number of positive
lobes at the center is a and the other a− 1 lobes are situated at each side which are
alternating negative and positive lobes. For a one-dimensional signal with samples
si, the value interpolated at an arbitrary real argument x, S(x) is obtained by the
discrete convolution of those samples with the Lanczos kernel,

bxc+a

∑
i=bxc−a+1

siL(x− i) (4)

where the filter size parameter is defined as a. The sum is bounded in such a way
that the kernel is 0 outside of the boundary [41].

C Bilinear Interpolation: The use of linear polynomials to generate new data points
within the range of a discrete set of known data points is known as linear interpolation.
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Bilinear interpolation is accomplished by first performing linear interpolation in one
direction and then repeating the process from the opposite direction. In bilinear
interpolation, a value for a random position is determined by the weighted average
of the four closest values. In the sense of image processing, the four closest values can
be regarded as the four closest coordinates to the specified coordinate for which the
value is to be determined. In this method, two linear interpolations are performed.
One linear interpolation is performed in a direction and the next is performed in the
perpendicular direction. The output is smoother than the original input value set.
When all distances between the data points are equal, then the interpolated value is
their sum divided by four. Here, the interpolation kernel, H(x) is

H(x) =

{
0 i f |x| > 1
1− |x| i f |x| < 1

(5)

where x is the distance between two points to be interpolated.
D Nearest Neighbor Interpolation: Nearest neighbor interpolation is the most simple

interpolation technique [42,43]. In this method, each interpolated output value is
generated with the closest sample point in the input. This method produces discon-
tinuous interpolated data [44]. The interpolated point Xi is determined by

Xi =

{
XB i f i < a+b

2

XA i f i ≥ a+b
2

(6)

where a and b are the indexes of xA and xB and a < i < b.

Figure 1. Different interpolation techniques applied on time-series data for upsampling and downsampling. (A) for
1/4 downsampling (signal length from 100 to 25), (B) for 1/2 downsampling (signal length from 100 to 50), (C) for 2×
upsampling (signal length from 100 to 200), (D) for 4× upsampling (signal length from 100 to 400). The input signal was
taken from the smart-band dataset.

3.3. Convolutional Neural Network Architecture

A convolutional neural network, abbreviated as CNN, is a type of deep neural net-
work for processing raw visual data, inspired by the organization of the visual cortex of
animals [45,46] and made to learn spatial hierarchies of features, from low-level to high-
level patterns, automatically and adaptively using convolutional and pooling layers and
activation functions. CNNs are widely employed in computer vision tasks. Classification,
object localization and detection, segmentation, and pose estimation are some of these
tasks, to name a few. Lately, they have gained popularity in the research area of human
activity recognition [47–49]. They have also been used for the classification of time-series
data obtained from accelerometers, gyroscopes, and other sensors [50–53]. We proposed a
convolutional neural network following the best practices that adapts well for air-writing
recognition utilizing time-series data from various sensors.



Sensors 2021, 21, 8407 8 of 15

Our proposed convolutional neural network architecture was composed of four groups
of layers other than the input layer, where the first three groups consisted of a couple of
two-dimensional convolution, maxpooling, and dropout layers for feature extraction.
We flattened the output from the third convolutional group, and a dense layer accompa-
nying dropout was employed with the softmax activation function to gain the prediction.
Except for the prediction layer, we used Rectified Linear Units (ReLUs) as the activation
function throughout the network.

The input of the network was the tensor of format: l × f × 1, where l is the signal
length, f is the number of features (time-series signals) in the dataset. This tensor was
therefore propagated through the convolutional layers. Each of the convolutional groups
was constructed using conv-conv-maxpool-dropout layers, sequentially. The core objec-
tive for consecutive convolutional layers without pooling layers is to replace a single
layer with a larger receptive field rather than skipping any pooling. It is a widely used
construct for developing convolutional neural network [37,54–56]. We incorporated two
non-linear convolutional layers instead of a single one with a larger filter size to make the
decision function more discriminative. Additionally, this approach decreased the number
of trainable parameters [37].

Dropout has been an integral part of deep neural networks since their inception [57].
Wu and Gu studied the effects of dropout on different layers of CNNs and showed that
the dropout of maxpooling and fully-connected layers performed best [38]. Therefore,
we used dropout after every maxpooling layer and in the fully-connected layer where
the percentage, p values of the dropouts were chosen according to the suggestions given
by Park and Kwak [39]. The network architecture specification is provided in Table 2,
considering the smart-band dataset.

Table 2. Network architecture of the 2D-CNN model for air-writing recognition based on smart-band dataset.

Operation
Group Layer Name Filter Size No. of Filters Stride Size Padding Size Activation

Function Output Size * No. of
Parameters *

- Input - - - - - 200× 6× 1 0

Group1

Conv1-1 2× 2 32 1× 1 1× 1 ReLU 200× 6× 32 160
Conv1-2 2× 2 32 1× 1 1× 1 ReLU 200× 6× 32 4128

MaxPool1 2× 2 1 2× 2 0 - 100× 3× 32 0
Dropout p = 10% 100× 3× 32 0

Group2

Conv2-1 2× 2 64 1× 1 1× 1 ReLU 100× 3× 64 8256
Conv2-2 2× 2 64 1× 1 1× 1 ReLU 100× 3× 64 16,448

MaxPool2 2× 2 1 2× 2 0 - 50× 2× 64 0
Dropout p = 20% 50× 2× 64 0

Group3

Conv3-1 2× 2 128 1× 1 1× 1 ReLU 50× 2× 128 32,896
Conv3-2 2× 2 128 1× 1 1× 1 ReLU 50× 2× 128 65,664

MaxPool3 2× 2 1 2× 2 0 - 25× 1× 128 0
Dropout p = 20% 25× 1× 128 0

Group4

Flatten - - - - - 3200 0
Dense - - - - ReLU 512 1,638,912

Dropout p = 50% 512 0
Dense - - - - Softmax 26 13,338

Total 1,779,802

* Output size and no. of parameters vary based on the number of features and signal length, l, depending upon the dataset under
consideration. For smart-band dataset, the number of features is 6 and the signal length, l is 200 (see Table 1 and Section 3.2.1). Therefore,
we yield this 2D-CNN network. The layers that construct the network and the attributes remain the same for all datasets.

3.4. Experimental Settings and Evaluation Metrics

To accelerate our training procedure, NVIDIA Tesla T4 GPU and 12 GB of RAM were
used provided by Google Colaboratory free of charge [58]. We used OpenCV library [59]
to interpolate the time-series data and Keras API over TensorFlow backend [60] to create
the CNN model.

We measured the performance of the model by recognition accuracy (see Equation (7))
in user-dependent and user-independent principles. In the user-dependent principle,
10-fold cross-validation accuracy was reported for smart-band, RTC, and RTD datasets,
and 5-fold cross-validation accuracy was reported for the variations of the 6DMG dataset
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to compare our method with the state-of-the-art methods. The evaluation metric was
considered for multiclass classification, as we had a various number of digits and characters
in different datasets (see Table 1). Note that the datasets are mostly balanced regarding the
number of samples per letter per subject where applicable. Therefore, the evaluation of
classification performance using accuracy alone was justified.

Accuracy =
Number o f correct predictions
Total number o f predictions

(7)

4. Experimental Analysis

In this section, we experimented extensively with the various interpolation techniques
to find the best method among them and a suitable fixed signal length, l for interpolation
using the smart-band dataset developed by Yanay et al. [2]. We performed comparative
analysis with other existing signal length unification methods, such as padding and trun-
cation, with the best interpolation method. Finally, we employed our methodology on
six other air-writing datasets [5,35,36] to verify our findings and yielded state-of-the-art
performances.

4.1. Searching Optimal Signal Length

The process of recording the air-writing data results in different signal lengths.
In Figure 2, we show a histogram of the lengths of all the samples from the smart-band
dataset. Along with the interpolation methods, the fixed length of the signals plays an
important role in data preprocessing, as we required a unified length to fit data into the
2D-CNN model.

Figure 2. Histogram of the length of all samples from smart-band dataset.

Denoting the fixed signal length using l, we would have a matrix of size l × 6 for
each sample of the letters as we had six time-series data for each sample (see Section 3.1.1).
Now, from the length distribution of each sample (see Figure 2), we can see that it is itself
a matter of choice to select the fixed signal length (see Section 3.2.1). From the statistical
characteristics, we considered the two following aspects. Firstly, we considered a round
mean of the length distribution where approximately half of the data would be downsam-
pled and half would be upsampled. However, from Section 3.2.2 and Figure 1, we can
see that each interpolation method densely populates the time-series while upsampling,
but for downsampling, we may significantly lose important data features. Therefore,
secondly, if we upsample the majority of the data, we may have some data redundancy,
but data loss is mostly prevented. Therefore, we considered 100 and 200 to be the signal
length in our experimentation, where 100 is used to balance interpolation for upsam-
pling and downsampling and 200 for upsampling the majority of data so that the data
loss is minimized. Hence, the shape of the matrix containing all of the samples will be
21,450 × l × 6, where l = 100, 200.
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4.2. Effects of Various Interpolation Techniques

For the signal length, l = 100, we considered different methods for upsampling and
downsampling as approximately half of the data was upsampled and half of the data
was downsampled. Therefore, we had 20 different combinations of interpolation methods
(see Table 3), whereas, for length l = 200, considering 20 different combinations did not
make any sense, as there are very little data left to be downsampled. So, we considered the
same interpolation method for both upsampling and downsampling. To minimize the time
taken to fine-tune the model, five random users (user no. = {22, 10, 4, 47, 40}) were taken
to build the test set and the rest of the users remained in the training set. For different
interpolation methods and fixed signal lengths, the performance of the classification model
is presented in Table 3.

Table 3. Interpolation methods in different upsampling and downsampling settings.

Upsampling
Method

Downsampling
Method Signal Length, l

Accuracy

Avg. (%) Std.

Bicubic

Bicubic

100

87.35 0.41
Lanczos 87.21 0.59
Bilinear 87.76 0.45

Nearest neighbor 87.04 0.21

Lanczos

Bicubic

100

87.54 0.18
Lanczos 86.50 0.70
Bilinear 86.84 0.46

Nearest neighbor 86.73 0.27

Bilinear

Bicubic

100

86.91 0.77
Lanczos 86.77 0.63
Bilinear 86.25 0.80

Nearest neighbor 87.38 0.09

Nearest neighbor

Bicubic

100

87.38 0.37
Lanczos 87.32 0.76
Bilinear 86.67 0.58

Nearest neighbor 87.08 1.24

Bicubic Bicubic

200

88.54 0.31
Lanczos Lanczos 87.35 0.31
Bilinear Bilinear 88.46 0.19

Nearest neighbor Nearest neighbor 88.08 0.59

From Table 3, we can see that, using signal length, l = 100, for all combinations of
the interpolation methods, the results are marginally poor as we lose important temporal
features for downsampling time-series data. For signal length, l = 200, Bicubic interpola-
tion for both the up and downsampling performs best, though the method did not yield
data much compared to the other methods. As we upsampled most of the data for l = 200,
temporal data loss was minimal. Therefore, we had to select the optimal fixed signal length
so that most of the data were upsampled. Consideration of the computation trade-off is
critical as the signal length should not be too large to result in data redundancy.

In a similar setting, we performed comparative analysis with the other existing sig-
nal length unification methods such as pre-sequence padding and truncation and post-
sequence padding and truncation [7]. For a set of variable length signals, finding a unified
length for all the signals may result in both padding (if the length of a particular signal
is less than the fixed signal length) and truncation (if the length of a particular signal is
greater than the fixed signal length). Here, the idea of padding and truncation is kind of
similar to upsampling and downsampling, respectively. The sampling rate of the signal
is changed accordingly for up and downsampling and the overall characteristics of the
signal are kept where padding fills the extra slots by zeros and truncation cuts the signal to
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make the signal as required. The words, pre and post of the methods refer to the part of
the sequence where the padding by zero or the truncation takes place.

In Table 4, it is shown that for a wide range of sequence lengths, the padding and
truncation methods performed worse than the Bicubic interpolation technique. As the
signal length increased to 400, the inference time of the model and the number of floating-
point operations also increased, but the performance of the model decreased for both cases
of the padding and truncation method. Meanwhile, the Bicubic interpolation techniques
performed much better for l = 200, which is also computationally optimal. We also
evaluated Bicubic interpolation for l = 50 and l = 400, and the method performed
surprisingly well for l = 50. In this case, pre-sequence padding and truncation and
post-sequence padding and truncation were 59.87% and 48.15% accurate, respectively,
where Bicubic interpolation achieved 84.94% accuracy. For l = 400, the accuracy of the
model was reduced than that of l = 200 due to data redundancy. Therefore, we selected
l = 200 as the optimal signal length for the smart-band dataset. Following the same
procedure, we also selected the signal length, l for other datasets (see Table 5).

Table 4. Comparative analysis of Bicubic interpolation with padding and truncation methods.

Approach Sequence
Length, l

# Padded or
Upsampled

Samples

# Truncated or
Downsampled

Samples
# Flops

Inference
Time
(ms)

Accuracy

Avg. (%) Std.

Pre-sequence
Padding and Truncation

50 212 21,238 599,177 1.648 59.87 0.52
100 10,892 10,558 992,393 1.492 84.57 0.30
200 21,161 289 1,778,825 1.709 86.58 0.37
400 21,449 1 3,417,225 2.056 86.38 0.24

Post-sequence
Padding and Truncation

50 212 21,238 599,177 1.429 48.15 0.44
100 10,892 10,558 992,393 1.843 80.25 0.23
200 21,161 289 1,778,825 1.770 85.84 0.42
400 21,449 1 3,417,225 2.519 85.63 0.35

Bicubic
Interpolation

50 212 21,238 599,177 1.475 84.98 0.35
100 10,892 10,558 992,393 1.533 87.35 0.41
200 21,161 289 1,778,825 1.687 88.54 0.31
400 21,449 1 3,417,225 2.430 88.02 0.48

Table 5. Selected signal length, l for all datasets.

Dataset Min Max Signal Length, l

RTD 18 150 125
RTC 21 173 125

Smart-band 34 438 200
6DMG-digit 29 218 175
6DMG-lower 27 163 150
6DMG-upper 27 412 250

6DMG-all 27 412 250
The terms “Min” and “Max” represent the minimum and maximum length of the signals in that particular
dataset, respectively.

4.3. Results and Discussions

In the literature, air-writing recognition is evaluated under two different training prin-
ciples [2,16,33]: (1) the user-dependent principle and (2) the user-independent principle.
The definitions of the principles are stated in the dataset description section (see Section 3.1).

Our method outperformed all the state-of-the-art methods in both principles for all
the datasets. We reported the performances of our method in comparison with the previous
methods [2,4,5,16,31,33,36,61–63], shown in Tables 6 and 7. From Table 6, compared with
the existing methods employed on the smart-band, RTC, and RTD datasets, our proposed
method achieved the best recognition performance in terms of accuracy in both user-
dependent and independent principles by a clear margin. For the variations of the 6DMG
dataset, the performance comparison is presented in Table 7. Our method outperformed
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all the existing methods for digits, lowercase letters, uppercase letters, and all of these
combined for both training principles. Empirically, under the user-dependent principle,
our model achieved 100% accuracy for digits, which was verified by multiple random splits
in cross-validation. Furthermore, we achieved a 3.55% accuracy gain for all the classes
combined and 0.52%, 1.62%, and 2.24% accuracy gain for digit, lowercase, and uppercase
datasets, respectively, in the user-independent principle.

Table 6. Performance evaluation for user-dependent and independent method on smart-band and
RealSense-based Trajectory datasets. Abbreviations of the approaches are given in the Abbreviations
section of this paper.

Training Principle Approach
Accuracy

Smart-Band RTC RTD

User-dependent
principle

(10-fold CV)

KNN-DTW based [2] 89.20 - -
2D-CNN based [36] - 97.29 -

LSTM based [5] - - 99.17
CNN-LSTM fusion [31] - 98.74 99.63

Proposed 91.34 99.63 99.76

User-independent
principle

1D-CNN [2] 83.20 - -
Proposed 85.59 - -

Table 7. Performance evaluation for user-dependent and independent methods on the 6DMG dataset. Abbreviations of the
approaches are given in the Abbreviations section of this paper.

Training
Principle Approach

Accuracy

Digit Lower Upper All

Avg. (%) Std. Avg. (%) Std. Avg. (%) Std. Avg. (%) Std.

User-
dependent
principle

(5-fold CV)

HMM-based [4] - - - - 98.16 2.37 - -
LSTM-bases [61] 97.33 1.49 96.80 0.57 98.34 0.50 94.75 0.31

CRF-CNN fusion [62] - - - - 98.57 - - -
BiLSTM-CNN fusion [63] 99.33 - - - 99.27 - - -

CHMM-based [16] 99.00 1.09 98.22 0.73 97.29 0.66 95.91 0.47
UDA [33] 99.78 0.03 98.94 0.08 99.55 0.06 97.03 0.11
Proposed 100.00 0.00 99.47 0.39 99.80 0.20 98.99 0.23

User-
independent

principle

CHMM [16] 96.70 4.08 76.38 5.25 91.03 1.54 62.69 2.91
UDA [33] 98.74 0.34 92.86 0.48 96.99 0.45 87.69 0.58
Proposed 99.26 0.12 94.48 0.45 99.23 0.94 91.24 0.86

5. Conclusions

Air-writing recognition will be essential in the post fourth industrial revolution world.
In this study, we developed a method to recognize characters and digits in the English
alphabet using time-series data. Sensor data preparation for deep learning methods while
ensuring minimal data loss is a challenging task. We extensively explored different interpo-
lation techniques which are widely used for images but often overlooked for time-series
signals. Our experiment shows that interpolating the raw data using the Bicubic interpo-
lation algorithm provides the best results in our use case. Upon this interpolated data,
we trained our proposed 2D-CNN model to classify the letters, which outperformed the
state-of-the-art methods by a clear margin. Fine tuning to the recognition system will be
necessary before the real-world deployment of the air-writing recognition system. Further-
more, we can hybridize user-independent and user-dependent methods, create a guidance
or feedback loop to the user, and introduce an auto-correction mechanism. Additionally,
we can explore the subjects’ characteristics extensively. Though the datasets particularly
indicated some of the characteristics of the subjects, we did not consider those facts, as we
intend to make the system more generalized. Last but not least, further research is essential
to recognize words in similar settings, as it is much more challenging than recognition of
an isolated character or digit. To build a fully functional air-writing recognition system,
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all of these issues have to be addressed. We present our work as one of the steppingstones
in that path.
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