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Incentive mechanism is the key to the success of the Bitcoin system as a permissionless blockchain. It encourages participants to
contribute their computing resources to ensure the correctness and consistency of user transaction records. Selfish mining attacks,
however, prove that Bitcoin’s incentive mechanism is not incentive-compatible, which is contrary to traditional views. Selfish
mining attacks may cause the loss of mining power, especially those of honest participants, which brings great security challenges
to the Bitcoin system. Although there are a series of studies against selfish mining behaviors, these works have certain limitations:
either the existing protocol needs to be modified or the detection effect for attacks is not satisfactory. We propose the ForkDec, a
high-accuracy system for selfish mining detection based on the fully connected neural network, for the purpose of effectively
deterring selfish attackers. The neural network contains a total of 100 neurons (10 hidden layers and 10 neurons per layer), learned
on a training set containing about 200,000 fork samples. The data set, used to train the model, is generated by a Bitcoin mining
simulator that we preconstructed. We also applied ForkDec to the test set to evaluate the attack detection and achieved a detection
accuracy of 99.03%. The evaluation experiment demonstrates that ForkDec has certain application value and excellent

research prospects.

1. Introduction

Bitcoin is essentially a decentralized, distributed public
ledger, which allows anyone or institution to participate in
publishing transactions in a client-side manner [1]. The
transaction will be collected by the participants (called
miners) in the network and then added to the public ledger
through a consensus protocol. The consensus protocol
adopted by Bitcoin is called Proof-of-Work. All miners
compete to solve a difficult-to-solve but easy-to-verify
cryptographic puzzle. The miner who successfully solves the
puzzle first is allowed to add transactions to the ledger and
receive Bitcoin rewards [2]. Incentive mechanism is central
to the functionality of Bitcoin, which ensures the security
and liveness of Bitcoin by encouraging a large number of
honest miners to participate in the consensus process [3].
Traditionally, it is believed that Bitcoin’s incentive mecha-
nism is incentive-compatible, but the emergence of selfish

mining proves that this opinion is inaccurate [2]. By stra-
tegically publishing previously withholding blocks to in-
validate blocks mined by honest miners, selfish attackers can
collect additional reward shares that should belong to honest
miners. The harm of selfish mining attacks is not limited to
this. Unfair reward distribution will induce some rational
participants to be selfish. A large number of selfish partic-
ipants may also launch collusive attacks to infringe the
revenue of other honest participants, which will seriously
damage Bitcoin’s reputation. Resulting in plenty of honest
miners quitting will weaken the security significantly and
give other attacks (e.g., double-spending attacks) an op-
portunity to take advantage of. Although selfish mining
attacks have not been discovered in the real world, with the
continuous improvement of potential attackers’ computing
power and the iterative upgrade of attack algorithms [4-10],
the possibility of this attack is gradually increasing. We
consequently must attach great importance to the detection
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of this attack to ensure that it can be discovered and
countermeasures are taken as soon as possible when an
attack occurs.

L1. Related Works. Ethan Heilman proposed a method
based on unforgeable timestamps against selfish mining [11],
called Freshness Preferred. It requires miners to add
unforgeable timestamps to blocks, and it invalidates the
blocks withheld by attackers by encouraging honest miners
to choose blocks with the latest timestamp. The disadvantage
of this method, however, is that it requires a credible
timestamp agency to generate unforgeable timestamps and
requires honest miners to record all recent timestamp release
logs. Solat et al. [12] proposed a new solution that does not
use unforgeable timestamps, called the ZeroBlock. The idea is
that if selfish miners withhold blocks for more than a preset
time interval, all honest miners will directly reject the block.
The ZeroBlock scheme forces the selfish attacker to be unable
to withhold blocks for a long time. Zhang et al. proposed the
Weighted Fork-Resolving Policy. When a fork occurs, a
weight is calculated for each branch. And, it is recommended
that honest miners no longer simply rely on the length of the
branch when determining the main chain but choose the
branch with the largest weight [13]. Saad et al. [14] assigned
an expected confirmation height (i.e., the expected height of
the block containing the specified transaction) to each
transaction by measuring the transaction size, transaction
fee, and other factors. The smaller the gap between the actual
confirmation height and the expected height, the lower the
possibility of selfish mining behavior. Lee et al. increased the
profit threshold of selfish mining from 25% to 33% by adding
transaction creation time to the transaction data structure
[15]. Chicarino et al. [16] analyzed the impact of selfish
mining on Bitcoin’s fork height and judged whether a selfish
mining attack occurred by monitoring the abnormal
changes in the fork height.

1.2. Motivation and Contribution. Since Eyal and Sirer
proposed the concept of selfish mining and pointed out its
harmfulness; a series of studies on this attack have appeared
[4, 10, 17, 18, 19, 20]. The main focus of most research,
however, is to increase the attacker’s rewards or reduce the
mining power threshold. By contrast, there are relatively few
research studies on selfish mining defense measures [11-16],
and many works require upgrading the existing protocol,
which is costly to implement. The selfish mining detector
[16] proposed by Chicarino et al. realized the detection of
selfish mining without modifying the Bitcoin protocol.
However, it only considers the factor of fork height and does
not take other factors into consideration, which leads to a
certain misjudgment rate. To improve the detection accu-
racy, in this work, we propose a selfish mining attack de-
tection system based on a machine learning classification
model, called ForkDec. The system can detect selfish mining
attacks in the Bitcoin network with an accuracy rate of
99.03%. Our primary contributions are threefold as follows:
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(1) We construct a data set containing approximately
200,000 fork samples. Considering that selfish
mining has not been discovered in reality, we build a
Bitcoin mining simulator to simulate the Bitcoin
mining process in the presence of propagation delays
and selfish miners. In the simulation process, the
simulator records all the fork features, and then the
feature extractor extracts feature vectors based on the
fork features to construct fork samples.

(2) We present ForkDec as an accurate detection system
for detecting selfish mining attacks in Bitcoin. To
accurately detect selfish mining, we trained a clas-
sification model based on logistic regression and a
fully connected neural network (with 10 hidden
layers and 10 neurons per layer) on the training set,
respectively, and then applied the learned model to
ForkDec for attack detection.

(3) We applied ForkDec to the test set to evaluate its
performance. The evaluation results show that
ForkDec is better than the selfish mining detector
[16] in accuracy. In addition, we also found that the
classification model based on the fully connected
neural network has a better overall performance.

1.3. Roadmap of This Paper. The rest of the paper is orga-
nized as follows. In Section 2, we introduce the details of the
ForkDec system, including the construction of the data set
and the selection of the classification model. In Section 3, the
evaluation results and discussion of the proposed system are
given. Finally, we conclude this work in Section 4.

2. ForkDec: System Description

Figure 1 presents the basic architecture of the ForkDec
system. It mainly includes three modules: data set con-
struction, model training, and attack detection. Firstly, we
built a simulator to simulate the Bitcoin network with selfish
attackers. The simulator will record the information of each
block (block height, miner, and timestamp), especially fork
features, and then each fork will be delivered to the feature
extractor to extract the feature vector to construct the fork
data set. We, subsequently, use the built training set to train
the classification model and embed the learned model into
ForkDec for attack detection.

2.1. Data Set Construction. The classification model relies on
the training set to learn sample features and to identify
unknown samples. To get an excellent attack detection
model, we must have a training set with abundant selfish
mining samples. Since machine learning has not been ap-
plied to selfish mining detection before, there is no existing
data set available. To solve this issue, we constructed a data
set containing 200,000 fork samples for model training, in
which the ratio of natural fork samples to attacking fork
samples is 3:7.
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FiGure 1: Schematic of the ForkDec detection system.

2.1.1. Feature Vector Extraction. All miners in the Bitcoin
network utilize Proof-of-Work to compete for accounting
rights to create new blocks at an average rate of 10 minutes.
After being created, the new block will be broadcast im-
mediately by all honest miners in the Peer-to-Peer network.
Unlike honest miners, the selfish attacker will secretly
withhold newly mined blocks to create conflicting branches.
Then, the attacker invalidates the blocks mined by honest
counterparts through strategically publishing the withheld
blocks. In this way, the attacker could increase his pro-
portion of rewards distribution. By studying the strategy of
the selfish attacker, it can be known that the attacker carries
out attacks by making forks. Therefore, the key to detecting
this type of attack is to track the fork data in the blockchain.
Based on this, we construct a feature extractor to represent
the fork data as a feature vector. The classification model
learns the characteristics of the selfish mining attack through
the feature vector, thereby detecting the attacks. In the
Bitcoin, we define the structure of the feature vector as
follows: {h,1,i,,i,}. The meaning of each feature is as follows:

(i) h is the block height of the fork

(ii) I is the length of the fork, i.e., the number of blocks
on the conflicting branch

(iii) 4, is the number of blocks between this fork and the
previous fork

(iv) i, is the absolute value of the difference between the
timestamps of the first block of each branch

Subsequently, we use an example to present the general
process of feature vector extraction, as illustrated in Fig-
ure 2. For simplicity and without loss of generality, we

assume that b, is the first block after the previous fork is
resolved, and its timestamp is ¢,. After b, is accepted by all
participants, two valid blocks b, (with timestamp t,) and b,
(with timestamp t,) are propagated in the P2P network.
Consequently, the blockchain makes a fork since b, and b,
have the same block height, i.e., i (b,). Note that we utilize
h(x) to indicate the height of block x. The Bitcoin mining
simulator will capture and record information about this
fork. Then, the extractor converts this information into a 4-
dimensional vector, which is the feature vector on the far-
right side of Figure 2.

2.1.2. Fork Sample Generation. Under the setting that only
considers selfish mining attacks, there are two types of forks
in the Bitcoin network: natural forks and attacking forks.
Natural fork means that when a block is propagated in the
network, other miners create and broadcast a block with the
same height, which leads to inconsistencies in the distributed
ledger. This inconsistency is not caused by the attack but by
network propagation delays [21]. Christian Decker and
Roger Wattenhofer pointed out that the average delay of a
block in Bitcoin is 12.6 seconds, and after the new block is
broadcast for 40 seconds, 95% of the nodes have received the
block [21]. In other words, the timestamp difference between
most conflicting blocks in the Bitcoin network is close to the
average propagation delay. Based on this, we adopt an ex-
ponential distribution with the expected value of
12.6 seconds to approximate the block propagation delay
distribution, as shown in Figure 3. The simulator then
randomly samples based on the distribution to simulate the
timestamp interval of a natural fork.
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FIGURE 2: A clearly expressed example of feature vector extraction.
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FiGURE 3: The sampling distribution of propagation delay.

The opposite is the attacking fork which is caused by a
malicious attack. Figure 4 shows the formation of an
attacking fork. Assume that the selfish attacker firstly mines
block A, at time t. According to the SM1 strategy [2], the
attacker will secretly withhold block A, . Since honest miners
will not perceive the existence of A, until it is published, the
honest miners may mine a new block A, at any time ¢/ after
time t. Then, there is 0 <t/ — t; considering the average block
creation time is 600seconds (10 minutes), we set
0<tr -t <600. That is when the simulator is simulating an
attacking fork, the timestamp interval of conflicting blocks is
randomly sampled between 0 and 600 seconds.

2.2. Classification Model. The selection of the learning al-
gorithm is another key point for ForkDec to realize high-
accurate detection. It is impossible to get an efficient model if
the learning algorithm is not well selected and even if there
are rich sample data sets to utilize. We, respectively, test the
detection effect of ForkDec when logistic regression and a
fully connected neural network are used as the classification
model. Among them, the logistic regression features a faster
model convergence rate while the fully connected neural
network performs better in accuracy rate.

2.2.1. Logistic Regression. Logistic regression is a classifi-
cation model that utilizes a linear model to predict binary
classification problems. The idea is to map the output of the

linear model (any continuous value) to a value between 0
and 1 by adding the sigmoid function after the linear model.
Equation (1) presents the mathematical expression of logistic
regression, where xT represents the sample to be classified,
(w, b) represents the model parameter, and y represents the
prediction results of the model (also called the confidence
level):

y= Sigmoid(xTw + b)
B 1 (1)
1+ exp(xTw + b).

By setting the threshold to 0.5, the ForkDec classifies fork
samples with a confidence level of more than 0.5 as attacking
forks, otherwise as natural forks. In addition, to prevent
overfitting, we use minimizing the cost function (with the L2
penalty term) as the optimization problem during model
training and then apply the L-BFGS algorithm, a kind of
quasi-Newton method, to solve the optimization problem.

2.2.2. Fully Connected Neural Network. Logistic regression
has the characteristics of clear structure and simplicity.
However, on the other hand, a simple model may not be able
to make full use of the rich training samples and cannot
achieve top-notch detection results. To further improve the
accuracy in attack detection, we additionally consider the use
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FIGURE 4: The example of an attacking fork.

of fully connected neural network, also known as multilayer
perceptron, as the classification model. Figure 5 presents the
structure of the fully connected neural network.

The input layer on the far left is composed of a group of
neurons { x;|x,x,, ..., x,, } representing the characteristics
of the sample. Unlike logistic regression, there can be one or
more nonlinear layers between the input layer and output
layer of a neural network, called hidden layers. The neurons
in each hidden layer perform a weighted linear summation
conversion on the values of the previous layer. The converted
value firstly passes through the activation function and then
is delivered to the next layer until the final output layer. In
the ForkDec system, we utilize backpropagation to train the
neural network, and finally, we get a fully connected neural
network with 10 hidden layers and 10 neurons in each layer.

3. Evaluation

In this section, we evaluate the performance of ForkDec in
detecting selfish mining attacks. The ForkDec system utilizes
Scikit-learn (version 1.0) to implement the model training.
Scikit-learn, an open-source and efficient machine learning tool
library, is implemented based on the Python program lan-
guage. Subsequently, we embed the trained model into the
ForkDec system and test it on a test set containing 76,686
samples. The test results show that the ForkDec system can
achieve a detection accuracy of 99.03% when the fully con-
nected neural network is used as the classification model and
98.76% when using logistic regression. We additionally com-
pare the performance of the ForkDec detection system with the
selfish mining detector (hereinafter referred to as SM detector)
proposed in [16]. We also train the fully connected neural
networks under different hyperparameters to find the optimal
model and then detect selfish attackers with different abilities.

3.1. Comprehensive Performance. By applying ForkDec to a
test set containing 76,686 samples, the confusion matrix of
ForkDec in detecting selfish mining attacks can be obtained,
which is presented in Table 1. In the confusion matrix, the
classification results of ForkDec and the real distribution of
the samples are shown, where positive represents the
attacking fork category and negative represents the natural

fork category. To facilitate the description, we name the
ForkDec system, respectively, according to the different
classification models:

(i) ForkDec-DNN is the ForkDec system with the fully
connected neural network as the classification
model

(ii) ForkDec-LR is the ForkDec system with logistic
regression as the classification model

(iii) ForkDec is the collective name of ForkDec-DNN
and ForkDec-LR

From Table 1, we can see that the advantage of ForkDec-
DNN is that it does not misclassify natural forks as attacking
forks, while ForkDec-LR misclassifies 542 natural forks as
attacking forks. However, ForkDec-DNN also has its dis-
advantages; that is, 745 attacking forks are misidentified as
natural forks by ForkDec-DNN, while this value is only 407
for ForkDec-LR.

To more intuitively evaluate the performance of Fork-
Dec, we present the accuracy, precision, recall, and F, value
of ForkDec on the test set in Figure 6. The meanings of these
indicators are as follows:

(i) Accuracy: it is the proportion of correctly classified
samples to the total sample.

(ii) Precision: among all attacking fork samples detected
by the model, precision is the proportion of real
attacking samples.

(iii) Recall: among all the attacking samples, recall is the
proportion detected by the model.

(iv) Fy: the F, value, shown in (2), can be used to
measure the comprehensive performance of the
model in terms of precision and recall. The reason is
that the F, value is only high when both precision
and recall are high:

1 1 2
.t =
precision recall F,

(2)

It can be found in Figure 6 that ForkDec-DNN and SM
Detector both have top scores in precision rate, which
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FIGURE 5: The example of a fully connected neural network with 4 hidden layers and 4 neurons per layer.

TasLE 1: The confusion matrix of ForkDec. In the values (x, y), x indicates the classification result of ForkDec-DNN and y represents the
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indicates that both can ensure that there are almost no false
positives in all detected attacking forks. Precision rate and
recall rate are a pair of contradictory indicators. ForkDec-
DNN and SM Detector pursue the ultimate precision rate,
which also means that both will have a loss in the recall rate.
However, the loss of SM Detector’s recall rate is greater, so
this leads to a lower F, value of SM Detector. Moreover,
ForkDec-DNN also has the highest accuracy rate among the
three, which cannot be achieved by SM Detector. Unlike
ForkDec-DNN’s extreme performance in precision rate,

ForkDec-LR balances various indicators. In particular,
ForkDec-LR has the highest recall rate among the three. In
other words, ForkDec-LR can detect attacking forks as many
as possible, with only a few false negatives.

3.2. The Optimal Model. To find the optimal model, we train
the fully connected neural networks under different
hyperparameters. Then, we apply these trained models to the
test set. The performance of these models on the test set is
shown in Table 2. It can be concluded from Table 2 that a
neural network with 10 hidden layers and 10 neurons per
layer has the best performance. And, more neurons do not
mean better classification performance. It is worth men-
tioning that a neural network with 10 hidden layers and 10
neurons per layer may not be optimal, but its performance is
close to the optimal model.

3.3. Detection for Attacker with Varying Power. In order to
tully evaluate the detection effect of ForkDec, we addi-
tionally considered the detection of selfish attackers under
specific mining power. We first utilize « to represent the
fraction of attacker’s mining power in the power of the entire
Bitcoin network. Figure 7 presents the detection effect of
ForkDec against different power attackers. We notice that
the accuracy rate, recall rate, and F, value drop rapidly when
a>0.25. This is because, as the attacker’s mining power
increases, the frequency of the selfish mining attack is getting
higher and higher, resulting in a large number of forks with
close timestamps in the blockchain. Many of these forks are
not correctly detected by the model, leading to a drop in
recall rate, as the characteristics of such attacking forks are
very similar to natural forks. Then, the accuracy rate and F,
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TaBLE 2: The performance of neural networks with different hyperparameters on the test set.

Model Accuracy Precision Recall F,

8layers x 10 neurons 0.9902329 1.0 0.9870824 0.9934992
9layers x 10 neurons 0.9902459 1.0 0.9870997 0.9935080
101layers x 10 neurons 0.9902851 1.0 0.9871514 0.9935342
11 layers x 10 neurons 0.9902590 1.0 0.9871169 0.9935167
12layers x 10 neurons 0.9902459 1.0 0.9870997 0.9935080
12layers x 12 neurons 0.9902199 1.0 0.9870652 0.9934905

mlayers x nneurons indicates a neural network with m hidden layers and »n neurons per layer.
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FIGURE 7: The detection of selfish attacker with varying mining
power.

value also drop. However, even in the face of powerful at-
tackers, ForkDec still maintains a very high-accuracy rate. It
can still ensure that there are almost no false positives during
the detection process.

4. Conclusion

In this work, we propose a detection system for selfish
mining attacks in Bitcoin, called ForkDec. The system is
based on the machine learning classification model to realize
intelligent detection of attacks. To ensure that ForkDec has a
high detection accuracy, we construct a data set containing
about 200,000 Bitcoin fork samples for model training. We
then apply ForkDec to the test set for evaluation. The
evaluation results show that ForkDec can achieve an ac-
curacy of 99.03% for the detection of selfish mining in
Bitcoin. What needs to be clear is that ForkDec can only
detect the presence of an attack but cannot identify the
miner who launched the attack. In future work, we will
further analyze the attacker’s strategy and improve ForkDec
to accurately locate the attacker. In addition, the blockchain
also applies in the fields of privacy protection [22] and data
traceability. Attackers may use other methods to attack the
blockchain. Hence, we also have to study the application of
ForkDec to the detection of other attacks, e.g., double-

spending attacks [23], time-bandit attacks [24], and
blockchain DoS attacks [25].
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