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Infrared target detection is a popular applied field in object detection as well as a challenge. This paper proposes the focus and
attention mechanism-based YOLO (FA-YOLO), which is an improved method to detect the infrared occluded vehicles in the
complex background of remote sensing images. Firstly, we use GAN to create infrared images from the visible datasets to
make sufficient datasets for training as well as using transfer learning. Then, to mitigate the impact of the useless and
complex background information, we propose the negative sample focusing mechanism to focus on the confusing negative
sample training to depress the false positives and increase the detection precision. Finally, to enhance the features of the
infrared small targets, we add the dilated convolutional block attention module (dilated CBAM) to the CSPdarknet53 in
the YOLOv4 backbone. To verify the superiority of our model, we carefully select 318 infrared occluded vehicle images
from the VIVID-infrared dataset for testing. The detection accuracy-mAP improves from 79.24% to 92.95%, and the F1
score improves from 77.92% to 88.13%, which demonstrates a significant improvement in infrared small occluded vehicle
detection.

1. Introduction

Infrared target detection is a hot topic in object detection
due to its specific characteristics and special demands. The
infrared images have some inherent defects; for instance,
infrared targets captured by the infrared cameras are not dis-
tinguished in the shape and boundary, which is easily to be
misclassified by the environment information; secondly,
compared with the visible images, the infrared images con-
tain much more noise such as the Gaussian noise, which
may depress the detection accuracy, if not preprocessed.
What is more, as for the infrared remote sensing targets,
the pixels are much smaller than the ordinary images [1].
All of these features make the infrared target detection more
challenging than the normal detection tasks.

Since the infrared remote sensing targets are small and
weak, the current methods are feature fusing [2, 3] and
multiscale detection [4] to keep the small-scale features. As
for the noise impact, the common method is the use of noise

filters to suppress the background, such as the median and
Robinson filters [5]. Moreover, the infrared datasets are
not as sufficient as the visible datasets, which means that
they are insufficient to train the model with infrared images
in the same way as that with visible images. Thus, transfer
learning [6, 7] is a good way to make up for the deficiency.

Nevertheless, the current papers focus more on the infra-
red small, dim targets without too much confusing back-
ground information, while the infrared object detection
under the confusing background is not being sufficiently
studied. Usually in this scene, the targets are occluded by
the useless information from the wild environment, such
as the trees, the shadow, and other ground features. The
background information may invalidate the detection per-
formance of the model and cause a false decision; that is to
say, the detection falsely regards the negative sample as the
targets resulting in a low precision. However, in the current
military field, the most application scenarios are in the wild
complex environments; thus, it is of vital practical
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importance to improve the detection performance of the
models so that we can still detect the weak and occluded tar-
gets in complex environments precisely. Last but not the
least, a good detection model can replace hand labor and
increase the efficiency of surveillance and detection, as
shown in Figure 1, and our paper tries to solve the detection
issues in this field.

In terms of the above issues, our paper proposes the
focus and attention mechanism-based YOLO (FA-YOLO)
model. First of all, to mitigate the impact of confusing back-
ground information, we change the YOLOv4 data flowing
structure and introduce the negative sample focusing mech-
anism during the training process. After several epochs of
training, the model selects a number of false-positive sam-
ples and maps them into the corresponding locations in
the feature map and trains them again. Through focusing
on the confusing sample training, the model could learn to
be more precise.

Secondly, to enhance the features of small objects, we
reconstruct the backbone network of YOLOv4 by adding
an attention mechanism to the CSPDarknet53 network.
We plug the sequent channel and spatial attention block
after each residual block; meanwhile, to increase the recep-
tion field, we change the convolutional kernel in spatial
attention into a dilated convolutional kernel.

Additionally, we use CycleGAN [8] to create infrared
images from the visible images to make up for an insufficient
infrared training dataset. Transfer learning is also used to
promote the optimization of the model parameters. To fur-
ther verify the superiority of our model, we also add SSD
[9], faster R-CNN [10], and YOLOv3 [11] as the comparison
models. Compared with the original YOLOv4 [12] model,
the detection accuracy-mAP50 of the FA-YOLO models
improves from 79.24% to 92.95%, and the F1 score improves
from 77.92% to 88.13%, which has a state-of-the-art
performance.

The main contributions of our work are as follows:

(1) Use GAN to increase the amount of the infrared
images and transfer learning to promote the training
process

(2) Add a negative sample focusing mechanism to the
YOLOv4 model, let it focus more on the negative
sample training to reduce the impact of the confus-
ing background, and thus improve the detection
accuracy of the model

(3) Fix the dilated convolutional block attention module
(dilated CBAM) into the CSPDarknet53 to enhance
the features of small targets

Section 2 surveys the related works. Section 3 explains
the FA-YOLO in theory. Section 4 is the experiment, and
Section 5 concludes the whole paper.

2. Related Works

This section briefly surveys the related works in infrared
small target detection and attention mechanism.

2.1. Infrared Small Target Detection. Infrared object detec-
tion mainly contains infrared person detection [6, 13–15],
infrared vehicle detection [7, 16, 17], infrared aircraft detec-
tion [5], and infrared creature recognition and counting
[18]. Usually, the lack of an infrared dataset for training
and the unclear infrared image features are the problems
that need to be overcome.

Transfer learning [6, 7, 19] is usually used for the insuf-
ficient training datasets; thus, it is also effective in the infra-
red dataset training. The possibility mainly relies on the
similar image features of the two datasets. The similarity
and the huge pretraining dataset are the two conditions
needed for transfer learning. The generative adversarial net-
work (GAN) [6] is another method applied to make up for
the insufficient infrared datasets through generating infrared
images in different styles from visible images.

Wang et al. [2] propose the MNET network, using only
three downsampling operations to preserve the features of
small infrared targets and using dense connection of the fea-
ture map to keep the size all the same; Xu and Wu [3] also
use DenseNet and expand it to four scales of anchor boxes
in YOLOv3; Zhang et al. [20] uses a double multiscale fea-
ture pyramid network to combine different semantic and
resolution feature levels.

2.2. Attention Mechanism. CBAM [21] is a simple yet effec-
tive attention module for feedforward convolutional neural
networks, generating both channel and spatial attention
maps separately. It is a lightweight and general module,
and it can be integrated into any CNN architectures
seamlessly with negligible overheads and is end-to-end
trainable along with base CNNs. BAM [22] is also a two-
dimensional attention module, which is placed at each bot-
tleneck of models where the downsampling of feature maps
occurs. AS-YOLO [23] adds the CBAM after the fusion of
different scale feature maps in the PANet so as to enhance
the fused features. Gao et al. [24] add a channel attention
module (ECANet [25]) after all residual modules of
CSPDarknet53 in YOLOv4, and its module mainly consists
of two parts, namely, dimensionless local cross-channel
interaction and one-dimensional convolution operation with
the size of an adaptive convolution kernel. Chen et al. [26]
construct a multilevel feature pyramid, use the attention
model to obtain the salient features of different levels, and
fuse the salient features of different levels for SAR ship
detection in multiscale and complex scenarios.

3. The Proposed Method

3.1. Work Flow. The whole procedure of the FA-YOLO is
shown in Figure 2. After pretraining, use CycleGAN to gen-
erate enough infrared images and put them to the detection
model for the final training. The FA-YOLO consists of
dilated CBAM and hard example mining module and could
detect the small targets and delete the confusing negative
sample.

During the transfer learning process, we use UCAS-
AOD as the pretraining dataset; it contains 510 visible
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vehicle images; and through flipping and adding noise, we
augment them to 3060 images.

Then, we use the CycleGAN network to transfer the
VIVID-visible images to infrared images, as shown in
Figure 3. Overall, the final infrared dataset contains 500
images for training from the VIVID-infrared dataset gener-
ated by CycleGAN.

3.2. Negative Sample Focusing. As shown in Figure 1, the
vehicles in VIVID-infrared images selected by us are heavily
impacted by environment; the features of vehicles are mixed
with the confusing background information, which is even
difficult for human eyes to recognize. The complex back-
ground information may interfere with the detection model
by causing too much false-positive examples. To mitigate the
impact of the background information and depress the dam-
age of the false positives, herein, we revise the YOLOv4
model with a negative sample focusing mechanism which
could focus on training the confusing negative samples and
distinguish the targets from the complex background.

After the NMS of the YOLOv4 model, the YOLO-head
layer outputs several predicted boxes with location parame-

ters (bx , by, bh, and bw) and class possibilities c. Through cal-
culation, we could gain the IoU of each predicted box
towards the corresponding target box. In general, as for each
predicted box, when the IoU > 0:7, prediction is corrected;
otherwise, it should have been recognized as the background
but was falsely predicted as the targets, that is to say, the neg-
ative samples. When doing a detection task, there would be
so much negative samples that impact the performance of
the model.

Dn = ci ∣ oUi < 0:7, ci > cj, 1 ≤ i, j ≤N
� �

: ð1Þ

In consequence, we need to revise the model, and let it
focus more on such negative samples. As shown in equation
(1), select the predicted boxes, of which the IoU < 0:7 into D;
these are the negative samples. Figure 4 shows the negative
sample focusing mechanism in the FA-YOLO model. In
the training procedure, every time when doing backpropaga-
tion, the model gets the four location parameters (bx, by , bh,
and bw) of the false positives (FP) and uses the location
parameters to map the FPs to the corresponding area in

Figure 1: Some examples of VIVID-infrared images carefully selected, in which 40% area of the vehicles is occluded by the complex
background.
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Figure 2: The whole procedure of the FA-YOLO model. The data augmentation adopts transfer learning and GAN, the backbone uses an
attention mechanism, and the training procedure adds a negative example focusing mechanism.
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the layers before the multiheads (as shown in the red areas).
In theory, the locations in different layers have a congruent
relationship through the convolution operation, and we
could use reverse convolution operation to find the location
relationship between the shallow layer and the deep layer.
Then, we transfer them to the corresponding locations in
the feature map output by the CSPDarknet53 and optimize
the model with these samples again.

Every time after normally training for m epochs, select
the first n samples in dataset Dn, find the negative samples
and their corresponding feature maps output by the back-
bone, put them into the forward-propagation operation,
and optimize the loss values of the NS. When doing the neg-
ative sample training optimization, to make the parameter
optimize faster, we freeze the backbone parameters and just
upgrade the subsequent parameters.

3.3. Dilated CBAM. Given the problem that infrared vehicle
targets are small and the features are not obvious from the
background, it is not easy for the model to extract and con-
serve the features. In this way, the attention mechanism,
channel attention and spatial attention, is added to the
YOLOv4 network to enhance the small targets, making the
key features distinguishable.

Our attention contains both channel attention and spa-
tial attention, given the input feature map F ∈ℝC×H×W from
the upper layer, and the dilated CBAM sequentially gener-
ates a 1D channel attention map Mc ∈ℝC×1×1 and a 2D spa-
tial attention map Ms ∈ℝ1×H×W as illustrated in Figure 5.
The overall attention process can be summarized as

F ′ =Mc Fð Þ ⊗ F,

F ′′ =Ms F ′
� �

⊗ F ′:
ð2Þ

3.3.1. Channel Attention. In channel attention, we use the
module from CBAM [21], which aggregates the spatial
information of a feature by using both average pooling and
max pooling, generating two different spatial context
descriptors: Fc

avg and Fc
max. Both of the two descriptors are

forwarded to a multilayer perception (MLP) to generate a
different channel attention map and then added and acti-
vated by the sigmoid function to the final channel attention
map. The channel attention is computed as

Mc Fð Þ = σ MLP Avgpool Fð Þð Þ +MLP Maxpool Fð Þð Þð Þ
= σ W1 ReLU W0 Fc

avg

� �� �� �
+W1 ReLU W0 Fc

maxð Þð Þð Þ
� �

:

ð3Þ

3.3.2. Spatial Attention. In spatial attention, we change the
convolutional layer in CBAM into a dilated convolution ker-
nel to increase the receptive field so as to link the informa-
tion of the targets and the background. However, Yu et al.
[27] point out that dilated convolutions can cause gridding
artifacts, which often occur when a feature map has higher
frequency content than the sampling rate of the dilated con-
volution. To remove the gridding artifacts, we add two more
dilated convolutional kernels with smaller dilated rates after
the first dilated one with a dilated rate of 4, as shown in the
first row in Figure 5.

Firstly, apply the average pooling and max pooling oper-
ation along the channel axis and concatenate them to gener-
ate an efficient feature descriptor, Fc

avg + Fc
max ∈ℝ

2×H×W .
Then, put the descriptor forward to the MsðFÞ to generate
the spatial attention. The MsðFÞ is composed of three
dilated convolution layers, i.e., 3 × 3 kernels with dilated
rates of 4, 2 and 1, respectively. In short, the spatial atten-
tion is computed as

Figure 3: Infrared images generated by CycleGAN. The first row is the visible images, and the second row is the generated infrared images.
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Ms Fð Þ = σ f 3×34 f 3×32 f 3×31 Avgpool Fð Þ ; Maxpool Fð Þð Þ� �� �� �

= σ f 3×34 f 3×32 f 3×31 Fs
avg ; F

s
max

� �� �� �� �
:

ð4Þ

The CSPDarknet53 has 1 + 2 + 8 + 8 + 4 = 23 residual
blocks, we plug the dilated CBAM after each block, thus

getting an attention-based CSPDarknet53 feature extraction
network, and each residual block with the dilated CBAM is
a new basic unit of the attention-based CSPDarknet53.

4. Experiment

4.1. Dataset and Environment. The pretraining dataset is
UCAS-AOD visible dataset, with a total of 3060 images.
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Figure 4: The negative sample focusing mechanism in the FA-YOLO model. The red parts are the negative samples mapped into the feature
map.
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The final infrared datasets contain 500 images from the
VIVID generated from CycleGAN and were manually anno-
tated by labelImg. The testing dataset contains 100 infrared
images from the VIVID-infrared dataset, and the vehicle in
each image is heavily occluded and impacted by the confus-
ing background information. During the experiments, the
GPU is RTX 2080Ti.

4.2. Comparison Experiments. To verify the superiority of the
FA-YOLO, we launch extensive comparison experiments.
The SSD, YOLOv3, faster R-CNN, and original YOLOv4
model are put on the dataset for training and testing.
Furthermore, we also launch an experiment to verify the effi-
ciency of transfer learning. Based on the YOLOv4 model, we
used no transfer learning as the comparisons and just train
the model on the infrared dataset.

4.3. FA-YOLO Experiments. Finally, we apply the negative
sample focusing mechanism and dilated CBAM to the
YOLOv4 model sequently. For the negative sample focus-
ing mechanism, each time when normal training for 9
times, select the first 120 negative samples for one time
focusing training. As for the dilated CBAM, we add the
module to the CSPDarknet53, since the structure has chan-
ged and we first train the model in VOC-2007 for 1,000
epochs and get the weight file. Then, we keep all the
procedures and parameters consistent with those in the
original experiments.

4.4. Experiment Results. The experiment results are shown in
Table 1. The mean average precision (mAP50) and F1 score
are adopted as the metrics of the detection accuracy, as
shown in the following equations:

Precision =
TP

TP + FP
, ð5Þ

Recall =
TP

TP + FN
, ð6Þ

F1 score = 2
precision ∗ recall
precision + recall

: ð7Þ

It could be concluded from the table and the P‐R curve
in Figure 6 that our FA-YOLOv4 has the highest mAP50
and F1 score among all the other models. When using a
transfer learning strategy, the mAP50 improves by 11.1%
and the F1 score improves by 9.58%; when using the nega-
tive sample focusing mechanism, the mAP50 improves by
12.68% and the F1 score increases by 10.06%. When adding
the dilated CBAM to the YOLOv4, the mAP50 improves by
13.71% to 92.95% and the F1 score improves by 10.21% to
88.13%.

Figure 7 shows the part of the detected images on the
testing set of FA-YOLO, from which we draw the conclusion
that the attention module could detect the small, weak, and
occluded targets well. Figure 8 is the heat map—the
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Figure 5: Dilated convolutional block attention module in CSPDarknet53. The first row is the channel attention and spatial attention,
respectively, and the second row is the whole structure of the dilated CBAM plugged into the CSPDarknet53.

Table 1: Result comparisons between different models.

Model Precision (%) Recall (%) AP50 (%) F1 (%) FPS

SSD-VGG16 78.11 74.06 76.95 76.03 59.24

YOLOv3 84.24 80.66 84.53 82.41 40.02

Faster R-CNN-Resnet 70.76 90.74 88.30 79.51 9.35

YOLOv4 (no transfer) 82.20 74.06 79.24 77.92 40.72

YOLOv4 (transfer learning) 89.22 85.85 90.34 87.50 41.86

YOLOv4+NSF 96.21 81.06 91.92 87.98 40.74

YOLOv4+NSF+dilated CBAM 98.11 80.00 92.95 88.13 35.61
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explanation of the CSPDarknet53 with the dilated CBAM;
we use Grad-CAM [28] to visualize the output of the back-
bone when inputting an image. The attention module could
focus on the target information and filter the background
information well in most targets, but there is still some con-

fusing background information which may mislead the
detection model.

Figure 9 shows the comparison detection results of SSD,
faster R-CNN, and FA-YOLO on testing images. The blue
boxes are the ground truth boxes (GT), the green boxes are

Figure 7: The detected images on the testing dataset of FA-YOLO.
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the true positive samples detected by the model (TP), and
the red boxes are the background information falsely rec-
ognized as positive samples by the models (FP), in other
words, the negative samples. From formulas (5), (6), and
(7), the FPs will decrease the detection accuracy and the

TPs are what we really need. What is more, the compari-
son of the three row images indicates that the baseline
models could not distinguish the confusing background
information correctly, while the FA-YOLO could solve this
problem well.

SSD with transfer learning

Original YOLOv4 with transfer learning

FA-YOLO

Figure 9: The result comparison of the three models. The blue box means the GT, the green box means the TP, and the red box means the
FP—negative samples. The FA-YOLO could efficiently depress the negative samples.

Figure 8: The dilated CBAM explanation, of which the red parts mean the key importance to the detection task.
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5. Conclusion

In our paper, the FA-YOLO model is proposed to the appli-
cation of infrared occlusion vehicle detection in wild com-
plex background, where the confusing background
information causes great impact on the target detection. By
using GAN and transfer learning, our model has a sufficient
dataset for training and optimization. By using the negative
sample focusing mechanism during the training procedure,
it could mitigate the complex background information and
occlusion influences, thus making the model more accurate
for distinguishing the targets and the background. Finally,
by plugging the attention mechanism module into CSPDar-
knet53, the YOLOv4 could enhance the features of small tar-
gets so as to improve the detection accuracy. Through
extensive experimental verification and comparison, the
detection accuracy-mAP50 on the VIVID-infrared occluded
vehicle improves by 13.71% and the F1 score increases by
10.21%, which shows a significant improvement of our
method and superiority of the proposed model.

Data Availability

The [experiment results and algorithm codes] data used to
support the findings of this study are available from the cor-
responding author upon request.
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