
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 11, Nov. 2021                                  4043 
Copyright ⓒ 2021 KSII 

 
 
This research was supported by the Key Research and Development Program of Jiangsu Province of China 
(BE2019317), the open research fund of National Mobile Communications Research Laboratory, Southeast 
University (2021D14). 
 
http://doi.org/10.3837/tiis.2021.11.010                                                                                                               ISSN : 1976-7277 

Blind Quality Metric via Measurement of 
Contrast, Texture, and Colour in 

Night-Time Scenario 
 

Shuyan Xiao1*, Weige Tao1, Yu Wang2, Ye Jiang3, and Minqian. Qian3 
1 School of Electrical & Information Engineering, Jiangsu University of Technology 

Changzhou, 213000 China 
[e-mail: xiaosy@jsut.edu.cn, taowg@jsut.edu.cn] 

2 School of Electrical & Information Engineering, Jiangsu University of Technology 
Changzhou, 213000 China, National Mobile Communications Research Laboratory, Southeast Univerity, Nanjing, 

210096, China 
[e-mail: yuwang_edina@jsut.edu.cn] 

3 School of Computer Science and Information Engineering, HeFei University of Technology 
Hefei, 230009 China 

[e-mail: jiangye@hfut.edu.cn, 1295615877@qq.com] 
*Corresponding author: Shuyan Xiao 

 
Received April 22, 2021; revised July 19, 2021; revised October 12, 2021; accepted October 27, 2021;  

published November 30, 2021 

 
Abstract 

 
Night-time image quality evaluation is an urgent requirement in visual inspection. The 
lighting environment of night-time results in low brightness, low contrast, loss of detailed 
information, and colour dissonance of image, which remains a daunting task of delicately 
evaluating the image quality at night. A new blind quality assessment metric is presented for 
realistic night-time scenario through a comprehensive consideration of contrast, texture, and 
colour in this article. To be specific, image blocks’ color-gray-difference (CGD) histogram 
that represents contrast features is computed at first. Next, texture features that are measured 
by the mean subtracted contrast normalized (MSCN)-weighted local binary pattern (LBP) 
histogram are calculated. Then statistical features in Lαβ colour space are detected. Finally, 
the quality prediction model is conducted by the support vector regression (SVR) based on 
extracted contrast, texture, and colour features. Experiments conducted on NNID, CCRIQ, 
LIVE-CH, and CID2013 databases indicate that the proposed metric is superior to the 
compared BIQA metrics. 
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1. Introduction 

Visual inspection is good at measuring and judging image by means of the input texture, 
brightness and colour of the images, and attracts tremendous attention in industry, medicine, 
transportation, education, etc. fields at present [1]. For example, in autonomous driving [2], it 
is necessary to use visual inspection technology to automatically detect lane lines, road 
markings, and obstacles. Unfortunately, lots of images may be not satisfactory due to the 
distortion introduced during image capture, processing, and transmission, etc.. Especially, at 
night-time, the poor illumination condition results in a low-quality image with low brightness, 
low contrast, inconspicuous texture feature, invisible details and inharmonious colour, which 
may cause a visual inspection error. In this situation, the quality assessment of night-time 
image can be employed to identify the low-quality image before visual inspection process [3]. 
Therefore, identifying and quantifying the quality of night-time image is a crucial requirement, 
which is helpful for the development of visual inspection technology.  

The topic of image quality assessment (IQA) has witnessed a tremendous attention in 
visual inspection and image processing in recent years. IQA metrics include two classes, 
subjective IQA that evaluates the image by human beings and objective IQA that predict 
image quality by image characteristics [4, 5]. More specifically, the objective IQA metrics are 
reclassified in to three types according to the reference information, full-reference (FR) metric 
that needs all the information of the original image as a reference [6, 7], reduced-reference 
(RR) metric that requires partial knowledge about the original image [8, 9] and no-reference 
(NR) metric that does not refer to the original image [10, 11]. In practice, it is infeasible to 
provide a reference image, and thus the NR IQA, which go by the name of blind image quality 
assessment (BIQA) method attracts attentions of many researches.  

However, pre-existing BIQA metrics are jointly designed with the simulated-distorted 
image databases [12, 13, 14] and take no account of the night-time scenario. Consequently, 
when measure the night-time images, these BIQA metrics generate apparent performance loss 
due to neglecting the case of low brightness, loss of contrast, texture feature inconspicuous, 
invisible details, etc.. So far, only a handful of works have been done for quantitatively 
judging the images captured in night-time scenario. [15] first established a night-time image 
database (NNID) that contained more than 2000 realistic images, together with the MOS 
values, and developed a BIQA metric, called BNBT, to evaluate the image that captured at 
night. BNBT first extracted brightness and texture features of the image over two scales. At 
each scale, 9 features were extracted. After features extracted, SVR was used to map the 
extracted brightness and texture features to the MOS of the tested image in Night-Time 
Scenario. Although the BNBT has achieved notable performance, there still is a gap for 
performance improvement. First, BNBT only extracted two types of night-time time features, 
including brightness and texture, which can’t fully represent the characteristics of night-time 
image because realistic night-time image often contains mixtures of multiple distortions. 
Second, BNBT, only extracted global features of night-time image, which didn’t consider 
local features of night-time image. However, extracted local and global features are 
demonstrated to well characterize the perceptual effects of some critical image attributes 
which are typically involved in the human perception of image. Third, the performance 
evaluations of BNBT need to be further improved. For example, the SRCC value tested on the 
entire NNID database in BNBT is 0.8697, but the SRCC value of excellent IQA metric is 
generally above 0.95. This inspires us to extract features from more aspects to improve the 
performance of IQA metric for night-time image. 
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In this paper, we analyze the parameters that are correlated with the quality of night-time 
images based on the BIQA model. The analyses signifies that the quality of night-time image 
highly depends on the contrast that measures visual distortion, texture that measures the 
definition and colour that measures colour dissonance, which is different from the parameters 
in BNBT. And thus, an enhanced BIQA algorithm is presented to achieve a performance 
improvement in contrast to the conventional BNBT by considering the contrast, texture, and 
colour features simultaneously. In the proposed algorithm, the contrast features are calculated 
by the image blocks’ color-gray-difference (CGD) histogram, texture features are measured 
by the MSCN-weighted LBP histogram and the colour features are obtained from Lαβ colour 
space. Whereafter, the night-time image quality prediction model is conducted by the SVR 
based on extracted contrast, texture, and colour features. 

The main contributions of this paper are summarized as follows.   
 Analyze the characteristics that are correlated with the quality of the night-time 

images. 
 Design a new BIQA metric for realistic night-times scenario, which considers 

multiple features of night-time images including contrast, texture, and colour.  
 The proposed algorithm shows a considerable performance improvement compared 

to the conventional BNBT. 
The structure of this paper is organized as follows. The related NR-IQA methods are 

briefly reviewed in Section II. Section III presents the proposed night-time image quality 
assessment method. In Section IV, the simulation results of experiment using the proposed 
method on four benchmark IQA databases compared with existing NR-IQA methods are 
presented and analyzed. Finally, Section V summarizes the whole paper. 

2.  Related work 
In this section, the pre-existing related BIQA metrics are reviewed. BIQA metric includes 
general BIQA that copes with the situation of unknowing the type of distortion and specific 
BIQA that processes the images with specific distortion.  

2.1 General BIQA metrics 
General BIQA metrics can evaluate the image with an assumption of unknowing the distortion 
type. BLIINDS-II [16] was a BIQA metric using the natural scene statistics (NSS) model and 
extracting image characters from the discrete cosine transform (DTC) domain, which involved 
24 features over three scales. At each scale, 8 features were extracted. After given the 
extracted features, the image quality scores were predicted relied on a simple Bayesian 
inference model. BRISQUE [17] was also a BIQA approach based on NSS model. But 
different from BLIINDS-II, this method no longer used DTC coefficients, but quantified the 
image in the spatial domain, which extracted mean subtracted contrast normalized (MSCN) 
coefficients fitted as asymmetric generalized Gaussian distribution (AGGD) to analyze the 
image distortion. Unlike NSS-based BIQA metric, GM-LOG [18] first attempted to combine 
the gradient magnitude (GM) and Laplacian of Gaussian (LOG) characters to assess the 
natural images. MSGF [19] extracted the image features from two domains including the 
spatial-frequency and spatial, then employed the piecewise regression to further improve the 
accuracy of quality assessment. For another branch of general BIQA, the image was evaluated 
based on the free energy model that was described as the summation of a relative entropy and 
mean likelihood of image data, and the representative schemes included NEFQM (firstly used 
free-energy model) that considered 3 types of image characters [5], and NFERM that 
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considered a total of 23 image characters [20]. The above methods require to use traditional 
machine learning algorithm SVR or random forest (RF) model to map the extracted visual 
features to the subjective rating scores of the tested image. Due to the powerful feature 
representation ability of deep learning, many BIQA models based on deep learning were 
developed recently [21, 22, 23, 24, 25]. Different from the traditional BIQA model of manual 
feature extraction, the model based on deep learning can learn the mapping relationship 
between image and image quality based on end-to-end Network. [22] proposed an end-to-end 
depth convolution neural network model (MEON) based on multi-task optimization for BIQA. 
In MEON, the first stage trained the distortion type identification sub-network, and the second 
stage trained the parameters of the quality prediction task based on the pre-trained shared 
convolution layer parameters and the parameters of the first sub-network. Zhang et.al 
developed DB-CNN based BIQA metric [23], which constituted two streams of deep 
convolutional neural networks for synthetic distortions and authentic distortion respectively. 
Unlike the aforementioned methods, NIQE [26] and IL-NIQE [27] were completely blind IQA, 
which didn’t require the subjective score of the original image. NIQE proposed in [26] 
constructed the multivariate Gaussian (MVG) model based on the portion of image patches 
and evaluated the image by the distance between the pre-established MVG model and the 
characteristic model of the tested image, and thus the subjective scores was unnecessary. 
Integrated Local NIQE (IL-NIQE) model presented in [27] constructed MVG model based on 
the statistical characteristics of structure, multiscale direction, frequency statistical feature, 
colour statistical feature of each image patch, and used the Bhattacharyya distance like NIQE 
to measure the quality score.  

2.2 Specific BIQA metrics 
Specific BIQA approaches cope with the images that suffer given type of distortion, in other 
words, prior knowledge of the distortions type should be required at processor, such as noise 
[28] or blurring distortion [29, 30, 31, 32], JPEG compression distortion [33, 34], contrast 
distortion [35, 36, 37, 38], etc.. To be specific, [31] and [32] handled the blur distortion by 
means of sparse representation and discrete Tchebichef Kernel, respectively. The authors in 
[33] employed the gradient domain discrete Fourier transform to analyze the periodic peaks of 
the signal so that the effect of JPEG compression distortion to quality assessment was reduced. 
The NR-CDIQA [39] was developed for the situation of contrast distortion, which constructed 
the moment and entropy characters based on NSS. NIQMC presented in [40] signified that, the 
local character that the entropy of salient regions was calculated based on semi-parametric 
model and global character that the symmetric Kullbace- Leibler divergence was calculated 
between the distributions of image histogram and the uniformly distributed histogram were 
highly dependent with the accuracy of quality assessment in the situation of contrast distortion. 
Moreover, HEFCS [38] employed the local image histograms that delicately described the 
luminance and contrast of image, and was good at addressing the contrast distortion. 

3.  Proposed night-time image quality metric 
Because night-time images are usually acquired in poor and varying lighting and illumination 
condition, night-time images typically contain multiple distortions, specifically, low 
brightness, low contrast, loss of detailed information, and colour  dissonance. Through the 
analysis of the NNID database [15] and our knowledge of the human visual system (HVS), we 
find that contrast, texture and colour are determining factors in the quality assessment of the 
night-time images. Contrast variation has great influence on image evaluation, especially for 
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the limitation of acquisition and poor lighting of night-time images. Moreover, texture 
information containing the details of the visual contents dominate the quality assessment of 
images captured at night. Given the fact that colour information reflects the plentiful degree of 
color scenes and it has been experimented that in the HVS, in the first 20s, the colour account 
for about 80% in perception the image quality, thus it is meaningful to extract the color 
features for the night-time images. These observations inspire us to put forward a BIQA 
algorithm, which combine the contrast, texture and colour features to measure night-time 
images quality. Fig. 1 illustrates the basic framework of the proposed metric for night-time 
images. 
 

 
Fig. 1. The framework of the proposed method 

 
The proposed method works as follows. In order to extract contrast, texture and colour 

features, we process the night-time image by three related modules simultaneously. For the 
contrast feature extraction, we randomly select P blocks of the whole image and calculate the 
CGD histograms of each block to obtain histogram eigen-features by performing the principle 
component analysis (PCA). For texture feature extraction, we calculate the MSCN coefficient 
of the image after down-sampling to obtain the weighted LBP histogram. For colour feature 
extraction, we convert the input RGB color images into the Lαβ space and calculate the 
statistical distribution of Green-Blue (GB) channel and Blue-Yellow (BY) channel coefficient, 
which is modeled as AGGD. Finally, SVR is applied to compute quality scores of night-time 
image by mapping the extracted quality features to the MOS measured by human observers. 
The details are presented in the following subsections. 

3.1 Contrast Feature Extraction  
Compared with light-time images, night-time images usually suffered with low dynamic range 
of brightness, which may be caused by poor and varying lighting and illumination condition. 
Fig. 2 presents five natural night-time images with size 512 512×  from NNID database [15]. 
From Fig. 2, we can observe that the MOS of Fig. 2 (a) which has high contrast is obviously 
higher than that of (e) which has low contrast. Intuitively, night-time images captured in 
low-illumination environment are often suffered with low contrast, in other words, contrast 
variation is a significant element that determines the quality assessment of the night-time 
images.  
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(a) MOS=0.7618 (b) MOS=0.6214  (c) MOS=0.4943 (d) MOS=0.3681  (e) MOS=0.2479  
Fig. 2. Five images sampled NNID database. The MOS is displayed at the bottom 

 
As indicated by the study [38], the image histograms can reflect variations of luminance 

and contrast information about the image appearance, and hence provide a great deal of 
information about the overall appearance of the image. Therefore, we first employ image 
histograms to evaluate contrast variation. 

We denote the color night-time image as I and its gray scale image as GrayI . The gray 
histogram is GrayH , which is to count the occurrence frequency of all pixels in the image 
according to the gray value. The gray histogram with gray value i  is formulated as: 

 

                         ( ) ( )( )
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,Gray Gray
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where X  denoted the set of image pixels, δ is a binary function, and
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 . 

The night-time image I  is a superposition of the red, green, and blue component images 
Let RedI , GreenI  and BlueI  represent the red, green, and blue component image. RedH , GreenH  
and BlueH are the corresponding color histogram of RedI , GreenI and BlueI . RedH , GreenH  and

BlueH are given by: 
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RedH , GreenH , and BlueH  indicate the distribution of red, green, and blue components of 
Image I , respectively. So the total RGB histogram of image I is given by: 

 
 ( ) ( ) ( ) ( )RGB Red Green BlueH i H i H i H i= + +  (5) 

 
When GaryH is subtracted from RGBH ，Color Gray Difference (CGD) histogram CGDH is 

remained. That is, 
 ( ) ( ) ( )CGD RGB GrayH i H i H i= −  (6) 

 
Contrast refers to the measurement of the different levels of brightness between brightest 

white and darkest black in the light and dark areas of an image. The larger the difference range, 
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the greater the contrast, and the smaller the difference range, the smaller the contrast. 
Histogram provides the information about the contrast of the image. It is known that the shape 
of histogram can indicate the global characteristics of the image: dark, bright, low contrast and 
high contrast. Narrow histograms reflect less contrast and may appear dull or washed out gray, 
whereas broad histograms reflect a scene with significant contrast. In addition, high contrast 
images usually have pure and intense colors, and thus the difference between the gray and 
RGB histogram (i.e. CGD) is high. 

Fig. 3 shows the comparisons of CGD histogram of images with various MOS values. 
(a)-(e) are five original images from the NNID database [15] and (f)-(j) are the corresponding 
normalized CGD histogram. From (f)-(j), we have the following observations. First, the CGD 
histogram provides the brightness and contrast information of the image. Besides, by 
comparing (f)-(j), we can observe that the peak position of CGD histogram of different 
night-time images with different luminance is also different. For example, compared with (f), 
the CGD histogram of (e) has higher peak position. Moreover, the shape of the CGD 
histogram reflects the contrast of the night-time image. For example, low-contrast (e) has 
narrower CGD histogram, while high-contrast (a) has wider CGD histogram, which can be 
seen from (f) and (j). Therefore, the following conclusion can be obtained, the shape of the 
CGD histogram and the contrast of the night-time image are directly related. By tracking the 
changes of the peak value of the CGD histogram, night-time image contrast distortion can be 
evaluated. 

 
 

      
(a)MOS=0.7914     (b)MOS=0.5771       (c)MOS=0.3914       (d)MOS=0.2471      (e)MOS=0.1057 

 
(f)                             (g)                            (h)                            (i)                              (j) 

Fig. 3. Comparisons of CGD histogram of images with various MOS values. (The MOS values from left 
to right are 0.7914, 0.5771, 0.3914, 0.2471 and 0.105 7, respectively.) 

 
 

Whereas, the CGD histogram of the overall image includes global contrast measure, 
which can’t fully describe the local contrast changes. When human beings observe the image, 
their visual attention is random [41], so we randomly select a group of P  blocks in the overall 
image for purpose of obtaining the local contrast-changed of the image. Fig. 4 present an 
example of selecting P  blocks in the whole image, where the number of patch 200P = . 
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Fig. 4. Illustration of P blocks in the night-time image 

 
The CGD histogram set collects the CGD histogram local image blocks, which is given 

by: 

 
0,0 0, 1

255,0 255, 1

P

CGD

P

h h
H

h h

−

−

 
 =  
  



  



 (7) 

where P is the number of blocks. Let matrix [ ]0 1 1, , ,CGD PH H H H −=  , in which 
{ }0, 1, 255,, , ,

T
i i i iH h h h=  represents the CGD histogram of the thi  block. The matrix CGDH  

contains 256 rows and P  columns. When P  becomes larger, the dimension of the matrix 
CGDH  becomes higher. 

Principal component analysis (PCA) [42] is a linear dimensionality reduction method. In 
PCA, the importance of information is expressed by variance. Therefore, the basic idea of 
PCA is to construct a series of linear combinations of original features to form 
low-dimensional features to remove the correlation of the data, and to make the reduced data 
maintain the variance information of the original high-dimensional data to the greatest degree. 
Therefore, with considering of the computational cost, PCA approach is adopted, and the 
detailed process is shown in the following. 

Input: CGD histogram CGDH , reduced data dimension m . 

1) Calculate the average CGD histogram CGDH  which is defined by 1

0

1 P T
CGD ii

H H
P

−

=
= ∑ . 

2) Calculate H , which is expressed by 0 1 1, ,CGD CGD P CGDH H H H H H H−
 = − − − 



 . 
3) Calculate covariance matrix C , where TC HH=   . Obviously, the dimension of C is

P P× , where P is the number of histogram blocks. 
4) Calculate eigenvectors { }1 2, , , dW w w w=  and eigenvalues { }1 2, , , ddiagλ λ λ λ=   of 

C , then sort the eigenvalues in descending order: 1 2 0dλ λ λ≥ ≥ ≥
, in which d is the rank 

of C . 
5) Select the largest m of the eigenvalues, and then the corresponding m eigenvectors are 

used to form the eigenvector-histogram. 
Output: image patches eigen-histograms H .  
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3.2 Texture Feature Extraction 
Night-time images are usually acquired in low-light environments, so the details of night-time 
image may be blurred, which will directly impact on night-time image perception. Here, we 
measure the blurred details via texture features, which is an indispensable factor to perceive 
image quality in the HVS. Texture features extraction on night-time image composes of two 
main modules, which are down-sampling, and texture features computation. Down-sampling 
[43] is used to generate night-time images with different resolutions so as to line with the 
characteristics of the HVS. Texture character computation works as follows. Firstly, MSCN 
coefficients are obtained by applying MSCN to the luminance of the distorted night-time 
image. Then, the statistical parameters and weighted LBP histogram features are extracted 
from the MSCN coefficients, where the statistical parameters are obtained from the 
generalized Gaussian model and the weight is the magnitude of MSCN coefficients.   

3.2.1 Statistical feature of MSCN coefficients 
Performing nonlinear operations on image brightness can eliminate the correlation between 
pixels. Mittal et al. [17] extracted the statistical features of MSCN coefficients to predict 
perceived image quality.  

The MSCN coefficient is given by: 

 ( ) ( )
( )

, ,ˆ
,

I i j i j
I

i j C
µ

σ
−

=
+

 (8) 

 

 ( ) ( ), ,, ,
H L

k l k l
h H l L

i j w I i jµ
=− =−

= ∑ ∑  (9) 

 ( ) ( ) ( ) 2
, ,, , ,

H L

k l k l
h H l L

i j w I i j i jσ µ
=− =−

 = − ∑ ∑  (10) 

where ( ),I i j is the pixel value of image I  at location ( ),i j , ( ),i jµ  and ( ),i jσ  represent the 
mean and standard variance values of local region that the center is ( ),i j , the length is 2H , 
and the width is 2L , respectively. w  is Gaussian filter.  

MSCN coefficient can be modeled by general Gaussian distribution (GGD) [17], which 
is given by:  

 ( ) ( ) ( )2; , exp
2 1

f x x
ααα σ β

β α
 = −
 Γ

 (11) 

where ( )1 3β α α α= Γ  and ( ) ( )1

0
0x tx t e dt x

∞ − −Γ = >∫ . α  is the general shape of the 

distribution and σ is the variance. 

3.2.2 MSCN-weighted LBP histogram features 
LBP [44] is an efficient local texture descriptor, which is widely used in face recognition, 
texture classification, and image quality assessment. Therefore, we adopt LBP, to describe the 
texture features of night-time image. 

The classic uniform rotation invariant LBPs procedure is introduced [44], as:  

 ( ) ( ) ( )1
,0

2

1 ,

P
i c P Ri

i
s g g if U LBP

LBP x
P else

−

=
 − ≤= 

+

∑  (12) 
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where cg  is the intensity of the central pixel cx , ig  denotes the intensity of neighbor pixel ix ,
R is the radius of the circle, P  represents the number of neighbors evenly distributed around 
the circle.  

LBP features are usually directly extracted from the original image [44]. Different from 
these work, the MSCN coefficients processed by formula (1) are selected for LBP feature 
extraction in the proposed method. In addition, different from the original statistical binary 
mode using frequency times to obtain the histogram, we use the MSCN coefficient amplitude 
as the weighted statistical normalized histogram. The weighted statistical normalized 
histogram is given by: 

 ( ) ( )'
,

1 1

M N

i j
i j

h k w LBP kδ
= =

= −∑∑  (15) 

 ( )
1, 0
0, other wise

x
xδ

=
= 


 (16) 

where ,i jw  is the amplitude value of MSCN coefficient, ( )xδ is the impulse function. 
Fig. 5 shows the comparisons of MSCN coefficients and MSCN-weighted LBP 

histogram of images with various MOS values. (a)-(e) are five original images from the NNID 
database [15] and (f)-(j) are the corresponding MSCN coefficients. (k)-(o) are the 
corresponding MSCN-weighted LBP histogram. It is clear that night-time images with 
different MOS results in MSCN coefficients distribution changing. Fig. 5(a) with high MOS 
exhibits a Gaussian like appearance, while (e) with low MOS deviates from Gaussian 
distribution. The following conclusions can be drawn from (k) to (o): MSCN-weighted LBP 
histogram can better reflect the image structure information, and MSCN-weighted LBP 
histogram for different night-time images with different MOS are also different. 

3.3 Colour Feature Extraction 
The features of texture explained in the previous section are extracted from grayscale 
night-time image. Considering that night-time images usually fail to truly reflect the true color 
of the image, and the color space is more in line with the characteristics of HVS, the statistical 
features of the color space is used to enhance the perception of night-time image quality. 
However, the three channels of RGB space have a strong correlation, which is not conducive 
to the separation of color and brightness features. We use the Lαβ color space proposed by 
Ruderman [45], which has the characteristics of the least correlation between channels for 
images.  
 

     
(a)MOS=0.7914     (b)MOS=0.5771     (c)MOS=0.3914       (d)MOS=0.2471      (e)MOS=0.1057 
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(f)                           (j)                             (h)                            (i)                             (j) 

 
(k)                           (l)                            (m)                           (n)                            (o) 

Fig. 5. Comparisons of MSCN coefficients and MSCN-weighted LBP histogram of images with 
various MOS values (The MOS values from left to right are 0.7914, 0.5771, 0.2471, and 0.1057, 

respectively. (f)-(j) are the corresponding MSCN coefficients. (k)-(o) are the corresponding normalized 
CGD histogram.) 

 
Considering that Lαβ is the transformation of LMS, formula (17) is firstly used to convert 

from RGB to LMS according to [49, 50]. 

 
0.3811 0.5783 0.0402
0.1967 0.7244 0.0782

0.0241 0.1288 0.844

L R G B
M R G B
S R G B

= ⋅ + ⋅ + ⋅
 = ⋅ + ⋅ + ⋅
 = ⋅ + ⋅ + ⋅

 (17) 

Since the data in LMS is relatively scattered, we further convert LMS to logarithmic 
LMS space via (18) to make the data distribution more convergent, which is more in accord 
with human subjective perception of colors.  
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 (18) 

For the logarithmic space components 'L , 'M and 'S , we use (8) to normalize the contrast 
to get the components L



, M


and S


, and then use the following equation to transform from 
LMS to Lαβ. 
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 (19) 

where l̂ reflects brightness information, α̂ and β̂  reflect the information of the blue-yellow 
channel and red-green channel, respectively. Fitting the AGGD [17] to α̂ and β̂ , the 
expression is: 
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where ( ) ( )1 3l lβ σ Γ α Γ α=  and ( ) ( )1 3r rβ σ Γ α Γ α=  . 
Fig. 6 shows the comparisons of BY opponent coefficients and RG opponent coefficients 

of images with various MOS values. (a)-(e) are five original images from the NNID database 
[15] and (f)-(j) are the corresponding BY opponent coefficients. (k)-(o) are the corresponding 
RG opponent coefficients. As shown in Fig. 6, both the distributions of BY opponent 
coefficients and RG opponent coefficients of (a) to (e) vary with respect to their subjective 
quality scores (by comparing with their MOS scores). (a) with high MOS exhibits an AGGD 
like appearance, while (e) with low MOS deviates from AGGD. That is, statistical features in 
color space have the ability to perceive night-time image quality. 

 

     
(a)MOS=0.7914   (b)MOS=0.5771   (c)MOS=0.3914    (d)MOS=0.2471    (e)MOS=0.1057 

  
(f)                           (g)                            (h)                             (i)                              (j) 

  
(k)                           (l)                           (m)                            (n)                              (o) 

Fig. 6. Comparisons of BY opponent coefficients and RG opponent coefficients of images with various 
MOS values (The MOS values from left to right are 0.7914, 0.5771, 0.2471, and 0.1057, respectively. 

(f)-(j) are the corresponding BY opponent coefficients. (k)-(o) are the corresponding RG opponent 
coefficients.) 

3.4 Quality Regression 
After the above operations, we can extract three types of quality-aware features, including 
contrast, texture and colour features. Given a night-time image, we can obtain 106 features. 
The classic SVR model [46] is adopted to establish the mapping between the quality-aware 
features and MOS of the image. 

Assuming that the training sample set is ( ) ( ){ }1 1, ,... ,k kx y x y , n
ix R∈  is the extracted 

feature, iy is the corresponding MOS, parameter 0C > , 0ε > , the standard expression of 
SVR is: 
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where ( ) ( ) ( ), T
i i i jK x y x xφ φ=  is the kernel function, this paper utilizes the radial basis (RBF) 

kernel function given as ( ) ( )2
, expi i i jK x y x xγ= − −  . 

4. Experimental Results 

4.1 Databases and Protocols 
The experiments are conducted based on NNID [15]. NNID database contains 2240 night-time 
image with 448 groups, each of which contains five images with different exposure, aperture, 
shutter, ISO settings, shutter and the same shooting position, and etc.. Among them, 280 
groups of images are captured by a digital camera (Nikon D5300), 128 groups of images are 
captured by a mobile phone (iPhone 8plus), and the remaining 40 groups were captured by a 
tablet (iPadmini2). Classified by resolution, images with resolutions of 512 512× , 
1024 1024×  and 2048 2048×  are 268, 90, and 90 groups, respectively. All images are saved 
in JPEG format, together with the MOS values in the range of [ ]0,1 . 1400 images captured by 
Nikon D5300, 640 images captured by iPhone 8plus and 200 images captured by iPad mini2. 
Table 1 summarizes the general information of the NNID databases.  
 

Table 1. NNID database 
Device 512 512×  1024 1024×  2048 2048×  Total (Group) 

Nikon D5300 (Group) 160 60 60 280 
iPhone 8plus (Group) 68 30 30 128 

iPadmini2(Group) 40 0 0 49 
Total(Group) 268 90 90 448 

 
In addition, the subsets of CCRIQ [47], LIVE-CH [48] and CID2013 [35] databases are 

considered for comprehensively testing, and contain 44, 303, 79 night-time images (luminance 
value <=0.4), respectively.   

Pearson Linear Correlation Coefficient (PLCC), Spearman Rank order Correlation 
Coefficient (SRCC), Kendall Rand order Correlation Coefficient (KRCC) and Root Mean 
Square Error (RMSE) are considered as performance evaluations. PLCC and RMSE indicate 
the prediction accuracy [31], while SRCC and KRCC represent the prediction monotonicity 
[32]. The range of PLCC, SRCC and KRCC is [ ]0,1 , while the range of RMSE is[0, ]∞ . 
Generally speaking, SRCC, KRCC and PLCC are as high as possible, and RMSE is as low as 
possible.  

Before calculating the above performance criteria, we employ a five parameters 
nonlinear logistic function suggested by [28] to complete the mapping from objective scores to 
human rating scores. 
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where x  is the objective score, ( )f x represents the mapped objective score, 1 2 5,τ τ τ  are 
the parameters to be fitted, the values of which is realized by using the nonlinear least squares 
function, nlinfit provided in Matlab. The final fitting parameters are essentially a parameter 
combination that minimizes the sum of squared errors between x  and ( )f x . For the function 
nlinfit, its input includes subjective score, corresponding objective score, non-linear function, 
while the output includes fitting parameters, residuals and Jacobian matrix. 

4.2 Performance Evaluation 
In this subsection, the proposed method is compared with the ten general BIQA methods 
(BRISQUE [17], BLINDS-II [16], NFERM [20], NIQE [26], IL-NIQE [27], GM-LOG [18], 
MSGF [19], DIIVINE [11], MEON [21] and DB-CNN [22]), four special BIQA methods that 
are designed for contrast distorted (MDM [36], NR-SPL [37], NR-CDIQA [39], and 
NIQMC[40]) and an approach that is specially designed for night-time images (BNBT [15]) 
on NNID, CCRIQ [47], LIVE-CH [48] and CID2013 [35]. All the results except BNBT [15] 
are calculated by the source code released by authors. Note that BNBT is implemented 
according to the [15]. 

4.2.1 Comparison with NR-IQA methods 
Fifteen IQA metrics and proposed method are tested on the entire NNID as shown in left part 
of Table 2. The experiment results are also conducted on the subsets of NNID that include 
images captured by three devices (Nikon D5300, iPhone 8plus and iPadmini2) as shown in 
right part of Table 2 and Table 3. Table 4 and Table 5 further present the experimental results 
of the fifteen IQA metrics on the subset of CCRIQ [47], LIVE-CH [48] and CID2013 [35] 
databases. In the experiments, NIQE [26], IL-NIQE [27], and NIQMC [40] are the 
training-free metrics while the other twelve methods are training-based quality metrics. For 
the training-based methods, the database is randomly divided into two parts, the model is 
trained based on 80% of the data, and the test is conducted by other 20% data. In order to 
ensure the fairness of the division, the above random division process is experimented 1000 
times, and the final predicted result takes the median values. For the training-free methods, all 
the images in the database are used to obtain the results.  

From Table 2 ~ Table 3, the following observation can be obtained. (1)The PLCC, 
SRCC and KRCC values of proposed algorithm are the highest among overall listed 
algorithms, while RMSE value is the lowest on NNID [15] database and the subsets of NNID 
[15]. Therefore, the proposed method achieves higher prediction accuracy (PLCC and RMSE) 
and prediction monotonicity (SRCC and KRCC) in contrast to the listed methods. In other 
word, the evaluation results of the propose method are more in line with human rating scores.  
This shows that the proposed method can predict the quality of night-time image more 
accurately than the related IQA metrics listed in Table 2. (2)The performance of BNBT [15], 
which is an IQA method specially designed for night-time images, is slightly worse than of the 
proposed method. This phenomenon indicates that the features extracted by the proposed 
method can better characterize the characteristics of the night-time images than those 
extracted by BNBT. 
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In addition, from Table 2 ~ Table 5, the following three observations can also be 
obtained. (1) For the ten general BIQA methods, the performance of training-based algorithms 
is generally better than that of training-free algorithms. Especially, DB-CNN [22] that 
employs deep learning, shows excellent performance in the general BIQA benchmark 
comparison. This phenomenon suggests that supervised learning brings better algorithm 
performance than unsupervised learning. (2) From Table 4 and Table 5, we can see that the 
majority of quality metrics listed in Table 4 perform worse at SRCC, KRCC, PLCC and 
RMSE than the proposed method on CCRIQ [47], LIVE-CH [48] and CID2013 [35] databases, 
which verifies that our proposed method can accurately evaluate the quality of image which is 
captured not only in night-time scenario but also in the low illumination conditions. (3) By 
comparing the performance of four contrast-distorted algorithms and the ten general BIQA 
methods, it is found that contrast-distorted methods have superior performance than most 
general algorithms in measuring the quality of night-time images and the images captured in 
low lighting conditions. However, compared with BNBT [15] and our proposed method, the 
performance of the considered contrast-distorted methods is slightly worse, which shows that 
when designing the night-time image quality metric, not only the contrast distortion should be 
considered, but also the burred details, colour, low visibility and other features should be 
considered.  

 
Table 2. Performance comparison on NNID database 

Metric Entire database Device I - Nikon D5300 (1400) 
SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE 

BRISQUE 0.7459 0.5469 0.7562 0.1325 0.7263 0.5365 0.7385 0.1279 
BLINDS-II 0.7465 0.5486 0.7536 0.1229 0.7725 0.5748 0.7799 0.1184 

NFERM 0.8419 0.6514 0.8498 0.0993 0.8597 0.6685 0.8632 0.0921 
NIQE 0.5931 0.4196 0.5980 0.1455 0.6011 0.4235 0.6058 0.1536 

IL_NIQE 0.7143 0.5204 0.7203 0.1156 0.6723 0.5001 0.6852 0.1239 
GM-LOG 0.8123 0.6221 0.8245 0.1196 0.8324 0.6420 0.8453 0.1095 

MSGF 0.8351 0.6340 0.8426 0.1031 0.8523 0.6652 0.8624 0.1102 
DIIVINE 0.7348 0.5034 0.7412 0.1458 0.7255 0.5455 0.7354 0.1324 
MEON 0.2954 0.2041 0.3198 0.1541 0.3354 0.2400 0.3569 0.1512 

DB-CNN 0.8752 0.7251 0.8895 0.1154 0.8823 0.7165 0.8852 0.1101 
NR-CDIQA 0.7526 0.5536 0.7521 0.1354 0.7751 0.5839 0.7823 0.1297 

NR-SPL 0.4152 0.2821 0.4198 0.2165 0.4836 0.3351 0.4725 0.2096 
NIQMC 0.8124 0.6186 0.8134 0.1013 0.8352 0.6461 0.8398 0.1025 
MDM 0.8354 0.6359 0.8369 0.0938 0.8635 0.6811 0.8682 0.0892 
BNBT 0.8697 0.6801 0.8721 0.1085 0.8793 0.6957 0.8854 0.1086 

Proposed 0.8934 0.7353 0.8996 0.1013 0.9021 0.7228 0.9056 0.0885 
 

Table 3. Performance comparison on NNID database 

Metric Device II - iPhone 8plus (640) Device III- iPadmini2 (200) 
SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE 

BRISQUE 0.7382 0.5438 0.7536 0.1254 0.7436 0.5674 0.7789 0.0956 
BLINDS-II 0.7321 0.5463 0.7412 0.1325 0.7315 0.5485 0.7768 0.0953 

NFERM 0.7896 0.6085 0.8036 0.0113 0.8132 0.6264 0.8352 0.1125 
NIQE 0.5672 0.3952 0.5768 0.1521 0.6495 0.4701 0.6534 0.1542 

IL_NIQE 0.7056 0.5159 0.7158 0.1254 0.7895 0.6124 0.7952 0.1352 
GM-LOG 0.7956 0.6041 0.8094 0.1198 0.7889 0.6052 0.7993 0.1254 

MSGF 0.8423 0.6584 0.8519 0.1027 0.8452 0.6587 0.8516 0.1084 
DIIVINE 0.6987 0.5111 0.7012 0.1301 0.7569 0.5662 0.7686 0.1499 
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MEON 0.3269 0.2153 0.3584 0.1421 0.3115 0.2013 0.3542 0.1254 
DB-CNN 0.8710 0.6724 0.8841 0.1021 0.8542 0.6539 0.8687 0.0919 

NR-CDIQA 0.7538 0.5583 0.7728 0.1154 0.7545 0.5487 0.7638 0.1357 
NR-SPL 0.5275 0.3652 0.5246 0.2027 0.4823 0.3241 0.4925 0.2058 
NIQMC 0.8054 0.6021 0.8097 0.1049 0.8089 0.6125 0.8124 0.0935 
MDM 0.8205 0.6287 0.8268 0.0992 0.7783 0.5964 0.7961 0.0839 
BNBT 0.8576 0.6815 0.8639 0.1134 0.8436 0.6759 0.8534 0.1097 

Proposed 0.8862 0.6897 0.8943 0.0959 0.8841 0.6843 0.8910 0. 0897 
 

Table 4. Performance comparison on subsets of CCRIQ and LIVE-CH databases 

Metric CCRIQ Subset (44) LIVE-CH Subset (303) 
SRCC KRCC PLCC RMSE SRCC KRCC PLCC RMSE 

BRISQUE 0.5364 0.4021 0.7024 0.5124 0.5354 0.3741 0.5746 15.1582 
BLINDS-II 0.4423 0.3247 0.5843 0.5331 0.3982 0.2794 0.4659 16.2153 

NFERM 0.6657 0.5132 0.6753 0.5857 0.4864 0.3483 0.5347 15.5219 
NIQE 0.4862 0.3681 0.4952 0.5326 0.4923 0.3407 0.5364 15.2168 

IL_NIQE 0.6053 0.4436 0.6347 0.5513 0.5007 0.3421 0.5463 15.1253 
GM-LOG 0.5036 0.3654 0.5141 0.5624 0.5124 0.3821 0.5243 15.0523 

MSGF 0.5424 0.4441 0.5745 0.5571 0.5052 0.3511 0.5473 15.6542 
DIIVINE 0.4489 0.3159 0.4563 0.4733 0.2267 0.1625 0.3439 17.5367 
MEON 0.5086 0.4287 0.5369 0.6312 0.3176 0.2129 0.4591 16.2545 

DB-CNN 0.7665 0.6023 0.7752 0.5128 0.5836 0.4028 0.6159 14.5632 
NR-CDIQA 0.6075 0.4489 0.6228 0.5245 0.3033 0.2178 0.3789 17.2110 

NR-SPL 0.2863 0.2015 0.4385 0.5712 0.2513 0.1859 0.2743 18.2413 
NIQMC 0.7016 0.5684 0.7354 0.4983 0.3561 0.2456 0.3946 17.0432 
MDM 0.5467 0.4216 0.5893 0.5749 0.2658 0.1860 0.3549 17.5631 
BNBT 0.8245 0.6254 0.8324 0.4753 0.7536 0.6842 0.7851 14.3543 

Proposed 0.8465 0.6478 0.8545 0.4523 0.8023 0.6171 0.8125 13.5483 
 

Table 5. Performance comparison on subsets of CID2013 databases 

Metric CID2013 Subset (79) 
SRCC KRCC PLCC RMSE 

BRISQUE 0.3628 0.2431 0.5187 15.2135 
BLINDS-II 0.5524 0.4182 0.6573 12.7354 

NFERM 0.4352 0.3093 0.7342 16.8792 
NIQE 0.6825 0.5010 0.7261 12.5483 

IL_NIQE 0.5534 0.3824 0.6648 14.9625 
GM-LOG 0.3551 0.2358 0.5437 14.2353 

MSGF 0.2886 0.1908 0.1528 15.2309 
DIIVINE 0.4163 0.3085 0.4236 15.1283 
MEON 0.2954 0.1936 0.3058 15.5632 

DB-CNN 0.5533 0.4226 0.5698 14.9558 
NR-CDIQA 0.4285 0.2753 0.4836 12.5896 

NR-SPL 0.2109 0.1089 0.2497 15.9631 
NIQMC 0.5546 0.4039 0.5748 12.0258 
MDM 0.5103 0.4367 0.5637 12.4526 
BNBT 0.7354 0.5513 0.7854 10.3249 

Proposed 0.7638 0.5729 0.7954 9.2593 
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4.2.2 Performance Analysis on Individual Features 
Three types of features, including contrast feature, texture feature and colour feature, are 
employed in our proposed approach to jointly measure the distortion of the realistic night-time 
images. Next, we further use ablation experiments to conduct contribution of each individual 
character to the proposed method on the entire NNID database [15]. In the experiment, the 
contrast, texture and color features are separately used for SVR training and quality prediction 
on the entire NNID database [15]. The experimental results are listed in Table 6.  

Some findings are observed from Table 6: (1) Compared with Table 2, the proposed 
metric with separate contrast, texture and color feature on the NNID database [15] still has 
obvious advantages over most considered IQA methods. This proves the effectiveness of the 
three type features proposed in this paper. (2) The contrast feature achieves 0.8623 SRCC and 
0.8635 PLCC. By contrast, the SRCC and PLCC values of texture features are 0.8436 and 
0.8469, respectively, while those of colour features are 0.6325 and 0.6391. These results 
demonstrate that the contrast features contribute more to the proposed method in measuring 
the night-time images than the texture or color features. (3) The performance of the method 
after combining the three type features is much better than that of using each feature alone. 
These results show the rationality and necessity of combining the three type characters in the 
proposed method. 

 
 

Table 6. Performance of Individual Features on NNID Database 
Feature SRCC KRCC PLCC RMSE 
Contrast 0.8623 0.6781 0.8635 0.1142 
Texture 0.8436 0.6571 0.8469 0.1204 
Colour 0.6325 0.4957 0.6391 0.1459 

Contrast & Texture & Colour 0.8934 0.7353 0.8996 0.1013 

 
 

4.2.3 Complexity Analysis 
In practical application, the computational complexity is an important factor affecting the 
image processing system. Consequently, the computational complexity that is required for 
each method are listed in Table 2. Experiments are performed on a desktop computer 
configured with Intel Core-i7-8700CPU@ 3.2GHz and 8GB RAM. The simulation software is 
MATLAB R2016b, which is used under Windows 10 operating system. Fig. 7 summarizes the 
running time that is for processing 1000 images with resolution 512 512×  randomly selected 
from the NNID database. Fig. 7 signifies that the proposed metric needs moderate running 
time and performs statistically the best compared to other existing methods. 
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Fig. 7. Running Time Comparison of Proposed method and Involved IQA Methods 

5. Conclusion 
This paper has introduced an efficient NR-IQA metric for realistic night-time scenario. Three 
types of features including contrast, texture, and colour, which are correlated with the quality 
of the night-time images, are extracted from the image simultaneously. More specifically, 
CGD histogram information was captured to quantify contrast; MSCN-weighted LBP 
histogram information was estimated to infer texture; statistical features in LMS colour space 
were extracted to represent image colour distortions. After feature extraction, SVR is adopted 
to train the quality prediction model. Experiments are conducted on NNID, CCRIQ, LIVE-CH, 
and CID2013 databases, and the proposed method shown to be best compared to the existing 
NR-IQA metrics at SRCC, KRCC, PLCC and RMSE. Moreover, the processing speed of the 
proposed method is acceptable. As future work, we would like to employ deep learning to 
improve the performance of BIQA method for night-time image.  
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