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Abstract: Artificial intelligence (AI) techniques have been spreading in most scientific areas and
have become a heated focus in photonics research in recent years. Forward modeling and inverse
design using AI can achieve high efficiency and accuracy for photonics components. With AI-assisted
electronic circuit design for photonics components, more advanced photonics applications have
emerged. Photonics benefit a great deal from AI, and AI, in turn, benefits from photonics by carrying
out AI algorithms, such as complicated deep neural networks using photonics components that
use photons rather than electrons. Beyond the photonics domain, other related research areas or
topics governed by Maxwell’s equations share remarkable similarities in using the help of AI. The
studies in computational electromagnetics, the design of microwave devices, as well as their various
applications greatly benefit from AI. This article reviews leveraging AI in photonics modeling,
simulation, and inverse design; leveraging photonics computing for implementing AI algorithms;
and leveraging AI beyond photonics topics, such as microwaves and quantum-related topics.

Keywords: AI; photonics; soft computing; inverse design; photonics computing; photonics accelera-
tor; forward/inverse model; deep learning; machine learning; neural networks; electromagnetics;
microwave; computational electromagnetics; EMC/EMI; quantum computing

1. Introduction

Electromagnetics is a fundamental branch of physics that arises from the interaction
of charged particles with ever-expanding technological applications and scientific dis-
coveries [1–5]. It has enormous implications in our daily life from medical applications
to mobile phones. The electromagnetic spectrum encapsulates wavelengths from thou-
sands of kilometers down to a fraction of the size of an atomic nucleus. In a celestial
manner, the behavior of electromagnetic waves corresponding to this entire spectrum can
be succinctly described by the golden set of Maxwell equations. Table 1 summarizes the
spectrum distribution from Radiofrequency (RF) to Optics and the corresponding typi-
cal applications/techniques. As given in the table, the wide spectrum of optics (where
photonics are mainly located) from far-infrared to ultraviolet yields numerous photonics
applications [6–8].

Table 1. The spectrum distribution from RF to optics and the corresponding typical applica-
tions/techniques.

Wave Frequency Wavelength
Photon Energies

Applications
Techniques

RF a few Hz–1 GHz up to 300 mm EMC/EMI [9,10]
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Table 1. Cont.

Wave Frequency Wavelength
Photon Energies

Applications
Techniques

Microwave 1 GHz–0.3 THz 1–300 mm Antenna/Filters [11,12]
THz 0.3–4 THz 75 um–1 mm Non-destructive testing [13]

Optics

Far Infrared 0.3–20 THz 15 um–1 mm Human body detection [14]
Mid Infrared 20–100 THz 3–15 um Composition analysis [15]
Near Infrared 100–384 THz 780–3000 nm NIR imaging [16]

Visible 384–750 THz 390–780 nm Light field [17,18]
Ultraviolet 750 THz–10 PHz 320–100 eV UV-C LED [19]

Unlike other domains, the physics within Maxwell equations is complete and self-
consistent in nature. However, one must employ hard computing to numerically seek
solutions to these equations, which is computationally expensive and laborious. The mod-
eling complexity of hard computing methods scales directly with the domain size and the
required precision—limiting full exploration of the parameter space. Thus, interruptions of
the traditional Maxwell equation-based method with Artificial intelligence (AI) are vital to
advance the state-of-art in the design and modeling of electromagnetic problems [20–22].
AI methods, such as machine learning (ML) techniques are proven methodologies for the
capture, interpolation, and optimization of highly complex phenomena in many fields.
They are widely used in image classification [23,24], image/video processing [17,25,26],
natural language processing (NLP) [27,28], and robotics [29,30]. Thus, coupling AI tech-
niques with traditional physics-based methods could potentially discover pseudo-random
designs with performance excellence that is beyond physical intuitions. This entire cycle of
design, modeling, and simulation carried by soft computing algorithms will accelerate exe-
cution speeds by two to three orders of magnitude. Importantly, the intrinsic nature of ML
algorithms, which is data-driven, allows the incorporation of many of the uncertainties in
material parameters, fabrication, and manufacturing. Therefore, when viewed as a whole,
the methodology will reduce fabrication tape-outs and cycles and increase manufacturing
yield. As illustrated in Table 1, all the applications/techniques listed from RF to optics
can leverage AI. For example, within the optics domain, infrared with AI techniques can
help to detect the human body [14], analyze material composition [15], and colorize NIR
images [16]. For the fields beyond optics, the related applications leveraging AI will be
further discussed in Section 4.

With the rapid development of AI in recent years, especially the deep learning meth-
ods, how to leverage AI for photonics has attracted significant interest from researchers
worldwide. Figure 1 shows the research trend on AI and photonics since 1996. The number
of the publication with topics including AI and photonics from web of science is searched
by conditions: AI (topic) or deep learning (topic) or machine learning topic) and pho-
tonics (topic) from 1996 to 2021. It can be seen from Figure 1 that the publications have
increased dramatically since 2005 from 5000 to almost 50,000, and it is expected that such
an increasing trend could last for years. A network visualization is also shown in Figure 1
based on the highly-cited paper from 2021, searched by web of science and plotted using
VOSviewer [31].

This article reviews the applications of ML methods in electromagnetics with a particu-
lar emphasis on photonics. Photonics covers a wide range of the electromagnetic spectrum
from visible to mid-infrared wavelengths. This encapsulates vast applications that include
data transport, telecommunication, quantum information technologies, biology, and chem-
ical sensing. The rest of this review paper is organized as follows. Section 2 describes
the applications of AI on photonics modeling, simulation, and inverse design. The recent
studies on soft computing using ML and the inverse design for photonics using Genera-
tive adversarial network (GAN) are summarized. Section 3 reviews the studies on how
photonics contribute to AI in terms of implementing advanced Neural Networks using
photonics hardware for acceleration. In Section 4, we review the AI applications beyond
photonics, including AI for computational electromagnetics (forward and inverse solvers),
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microwave device optimization and design, electromagnetic compatibility and interference
(EMC/EMI), and quantum-computing-related topics.
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Figure 1. The trend of the publication on AI and photonics and the network visualization of the
highly cited paper from 2021. (Searched by web of science and plotted by VOSviewer).

2. AI for Photonics: Modeling and Simulation

As indicated by Figure 1, the publications of photonics related to AI/deep learning
have been drastically increased recently. There are several articles [32–34] reviewing
applications of AI techniques in photonics. [32,33] target applications of AI methods for
general device modeling in photonics, while [34] targets application of AI methods in
exclusively in integrated quantum photonics. Device modeling in photonics can be broadly
divided into forward and inverse modeling.

In forward modeling, the input parameter space consists of device geometrical pa-
rameters, and the output parameter space comprises the performance vectors. AI methods
typically utilizes discriminative neural networks. Discriminative neural networks model
the definite mapping between the input and output variables via multilayer feedforward
networks or CNNs. These have been successfully applied in forward modeling of the
spectral response of plasmonic scatters [35], effective refractive indices of waveguides [36],
electric field profiles of photonics systems [37,38], dielectric metasurfaces [39–41], dielectric
metagratings [42], beam combiners [43], beam steering devices [39], and photonics topo-
logical insulators [44]. On the other hand, in inverse modeling, as the name suggests, the
inputs are the performance vectors, and the outputs are the corresponding device geome-
try. The AI methods in inverse modeling can be further categorized into three categories.
The first category uses gradient descent-based algorithms coupled with a forward model.
Here, the gradients of the forward model are evaluated either by adjoint methods [45,46] or
automatic differentiation [40,47]. Automatic differentiation employs chain rules of deriva-
tives, and they are mathematically equivalent to backpropagation algorithms. Starting from
an educated guess of the device geometry, the error between the guess geometry response,
and the desired response is calculated. This error is backpropagated, and a modified
geometry is obtained. The process is repeated until the error between the guess and desired
response is an acceptably small value. The second class of inverse methods makes use
of conventional optimization techniques, such as genetic and particle swam algorithms
and forward models. In this class, the optimization algorithm will conduct an algorithmic
search for the device geometry with the desired performance, and the algorithms will
access the forward model multiple times (depending on the problem the counts could be
hundreds or thousands). The third class of inverse algorithm makes use of generative
neural networks to predict the device geometry with desired performance targets [48–50],
and the detail review will be given in Section 2.3. As explained above, the application
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of AI techniques in photonics thus far is vastly concentrated on device designs. Readers
can refer to [32–34] for more details. In the following sections, we will take two specific
areas for details discussions. The first is application of AI methods in for optical mode
solving—a forward modeling problem, and the second is the application of generative
neural networks in the inverse designs. Before we move to the AI applications in photonics,
a brief introduction on some fundamentals of Neural Networks will be given in the next
subsection.

2.1. Neural Networks

Artificial Neural Network (ANN), Convolution Neural Network (CNN) and Recur-
rent Neural Network (RNN) are three most commonly used Neural Networks. ANN
usually consists of three layers—input, hidden and output layers, connected in the forward
direction. Each node of the input and hidden layers has parameters of weight and bias
for the node connected to the next layer. ANN is capable of learning complex nonlinear
function that maps any input to the desired output. For example, ref. [51] predicted hourly
global, diffuse, and direct solar irradiance using ANN based on various measured data.
However, ANN is only applicable when the input data size (the number of the nodes
of the input layer) and the number of the nodes of the hidden layer are relatively small
because the number of trainable parameters (weights and bias) increases drastically as
the numbers of input layer nodes and the hidden layers increase. In addition, ANN loses
the spatial/temporal features of the input data, such as images and video, and it cannot
capture sequential information in the input data, such as time series data. CNN is prevalent
in the deep learning community, especially in computer vision. Unlike ANN, the trainable
parameters lie in the filters, also called kernels. Instead of fully connecting all the nodes
in each layers, the filters are used to extract the relevant features from the input using the
convolution operation. For instance, ref. [52] used CNN to extract high-level features of
computed tomography data to diagnose COVID-19 symptoms. RNN is widely used in
natural language processing with sequential input data. It has a recurrent connection on
the hidden layers and shares parameters across different time steps. This results in fewer
parameters to train and decreases the computational cost. In [38], a RNN is employed to
establish the field continuity between the adjacent pixels for the calculation of optical mode
profiles. Based on the three essential NNs, many machine learning frameworks/models,
such as ResNet [23], GAN [53,54], LSTM [55,56], and Transformer [57] have been built for
solving various complicated problems.

2.2. Optical Mode Solving

Traditionally the design tasks in photonics are carried out using physical principles
and intuitions. However, this does not explore the full input parameter space constrained
by the available materials and fabrication techniques. The modeling and simulation in pho-
tonics are governed by the golden set of Maxwell equations. The physics within Maxwell
equations is complete and self-consistent in nature. However, one must employ hard
computing to numerically seek solutions to these equations, and this is computationally
expensive and laborious. The modeling complexity of hard computing methods scales
directly with the computational domain size and the required precision—limiting the
full exploration of the parameter space. Thus, interruptions of the traditional Maxwell
equation-based method with new set of soft-computing algorithms are critical to advance
the state-of-art in the design and modeling of electromagnetic problems. Soft computing
relies on machine learning techniques and could potentially autodiscover pseudo random
designs with performance excellence that is beyond physical intuitions. This entire cycle
of design, modeling, and simulation carried by soft computing algorithms will acceler-
ate execution speeds by two to three orders of magnitude. Additionally, the intrinsic
nature of soft computing algorithm, which is data driven will allow incorporation of many
of the uncertainties in material parameters, fabrication, and manufacturing. Therefore,
the methodology when viewed as a whole, will reduce fabrication tape-outs and cycles,



Photonics 2022, 9, 75 5 of 26

and increase photonics manufacturing yield. Optical mode solving represents an area
where the soft computing techniques have been successfully applied. The task of mode
solving has fundamental importance in a photonics integrated circuit design. Engineers
usually spent plenty of their design time in this step extracting and optimizing mode
profiles, field confinements, effective, and group refractive indices. Optical mode solving
allows one to monitor the fundamental properties of the optical waveguides. It plays a key
role in the design of more complicated components, such as directional couplers, resonators,
arrayed waveguide gratings, and modulators. Therefore, accurate and rapid mode-solving
are extremely necessary. Traditionally, modes of an optical waveguide are solved by seek-
ing solutions to time—independent Maxwell’s equations. Analytical solutions exist for
simple one—dimensional slab waveguides. For two—dimensional geomeattempts, such
as channel, and strip waveguides, numerical simulations must be sought for accurate
solutions. Usually, to tackle the numerical problem, one applies matrix-diagonalization
based methods, such as finite difference, and finite elements. Although, these methods
are well established, they consume certain amount of computational resources, and such
resource consumption especially matters when performing large number of geometrical
sweeps, optimizations, and group index calculations. The group index is calculated by
repeating the effective index calculations for a range of wavelengths. The parameter space
for the waveguide geometry in the photonics problems is usually well defined. They are
limited by the choice of available materials, and the dimensions that can be fabricated using
existing fabrication capabilities. Researchers often explore the well-defined parameter
space repeatedly with brute force numerical methods. Such repeated exploration is, thus,
an inefficient use of computational resources. Many valuable patterns can be learned in
each of these repetitions and thus can be used an effective representation for future calcula-
tions without the use of numerical methods. The soft-computing based optical mode solver
is an exceptionally good complement to the physics-based solver as the user can now solve
some popular predetermined waveguide geomeattempts almost quasi-instantaneously
without any hard computations. These are immensely helpful when the user is doing a
parameter sweep and optimizations. The user still need to use physics-based solver for
non-traditional and complicated geomeattempts, or to double check (however, the AI solver
delivers high precision results) one of the instances in sweep.

In the following, we describe the recent works of soft computing techniques in optical
mode solving. Specifically, we illustrate the modal classification, effective refractive index
calculations, and optical mode profile predictions via applications of deep-learning models.

2.2.1. Modal Classifications

Most devices in integrated optics requires the underlying waveguide to operate with
a single mode. Thus, quick identifications of single mode waveguide geomeattempts will
help to accelerate the design cycle of the on-chip photonics components. Traditionally,
modal classification is done by finding effective index curves as a function of waveguide
geometrical parameters. In buried channel waveguides, we have two geometrical parame-
ters, waveguide width (w) and height (h) respectively. For a given h, the effective refractive
index versus w curves is generated for multiple order of the modes. Here, the effective
refractive index is at every single w is obtained by solving time independent Maxwell
equation using numerical methods, such as finite difference or finite element. We will see
that the higher order modes will emerge only after some critical w. By monitoring this
critical value, single mode waveguides for a given h, can be designed. For a different h,
the entire procedure has to be repeated. In [58], a deep-learning model for waveguide
model classification is presented. Silicon nitride channel waveguides with silica cladding
are considered. Figure 2a depicts the modal classification based on a densely connected
feedforward architecture with four hidden layers. The horizontal and vertical axes repre-
sent w and h, respectively. The solid black line B(w,h) represent the exact single mode curve
calculated using conventional finite difference method. This curve splits the input parame-
ter space into regions of single and multimode mode geomeattempts. Geomeattempts with
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(w,h) lies below B(w,h) have a single mode, and lies above B(w,h) have multiple modes.
The solid green curves are deep learning generated single mode curves. There are four
panels in Figure 2a, each depicts deep-learning model with varying number of learning
(training) points (dark yellow circles shows the coordinates of the learning points). We
can see that that, when the number of training points is 25 (second row, first panel), the
predicted single mode curve matches the exact curve. The required number of data points
to estimate B(w,h) is far less than the actual number of points needed to estimate B(w,h)—
where more than 500 points were used. The blue and red crosses in Figure 2a represent
random test points. The red crosses represent single mode classifications, and blue crosses
represent multimode classifications. Figure 2b shows the mean square error between the
predicted and exact B(w,h) as a function number of learning points. On the other hand,
Figure 2c shows percentage of misclassifications as a function number of learning points.
Please refer [58] for more details.

Figure 2. Performance of the deep learning model [58] as a function of number of learning points, NL
(a) w-h parameter spaces are shown with random test inputs (crosses), and the learning points (dark
yellow circles). The NN predictions for test points are colored as blue for multimode and red for
single mode. The green solid line is the predicted B(w,h), and the black solid line is the exact B(w,h).
(b) The mean square error between the predicted and exact B(w,h) as a function NL (c) Percentage
of misclassifications as a function NL. The purple line shows the average value over ten samples of
random 200 test pairs of (w,h). The boxes show the consistencies in the percentage misclassifications
(first (Q1), second (median), third (Q3) quartiles, maximum (max) and minimum (min) values; see
the insert). Adapted with permission from [58] © Taylor & Francis.

2.2.2. Effective Refractive Indices

The effective refractive index is an optical quantity that describes how well the mode
is confined to the waveguide core. It is a critical parameter to design many of the functional
devices in photonics. For an example, in arrayed waveguide grating the effective index and
group refractive index (calculated by sweeping effective index calculations over wavelength
of light) determines the phase difference and free spectral range. In directional couplers,
the beating length is essentially determined by computing effective refractive index. A
deep-learning model can accelerate effective refractive index calculations. The trained
deep-learning models are able to predict the effective refractive quasi-instantaneously. This
in turn enables ultra-fast prediction of other derived quantities, such as the group refractive
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index and beating lengths. In [59], deep-learning models for effective refractive index
predictions were shown for silicon nitride buried channel waveguides with silica cladding.
Figure 3 describes the developed deep-learning model using a feedforward architecture
of three hidden layers. Figure 3 summarizes the results when the deep-learning model is
trained with 4, 9, and 16 points. The left panels show the input parameter space. The blue
circles in the panels represent the coordinates of the (w,h) used in the training. On the other
hand, the right panel displays the predicted effective refractive indices along the lines A—F
interpolated in the input parameter space. The plots show how the patterns in the effective
refractive indices of the fundamental waveguide modes for both polarizations of light, can
be uncovered with only 4 to 16 learning points for the entire parameter space.

Figure 3. Performance of the deep-learning model in [59] as a function of number of learning points
(NL). (a) NL = 4, (b) NL = 9, and (c) NL = 16. The diagram on the left in all (a–c) represent the
considered w-h parameter space with the learning points indicated in blue circles. The effective
refractive indices (exact and predicted) along the dotted lines with specific h and w values (A, B, C,
D, E, and F—see the left panel) are shown on right diagrams. Adapted with permission from [59]
© IOP Publishing.
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In [36], the authors developed a universal deep-learning model for the effective
refractive index of a buried channel waveguide. The cladding material is kept to silica,
while the model can have varying core refractive index. The deep-learning model is able to
make precise predictions for wide spectrum optical wavelengths, core materials of refractive
indices varying from 1.45 to 3.8, and wide range of feasible geometrical parameters of
the waveguides. The authors explore single and multi-layer neural architectures with
minimal number of learning points and demonstrate the precision superiority of the multi-
layer deep-learning models as opposed to the single layer deep-learning model and the
conventional interpolation techniques. With only 27 learning data points, we are able
to achieve a MSE of 1.56 × 10−2. The MSE reduces to 3.94 × 10−5 when the number
of learning points is increased to 64. Figure 4a,b showcase the training and prediction
durations, respectively, as a function of number of learning (training) points. Figure 4d
compares the precision and calculation time offered by the single and multi-layer optimized
neural networks, interpolation techniques, and the exact finite difference method (for more
details on the figure, and the architecture details, please refer to [36]). As it is clear from
this figure, the time taken by the exact method (orange bar) is enormous when compared
to the neural network and interpolation methods. In addition, we can see that the neural
networks with two and three—layers offer good compromise between calculation time
and accuracy. The precision values provided by the multilayer neural networks are one to
two orders higher than the interpolation techniques, although they consume slightly more
calculation time.

Figure 4. (a) Training time, and (b) prediction time the best performing neural network (nmax = 21)
as a function of data set size, and for varying number of neural network hidden layers (L). Key—Blue:
L = 1, Red: L = 2, and Green: L = 3. (c) Comparison of the calculation time and mean squared error
for optimized neural networks (trained with Ng = 6), interpolation, and exact methods. Adapted
with permission from [36] © The Optical Society.

2.2.3. Optical Mode Profile

Apart from modal classifications and effective refractive index calculations, another
essential task in integrated photonics is the calculation of the optical mode profiles. Unlike
effective refractive index prediction, where the task is to predict a single value for a given
waveguide geometry and polarization, here the deep-learning model must be able to
predict a two-dimensional array of values corresponding to the distribution of the electric
field. In [38], a recurrent neural network (RNN) was employed to accomplish this task.



Photonics 2022, 9, 75 9 of 26

The input to the model is the geometrical parameters of the waveguide, and the output
is the field values (array). The recurrent connection helps to establish the field continuity
between the adjacent pixels. Figure 5 summarizes the key results.

Figure 5. (a) Top panel—Location of learning data points in the input parameter space for three sets
of data points. Bottom panel—Number of points used for training, validation, and testing in each
data set. (b) An example of neural network prediction of the normalized electric field values, E. Top,
middle, and bottom row represent prediction of F = |E|2 when the neural networks are trained with
the data sets A, B, and C respectively (the scale of the color code is given by the colorbar in Figure 3).
(first column) Image from the exact numerical calculation. (second column) Feedforward neural
network (FNN) predicted images (third column) Recurrent neural network (RNN) predicted images.
In second and third columns, the one-dimensional plots of F as a function of x are shown for y = 0.
Adapted with permission from [38] © Springer Nature.

2.3. Inverse Design of Photonic Structures: Deep Generative Models

In recent years, the deep learning (DL) has gained momentum in the design of pho-
tonics structures. Deep neural networks (DNNs) outperform established methods in
discovering new photonics structures from massive data to achieve optimal optical perfor-
mance. In this part, we review deep generative models (DGMs) for the inverse design of
photonics structures, providing some insights as to how these deep generative models can
solve the inverse design problems. We then provide a discussion on the current limitations
and future directions of using DGMs for the inverse design of photonics structures.

DGMs are the methods combined generative models with DNNs, and they have
achieved great success in only few years. The DGMs leverage the DNNs to learn a function
that is capable of approximating the model distribution to the true data distribution of
the training set so that new data points are generated with some variations. Generative
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Adversarial Nets (GANs) [53], variational autoencoders (VAEs) [60], and auto-regressive
models [61] are popular DGMs, with the former two most commonly used.

GANs have been applied to the inverse design of metasurface nanostructures [62]
and dielectric metasurfaces [63]. VAEs have been employed to the inverse design of
double-layered chiral metamaterials [64]. GANs and VAEs mainly differ in the way of
training generative models, but GANs produce better results as compared to VAEs. GANs
introduces a novel way to train generative models. They consist of a generator G and
a discriminator D, with G and D being trained in an adversarial manner. G generates a
structure pattern x = G(z) from a random noise vector z, and D classifies the pattern x
as synthesized (from G) or real (from training data). G attempts to fool D by producing
patterns that cannot be distinguished from the ones in the training data. D is discarded once
the networks are trained. Conditional GANs (cGANs) are the most widely used variation
of GANs, that are constructed by simply adding conditional vector along with the noise
vector. The inverse design of photonics structures requires that G outputs a structure pattern
with desired optical response rather than a pattern generated randomely from random
sample of noise z. cGANs are the way to do that. By conditioning G on target response
y so that G outputs a reconstruction x̂ = G(y). An ANN based metamodel was trained
to approximate the optical and chromatic response of a hybrid subwavelength grating
(HSWG) structure [65]. It can serve as a surrogate model for fast spectral performance
prediction in the cGANs for inverse design. Deep Convolutional GANs (DCGANs) are the
GANs employing Convolutional Neural Network (CNN) architecture. They are comprised
of many convolutional, deconvolutional and fully connected layers.

There are problems with GANs and one of them is stabilizing their training. The ac-
curacy of the generative model depends on both the number and quality of training data.
However GANs are indeed powerful, being used in a variety of tasks. Unifying GANs and
VAEs allows obtaining the best of both models. In the next few years, DGMs will be very
helpful for the inverse design of various photonics devices.

3. Photonics for AI: Using Photonics Computing to Implement AI Algorithms

In the previous sections, we investigated how AI algorithms, such as deep learning,
can be utilized in the design and optimization of photonics devices [33,66]. Here, we will
review some of the recent research work in photonics computing that demonstrates how
photonics systems are used to implement the AI algorithms. There is, thus, a strong synergy
between photonics and AI: AI can be used to accelerate the design process of photonics
devices, and photonics, in turn, can be used to implement the AI algorithms and to boost
the performance of the AI systems due to some of the inherent advantages of photonics,
such as lower latency compared with electronics.

Artificial intelligence—in particular, deep learning [67]—brought about a step-function
improvement in image classification in the early 2010s and has since made a much deeper
and broader influence on how businesses and organizations operate [68]. Studies project
that AI will massively impact the global economy in the 2020s as a result of increased
productivity in almost all industry sectors [69]. We can expect to see major investment from
both the public and private sector and a shift towards an “AI first” strategy [70], where AI
techniques will be adopted to improve outcomes beyond traditional techniques.

The success of deep learning has been attributed to the convergence of three important
factors: (1) advances in deep learning research, (2) access to large high quality datasets, and
(3) the advent of hardware deep learning accelerators. GPUs and ASICs (e.g., TPUs [71]),
which are special purpose hardware for machine learning applications, have been deployed
in data centers for nearly 5 years. Worryingly, a study in 2018 by OpenAI highlighted
the astonishing growth of compute resources used by AI, showing a 3.5 month doubling
time, which was faster than Moore’s law [72]. Moreover, Moore’s law scaling is expected
to end within the next decade due to fundamental limits to transistor scaling as well as
related bottlenecks in power dissipation and interconnect bandwidth [73]. The study called
into question the economic and environmental sustainability of the exponential growth
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of compute demand and underscored the need to consider non-conventional computing
architectures to continue to drive future innovations in AI.

At the same time, integrated silicon photonics has made significant advances over the
past decade. The performance of silicon photonics devices and systems continues to im-
prove, driven mainly by high bandwidth requirements from tele-communications and data
center interconnects applications [74,75]. Silicon photonics foundry fabrication processes
are also becoming more mature and reliable [76,77], such that the community is looking
to develop applications beyond data interconnects, for example LIDAR [78], quantum
computing [79] and in particular, machine learning and neuromorphic computing [80,81].

Using photonics for deep learning and neuromorphic computing has many potential
advantages over conventional electronics, namely, large bandwidth, low latency, and nearly
lossless interconnects [82]. Moreover, spatial and wavelength multiplexing enables high
speed high throughput information processing, e.g., the multiplication and summation of
signals, which is a critical operation in deep learning.

3.1. Current Developments in Photonics Computing

Most hardware machine learning accelerators currently in deployment are high-
throughput parallel processors, like GPUs and TPUs. Research into non von Neumann
architectures like neuromorphic computing, in which aspects of the design mimic prin-
ciples present in biological neural networks, is ongoing. Among these, the memristor
crossbar array stands out as a promising candidate [83]. Multiplication and summation
is implemented following Ohm’s law at each cross-point and Kirchhoff’s current law at
each column. However, engineering challenges remain as the variability and non-ideal
characteristic of memristive devices make large scale arrays difficult to realise. Nonetheless,
several impressive recent demonstrations indicate progress towards scalability [84,85].
On the other hand, several studies have projected that the fundamental limits of analog
optical computing are on equal footing or even slightly advantageous when compared to
memristors [86,87].

Early studies on optical computing and optical neural networks date back to the late
1980s [88,89], and the technology was touted to enable a new generation of faster com-
puters [90]. Inopportunely, the first optical neural networks were implemented with bulk
optical components, which are large, slow and unstable and, hence, were unfeasible to scale
to large and densely connected networks. Decades of major breakthroughs in integrated
electronics manufacturing has led to its dominance in computing today and a circumspect
view of the prospects of computing with optics [91]. However, the limits of continued
transistor scaling and recent developments in integrated silicon photonics has breathed new
life into the field of optical information processing. Advances in silicon photonics foundry
processes has enabled demonstrations of high-speed silicon photonics integrated circuits
with thousands of elements with reconfigurable functions [92,93]. Leveraging on the silicon
photonics technology platform, several research groups, start-ups and large companies
have begun work on optical neural networks over the latter part of the last decade. Table 2
shows a summary of proposed and demonstrated photonics neural network architectures
from recent published works. We give an overview of these different architectures in our
next section.
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Table 2. Summary of recently published work on photonics neural networks.

Architecture Description Reference

Photonic Accelerator
Accelerated machine learning inference by
speeding up expensive computations using

photonics e.g., convolutions

[94–98]

Coherent Feed-forward
Neural Network

Matrix multiplication by coherent
interference in multi-port interferometers

generally composed of mesh of
beam-splitters and phase-shifters

[99–102]

Continuous-Time RNN
Summation of weighted WDM signals

by photodetector which drives a
nonlinear dynamical node producing

output to next time step

[103,104]

Spiking Neural Network
with

Phase-change Materials

Summation of regular, WDM weighted,
pulses using nonvolatile multi-state phase
change material embedded in waveguide,

emulating spike timing dependent plasticity

[105,106]

Reservoir Computing
Linear combination of outputs from

a nonlinear dynamical system
consisting of nodes with randomly

weighted connections

[107–111]

3.2. Photonic Accelerator

Matrix multiplications are one of the most common operations in high performance
computing. In fact, current deep-learning models rely heavily on computing matrix mul-
tiplications, but conventional computers using the von Neumann architecture are not
optimized for such calculations. Data and instructions need to be moved over metal line
interconnects from the memory cache to the CPU (or matrix multiplication units) and back.
Moreover, metal lines have to be charged and discharged at energy cost of CV2 [82]. Thus,
conventional electronic computers suffer from high communication overheads and high
latencies. On the other hand, linear transformations, including matrix computations [112]
and Fourier transforms [113], can be performed with high speed and high throughput
using photonics—typically orders of magnitude better than electronics [86,87]. For example,
photonics devices typically have bandwidth of 20 GHz and the propagation delay through
a photonics chip is on order of 100 ps. In view of these advantages, there have been several
published works on using photonics as co-processors to accelerate expensive and time
consuming computations [94–98]. Indeed, several high profile startups are currently work-
ing on photonics chips as drop-in replacements for electronic deep learning accelerators
like TPUs [114–116]. The great interest from industry indicates the near term promise of
photonics accelerators. Ironically, the main bottlenecks for photonics accelerators are the pe-
riphery electronics. For example, the analog nature of the photonics computation requires
low power and high bandwidth digital–analog and analog–digital conversion circuits and
amplifier circuits for modulation and detection. Another challenge is that deep-learning
models have to be adapted to be able to accept the low precision and potentially noisy
analog computations [117–119]. Photonic accelerators are hybrid digital-analog systems,
which makes sense when working with digital data. However, if the incoming data is inher-
ently analog, for example in sensing applications, then all-optical neural network analog
information processing that bypasses D/A and A/D conversions could have advantages.

3.3. Coherent Feed-Forward Neural Network

Implementations of optical neural networks can be generally classified as coherent
or incoherent. Coherent circuits make use of constructive or destructive interference in
multi-port interferometers to implement linear transformations like matrix multiplications.
A very general interferometric device is a regular mesh of Mach–Zehnder interferom-
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eters (MZIs), which has been shown to be able to implement any unitary matrix [120].
Then, using singular value decomposition, real valued matrices that are used in most
neural networks can be implemented [99]. Additionally, there are proposals to use these
Mach–Zehnder interferometers to implement novel architectures, such as unitary neural
networks [121] and quantum neural networks [122]. A major challenge for such coherent
circuits is the sensitivity of the performance to fabrication imprecision and additional loss,
with several groups proposing more robust designs [100,101]. This requires O(N2) MZIs
to implement a N×N square matrix, which limits the maximum possible network size on
a chip. Furthermore, integrating all-optical nonlinear activations into the coherent circuit
remains an area of active research [96].

3.4. Continuous-Time Recurrent Neural Network

Incoherent circuits use non-interfering signal carriers (e.g., wavelengths, polarizations,
modes) to perform weighted summations. One prominent architecture uses wavelength di-
vision multiplexing to collect and distribute signals weighted by micro-ring resonators [103].
The collected wavelengths are summed by photodetectors measuring the total power.
The photodetector current then drives a modulator acting as a nonlinear node whose
output is fed back into the network [104]. This kind of feedback network implements a
continuous-time recurrent neural network. Implementing densely connected layer with
N number of input and output nodes requires N2 micro-ring resonators, which have to
be individually thermally controlled as they are highly sensitive to inevitable fabrication
imprecision. Additionally, N independent wavelength channels have to fit within one
free-spectral range, which have to be sufficiently spaced to inhibit inter-channel cross-talk.
These strict component requirements means that scaling up such an architecture faces
severe challenges.

3.5. Spiking Neural Network with Phase-Change Materials

Another architecture uses waveguides embedded with phase-change materials, which
can be switched between non-volatile multi-level transmission states by optical pulses [105].
The phase-change material thus stores the weight values of the neural network and also
acts as a nonlinear activation function. Additionally, researchers were able to demonstrate
a simplified spike-timing-dependent plasticity by overlapping pulses in time, to show
unsupervised learning [106]. Recent demonstrations use wavelength division multiplex-
ing micro-rings for signal collection, distribution and summation and hence face similar
challenges as above. Phase change materials like GST-PCMs have a limited number of
programmable states (3 bit) and hence are more desirable for low precision neural networks.
Engineering phase change materials with low-switching powers and fast response times
is on-going research. Furthermore, phase change materials, although technically “CMOS
compatible”, are not currently standard in the photonics foundry process. Existing propos-
als advocate for the integration of phase change materials into the photonics platform [123],
but it is unlikely to be a short term endeavor.

3.6. Reservoir Computing

Reservoir computing is a framework that is closely related to recurrent neural net-
works. The reservoir is a tunable nonlinear dynamical system with randomly intercon-
nected nodes that takes input data and projects it into a high dimensional feature space.
Predictions from the reservoir are a linear combination of the observed states of the reser-
voir obtained by linear regression. Recent demonstrations of photonics reservoirs include
a network of spiral waveguides [107] and several proposals exist that use networks of
micro-resonators [108,109]. Another proposed reservoir computer consists of a multi-
modal optical waveguide, with the large number of optical modes acting as reservoir nodes
and random coupling due to light scattering behaving as the random connectivity in the
network [104,105]. Several challenges exist for scaling up photonics reservoirs, for example,
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loss accumulation in the reservoir. There is also difficulty in observing the node states to
train the readout weights in an efficient manner.

3.7. On-Chip Fourier Transform and Convolutions Using Star Couplers

In convolution neural networks (CNN), the convolution layer uses far fewer learned
parameters than a fully connected layer, due to the shared weights architecture, while
showing equal or better performance in classification tasks. CNNs are a promising approach
for optical neural networks, as convolutions can be implemented with Fourier optics [113].
Additionally, the shared weights allow high performance while reducing the total required
components. The generic model of a CNN and the implementation of such network
photonics is illustrated in Figure 6.

Figure 6. Schematic of a convolution neural network (CNN) architecture and an equivalent implemen-
tation of a photonics CNN. A CNN consists of several layers that performs convolution, activation,
pooling and the final classification using the fully-connected layers. In the photonics implementation
of CNN, the convolution and pooling are performed in the Fourier domain (represented as ‘F’ in
the diagram) by using photonics devices, while the fully-connected layers are implemented using
photonics devices of Mach–Zehnder interferometer (represented as dark gray boxes) and photonics
devices of amplifiers/attenuators (represented as light gray boxes).

We recently proposed the use of a N × N star coupler [124,125], as shown in Figure 7,
which is a diffractive component, to perform the Fourier transform [113] and (by the convo-
lution theorem) the convolution operation, to be used in convolutional neural networks
(CNNs) [126]. To implement convolution, (1) a first star coupler will transform the input
data to the Fourier space, (2) phase and/or amplitude modulators will apply the kernel
filters, and (3) a second star coupler will transform the data back to configuration space.
Compared to a typical MZI implementation of the (unitary) Fourier transform, our sim-
ulations predict a footprint reduction by tens of times when using the star coupler. This
considerable reduction in footprint not only saves physical space on the chip but also
reduces accumulated propagation loss as light has to travel a shorter distance, making deep
neural networks feasible to be implemented using coherent photonics integrated circuits.
Details of our work can be found in [126].
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Figure 7. Schematic of the proposed photonics device of a N × M star coupler to be used for the
Fourier transform in the photonics CNN. This device consists of N input waveguides and M output
waveguides that are connected by a propagation region that are bounded along the circumference of
two confocal circles of radius R.

4. AI Beyond Photonics

Sections 2 and 3 introduce how AI methods can help in photonics simulation and
design, and how photonics, in turn, can help AI algorithms for acceleration. In addition
to photonics, AI techniques have been widely applied in many other photonics-related
fields, such as electromagnetics, quantum, etc. This section will briefly summarize the
recent AI algorithms that have been applied to Computational Electromagnetic (CEM),
RF components, Electromagnetic Compatibility (EMC) and Electromagnetic Interference
(EMI), and quantum-related topics.

4.1. AI for Computational Electromagnetic Solvers: Forward and Inverse

The three most popular computational electromagnetic methods for solving forward
electromagnetic problems are Finite-difference time-domain method (FDTD) [127], finite
element method (FEM) [128], and method of moment (MoM) [129]. No matter which
method is chosen, the differential and/or integral form of Maxwell’s equations, along with
the computational domain, will be discretized into linear matrice. With the EM modeling
becomes more complicated and larger, considerable computational resources and more
computational time are required. To improve the computational efficiency at the cost of
accuracy, AI techniques can be a good solution, especially when the forward EM problems
need repetitive simulations.

For frequency-domain forward EM solver, machine-learning based MoM was reported
to solve the static parasitic capacitance extraction and dynamic electromagnetics scattering
problems [130,131]. Barmada et al. used trained CNN to output the boundary conditions
(BCs) for the BC condition of a reduced finite-element method (FEM) model [132]. 1-D
to 3-D Electrostatic problems based on Poisson equation solved by CNN instead of using
FEM have been reported [133–136]. Additionally, Unet is a popularly used neural network
for image processing, such as image segmentation [137], colorization [16], etc. It is reported
that a 2D-Unet based Finite-difference Frequency-domain (FDFD) solver is employed
to evaluate scattered EM fields and achieved 2000 times efficiency gain compared with
conventional FDFD method [138] .

For time-domain forward EM solvers, a recurrent convolutional neural network
(RCNN), a neural network widely used in time series data, is used to replace FDTD
solver for solving scattering problems [139], as the time-marching scheme is suitable for
RNNs in nature. In [140,141], ML-based GPR forward solvers are used to simulate the
ground penetrating radar in real time, trained by data generated using FDTD solver with
tuning parameters including fractal dimension of water fraction, the height of the antenna,
etc. Absorbing boundary, such as Mur and PML (CPML,UPML) are essential for most CEM



Photonics 2022, 9, 75 16 of 26

methods. Without high-performance absorbing boundary, CEM methods are unable to
solve various EM problems with truncated computational domain. However, the addi-
tional boundaries usually lead to the increase of the computational domain with additional
artificial layers. Deep-learning-based methods are used to improve the efficiency of FDTD
methods with absorbing boundaries [142–144].

However, most forward EM solvers using AI cannot solve general EM problems due
to (1) most solvers are trained by limited data and the trained data are generated by limited
parameters; (2) the trained AI model are constrained for some specific application/problem;
(3) the accuracy is low compared with full-wave solvers, especially when the training data
is limited. On the other hand, many AI techniques for EM inverse scattering problems
(ISP) [145] are reported and show great improvement in both accuracy and efficiency [22].
Similar to the topics of inverse problems in image processing topics, AI methods are
suitable for various ISP by nature. Chen et al. summarize the state-of-the-art methods
of solving ISPs with deep learning methods in the review paper [22] and discuss how to
combine neural networks with knowledge of the underlying physics as well as traditional
non-learning techniques.

4.2. AI for Microwave Devices: Design, Optimization, and Applications

Microwave Devices, such as antenna, filters, and amplifiers are the most common RF
components used in wireless communication systems. With the development of advanced
semiconductor techniques, more and more compact microwave devices are demanded to
integrate with the other wireless communication devices. Thus, the microwave devices
are designed with more complicated structures, smaller sizes and optimal performances,
and the difficulty of simulation, optimization, and design has been dramatically increased
accordingly. To this end, many researchers leverage AI to assist on the optimization and
design of various microwave devices.

Optimization is usually the last phase of microwave device design, using AI tech-
niques, such as ANNs for various EM-based designs has drawn much attention since
2004 [146]. Combining the time-domain solver, such as FDTD and Transmission Line
Matrix (TLM) methods [147,148] with neural networks, the design of microwave devices
can be optimized more efficiently. In order to optimize the microwaves devices efficiently,
a fast-forward solver is usually required to avoid extensive simulations. To this end, AI
can be applied to learn from a collection of simulated data to replace a time-consuming
full-wave solver. In [149], ANN is adopted as the surrogate model to the time-consuming
electromagnetic model to speed up the homotopy filter optimization process. A dual
bandpass filter is designed using ANN to extract the filter transfer function [150]. In [151],
DNN with smooth rectified linear unit (ReLU) activation function is proposed to extract
the coupling matrix for multi-coupled cavity filter based on the desired S parameters.
The smooth ReLU function avoids the discontinuity of the derivative of the DL model with
the conventional ReLU function. In [152], DNN is used to obtain the S-parameters from
geometrical variables of filters and the operating frequency. Unlike the methods using
DNNs, Chen et al. extract the coupling matrix of fourth-order and sixth-order coupling
filters using a manifold Gaussian process (MGP) ML method based on differential evolution
(DE) algorithm [153]. Similarly, the forward simulation of slotted waveguide antenna [154],
patch antenna [155], and planar inverted F-antenna (PIFA) [156] are reported as alternatives
using DNNs at an acceptable cost of accuracy. In [157], a semi-supervised co-training
algorithm based on Gaussian process (GP) and support vector machine (SVM) by using a
few labeled samples to obtain a relatively high-precision surrogate model is proposed for
the optimal design of Yagi microstrip antenna (MSA) and GPS Beidou dual-mode MSA.

Deep reinforcement learning (DRL) methods, one of the significant parts of deep
learning method in recent years, have been applied in the automatical design of some
microwave devices. Ohira et al. propose a deep Q-learning network (DQN) based fine-
tuning method for bandpass filter design using two NNs by supervised learning. One of
the two NNs is the forward model, also named as environment, for calculating the coupling
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matrix from the filter structural parameters [158]. The other is the inverse model based
on DQN for tuning the filter by giving the optimal actions according to the reward for a
certain state from the environment, named as agent. The discontinuous action space of
the method is to change the structural parameters by increasing or decreasing 0.05 mm.
Similarly, in [159], a double deep Q-learning (DDQN) approach is proposed to fine tune
microwave cavity filters. DQN is one of the value-based methods in DRL. In addition to
value-based DRL, another class of the DRL method is the policy gradient method. Wang
et al. [160] present a framework based on deep deterministic policy gradient for tuning
cavity filters, where continuous action space is valid. The Experience Replay and the
Target Network of DQN is preserved to ensure the stability of the algorithm based on their
previous work [161]. Unlike tuning the limited filter parameters, such as width and length
of resonators, Liu et al. [12] developed a relational induction neural network (RINN) as
the agent of the DRL method. Microwave components, such as filters and antennas can
be designed with curved shapes and achieve the design goals, such as S-parameters and
antenna gain. The structure of the microwave devices is defined as a set of parameterized
mesh, and when each mesh changes, the simulation result is calculated by EM solvers, such
as ADS or Ansys EM.

In addition to microwave devices, such as filters and antennas, some other microwave
applications using AI have also been reported in power amplifier modeling [162,163],
nonlinear microwave device modeling [164–168], microwave reflectometer design [169],
beamforming design for 5G and MIMO system [170–174], and eddy current non-destructive
testing [175,176].

4.3. AI for Electromagnetic Compatibility (EMC) and Electromagnetic Interference
(EMI) Applications

The sky-rocketing increase in device complicity and operation frequency bring de-
mands for machine learning (ML)-based techniques with groundbreaking efficiency im-
provement. The complex electromagnetic behavior in signal integrity (SI), power integrity
(PI), and EMC make it difficult to categorized and describe the coupling nature with ma-
chine learning directly. Machine learning has been successfully facilitated in tackling EMC
problems in many aspects with superior performance [20].

Machine learning is utilized in the performance evaluation of large-scale integrated
circuits [177,178], and semiconductors [179]. Recently, a DNN-based macro modeling
approach for the “black-box” problem [180] is proposed with the partial element equivalent
circuit (PEEC) model [181]. ML also shows the capability in solving the optimization
problems in EMI and SI/PI analysis [9,10]. In [182,183], the electromagnetic interference
of PCB is analyzed by neural networks. The behavior of nonlinear circuit elements is
predicted with a radial basis function neural network in [184]. Echo state networks and
SVMs were proposed in [185,186] to model electromagnetic immunity of integrated circuits.
A knowledge-based CNN is applied to establish and classify the entities to organized
the EMC management [187]. In [188,189], the channel modeling and optimization are
carried with an ANN to extract the lump circuit element matrix. Random-fuzzy uncertainty
quantification is modeled with Bayesian optimization to propagate the uncertainty on
the performance of the system [190]. The source reconstruction is essential while chal-
lenging for interference prediction in EMC, emission, and immunity analysis, which are
formulated as regression problems governed by field integral equations. DNN, ANN, or
generic [10,191,192] based algorithms are proposed with superior accuracy or efficiency.

4.4. AI for Quantum Related Topics

The development of AI, especially its subfield of ML, has revolutionized many areas
in science and engineering. The research of AI and quantum photonics and beyond can be
categorized into three parts: (1) quantum machine learning [193], which utilizes dedicated
quantum computers as a new computing model to speed up machine learning; (2) uti-
lization of machine learning to solve quantum physics problems [34,194]; (3) application
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of machine learning in the development of quantum devices and quantum computers.
The review focuses on the third part. The methodology to utilize machine learning methods
in design and optimization of photonics devices [195] has been reviewed in the previ-
ous sections. The sub-section will further discuss the application of machine learning in
quantum control and quantum information processing.

Quantum systems are controlled by unitary operations engineered by a set of physical
operations on the quantum systems. Quantum control enables quantum devices to perform
the physical operations for information processing and quantum computation. To efficiently
manipulate the quantum devices and programmable quantum computers, a large set of
unitary operations has to be designed to control the devices to perform intended operations
or stay in intended quantum states. This is a non-trivial task as the superposition of
quantum state spans in a continues space with limited driving options in general. Haug
et al. demonstrates an approach to prepare a continuous set of quantum states using
deep reinforcement learning [196]. In order to achieve a robust control to qubits or gate
operations, designed control protocol has to consider potential noises coming from the
qubit environment or the control and readout processes. Wise et al. utilizes deep learning
to extract the noise spectrum associated with a qubit surrounded by an arbitrary bath
and mitigate the impact of qubit noise environment in the development of dynamical
decoupling protocols [197]. For given noise models, August and Ni trains a recurrent
neural network to optimize the sequences of dynamical decoupling to suppress errors in
quantum memory [198]. Kim et al. uses neural networks to infer the amount of probability
adjustment on the measurement and improve the accuracy of noisy intermediate-scale
quantum (NISQ) algorithms without relying on extensive error characterization [199].

With the development of cloud-based quantum computing hardware [200,201], varia-
tional quantum-based algorithms (VQAs) [202], such as variational quantum eigensolver
(VQE) have emerged as a promising candidate to achieve a practical quantum advantage
over classical algorithms [203,204]. However , it is too challenging to run advanced deep
neural networks over the existing quantum computing platforms due to the intractability
of deep quantum circuits. Chen et al. [205] showed a proof-of-principle demonstration of
variational quantum circuits to approximate the deep Q-value function of a DQN deep
reinforcement learning . Lockwood and Si [206] explored pure and hybrid quantum algo-
rithms for DQN and Double DQN, and found both hybrid and pure quantum variational
circuit can solve reinforcement learning tasks with a smaller parameter space. With the
development of quantum techniques, it is expected that more and more AI methods could
be used in super-fast quantum computers.

5. Conclusions

AI has become a heated focus in and beyond photonics research in the past few years.
As we have discussed in this review article, photonics benefits a great deal from AI for
efficient soft computing and inverse design. Meanwhile, AI, in turn, benefits from photonics
by carrying out AI algorithms, such as complicated deep neural networks using photonics
components that use photons rather than electrons. We introduced the applications of AI
on photonics modeling, simulation using soft computing, and inverse design based on
a GAN model. Beyond the photonics domain, the other related research areas or topics
governed by Maxwell’s equations share remarkable similarities in using the help of AI. The
studies in computational electromagnetics, the design of microwave devices, EMC/EMI,
and quantum computing greatly benefit from AI. We investigated the applications of AI for
the forward and inverse CEM methods, the modeling and simulation of RF components
(antennas, filters, etc.) and EMC/EMI problems using deep-learning models, inverse
RF component design based on deep reinforcement learning, and a brief introduction
on the recent AI techniques for quantum fields. We believe the relationship between AI
and physics will continue to flourish in a mutually advancing manner both in photonics
and beyond.
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