
sensors

Review

Path Planning for Autonomous Mobile Robots: A Review

José Ricardo Sánchez-Ibáñez * , Carlos J. Pérez-del-Pulgar and Alfonso García-Cerezo

����������
�������

Citation: Sánchez-Ibáñez, J.R.;

Pérez-del-Pulgar, C.J.;

García-Cerezo, A. Path Planning for

Autonomous Mobile Robots: A

Review. Sensors 2021, 21, 7898.

https://doi.org/10.3390/s21237898

Academic Editor: Saso Blazic

Received: 16 October 2021

Accepted: 23 November 2021

Published: 26 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Space Robotics Laboratory, Department of Systems Engineering and Automation, Universidad de Málaga,
C/Ortiz Ramos s/n, 29071 Málaga, Spain; carlosperez@uma.es (C.J.P.-d.-P.); ajgarcia@uma.es (A.G.-C.)
* Correspondence: ricardosan@uma.es; Tel.: +34-951952527

Abstract: Providing mobile robots with autonomous capabilities is advantageous. It allows one
to dispense with the intervention of human operators, which may prove beneficial in economic
and safety terms. Autonomy requires, in most cases, the use of path planners that enable the robot
to deliberate about how to move from its location at one moment to another. Looking for the
most appropriate path planning algorithm according to the requirements imposed by users can be
challenging, given the overwhelming number of approaches that exist in the literature. Moreover,
the past review works analyzed here cover only some of these approaches, missing important ones.
For this reason, our paper aims to serve as a starting point for a clear and comprehensive overview
of the research to date. It introduces a global classification of path planning algorithms, with a focus
on those approaches used along with autonomous ground vehicles, but is also extendable to other
robots moving on surfaces, such as autonomous boats. Moreover, the models used to represent the
environment, together with the robot mobility and dynamics, are also addressed from the perspective
of path planning. Each of the path planning categories presented in the classification is disclosed and
analyzed, and a discussion about their applicability is added at the end.

Keywords: guidance; autonomy; vehicle; survey; trajectory; route; graph search; sampling; wheeled

1. Introduction

Autonomous navigation is a valuable asset for mobile robots. It helps to mitigate their
dependency on human intervention. However, it also entails many tasks or problems to
solve, e.g., path planning. This task lies in finding the best course of action to make a robot
reach the desired state from its current one. For example, both states could be, respectively,
the goal and the initial position. This course of action comes in the form of a path, also
named a route in many other works. The path serves to guide the robot to the desired state
in question. However, there may be numerous possible paths, given the free space in which
the robot can move. Path planning algorithms generally try to obtain the best path or at
least an admissible approximation to it. The best path here refers to the optimal one, in the
sense that the resulting path comes from minimizing one or more objective optimization
functions. For instance, this path may be the one entailing the least amount of time. This is
critical in missions such as those of the search-and-rescue field [1]: victims of a disaster
may ask for help in life-or-death situations. Another optimization function to consider
could be the energy of the robot. In the case of planetary exploration, this is critical since
rovers have limited energetic resources available [2]. At the same time, the path generated
by the planner must follow any imposed restrictions. These may come from the limitations
in the adaptability of the robot to certain terrains. The locomotion of the robot and the
characteristics of the existing terrain limit the kind of manoeuvres that can be performed.
This consequently reduces the number of feasible paths that the path planner can generate.

In the literature there are a vast number of path planning approaches and this number
has continued to increase over the years. For this reason, selecting the most appropri-
ate approach given certain requirements (for instance, the aforementioned locomotion
restrictions) can be a challenging task. Moreover, as discussed below, the latest reviews
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and surveys on path planning do not offer a comprehensive overview of the majority of
existing path planning solutions. This is the main motivation for writing this review paper:
it describes in detail different path planning categories and, for each of them, introduces
relevant representative references found in the literature, focusing on those algorithms
aimed at robots that move on top of surfaces (ground, water, etc.). This paper is organized
as follows. Section 2 presents the method proposed in this paper to classify the existing
path planning algorithms. It also makes clear, following this method, the fact that previous
works have important omissions. Moreover, this section also provides an analysis of the
methods used to address the environment and locomotion information. The next sections
each deal with one of the categories of this classification: Reactive Computing (Section 3),
Soft Computing (Section 4), C-Space Search (Section 5) and Optimal Control (Section 6). Finally,
Section 7 summarizes the contents of this paper and presents a discussion about the path
planning algorithms contained in the aforementioned categories.

2. Path Planning Algorithms

Figure 1 depicts the four mentioned categories of path planning, splitting each of them
into two subcategories. This classification rests on the principles and fundamental mechanisms
used to construct and return a path. A more detailed insight into these categories and why this
classification is arranged in this way is provided in the next subsection. A second subsection
presents the different approaches taken in modelling the environment and the robot–terrain
interaction. We considered it necessary to add this as for many algorithms, especially those in
the C-Space Search category, it is necessary to construct these models beforehand.

Path 
Planning

Reactive 
Computing

Local 
Optimization

Reactive 
Manoeuvre

Soft 
Computing

Artificial 
Intelligence

Evolutionary 
Computation

C-Space 
Search

Sampling 
Based

Graph Search

Optimal 
Control

PDE Solving

Global 
Optimization

Figure 1. Schematic showing the proposed classification of existing path planning approaches. There
are four main categories, each of them containing two subcategories. Two adjacent subcategories from
different categories have features in common. The schematic also indicates how some subcategories
are more inclined towards either Global Planning or Local Planning.

2.1. General Classification

The proposed classification considers how path planning algorithms function. In many
past reviews, two kinds of distinction were made: according to whether the environment
is dynamic or not; Online and Offline path planners. respectively [3]; and the size of the
environment, whether Local or Global. Usually, Online is associated with Local and Offline
with Global. The main issue with this is that there are algorithms that can be considered in
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both categories. An algorithm with no replanning capabilities could be used online due
to its high computational speed. The contrary could also happen. For instance, a Reactive
Computing algorithm called the Dynamic Window Approach (DWA), is usually used for
local planning [4], but can also be used for global planning [5]. Vagale et al. [6] presents
an interesting division between algorithms that require a preliminary map representation
(Classic) [7] and those which do not (Advanced). Classic includes Graph Search methods,
whereas Advanced addresses Soft Computing and Sampling-Based algorithms. Souissi et al. [7]
proposes several clear and reasonable path planning classifications: according to the robot
model (holonomic, non-holonomic, kinodynamic); according to the map model requirement
(needed or not needed beforehand); according to the replanning capability (offline or
online); and according to whether the algorithm always calculates the same solution or not,
according to preliminary configuration parameters (deterministic or probabilistic).

The main purpose of the classification proposed in this paper, depicted in Figure 1, is
two-fold. First, this classification aims to encompass a larger variety of algorithms than
those that are tackled in past reviews. Many past reviews propose or claim to present a
general overview on path planning, but as can be seen in Table 1 the majority of them
suffer from important omissions. In this table, Yes means there is significant discussion
about the algorithms in question. Only Mentions means the publication acknowledges the
existence of at least one or more algorithms in that class. If there are one or two algorithms
between parentheses, this means those are only mentioned/referred to briefly. Second,
the nomenclature to refer to path planning categories is not clear in some cases. For instance,
some other reviews make a distinction between Classical and Heuristic approaches [8,9].
Patle et al. [10] refer to the latter as Reactive. However, the term Classical can be quite an
ambiguous term as the majority of planning algorithms used are based on methods with
one or more decades of life. This class is also used to encompass many algorithms with
completely different ways of functioning. The term Heuristic has not only been used to
refer to Evolutionary and Artificial Intelligence algorithms [8], but it has also been also used
to refer to Graph Search-based planners [4]. With this in mind, we propose the use of a
general classification using four classes (see Figure 1): Reactive Computing, Soft Computing,
C-Space Search, and Optimal Control. Moreover, Figure 1 shows how in general terms each
of these categories tend to be used mostly for either Local or Global planning. Moreover,
each of the subcategories can also have something in common in their functioning with
subcategories from other categories, such as the use of numerical methods, the existence of
parameters to tune the algorithm beforehand, the requirement of modelling the map with
a graph or the use of stochastic iterative processes.

Table 1. Main surveys and reviews of global path planning algorithms found in the literature.

Reactive Computing Soft Computing C-Space Search Optimal Control

Publication Reactive
Manoeuvre

Local
Optimization

Evolutionary
Computation

Artificial
Intelligence

Sampling
Based Graph Search PDE

Solving
Global

Optimization

Raja and Pugazhenthi [3]
(2012) Yes No Yes No No No No No

Nash and Koenig [11]
(2013) No No No No

Yes
(RRT and

PRM)

Yes
(Any-angle

and A*)
No No

Souissi et al. [7]
(2013)

Yes
(APF) No Only

mentions No Yes Yes No No

Elbanhawi and Simic [12]
(2014)

Only
mentions No Only

mentions
Only

mentions Yes Only
mentions No No

González et al. [13]
(2015) No Yes No No Yes Yes No Yes

(NLP)
Mac et al. [8]
(2016) Yes No Yes Yes Yes No No No

Noreen et al. [14]
(2016) No No Only

mentions No Yes Only
mentions No No

Injarapu and Gawre [15]
(2017) No No Yes

(GA) Yes No No No No
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Table 1. Cont.

Reactive Computing Soft Computing C-Space Search Optimal Control

Publication Reactive
Manoeuvre

Local
Optimization

Evolutionary
Computation

Artificial
Intelligence

Sampling
Based Graph Search PDE

Solving
Global

Optimization

Ravankar et al. [16]
(2018) No Yes No No No No No

Yes
(NLP)

Zhang et al. [4]
(2018) Yes No Yes

Yes
(ANN) No Yes No No

Zafar and Mohanta [9]
(2018)

Yes
(APF) No Yes

Yes
(ANN) Yes Yes No No

Costa and Silva [17]
(2019) No No

Yes
(GA) No

Yes
(RRT)

Yes
(A*) No No

Patle et al. [10]
(2019)

Yes
(APF) No Yes Yes

Only
mentions

(PRM)
No No No

Gómez et al. [18]
(2019) No No No No No No

Yes
(eikonal
solvers)

No

Campbell et al. [19]
(2020) Yes No Yes Yes No No No No

Zhang et al. [20]
(2020) Yes No Yes No Yes

Yes
(A* Variants)

Yes
(Fast

Marching)

Yes
(DP)

Sun et al. [21]
(2021)

Only
mentions

(APF, DWA)
No

Only
mentions Yes

Only
mentions
(RRT and

PRM)

Only
mentions No No

Vagale et al. [6]
(2021) Yes No Yes

Yes
(DRL)

Yes
(RRT and

PRM)
No No No

2.2. Path Planning Workspace Modeling

A path planner needs to be fed with information describing the environment. This
information can describe, for example, the presence of obstacles or the features of the
surface that are relevant to the planning. In addition, the criteria used to calculate the path
has to do with the way the robot interacts with this environment. For instance, merely
to minimize path length and perhaps acquire the information as to what areas can be
traversed or not is enough, whereas to minimize energy the terramechanics and the way
the robot steers should be taken into account.

2.2.1. Environment Modeling

Surface mobile robots drive from one position to another within a certain region in
space. Therefore, it is necessary to consider how the locomotion model will interact with
this surface and how the path planner will take care of it. For instance, some algorithms
require the construction of a graph that somehow represents the environment in which the
robot is moving. This is mostly the case for Graph Search algorithms, part of the C-Space
Search category. Evolutionary algorithms such as Ant Colony Optimizers (ACO) can also
make use of a graph. This asset can represent how the terrain features that affect the robot
navigation are spatially arranged in the scenario. In particular, the graph in question is
assumed here to be built upon metric maps, acknowledging the existence of other kinds
of maps outside of the scope of this paper, such as topological and semantic maps [22].
According to Souissi et al. [7] there are multiple ways to build a graph, as shown in Figure 2.
The work of Nash and Koenig [11] has also shed some light onto this classification. It
distinguishes between Cell Decomposition and Roadmaps. The first of these consists of
tessellating the surface into cells. These cells can be arranged using regular [3,4,7,11] or
irregular grids [7,11]. Figure 2a–c show how regular grids can be built using one out of
three types of polygons: squares, triangles and hexagons. Its main advantage is the simple
indexation of each node, which is translated into quick access to any of them and an
optimized way to store them in memory [23]. Irregular grids, such as the one depicted
in Figure 2d, allow the better adaptation the grid to terrain features with different values
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of resolution, at the expense of possibly obtaining worse paths [24]. Other forms of Cell
Decomposition are the Navigation meshes and Circle-based waypoint graphs, as explained by
Nash and Koenig [11]. The other form of representation of the environment is, as mentioned,
accomplished using roadmaps. A roadmap is a graph built upon nodes connected by edges.
Each node represents a possible state of the robot, whereas each edge indicates how to reach
that state from another. Examples of roadmaps include Voronoi graphs [25] (see Figure 2e),
Visibility graphs [26] and State-Lattice graphs (see Figure 2f). The latter consist of making
the edges based upon motion primitives, so the resulting path is ensured to be feasible
given the robot mobility constraints, especially when using Graph Search algorithms, as in
the work of Likhachev and Ferguson [27], Bergman et al. [28].

(a) (b) (c)

(d) (e) (f)

Figure 2. Different types of environment cell decomposition (a–d) and roadmap graphs (e–f). (a) Tessellations using squares.
(b) Tessellations using triangles. (c) Tessellations using hexagons. (d) Irregular grid. (e) Voronoi roadmap. (f) State
lattice graph.

The cells or the nodes from these graphs can store information regarding the surface
at their location, in the form of static or dynamic elements [10]. This can be, for instance,
elevation information. A Digital Elevation Map (DEM) is a grid of which the nodes have
associated with each of them a value of elevation. Elevation maps can be also represented
by polygons, but regular grid maps are preferred [29]. Shape-related features, such as the
slope or the surface roughness, can be extracted using convolution matrices [30]. The size
of the kernel and the DEM resolution will determine what kind of features are extracted.
Moreover, this resolution defines the level of detail of the elements contained in the map.
As shown in Figure 2d, this resolution can be non-uniform or multiple. The size of the grid
can be chosen according to the scale at which the planning is performed: Local in the case
of covering the immediate surroundings of the robot (more or less the reachable distance of
the on-board sensors) and Global if the area is bigger than that, usually using information
from external sources such as satellites or drones.

With regards to how the cost is defined over the planner workspace, there are different
ways. First of all, we understand cost as the metric that the robot accumulates by moving.
The objective of the path planner is to minimize this accumulation by producing the optimal
path. The cost in question can be uniform, in the sense that the regions that can be accessed
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by the robot always have the same value. This approach can be used for collision-avoidance
path planning, in which metrics such as the path length in a 2D plane are minimized. Non-
uniform cost maps can be used to assign different values of cost to different accessible
areas. It can be useful to, for example, define the energetic performance of the robot at each
location. Moreover, the cost can be also defined according to a direction vector. This means
that the robot will experience different values of cost depending on its heading. In this case,
the cost is categorized as anisotropic [31], whereas in the contrary case the cost is isotropic.
Furthermore, the steering manoeuvre of the robot can also have different values of cost
according to its locomotion. Finally, it is worth noting that the environment can be fully
known, partially known or even fully unknown, requiring for the latter two a planning
strategy that is capable of replanning when this knowledge is updated.

2.2.2. Robot–Surface Interaction Modeling

A ground mobile robot interacts with the surface beneath it to propel itself. To perform
this function, there are many different locomotion actuators, such as wheels, tracks, legs
and even omnidirectional wheels. Figure 3 depicts three real examples of ground mobile
robots using different configurations of actuators. These actuators, together with the
joints linking them to the robot body, determine the kinematic structure and the dynamic
behavior of the robot. In other words, they determine the locomotion configuration of
the robot. Zhang et al. [20] summarize some kinematic and dynamic models of different
well-known configurations: Differential drive [32] (see Koguma robot [33] in Figure 3a as
an example and the depiction of the model in Figure 4a), Ackermann steering [34] (see
Figure 4b,d), Skid steering [35] (see Figure 4c) and Omnidirectional [36]. Some of them entail
constraints relevant to path planning, such as the minimum turning radius of robots with
Front Ackermann steering [37] (see Figure 4b) or the high energy consumption of Skid-steering
robots in turning manoeuvres [38]. Moreover, another model exists, called Crabbing (see
Figure 4e). It allows a robot to drive in a direction different to the one it is facing, due to
having steering joints on top of all wheels [39]. Furthermore, some kinematic configurations
allow the robot to perform the Point Turn manoeuvre, which makes them rotate without
translating. It is worth mentioning the existence of articulated robots that are capable of
reconfiguring themselves to obtain some kind of benefit and perform multiple types of
locomotion (see SherpaTT in Figure 3c as an example of this). For instance, articulated
robots with tracks can actively control their stability while driving on rough terrains [40,41].
Others use a wheel-on-legs configuration to execute a locomotion mode called Wheel-
walking [42,43]. This mode is designed to overcome soft terrains in which a robot could get
stuck. In a similar way, Push-pull locomotion imitates the motion of a caterpillar to increase
traction in this kind of terrain [44–46]. Path planning algorithms acknowledging this
reconfiguration capability are a must-have for this kind of robot, as they can find paths that
take advantage of their high adaptability. In the case of global planning, Rohmer et al. [47]
used a Graph Search algorithm, Dijkstra, to first produce a path and later, via simulation
tools, evaluate which locomotion mode is better to drive each of its parts. We, the authors of
this review publication, proposed the use of a PDE Solving method to consider the multiple
locomotion modes at the time of planning using an isotropic cost function [48,49]. To the
authors’ knowledge there are not many existing Local Planning approaches addressing
the kinodynamic constraints of robots with multiple locomotion modes. Reid et al. [50]
proposed the use of a Sampling-Based algorithm, the Fast Marching Tree (FMT*) , to tackle
the motion planning of a reconfigurable hybrid robot with wheeled-legs.

The robot’s locomotion will adapt better or worse depending on the terrain features,
which were briefly mentioned before. These features may be related to either the mor-
phology (shape) or the composition of the terrain. One of them is the terrain inclination
or slope [51]. The slope has an influence on the Roll and Pitch orientation angles of the
robot, which is important to consider to preserve stability [41,52,53]. Moreover, it can also
influence the energetic performance of the robot according to its direction. This dependency
on direction is due to the effect of gravity, making the robot consume different amounts of
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energy according to whether it is climbing, descending, going laterally or going diagonally
through the slope [29,54–57]. Another relevant terrain feature is the roughness. This is
the measure of how diverse the normal vectors are [58,59] and may affect the vibration
experienced by the robot. Other terrain shapes can be negotiated by the robot, according to
its chassis. For instance, it can overcome rocks using the body clearance, which is the space
between the body lower surface and the terrain surface [60,61]. The presence of negative
obstacles such as holes or ditches can be problematic as they are difficult to capture by
the robot’s sensors [62]. With regards to the terrain composition, it has an influence on
the dynamics underlying the robot–surface interaction. This surface may be more rigid
or deformable [63]. This affects the way the robot adheres to the surface, even restricting
its motion [64]. The slippage is the metric that, in general terms, measures how the real
speed of the robot differs from the commanded one, usually by calculating a ratio between
them [65,66]. Some works consider both slippage and the slope of the terrain to make a
more accurate estimation of the robot while traversing rough terrains [67,68]. The magni-
tude of gravity can also affect the dynamics of the interaction between the robot and the
terrain [30,69]. Finally, path planners usually make use of cost functions that encompasses
multiple terrain features related to shape and composition. For instance, Ishigami et al. [2]
introduced the dynamic mobility index, encompassing stability, slippage, elapsed time and
energy consumption. Moreover, there may exist other elements not directly related to
the terrain that may still affect the performance of the robot while navigating. One of
them is the solar radiation [66,70], which can be modeled as a dynamic function [71].
Groves et al. [72] mapped other kinds of radiation that may harm the robot, as in scenarios
of nuclear dismantlement. Moreover, the concept of risk can be of high importance to
prevent the robot from getting into a dangerous situation [73], such as increasing the cost
with the proximity to obstacles [74].

(a) (b) (c)
Figure 3. Examples of ground mobile robots with different kinematic configurations. The Koguma rover (a) has Differential
Drive locomotion. Cuádriga (b) is a Skid-steering robot owned by our institution, the University of Málaga. SherpaTT (c) has
four steerable wheels that allow it to execute Full Ackermann, Crabbing and Point Turn maneuvers. (a,c) have been reproduced
with permission of the University of Tohoku and the German Research Center for Artificial Intelligence (DFKI), respectively.

(a) (b) (c)
Figure 4. Cont.
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(d) (e) (f)
Figure 4. Locomotion models used for wheeled ground mobile robots along with path planners: Differential drive (a), Front
Ackermann (b), Skid-steering (c), Full Ackermann (d), Crabbing (e) and Point Turn (f).

3. Reactive-Computing-Based Path Planning Algorithms

This category encompasses path planning algorithms where the environment, usually a
map distinguishing between obstacle and non-obstacle regions, only indicates the location
and shape of the existing obstacles. Reactive Computing algorithms are usually employed as
local path planners (covering the surroundings of the robot and with dynamic replanning)
due to their capability to quickly handle new information (e.g., in the form of newly discov-
ered obstacles), which often comes from the limited onboard sensors. As local planners, these
algorithms usually plan the next immediate path or manoeuvre to avoid nearby obstacles
while following a global plan made by another algorithm. However these algorithms may
calculate local minima paths, or even cause the robot to get stuck, so special care must be
taken. There are two subcategories of Reactive Computing algorithms: Reactive Manoeuvre
methods, where the presence of obstacles determines the immediate next manoeuvre of the
robot, and Local Optimization methods, where an existing path is modified according to the
presence of obstacles.

3.1. Reactive Manoeuvre

The algorithms presented here rely on defining how the robot reacts at each instant
to the presence of obstacles. This reaction can be defined according to a formulation that
addresses the location of existing obstacles. A common feature of the different formula-
tion approaches is the low computational requirements needed to produce the reaction,
usually in the form of a steering or velocity command. Since this formulation lacks global
information, these techniques are commonly used as Local Planners. The formulation in
question may be based on the use of fields to tackle the location of obstacles, the detection
of obstacle boundaries to circumvent them, or the production of a velocity command after
evaluating the available free space or the speed of moving obstacles.

The use of field methods include the Artificial Potential Fields (APF) and the Vector
Field Histogram (VFH) algorithms. In APF, the motion of a robot can result from the
sum of virtual forces that external elements such as obstacles create. In this way, the robot
gets further from these obstacles and avoids colliding with them, as the forces from them
are repulsive [75]. An attractive force created by the target position makes the robot
go towards it. This can be seen in the picture displayed in Figure 5a. Ge and Cui [76]
presented an application of APF in environments containing dynamic obstacles. However,
the main drawback of this strategy is that it is prone to causing the robot to get stuck in
local minimum points. For this reason, further research works were oriented to overcome
this issue. This was the main target of the work by Vadakkepat et al. [77]. They combined
APF with genetic methods (Evolutionary algorithms) to overcome this situation. This
combination was also used to plan the motion of a simulated 6-wheel rover [78]. Another
hybrid version includes the use of PSO algorithms [79]. Triharminto et al. [80] proposed
a non-hybrid solution, consisting of adding a repulsive potential field around the rover.
However, it has not yet been tested with U-shaped obstacles. Other works solve this
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issue by creating custom escape paths whenever it is detected that the robot is on a
local minimum point [81]. Furthermore, Bayat et al. [82] present a solution inspired by
electrostatic potential fields in which, instead of using a sum of virtual forces, a so-called
scalar potential field guides the robot. VFH, proposed by Borenstein et al. [83], creates a
polar histogram to evaluate the density of obstacles around the robot, selecting the steering
angle with the lowest density of obstacles. Some improvements to VFH were introduced
years later [84,85].

GOAL

(a)

Robot
Velocity

GOAL

(b)

Figure 5. Graphical representations of concepts used in Artificial Potential Field (a) and Velocity Obstacle (b) algorithms.
(a) Potential fields acting on a robot. (b) Collision cone considering a moving obstacle.

The Bug algorithms, Bug1 and Bug2, make the robot circumvent any obstacle found on
its way until it reaches the goal [86]. The main difference between them is that Bug1 makes
the robot drive the full boundary of any obstacle (see Figure 6a), whereas Bug2 can drive it
only partially [19]. They despise optimality in favour of easiness in the implementation and
very minimal computation. They can be used on robots equipped only with sensors that just
detect obstacles in their immediate vicinity. In this way, these robots either drive towards the
goal or drive along the boundaries of obstacles they find. The works of Buniyamin et al. [87]
and Campbell et al. [19] refer to some variants that improve this kind of algorithm, in general
reducing the distance the robot drives. Xu et al. [88] uses the Bug algorithm considering
turning radius constraints, producing paths with smooth turns.

GOAL

(a)

GOAL

(b)

Figure 6. Graphical representations of concepts used in the Bug algorithm (a) and Elastic Bands (b) algorithm with Bubble
bounds. (a) Path after using the Bug1 algorithm. (b) Path after experiencing stretching.

The following approaches are focused on producing a velocity command for the
robot. Velocity Obstacles methods calculate a safe trajectory considering the velocity
vectors of both the robotic agent and any other moving obstacle [89,90]. This calculation
evaluates a cone of collision such as the one shown in Figure 5b. Chen et al. [91] used
Velocity Obstacles in an hybrid fashion with another algorithms called Fast Marching
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Square (FMS). Wilkie et al. [92] considered the Front-ackermann (see Figure 4b) locomotion
model for cars. Chakravarthy and Ghose [93] proposed using a Collision-cone algorithm,
similar to Velocity Obstacles but considering obstacles with arbitrary shapes. Qu et al. [94]
introduced its use along with car models (with Front-ackermann configurations, as seen in
Figure 4b). Finally, the Dynamic Window Approach (DWA) is an algorithm that searches
in the velocity space for a velocity command to follow a collision-free circular trajectory,
delimited by admissible speed values and a time window [95]. This solution may not
be the globally optimal one, but rather a locally optimal one [4]. DWA can be used even
for robots navigating at high speeds [96]. Feng et al. [97] propose an improved version
that reduces its complexity by reducing the velocity space to search. Other approaches
use this algorithm for energy-minimization path planning [98,99]. Although commonly
used as a local planner, Zhang et al. [5] have proposed its use at a global scale as a global
path planner.

3.2. Local Optimization

These algorithms usually start from a pre-existing path and modify it according to
the existing obstacles. Here it is prioritized to keep computational use to the minimum
at the expense of losing optimality or even completeness. There are different options to
modify the path, ranging from the selection of velocity profiles within a velocity space to
the stretching and elongation of the path under the effect of artificial forces.

The use of Elastic Bands in path planning was proposed by Quinlan and Khatib [100].
This method deforms an existing collision-free path according to the obstacles, stretching
(see Figure 6b) or elongating it. From a set of points in this path, a set of overlapping
subregions, called Bubbles, is created. These Bubbles cover collision-free areas and their
size is bounded by the distance to obstacles. This entails that smaller and more numerous
Bubbles are present in the portions of the path closer to obstacles. It can be used in dynamic
environments, although large changes may lead to the failure of the method [100]. Moreover,
it has also been adapted to non-holonomic vehicles by complying with curvature constraints
Khatib et al. [101] and using Bezier curves [102]. An extension to Elastic Bands includes time
constraints and is named Timed Elastic Bands (TEB). This extended version addresses the
kinodynamic constraints of the robot [103].

4. Soft-Computing-Based Path Planning Algorithms

This kind of algorithm does not intend to find the exact optimal solution, but rather
to approximate it, tolerating a certain range of imprecision. In general, these algorithms
require the tuning of certain parameters by the user in order to work properly according
to the characteristics of the environment. They can deal even with dynamic environments
and are adequate for problems involving a large number of variables and high degrees of
freedom [8]. However, in general they demand a high number of computational resources.
This review follows the classification proposed by Mirjalili and Dong [104], which distin-
guishes between Evolutionary, Fuzzy control and Machine learning methods. The first one uses
techniques inspired by biology and nature: they start with a system formed by individuals
that changes over time, i.e., evolves. Fuzzy control and Machine learning methods are here
part of a subcategory named Artificial Intelligence. They use fuzzy rules and neural networks,
respectively, to produce controllers. These controllers are very useful for navigating through
initially unknown scenarios and in general produce paths according to the obstacles the
robot detects on its way. To sum up, Soft Computing algorithms allow the tuning of a series
of repetitive elements, either nature-based individuals, fuzzy rules or artificial neurons,
to generate a path.

4.1. Evolutionary Computation

Evolutionary algorithms are also known as Meta-heuristic or Nature-inspired [105].
These algorithms generate a path that results from the evolution of a population. This
population is made up of intelligent individuals whose actions are modelled after behaviors
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found in nature [104]. These actions may involve modifying themselves and/or interacting
with other individuals. In some cases, these operations imply a motion by the individuals in
the free space of the environment, i.e., in the space reachable by the robot. After performing
a series of these operations, the algorithms approximate the optimal solution. The resulting
path and the time invested to converge depend on the behavior policy assigned to the
individuals, the nature of the scenario and the values assigned by the user to certain
configurable parameters. An example of the latter is the number of individuals that
populate the path planning problem. Evolutionary algorithms include Genetic methods and
Swarm Optimizers. The first method uses chromosome models, whereas the second one
models the behavior of living beings.

As just mentioned, Genetic algorithms work with individuals modeled after chromo-
somes [106]. These individuals contain genes, as chromosomes do, in the form of binary
numbers. These numbers encode a solution, which is the set of waypoints forming a path
in the particular case of solving the path planning problem. In other words, each chro-
mosome in the population represents a path. Figure 7a depicts an example using a grid.
This grid is made up of cells, each of them labeled with a number. The genetic algorithm
starts with a random set of chromosomes. This set evolves using three processes: Reproduc-
tion, Crossover and Mutation [107]. Reproduction creates new chromosomes by copying the
best ones. It also removes the worst ones. Crossover is the process in which chromosomes
interchange their genes. Mutation introduces random changes in the genes to incentive
the exploring of the search space and to avoid local minima. As a result of continuously
repeating these processes, the algorithm converges. Zhang et al. [4] mention Genetic algo-
rithms that converge more slowly as they get closer to the optimal solution. Han et al. [108]
used Genetic algorithms to find the shortest paths in environments with dynamic obstacles.
Tuncer and Yildirim [109] presented a modification to the Mutation process. This consists of
checking free nodes around the position that is about to be mutated. This work compares
the results with previous variants of the method. Another research work used genetic algo-
rithms, along with large grids up to 2000 × 2000 nodes [110]. Genetic algorithms for path
planning were also tested on an experimental platform [111]. More improvements include
the initial selection of waypoints, considering those located near obstacles [112]. Elhoseny
et al. [113] introduced a more regulatory policy on exploration during Mutation, taking into
account how diverse the chromosomes are. Furthermore, this work not only optimized path
length but also preserved smoothness using Bézier curves. Finally, the Crossover process is
also improved upon in the work of Lamini et al. [114] to make the solution converge faster
and also to reduce the number of turns made by the robot. There are many path planning
applications based on Genetic methods presented in the review of Patle et al. [10].
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Figure 7. Examples of Evolutionary algorithms: Genetic (a) and Swarm Optimizer ACO (b). (a) Functioning of the genetic
algorithms used to perform path planning. The path in this figure has the form of a chromosome with genes 21–08–03–06.
(b) Functioning of the ACO algorithm. Simulated ants deposit more pheromones in the shortest path. Eventually the
majority will follow this path.



Sensors 2021, 21, 7898 12 of 29

Unlike the algorithms based on Genetic methods, Swarm Optimizers use agents that
move and actuate in the free space. These individuals are modeled after animals in most
cases. After a series of iterations, the motion of these individuals towards the goal creates
a pattern that eventually converges to the resulting path. Table 2 introduces some of the
models used that can be found in the literature. The Particle Swarm Optimization (PSO)
algorithm stands out because of its simplicity. It is inspired by the behavior of certain
groups of animals such as fish schools [115]. It creates a series of particles that relocate
themselves over time until the algorithm converges. These algorithms search for the best
positions and communicate with each other, considering their previous experience [116].
Mac et al. [117] propose a path planner that combines PSO with the Dijkstra algorithm
(a Graph Search planner that is discussed below). Another well-known algorithm is the
Ant Colony Optimizer (ACO) which, as the name indicates, simulates the behavior of
ants. These insects move while leaving a trail of pheromones in their search for food. This
trail can be tracked by the rest of the ants. Those places that contain more pheromones
make up the waypoints of the best-found path. Figure 7b depicts this concept in a situation
with an obstacle between the start and goal positions. Here, the best path is the shortest
one. Following the same strategy, virtual ants can move on a grid, leaving more or fewer
pheromones according to their state concerning the goal [118,119]. To avoid falling into
a local minimum, some works combine this method with heuristic functions [120,121].
Che et al. [122] also solve this by adopting a rule used in the Grey Wolves approach.
Luo et al. [123] present some improvements for ACO to not only avoid deadlocks but also
to reduce the time it needs to converge. This algorithm has also been simulated with DEMs
to minimize time [124] and energy [125]. The latter has also been achievedwhile avoiding
dynamic obstacles, which is also addressed by the work of Sangeetha et al. [126]. This work
combines ACO with fuzzy control. There are plenty more nature-inspired approaches.
To avoid extending too much, some of them are indicated in Table 2. Moreover, there are
also cases in which two models are combined. This is the case of the approach presented
by Saraswathi et al. [127], where a hybrid between Cuckoo and Bat algorithms is tested.

Table 2. Intelligent models used for some swarm algorithms, together with some of the models.

Individuals Behaviors

Particles [115–117,128] Best position memory, variable velocity
Fireflies [129] Brightness atraction
Dragonflies [130] Hunting and migration
Grasshoppers [131,132] Attraction and repulsion
Wolves [133,134] Hierarchy system, hunting for prey
Whales [135,136] Spiral bubble-nets
Cuckoos [137] Lévy flights, brood parasitism
Bats [138] Echolocation
Bacteria [139] Foraging

4.2. Artificial Intelligence

Soft Computing algorithms may use other sets of configurable operators such as fuzzy
rules or neural networks. Seraji and Howard [140] demonstrate the use of fuzzy logic on
an experimental mobile platform to navigate through unstructured terrain. Zavlangas
and Tzafestas [141] provided a fuzzy-logic-based system designed to make a mobile robot
autonomously navigate through a dynamic environment, avoiding obstacles on its way.
The work of Wang et al. [142] focuses on preventing the robot from getting stuck in local
minimum points, such as those produced by U-shaped obstacles. Pandey et al. [143] also
provides the results of simulation tests of fuzzy logic for obstacle avoidance. With regards
to the use of neural networks, Yan and Li [144] also use fuzzy logic on a platform focusing
on minimizing computational resources and traversing environments containing dynamic
obstacles. Pandey and Parhi [145] combines fuzzy logic and a population-based algorithm
named Wind Driven Optimization that tunes the fuzzy rules. With regards to the use



Sensors 2021, 21, 7898 13 of 29

of neural networks, Zou et al. [146] presented a brief survey on this kind of algorithm
for applications at the beginning of the 2000s. Engedy and Horváth [147] presented a
path planner using neural networks for mobile robots that must avoid static and dynamic
obstacles. Zhang et al. [148] used this kind of technique to find the shortest path in maze
scenarios. This approach has also been used together with genetic algorithms [149,150].

Other works in the literature combine fuzzy logic and neural networks [151–154].
There have been different approaches to this. For instance, Mohanty and Parhi [155]
use many of these systems for autonomous navigation. Further insights and a more
extensive surveys on related hybrid methods are provided in Mac et al. [8]. Furthermore,
the use of Reinforcement Learning (RL) has also been studied to control the motion of a
robot [156,157]. Faust et al. [158] combined RL with the Probabilistic Roadmap Method
(PRM), which is one of the algorithms detailed next. For more information about planning
algorithms based on RL, refer to the work of Sun et al. [21].

5. C-Space-Search-Based Path Planning Algorithms

Algorithms in this category consider the working space of the path planner as the
space of all states or configurations reachable by the robot. For this reason, most of the
works in this category refer to this working space as the C-Space. The main idea behind
these algorithms is to use a discrete set of samples that are part of this C-Space. In other
words, the C-Space is discretized. This set of samples includes the initial and the goal states,
or at least samples relatively close to them. In this way, these algorithms execute a search
operation, visiting samples from this set. At a certain point, the algorithm will find and
return a certain subset of samples connecting the initial and goal states representing the
resulting path. In other words, the waypoints forming the paths correspond, each of them,
to a sample from the C-Space. This implies that the generated path heavily depends on
how these samples are scattered, how they are connected and how are they visited. In fact,
due to this dependency, in some approaches post-processing is done to smooth the shape
of the resulting path.

The C-Space Search category is subdivided into two groups of algorithms according to
how they discretize the C-Space. Graph Search algorithms do this using a pre-existing graph
(such as one of those depicted in Figure 2). Each of the nodes from this graph represents a
C-Space sample and is connected to other nearby nodes, i.e., its neighbors. With regards
to Sampling-Based algorithms, they focus on the creation and/or modification of samples
within the C-Space in an iterative way. They can keep working, even after finding a feasible
path, to find better ones.

5.1. Graph Search

As mentioned, the C-Space can be discretized in the form of a graph. Graph Search
algorithms fully or partially visit this graph until they find a path connecting the initial and
goal states. The first algorithms made in this category return paths of which the waypoints are
placed on top of neighboring samples. In other words, the connections between consecutive
waypoints of the path are coincident with the graph edges. Figure 8a depicts a schematic
showing how in the first case the shape of the path is determined by these edges. This
review, therefore, categorizes the Graph Search algorithms generating this kind of path as
Edge-restricted. These paths consequently depend on how the graph is structured. As seen
in Section 2.2.1 there are various graph structures in the form of Cell Decomposition and
Roadmaps. Another kind of Graph Search algorithm, Any-angle, were created to solve this issue
with the restriction to the graph edges. The reason this name is used is that paths produced
by Edge-restricted planners only use certain values of orientation. For example, in an eight-
neighborhood regular grid, as in the case shown in Figure 8a, Edge-restricted paths can only
have orientations with 0, ±45, ±90, ±135 and 180 degrees. Any-angle algorithms produce
paths that are not restricted to these orientations as their waypoints do not necessarily have
to be placed in neighboring nodes. Figure 8b depicts an example of this.
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Figure 8. Main difference between the paths (in red) produced by Edge-restricted (a) and Any-angle algorithms (b): in the
first case, waypoints can be placed only on consecutive (neighboring) nodes.

With regards to Edge-restricted algorithms, Figure 9 shows a schematic with the most
representative versions of them that can be found in the literature. The most known and
basic Edge-restricted path planner is the Dijkstra algorithm [159]. As an initial step, this
algorithm takes one node, either the start or the goal. Thereafter, it proceeds to propagate
information to its neighbors. It could be either the value of the cost required to arrive
from the start or the one that remains to arrive at the goal. Iteratively, the algorithms visit
the neighbors of already-visited nodes. The information about the amount of cost keeps
propagating, and the algorithms assign to each visited node a parent node. If the envi-
ronment allows it, i.e., no obstacles are isolating either the goal or the start, the algorithm
ends up visiting both of them. At this point, the path is retrieved by backtracking the
parent nodes. In other words, the path starts from the last visited node and goes back
through the parent nodes. Years later, Hart et al. [160] implemented a heuristic version, A*,
to speed up computation. Later on, further improvements were introduced. D*, also named
Dynamic A*, was introduced by [161] as an incremental version of A*. The fact that it is
incremental means that this algorithm recycles previous computations whenever there are
changes in the cost assigned to the grid nodes. This prevents the algorithm from executing
a whole new computation from scratch. This reduction in the computation allows for rapid
replanning in cases where the robot encounters novel obstacles on its way, for example.
An improved version called Focussed D* managed to further reduce the computation time
of D* [162]. Koenig and Likhachev [163] propose the use of Lifelong Planning A* (LPA*) as
another direct incremental extension of A*. This was taken into account as a reference to
produce a much simpler version of D* called D*-Lite [164,165]. Colas et al. [166] employed
this algorithm on mobile robots in search-and-rescue applications. Since A* and D* algo-
rithms, including their versions, make use of heuristic functions, the resulting paths can be
sub-optimal. Likhachev et al. [167] propose anytime versions of these algorithms, which
use a configurable fixed time. The best path found, at a given time, is generated by these
anytime versions. Dolgov et al. [168] propose a version of A*, Hybrid A*, that prioritizes the
feasibility of the resulting paths in exchange for the loss of optimality and completeness by
rearranging the nodes after a path is found; in a way, the path is kinematically feasible.

With regards to the Any-angle algorithms, one of the first ones was Field-D* [169]. This
is a well-known algorithm mainly due to its use on Mars NASA rovers since Spirit and Op-
portunity [170]. Similarly to D* and D*-lite, it is an incremental algorithm, so it recycles pre-
vious computations in subsequent executions. Although Field-D* arose as an outstanding
method to overcome the problem of paths restricted to edges, there was still a margin to im-
prove the results and find even more optimal paths. Years later, more Any-angle algorithms
were created having A* as a basis, focused on the problem of finding the shortest paths
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while avoiding obstacles. Nash et al. [171] created Theta* for this purpose. They presented
it in two versions: one computationally cheaper, Base-Theta*, and another more expensive
but with results closer to the globally optimal shortest path, named Angle-Propagation
Theta*. The main premise behind Theta* was the consideration of heading changes on
obstacle corners, reducing these changes along the path in contrast with Field-D* [172].
An incremental version of the Base-Theta* algorithm was later introduced with the name of
Incremental Phi* [173]. A faster version of Theta*, Lazy-Theta*, was introduced by Nash
et al. [174]. Theta* was also improved to work better on non-uniform cost maps, where the
cost increases the closer it gets to obstacles [175]. The Accelerated A* algorithm was intro-
duced by Šišlák et al. [176]. It finds shorter paths than Theta* but at a slower rate (although
still faster than A*). Yap et al. [177] also introduced another algorithm named Block A*
and compared its performance with A* and Theta*. Another comparative study including
Accelerated A*, Block A*, Field-D* and Theta* was provided by Nash and Koenig [11], also
including variants of the latter algorithm. The same authors later compared this algorithm
with the use of visibility graphs [178]. Muñoz and R-Moreno [179] proposed the use of
S-Theta* to produce paths that smooth the heading changes. 3DANA is used to produce
paths on elevation maps [180,181]. Other algorithms that have shown improved results
compared to Theta* and many other Any-angle algorithms include Any-angle Subgoal
Graphs [182,183] and Anya [184,185].

Field-D*Theta*

Accelerated A*

Lazy Theta*

S-Theta*

Incremental Phi*

Dynamic A* (D*) Focussed D*

D* Lite
A*

Lifelong Planning A* (LPA*)

INCREMENTAL ALGORITHMS

Block A*

Subgoal Graphs

ANYA

3DANA

ANY-ANGLE ALGORITHMS

Dijkstra

EDGE-RESTRICTED ALGORITHMS

Anytime D*

Figure 9. Overview of many different approaches to Graph Search path planning. The arrows indicate
how most of them rest on older approaches yet introduce significant improvements.

5.2. Sampling-Based

Sampling-Based path planning algorithms create samples of the C-Space one after
another, following different policies [12,186]. Later on, they retrieve the path from the
created samples after meeting a certain condition or set of conditions, such as reaching a
time limit. This kind of algorithm is asymptotically optimal. It means they can create more
and more samples, attempting to find a better solution as time goes on. In general, these
algorithms are usually used for searches in high-dimensional spaces. However, the number
of samples may be relatively large in order to get close to the global optimal solution [14],
demanding the use of large memory resources to store all the samples.

If only two points are considered (the starting position or state and goal), the algorithm
is a single-query algorithm, whereas if more points are selected for the same environment
then the algorithm is categorized as multiple-query. With regards to the single-query, one of
the most famous is the Rapidly Random Tree (RRT) algorithm, which is also a special case of
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the Rapidly Deterministic Tree (RDT) [187]. This algorithm emulates a tree growing in the
sense that from a starting point the samples are dynamically created as if they were branches.
Figure 10a depicts an scheme summarizing this process. When one of the samples is closer
to the goal than a certain distance, then the path can be retrieved by tracking backwards
until reaching the origin point. As mentioned, more iterations can still be executed to find
better paths. Further modifications of RRT can be found in the literature. A bi-directional
version was introduced by Kuffner and LaValle [188] with the name of RRT-Connect. Later
on, Yershova et al. [189] presented an improved version of RRT called Dynamic Domain
RRT, which was aware of the obstacles existing in the environment during the expansion
of the tree. Arslan and Tsiotras [190] took ideas from the Graph Search algorithm LPA to
make RRT#, an improved version of RRT with a faster convergence rate. Karaman and
Frazzoli [186] introduced a heuristic version of RRT named Heuristic RRT (RRT*) to speed
up computation while still being asymptotically optimal. For an extensive review of RRT*
variants, refer to the work of Noreen et al. [14]. An improved version called Informed RRT*
improved upon the performance of RRT* by delimiting an ellipse enclosing the start and
goal positions when a feasible path is found [191]. The next iterations to improve this path
are done within this ellipse, instead of making the algorithm explore other options that
probably will not influence the result. Gammell et al. [192] presented another improvement
to this, called Batch Informed Trees (BIT*), together with a comparison demonstrating
its better performance than RRT*, Informed RRT* and FMT*. BIT* also takes some steps
from the Graph Search algorithm LPA*. Regionally Accelerated Batch Informed Trees (AIT*)
improved upon BIT*, especially for cases where narrow corridors exist [193]. The Adaptively
Informed Trees (AIT*) and Advanced Batch Informed Trees (ABIT*) algorithms improved
upon the BIT* algorithm and were integrated into an experimental NASA rover [194,195].

GOAL
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(b)
Figure 10. Example cases of single-query (a) and multiple-query (b) Sampling-Based algorithms. Samples are created in an
iterative way until the destination is reached.

With regards to multiple-query Sampling-Based algorithms, the most famous is the
Probabilistic Roadmap Method (PRM) [196]. This algorithm starts with a series of samples
that are already scattered over the C-Space. From here, new samples are created, creating a
new tree from each of these initial samples. Figure 10b illustrates the concept behind this
process. Thereafter, a Graph Search method such as A* is used to retrieve the path using the
graph created by PRM. Karaman and Frazzoli [186] introduced a heuristic version of PRM.
The improvement proposed by Park et al. [197] uses a hierarchical structure that reduces
the number of samples. PRM has been tested in robots within simulated indoor scenarios
in the work of Alenezi et al. [1]. Ichter et al. [198] presented Critical PRM, an algorithm
that combines PRM with Reinforcement Learning to determine critical locations such as
narrow corridors.
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Another Sampling-Based algorithm, named the Fast Marching Tree (FMT*) algorithm,
was created to reduce the convergence rate of both RRT and PRM. It takes features from
not only the two of them but also an Optimal Control algorithm called FMM, which is
detailed below. The main objective of FMT* is to find paths, avoiding obstacles, in problems
involving a high number of degrees of freedom. One example of this is the motion planning
of an articulated vehicle presented by Reid et al. [50]. Ichter et al. [199] propose the use of
Group Marching Tree (GMT*), a similar algorithm to FMT* but which focuses on speeding
up computation via parallelization using GPUs. Finally, it is worth mentioning there
are path planning algorithms that combine the Dynamic Sampling approach with Model
Predictive Control (MPC) techniques to account for kinodynamic constraints [57,200,201].

6. Optimal-Control-Based Path Planning Algorithms

The baseline of Control Approach based algorithms is the creation of a control function
that takes the robot from an initial state in the C-Space to the destination. As the name sug-
gests, here the path planning problem is addressed using an optimal control approach [202].
The main difference with Soft Computation methods is that there are no configurable param-
eters; the problem here must be fully enclosed. Here, there are two different subcategories.
In the first of them, PDE Solving, algorithms solve a Partial Derivative Equation (PDE) on a
grid, based on the Dynamic Programming Principle (DPP) [203]. The second subcategory,
Numerical Optimization, encompasses algorithms that in general optimize a pre-existing
path given the kino-dynamic restrictions of the robot to make it feasible.

6.1. PDE-Solving-Based

The optimal control approach is based here on the Dynamic Programming Principle
through the resolution of the Hamilton–Jacobi–Bellman equation [204] using a grid. Since it
is a partial derivative equation (PDE), this sub-category is named PDE Solving. It can be seen
as finding the numerical solution to the problem of calculating the propagation of a wave
over a grid. A value of the wave arrival time is assigned to each of the grid nodes. The way
the wave propagates will depend on how the HJB equation is formulated, including the cost
function. The main drawback of this kind of algorithm is that it generally cannot deal with
constraints in the form of discontinuities.

A particular case of the HJB equation is the Eikonal equation. This is not only static but
also considers the cost function and only returns a scalar value according to the position
on the map. This means the wave propagates on a node with a rate that depends only
on the assigned scalar value. In this way, the characteristic directions are coincident with
the gradient of the Total Cost function, and hence the path can be retrieved simply using a
Gradient Descent method. A whole family of methods have been proposed over the years to
compute the solution to this problem-formulation with low computational requirements,
and hence they are named Fast methods [18]. One of the most well-known is the Fast
Marching Method (FMM), introduced by Sethian [205]. This algorithm follows the same
strategy as Dijkstra to visit the nodes of a grid. Unlike Dijkstra, FMM assigns the value
of an amount of cost to each node by solving the Eikonal algorithm. The resulting path
is smooth, continuous and optimal. Chiang et al. [206] compared this algorithm with
A* and demonstrated how, as the path is not restricted by the grid, FMM gets shorter
paths. There are many existing works using FMM for path planning [207–210]. Some of
its variants, most of them reducing the computational power requirements of FMM, are
introduced in the review by Gómez et al. [18], along with other Eikonal solvers. They are
Binary FMM, Fibonacci FMM, Simplified FMM and Untidy FMM. The cost values used by
the Eikonal determine the rate of propagation of the computed wave. Petres et al. [24]
demonstrated how the gradient of these cost values affects the curvature radius of the
resulting path. Their work also introduced the idea of Heuristic Fast Marching (FM*) and
also compares this with other Graph Search algorithms. For smooth obstacle avoidance, Fast
Marching Square (FMS) [74] computes FMM twice, being the first to create a repulsive field
surrounding obstacles. Figure 11a depicts how the path smoothly gets further from the
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obstacle thanks to the higher values of cost near it (darker colors). Liu and Bucknall [211]
used FMS, along with a modification of the cost around the initial position, to consider
the initial orientation of the vehicle. Researchers have also aimed to propose incremental
versions of FMM, such as E* [212–214].
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Figure 11. PDE-Solving-based algorithms can calculate a continuous and smooth path in non-uniform cost maps. The cost
assigned to each cell can be a scalar value or isotropic (a) or in the form of a vector, i.e., anisotropic (b).

To work with more general expressions of the Hamilton–Jacobi-0Bellman (HJB) equa-
tion, other kinds of methods must be used. FMM produces sub-optimal results if used
with direction-dependent (anisotropic) costs [215]. This kind of cost implies that the wave
propagates differently depending on its direction relative to how a vectorial cost is as-
signed to the node. There are particular situations in which FMM produces accurate results
under a certain level of anisotropy, such as having a cost function formulated in such a
way thatit varies mostly in the directions parallel to the reference axes [24,216]. This is
the case depicted in Figure 11b. Sethian and Vladimirsky [215] proposed the use of an
algorithm called the Ordered Upwind Method (OUM) to deal with the static HJB equation,
the convergence rate of which was demonstrated by Shum et al. [217]. Its main drawback
is the increase in computational cost it entails, proportional to the anisotropy existing in
the scenario. Shum et al. [31] used HJB for anisotropic path planning, considering energy
minimization and stability, and considering the direction and magnitude of slopes. The Fast
Sweeping Method (FSM) has also been demonstrated to work with general static HJB equa-
tions [218]. It works by visiting all nodes on a grid, following certain directions repeatedly,
which means that it demands a high number of iterations. Takei and Tsai [37] used FSM to
formulate the HJB equation to comply with turning radius constraints. For the Eikonal case,
Bak et al. [219] introduced an improvement to FSM to speed up its computation when the
cost varies too much, and Detrixhe et al. [220] introduced a parallel version. Jeong and
Whitaker [221] proposed an algorithm named the Fast Iterative Method (FIM) to solve the
Eikonal equation on parallel architectures as well.

6.2. Global Optimization

This subcategory contains path planning algorithms that optimize an existing prelim-
inary feasible path. Unlike Local Optimization methods, introduced in Section 3.1, Global
Optimization methods make the resulting path globally optimal in exchange for investing
more of a computational load. The approach presented by Ratliff et al. [222], for instance,
uses Sampling-Based methods such as RRT or PRM as a first step. The second step consists
of using gradient optimization techniques to approximate the optimal solution from this
feasible path. Van Den Berg et al. [223] also started with a trajectory computed using
RRT, to later apply jt to an optimization process based on Differential Dynamic Program-
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ming (DP). Plonski et al. [70] used DP to calculate a path in a solar map that dynamically
changes, considering that the robot harvests solar energy. Ajanović et al. [224] combined
DP with Model Predictive Control (MPC) to calculate energy-minimizing paths. Other
techniques include the bang-bang approach [225] and Mixed-Integer Linear Programming
(MILP) [226]. Finally, a remarkable approach was proposed by Kogan and Murray [227],
who used nonlinear optimization to plan time-optimal paths with a length between 20 and
70 m.

7. Summary and Conclusions

Table 3 summarizes the main features of each path planning category according to
the classification system proposed in this paper (see Figure 1). It analyzes whether the
algorithms require a preliminary model of the environment, whether they are deterministic
(i.e., they always provide the same solution given the same initial conditions), whether
they can tackle dynamic environments and replan, whether they are optimal and if they
are complete (i.e., they always return a path if it is feasible). Given the scope of the final
path planning application, some algorithms will be more suitable than others. Moreover,
the reach of the planner and the replanning capability, i.e., the capability to deal with
updates in the environment information, will determine if an algorithm is more suitable for
local planning or global planning. Local planning usually requires fast online computation
and this reactivity behavior is required to plan new paths in the presence of environmental
data changes. Global planning can even be computed offline and aims to generate paths for
long traverses, having a static initial environment available.

Table 3. Overview of characteristics of the presented path planning algorithms.

Category Sub-Category Preliminary
Map Model Deterministic Replanning Optimality Completeness

Reactive
Computing

Reactive
Manoeuvre No [7] Yes Yes Sub-optimal Not ensured

Local
Optimization

Depends on planner
used in first step Yes Yes Sub-optimal Not ensured

Soft
Computing

Evolutionary Only ACO No Yes [3] Heuristic Depends (e.g., GA
no; PSO, yes) [20]

Artificial
Intelligence Depends No Yes Heuristic Not ensured

C-Space
Search

Graph Search Yes [7,11] Yes [7] Only incremental Global restricted
to graph Yes

Sampling-Based No No [7] Yes Asymptotical Probabilistic

Optimal
Control

PDE Solving Yes Yes Very rare [212–214] Globally optimal Yes
Global
Optimization

Depend on planner
used in first step Yes Yes [3] Globally optimal No [20]

Reactive-Computing-based algorithms seem suitable for local obstacle avoidance path
planning as they are easy and cheap to implement. Furthermore, Reactive Manoeuvre
methods are a good option for scenarios with high uncertainty or when using a robot with
very limited sensing options. Local Optimization allows one to even consider kinodynamic
constraints with TEB, although they do not ensure completeness. Special attention must be
given to both subcategories, in order to avoid falling into a local minimum. Soft Computing
algorithms produce a path using multiple configurable operators, which can be inspired
by nature or can be based on fuzzy rules and/or neural networks. They are suitable for
problems involving a large number of variables or problems that are difficult to model,
such as in highly dynamic environments. With scenarios containing moving elements,
in long-range (global path planning) scenarios, the use of Evolutionary methods is adequate.
The latest Artificial Intelligence methods, including the DL and RL methods, still need to be
further studied to obtain solid conclusions, as also remarked by Sun et al. [21]. Artificial
Intelligence methods based on Fuzzy rules or neural networks can be used for fast Local
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Planning as an alternative to Reactive Manoeuvre methods. C-Space Search algorithms make
use of samples to represent the different configurations of the robot. These samples can
be provided beforehand in the form of a graph or they can be dynamically created. Graph
Search algorithms are suitable for global path planning considering advanced graphs such
as visibility graphs or space-lattice graphs, at the expense of investing time into building
them (something that is admissible for offline planning). Nevertheless, it scales poorly
with problems of high dimensions, which justifies the use of Sampling-based algorithms
instead. Sampling-based algorithms have also proved useful for this kind of manoeuvre and
problems with a high number of dimensions. Optimal Control algorithms are outstanding
for obtaining globally optimal results. PDE-Solving-based algorithms depend heavily on
the formulated PDE, which can be based on isotropic or anisotropic cost functions and can
work with a map model in the form of a grid. Global Optimization algorithms have to start
with an already-defined path an adapt it according to the robot’s locomotion restrictions.
PDE Solving algorithms are adequate for the off-line computation of long traverses given
low-uncertain static scenarios, as they provide optimal paths without relying on replanning.
Finally, it is important to note that all these planners rely on the available information
describing the environment and the robot. This information must be modeled as accurately
as possible to improve the results of the path planner.
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