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Abstract: As per recent progress, online social network (OSN) users have grown tremendously
worldwide, especially in the wake of the COVID-19 pandemic. Today, OSNs have become a core part
of many people’s daily lifestyles. Therefore, increasing dependency on OSNs encourages privacy
requirements to protect users from malicious sources. OSNs contain sensitive information about
each end user that intruders may try to leak for commercial or non-commercial purposes. Therefore,
ensuring different levels of privacy is a vital requirement for OSNs. Various privacy preservation
methods have been introduced recently at the user and network levels, but ensuring k-anonymity
and higher privacy model requirements such as I-diversity and t-closeness in OSNs is still a research
challenge. This study proposes a novel method that effectively anonymizes OSNs using multiple-
graph-properties-based clustering. The clustering method introduces the goal of achieving privacy
of edge, node, and user attributes in the OSN graph. This clustering approach proposes to ensure
k-anonymity, 1-diversity, and t-closeness in each cluster of the proposed model. We first design
the data normalization algorithm to preprocess and enhance the quality of raw OSN data. Then,
we divide the OSN data into different clusters using multiple graph properties to satisfy the k-
anonymization. Furthermore, the clusters ensure improved k-anonymization by a novel one-pass
anonymization algorithm to address I-diversity and t-closeness privacy requirements. We evaluate
the performance of the proposed method with state-of-the-art methods using a “Yelp real-world
dataset”. The proposed method ensures high-level privacy preservation compared to state-of-the-art
methods using privacy metrics such as anonymization degree, information loss, and execution time.

Keywords: anonymization; clustering; k-anonymity; l-diversity; online social network; privacy
preservation; t-closeness

1. Introduction

An online social network (OSN) provides a powerful platform for users to interact and
share information between one another [1]. According to the latest global digital report,
at present, there are 800 million users of online social networks [2]. Privacy has become
a significant concern with respect to many emerging technologies, such as the Internet
of Things (IoT) and cloud computing, which generate tremendous data [3]. Moreover,
severe concerns have arisen with respect to OSN privacy [4-7]. Due to the involvement
of sensitive data, privacy in OSNs is a topic of interest to many researchers [8,9]. Data
aggregated from different sources give rise to the problem of data privacy [10]. Many data
privacy challenges—such as private information leakage, misuse of personal data, etc.—are
commonly observed in OSNs [11]. Some of the most well-known spamming attacks include
context-aware spamming and broadcast spamming attacks. The network structure is also
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OSN Users

prone to structural attacks such as Sybil attacks and shilling attacks. These attacks can
spread worms and enable botnets to propagate in the OSN via profile interaction and
third-party applications [12]. Many other intelligent systems are available to simplify our
life like human—machine interactions so as to increase industrial production [13]. Models
to analyze human relationships in cognitive science [14] and Al-based platforms can help
to accelerate the early detection of diseases [15]. Data generated by these systems are
enormous, and are prone to privacy attacks.

Security mechanisms alone do not guarantee the privacy of data. Thus, it is necessary
to devise privacy solutions separately in order to preserve privacy. Sensitive data can
include individuals’ names, addresses, location information, phone numbers, e-mail ID,
health and insurance details, social security numbers (SSNs), financial records, personal
photos, videos, notes, credit card details, etc. Leaks in sensitive data could lead to lawsuits,
loss of customer confidence, brand damage, erosion of privacy, bad press, loss of money
or profit, etc. In India, the Indian Information Act 2000 has the provision to take action
and enforce punishment if anybody is found to be responsible for the unethical exposure
of personal information. Real-world data are temporary, but information on the web
persists for a limitless time, eventually threatening online users’ privacy. Users often end
up sharing sensitive information while being unaware that they are at risk [16]. Privacy
is always a concern when owners share data with third parties, and personal identifiable
information (PII) is at stake. Hence, it is not easy to preserve privacy in a domain that is
inherently intended for sharing. No unauthorized person should be able to acquire any
sensitive information related to users. An unauthorized person can significantly breach
data privacy if they gain access to users’ sensitive information. Figure 1 gives an overview
of some examples of sensitive information, and how it can be used to damage and affect
users’ privacy.
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Figure 1. Sensitive information of OSN (online social network) users.

Users’ photos and videos from their profiles could be doctored and used for black-
mailing and defaming individuals [17]. Likes and interests reveal a lot about a person, and
can lead to the revelation of controversial opinions. The address of a person can reveal
their location, resulting in a criminal attack or burglary [18]. An individual’s social security
number (SSN) can be determined using a combination of address, date of birth, and gender,
resulting in ID theft or impersonation [19]. Companies may use e-mails and phone num-
bers for targeted advertising, leading to unnecessary interruptions and spam. Therefore, it
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is an open challenge to protect confidential and sensitive data from unauthorized persons,
and to ensure that the actual data are available only to legitimate users [20] of OSNs.

Privacy preservation using anonymization in OSNs has received significant interest.
We can present OSNs in a graph form; the end user represents a node in the OSN network,
and an edge is a connection between two nodes [21,22]. A node can have many edges in
a social network graph, such as user-to-user, user-to-attribute, and attribute-to-attribute
nodes. Therefore, it is necessary to protect all components of the OSN graph by anonymiz-
ing them, i.e., nodes, edges, and attributes. However, the purpose of any anonymization
technique is that it should not eliminate ample information that induces utility of the
original graph, causing structural information loss (IL). Identity preservation is one of
the vital aspects in preserving the privacy of OSNs [22]. A pure, naive anonymization
method substitutes an identifiable attribute user’s name in the information with arbitrary
identifiers, but the invaders can utilize the background knowledge of the structure of
this anonymized graph to identify a user. Thus, the OSN should be anonymized so that
ethical and trusting promoters can obtain information from it, but it remains ineffective to
unethical parties who require it to obtain the sensitive personal data of individual users. In
OSN s, two vital pieces of data need to be preserved: knowledge regarding a users’ sensitive
attributes, and relationships between users, i.e., edge/link details in graphs of the end
users [23-26]. However, protecting these details in OSNs is a challenging research problem.
Various techniques have been introduced for anonymization in social networks in order
to achieve privacy preservation notions such as k-anonymity and l-diversity, but these
privacy preservation notions have limitations, and fail to anonymize all social network
elements [27] (i.e., nodes, edges, and attributes) effectively.

This research paper presents a novel approach for privacy preservation in OSNs using
improved multiple-attribute-based clustering to satisfy all privacy preservation require-
ments with minimal information loss and reduced computational cost. We systematically
plan the proposed anonymization approach to cover the privacy of all of the OSN graph
elements. In this regard, first, we apply data normalization to address noisy data, messy
data, and empty fields using the lightweight approach; this step helps to enhance the qual-
ity of raw OSN data for efficient anonymization. Then, the appropriate graph properties
are selected to form the clusters of input social networks using K-means. This is a simple
approach of clustering that ensures the minimum IL with the privacy of nodes, edges,
and attributes. The formation of clusters takes place according to similar characteristics of
nodes so as to satisfy k-anonymity.

Furthermore, clusters ensuring k-anonymity are improved with I-diversity and t-
closeness to address every privacy notion in an OSN. The formation of clusters provides
k-anonymity by default, but it is also necessary to address the concepts of I-diversity
and t-closeness. For this aim, we propose a novel one-pass algorithm that ensures the
l-diversity and t-closeness for each k-anonymized cluster. Section 2 presents related works
on the privacy-preserving OSNs, along with the motivations and contributions of our
research. The problem statement and the explanation of the proposed model are given in
Section 3. The experimental results and the privacy preservation analysis using real-world
datasets are shown in Section 4. Finally, Section 5 discusses conclusions and prospects for
future work.

2. Related Works

Privacy preservation in OSNs is a novel investigative field that still in progress. Many
of the studies in this prominent field are dependent on a computational viewpoint. Here,
we discuss relevant recent works in the area of privacy preservation in OSNs. As
discussed earlier, our privacy study considers the OSN in the form of a graph with
nodes, edges, and node attributes. Therefore, we can achieve privacy for all of these
OSN graph elements [28-30]. The related works we review in Sections 2.1 and 2.2 present
research motivations. Finally, Section 2.3 shows the contributions of our research.
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2.1. Privacy Methods in OSNs

The earlier pervasive social network (PSN) method was proposed in [31] for privacy
preservation. The anonymous authentication algorithm helps to authenticate trust levels
and pseudonyms in order to provide trustworthy PSNs and privacy preservation [32]. This
achieves secure, anonymous authentication using trusted authorities. Blockchain-based
frameworks provide authorization and identity management to increase confidentiality
and preserve data privacy [33]. In [34], the author addresses identity disclosure threats in
weighted social network graphs; the weighted 1*-neighborhood threats are identified for
OSN users under the assumption of knowledge about target node connections, correspond-
ing edge weights, and node degrees; the author designed heuristic indistinguishable group
anonymization (HIGA) to address 1*-neighborhood attack.

The survey study in [35] presents recent privacy preservation techniques for OSNs.
These privacy preservation methods include perturbation, building the entire alternative
network, and naive anonymization, along with their limitations. The authors of [36]
proposed a hybrid privacy preservation approach for social networks; they considered
both identity and location privacy in order to address privacy leakage and robustness; the
game-based Markov decision process system achieved improved data utility with higher
privacy preservation. A local differential privacy scheme was proposed in [37] for OSN
publishing in order to preserve information about community structure; the synthetic social
network information was generated in this model as the published versions according to
structural constraints on edge probability reconstruction.

An efficient and fast social network de-anonymization technique that relied on struc-
tural information was proposed in [38]. The authors designed a novel pairwise node
similarity metric and effective node-matching technique. The clustering algorithm in [39]
achieves k-anonymity in OSNs using swarm intelligence; initially, the author designed the
clustering algorithm using particle swarm optimization (PSO) to reduce the IL; however,
PSO-based clustering leads to a high computational burden; therefore, for OSN clustering,
the author proposed a hybrid genetic algorithm (GA) and PSO-based algorithm (PSO-GA).
Another recent study [40] proposed a de-anonymization scheme for OSNs to reveal the
impact of user attributes on de-anonymization accuracy; the authors quantified user at-
tributes and chose vital attributes to produce a multipartite graph, which was divided
into different communities. In [41], the authors present another clustering-based privacy
preservation scheme for OSNs, aiming to achieve the privacy of all of the social network
elements—nodes, links, and attributes—via proposed clustering, with the OSN nodes
clustered using the similarity metrics to achieve k-anonymity; the k-anonymity is further
enhanced to achieve the I-diversity privacy notion.

Recently, a feature learning model was developed in [42] to achieve privacy preserva-
tion; the authors used a feature learning approach to define the social connections between
the social users and then build inferred social graphs, which they used for the purpose
of privacy preservation. The research presented in [43] identifies privacy bounds on the
data of individuals’ unique mobility traces; individuals’ privacy is preserved by coarsening
data spatially and temporally for anonymity. A mechanism for the preservation of privacy
during message transmission was introduced in [44] via message obfuscation, using the
message replication and sensitive attributes replacement strategy; the authors analyzed the
social behaviors of each user in order to compute their credibility for privacy preservation
in OSNs. The differential privacy scheme proposed in [45] combines different series to
achieve privacy of all of the graph elements; the dK-1 series holds the degree frequency, the
dK-2 series holds the joint degree frequency, and the linking knowledge between the edges
is stored in the dK-3 series. A customizable reliable differential privacy (CRDP) scheme
was proposed in [46] to achieve customizable privacy for every individual; the authors
measured the social distance in order to ascertain the shortest path between two vertices,
and then utilized those vertices as the metrics to customize the levels of privacy protection.
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2.2. Motivation

The above studies show that privacy preservation is still a challenging problem for
OSNs when considering minimum sensitive structural IL, high-level privacy protection,
and minimum complexity. The summary of the research gaps in current state-of-the-art
methods that motivated us to propose the novel model in this paper are as follows:

Cryptography-based methods [31-33] achieve secure communications with a certain
level of privacy, but cannot achieve privacy in all of the elements of OSNs. Moreover, they
rely on trusted authorities for secure communications and privacy.

Grouping/ clustering-based methods [39—41] have shown promising outcomes, but
have yet to simplify and improve performance and privacy protection tradeoff require-
ments. Swarm-intelligence-based clustering achieves only k-anonymity privacy notions in
OSNs with higher computational complexity. Such clustering techniques fail to achieve
high-level privacy preservation in OSNs because of the poor quality of anonymization.
The clustering in [41] focuses on only a single graph attribute for clustering, which limits
the privacy protection in OSNs.

Other different types of OSN graph-based methods [34-38,42—44] fail to achieve
privacy in all of the components, i.e., nodes, edges, and attributes of nodes. In such
techniques, attackers can efficiently utilize the structural information of anonymized
network graphs, leading to information loss.

The differential privacy [45] and customized privacy [46] schemes for OSNs have
received attention. However, differential privacy schemes assume that each data owner
shares similar privacy demands and, therefore, fail to address different notions of privacy.
On the other hand, a customizable privacy scheme triggers the formation method of
differential privacy, resulting in unexpected relationships between added noises that
minimize privacy preservation and leak more sensitive information and privacy demands.

2.3. Contributions

Considering the above research gaps in recent OSN graph-based privacy preservation
methods, we propose a novel clustering-based privacy preservation scheme using multiple
graph properties for cluster formation to achieve high-level privacy protection in OSNs
with minimal IL and reduced computational cost.

The contributions stated below summarize the novelties of the proposed model:

1.  After data normalization and K-means clustering, we propose the novel cluster
optimization algorithm to achieve k-anonymity using two graph properties: distance,
and eccentricity. Multiple graph properties ensure reliability in cluster optimization,
with minimal sensitive information leakage and a higher degree of anonymization.
The cluster optimization phase produces clusters with at least k-anonymized users;

2. To enhance the privacy preservation of k-anonymized clusters, we propose the novel
one-pass algorithm to ensure that the clusters have l-diversity and t-closeness, and to
protect data from similarity threats and attribute disclosure threats;

3. The notion of equal-distance-based t-closeness privacy ensures the prevention of
disclosure of users’ attributes, and of similarity threats. The notion of 1-diversity
privacy ensures the prevention of the disclosure of sensitive attributes at the cluster
head (CH);

4. The analysis of our results presents performance comparison of the proposed method
with similar methods, using a real-world dataset, and varying the number of users
and the number of clusters.

3. Proposed Method

This section presents the methodology of the proposed anonymization scheme for
OSN privacy using clustering. The proposed model has three phases: the initial phase, the
cluster optimization phase, and the privacy preservation phase, as shown in Figure 2. The
initial phase performs the input OSN data normalization and initial clustering.
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Figure 2. Proposed system model approach for privacy preservation in OSNs.

The cluster optimization phase optimizes the clusters using two graph properties—
distance and eccentricity—to ensure k-anonymity with minimal information leakage.
The privacy preservation phase further enhances the clusters to ensure l-diversity and
t-closeness.

Table 1 shows the functionality of the proposed model. The three phases, and the
processing within each, provide a clear understanding of the proposed system.

Table 1. The functionality of the proposed model.

Phases Processing

—_

Acquire OSN data
Data pre-processing using Algorithm 1
3. Apply K-means clustering

Initial Phase

N

1. For each cluster, initiate cluster optimization using
Algorithm 2
2. Compute distance of each vertex
Cluster Optimization Phase 3 Compute eccentricity for each vertex

Compute hybrid score using distance and eccentricity
properties for each vertex

5. Sort each cluster according to hybrid score

Optimize clusters to satisfy k-anonymity

o

Acquire k-anonymized clusters

Apply one-pass algorithm (Algorithm 3)

Within Algorithm 3, ensure 1-diversity for each cluster
Within Algorithm 3, ensure t-closeness for each cluster
Produce clusters ensuring k-anonymity, l-diversity, and
t-closeness

Privacy Preservation Phase

SUESRC N

The input raw OSN data consists of users, their attributes, and edges between them.
The data normalization step is required in order to prepare the sets of nodes and their
corresponding attributes by performing the statistical operations. Additionally, we apply
the function to detect the missing or messy data and replace them with relevant values. This
step ensures not only data quality enhancement, but also the accuracy of anonymization in
OSNs. After the data normalization step, we form the initial clusters using the conventional
K-means clustering algorithm. The reasons behind selecting K-means clustering are as
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follows: (1) it is simple to cluster users according to their similarities; (2) it is fast and
produces efficient clusters; and (3) K-means cannot prevent the outliers, and supports
privacy for all outliers. After the initial clustering, we optimize the clusters according to
distance measures using the multiple graph properties of each user. The multiple graph
properties ensure reliable cluster formation with high-level privacy protection. After
forming the clusters that provide k-anonymity, we apply the post-processing on each
cluster using a one-pass algorithm. The one-pass algorithm ensures both I-diversity and
t-closeness privacy notions in the proposed model. First, we present the system model to
formulate the proposed problem, and then we illustrate the design of the proposed solution.

3.1. System Model

Let us consider the input OSN data, which are represented in the form of graph G
that consists of vertices V and edges E. V represents the social network users, while E
represents a link or connection between two users/vertices. We have n vertices, where
V= {vl, v, ... v”} in the network, where each vertex v has m associated attributes rep-
resented inset Aas A = {ai, aé, .. afn}. The edges between the vertices have directions;
therefore, the total number of edges in the network is:

E=nx(n-1) 1)
where E is a set of edges. E = {612, e2l o2, . enm—l } 12 denotes an edge from vl to 02,
which is not the same as e?!—an edge from v? to v'. Each edge is assigned a weight value.
The primary goal of this paper is to achieve privacy preservation for social network graph
G such that each component (E, V, and A) of graph G should be anonymized to satisfy the
following objectives:

1. To achieve complete privacy notions—k-anonymity, l-diversity, and t-closeness—for
giving the constant value k;

2. To minimize the sensitive information leakage and reduce processing time, with
minimal IL, and achieve high-level privacy preservation;

3.  Toimprove the reliability of anonymization considering the multiple graph properties
and data normalization.

The proposed method utilizes the optimized clustering approach to group the vertices
with similar properties and build meaningful clusters of social users. Each cluster has its ny
to represent the number of users of that cluster. The ny selection anonymizes the K users. We
process anonymized clusters according to the desired I-diversity and t-closeness parameters in
order to satisfy higher privacy preservation notions. In the following subsections, we present
the design of each phase of the proposed model. Table 2 presents the mathematical symbols
used in the proposed model’s design, along with their significance.

Table 2. List of symbols.

Symbol Quantity
G OSN graph
RD Raw OSN data
E Set of edges (relationship between two users) in the graph
14 Set of vertices (users) in graph G
A Set of attributes of each user/vertex
a;. ji" attribute of i user/vertex
uid Represents the user ID in raw OSN data
NRu Number of reviews posted by uid
Ayid Active years of uid
NFid Number of friends of uid
rguid Number of fans of uid

V guid Average vote score of uid
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Table 2. Cont.

Symbol Quantity
Eguid An elite score of uid
csvid Compliment scores of uid
Avid Attribute set of uid
c Number of clusters
C Set of ¢ clusters
Aiem Attribute set of the centroid of i cluster
Hl?‘id The hybrid score value of user/vertex uid of i*" cluster
CM! Set of users/ cluster members of it cluster
R Total number of attributes in set A
uid, cent The distance between the vertex uid and a centroid
etid The eccentricity of vertex uid

3.2. Initial Phase
1.  Preprocessing Algorithm

The initial phase normalizes the input raw OSN data and forms the initial clusters
using the basic K-means clustering algorithm. The reasons for normalizing the OSN data
and selecting the K-means clustering were disclosed in the previous section. The input
dataset generally consists of a large number of users and their various attributes. The
attributes represent each user’s connection and behavior in the network. The raw data may
have outliers or messy data; therefore, before performing the clustering, data normalization
should be performed. The goal of the data normalization phase is to enhance the quality of
OSN data via the statistical modeling of attributes. Algorithm 1 shows the process of data
normalization that takes the raw OSN data and produces the user set V with its associated
normalized set of attributes A.

Algorithm 1 Preprocessing

Input

f: raw OSN data
Output

V: Set of vertices
A: Set of attributes

1. while (f not empty)

2. Acquire each profile P € f

3. P« f (uid, name)

4. if (uid.attributes # NULL)

5. NR“4 « yid.review_count

6.  AYd < yid.dif ference (date, yelping_since)
7. NF“ « yidsize (friends)

8. VS « yid.mean (useful, cool, funny)

9. FS“d < yid.fans

10.  ES"“ « uid.size (elite)

11.  RS“® < yid.average_stars

12, CS*? < uid.(compliment,;)

13. Auid [NRuid, Ayuid,NFuid/ Vsuid’ Fsuid/ Esuid/ Rsuid/ csuid
4 A A A

15, V « [V;uid]

16. end if

17.  end while

18. return (A, V)
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The novelty of Algorithm 1 is that it can be applied to any OSN data by adjusting the
number of attributes and their value according to the properties of the input data. The
statistical normalization of users and their corresponding attributes results in the removal
of outliers or messy data without a special function. For example, we applied Algorithm
1 to the Yelp OSN dataset [41], which consists of a total of 18 attributes associated with
each OSN user/vertex. After applying Algorithm 1 to these input datasets, we reduced
the 18 preprocessed attributes to a total of 8 attributes. This helps to reduce the significant
processing time without compromising data loss;

2. Initial Clustering (K-means Clustering Algorithm)

The normalized inputs of vertices (V) and attributes (A) fed to the clustering algorithm
help in computing cluster centroids and their cluster members (CMs) accurately at the
initial level only. The normalized attribute values also assist in the reduction of sensitive
information. Next, we form the initial clusters to discover the cluster centroids from the
input set of vertices using the K-means:

C = kmeans (V, c) 2)

where c represents the number of clusters, generating initial clusters according to the
mean of user attributes. Each cluster C!, i € c has at least k users in order to satisfy
k-anonymity in the network. At the initial level, the value of k is not the same for each
cluster, i.e., each cluster may have a different number of users. Let us assume that we
have a total of 100 vertices/users in the dataset, and we set the value of the clusters to 4;
after applying Equation (2), this produces the outcome shown in Table 3. This shows that
K-means clustering failed to achieve k-anonymity in the given OSN network. The K-means
algorithm failed to achieve complete k-anonymity across all the clusters. Therefore, we
further optimized each cluster using multiple graph properties—such as distance and
eccentricity—to ensure that all clusters were of the same size. We will explore this process
in the following section.

Table 3. Example of initial clustering.

Cluster Number Number of Users
c! 29
C? 20
c® 21
ct 30

3.3. Cluster Optimization Phase

The goal of the proposed model is to achieve k-anonymity by utilizing clustering on
preprocessed OSN data. However, as discussed earlier, using the simple K-means, we
cannot achieve k-anonymity. The value of K indicates that every cluster has at least K
anonymous users. A variation in cluster members leads to an information leakage problem.
Let us assume that we have two clusters—C! and C2—with K users and p = K+ 10 users,
respectively. In this way, all vertices in cluster C! are K-anonymous, and all vertices in
cluster C? are p-anonymous. This variation in anonymity levels (different values of K
for each cluster) results in sensitive information loss. Therefore, it is necessary to have
clusters with an equal level of anonymity. To address this problem, we designed the cluster
optimization phase to rearrange the clusters into clusters of the same size i.e., anonymized
clusters with less IL. This rearrangement of clusters is possible by computing the score of
each user in each cluster using two graph properties: the distance between the attributes of
two vertices, and the eccentricity of each vertex. The number of users in the cluster should
satisfy the constraint (1/k), where n is the number of users and k is the number of clusters.
To the best of our knowledge, this is the first attempt to use multiple graph properties to
ensure the privacy of all OSN graph elements.
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The hybrid score is computed using distance and eccentricity graph properties for
each vertex/user in the current cluster, and is sorted into the ordered matrix, as shown
in Figure 2. Algorithm 2 presents the functionality of the cluster optimization phase that
consists of two functions: hybrid score matrix computation, and cluster optimization.

1.  Hybrid Score Matrix Computation

The initially formed clusters using K-means consist of a set of clusters with their
centroid. To rearrange the clusters, we perform the computation of the hybrid score for
each vertex/user. Algorithm 2 presents the process of computing the ordered hybrid matrix
and cluster optimization.

Algorithm 2 Cluster Optimization

Inputs

C: set of clusters with its centroid

¢ : number of clusters

A set of attributes

n : total number of vertices in network
Output

SD : sorted users list according to hybrid score
C : optimized clusters ensuring the K — anonymity
Hybrid Score Matrix Computation:

D < ones(n, 2)

m=1

fori=1:c

forj=1: size (C')

uid + CM!(j)

HYd + getScore (A”id, Aémt)

D(m, 1) < uid

D(m, 2) + H"4

m<—m+1

end For

end For

SD < Sort(D(:, 2), “ascending”)

Cluster Optimization:

fori=1:n

forj=1:c

if ((status (SD(i: 1)) # assigned)&&(lenght(cf) < ‘%‘))
Cl < join (SD(i:, 1))

status (SD(i:, 1)) < assigned

end if

end for

end for

To calculate the hybrid score of each vertex/user, we use distance and eccentricity
graph properties. To measure the distance property, we measure the distance from every
user to its associated cluster centroid. For the eccentricity property, we measure the
maximum connections of each vertex. In general, the distance property represents the
number of edges between two vertices, and considers the minimum number of edges as
its outcome. In short, the maximum closeness or similarity between the attributes of two
vertices represents the distance property in the proposed scenario. On the other hand,
the eccentricity property denotes each vertex’s maximum number of connections in the
network. In our case, we compute the eccentricity of each user/vertex from its attribute
number of friends NF*“. The inclusion of the eccentricity property ensures clustering
balance and reliability, with minimal possibility of information loss (IL), as it enables
grouping of the vertices according to their connections. We utilize both properties to
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produce a hybrid normalized score using a weight-based approach. Finally, we arrange all
of the vertices into an ascending-order hybrid matrix, with the first column as a sorted list.
H!4 represent the hybrid score value of user/vertex uid of the i'" cluster, size (C')
represents the number of CMs of the i cluster. A" represents the attributes of the j!"
user /vertex, and AL, represents the attributes of the centroid of the i cluster. According
to the algorithm, the getScore (.) function computes the hybrid value for each user/vertex
in every cluster, bypassing the attribute of the j CM of the i*’ cluster and A ;. Before that,
we first obtain the vertex ID—i.e., uid—to obtain its corresponding set of attributes. Using
the getScore (.) function, we measure the two graph properties distance and eccentricity, as
discussed above. The distance between A% and A, , is computed by Equation (3):

uid cent
ay'® —af

R
Zr:]

duid, cent _

- )

where a represents the r'" attribute of vertex uid, and a®* represents the r'" attribute of

the centroid vertex of the current cluster. R denotes the total number of attributes of each
vertex in the network. Consider the absolute difference between the two attributes as the
shortest distance between them; then, divide the aggregate distance of all of the attributes
by the total number of attributes.

The second graph property—the eccentricity of each vertex A*—is computed from
its value of NF* by Equation (4):

; 1
etid — <I\[F”’d) X A (4)

The minimum value of ¢** represents the maximum eccentricity of the vertex. The
symbol A represents the scaling factor to normalize the eccentricity outcome. Compute this
scaling factor by taking the mean of NF* of all of the vertices, using Equation (5):

uid

vy NF
n

A= ©)
The scaling factor ensures the normalized eccentricity score of each vertex. Equation (6)
computes the hybrid score of each vertex by using a weight-based technique:

Hlyid — (wl % duid, cent) + (wz % euid) (6)

where w1l and w2 represent the weights of each graph property. The value of both weight
parameters should be w1 4 w2 = 1. In this work, we assign equal weights to both distance
and eccentricity parameters, i.e., wl = 0.5 and w2 = 0.5. The two vertices with a minimum
value of Hl-”id represent more closeness or similarity between them. This improves the
probability of forming clusters with more similar vertices. Matrix D stores all vertices and
their hybrid scores one-by-one; then, we sort the vertices in matrix D according to their
hybrid score value, in ascending order, into matrix SD;

2. Cluster Optimization

As discussed above, the goal of the cluster optimization phase is to achieve the k-
anonymity privacy preservation notion in OSN. For this purpose, we rearrange the clusters
according to the sorted vertices matrix SD in Algorithm 2. Each user/vertex SD(i:, 1)
joins a current cluster C/ according to two constraints: (1) user/vertex status should not
be “assigned”, and (2) current cluster size should be less than or equal to n/k. These
two constraints achieve clusters with almost similar sizes so as to attain k-anonymity
with minimal IL. Once the current user in sorted matrix SD(i :, 1) is satisfied by both
constraints, its status is set to “assigned”. In this manner, all of the vertices are divided into
¢ clusters with equal probability, and each cluster has k users with maximum similarity.
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This significantly reduces the chance of leaking sensitive information on nodes, edges,
and their attributes. Therefore, the outcome of Algorithm 2 returns the optimized clusters,
ensuring k-anonymity. Thus, the outcome shown in Table 4 is optimized further using the
proposed clustering approach shown in Table 4, where k is set to 4 and  is set to 100.

Table 4. Example of optimized clustering.

Cluster Number Number of Users
ct 25
c? 25
c? 25
ct 25

3.4. Privacy Preservation Phase

In the previous phase, the optimized clusters ensured k-anonymity for OSNs. How-
ever, k-anonymity does not guarantee the complete privacy preservation requirements via
its limitation of attribute disclosure threat, background knowledge threat, and homogeneity
threat [47]. I-Diversity addresses the problems of K-anonymity in [41]. However, l-diversity
also suffers from various challenges, in that (1) preventing attribute disclosure threat is not
sufficient, and (2) it is unnecessary to achieve. In [19], the authors state that t-closeness
can be used to address the drawbacks of both k-anonymity and I-diversity. In this paper,
our goal was to consider all privacy preservation notions using one common technique,
called the one-pass algorithm. Therefore, this section presents the one-pass algorithm to
extend the clusters, ensuring k-anonymity along with I-diversity and t-closeness. Before
the one-pass algorithm, we give the standard definitions of I-diversity and t-closeness
as follows:

“An equivalence class is said to have I-diversity if there are at least | well-represented
values for the sensitive attribute. A table is said to have I-diversity if every equivalence
class of the table has I-diversity” Definition of l-diversity [19].

“An equivalence class is said to have t-closeness if the distance between the distribution
of a sensitive attribute in this class and the distribution of the attribute in the whole table
is no more than a threshold t. A table is said to have t-closeness if all equivalence classes
have t-closeness” Definition of t-closeness [19].

As per the definitions of 1-diversity and t-closeness, 1-diversity addresses the back-
ground knowledge and homogeneity attacks, but does not sufficiently address attribute
disclosure. Meanwhile, t-closeness addresses all of the problems of 1-diversity, but cannot
deal with identity disclosure. k-anonymity effectively addresses the identity disclosure
problem. This suggests that we should develop a common technique to extend the k-
anonymized clusters with I-diversity and t-closeness. We designed the one-pass algorithm
to post-process the optimized clusters in order to ensure the l-diversity and t-closeness
security notions. Algorithm 3 shows the functionality of a one-pass algorithm that first
ensures the t-closeness with predefined threshold value f, and then applies the I-diversity
according to the entropy l-diversity technique. The one-pass algorithm thus achieves
complete privacy preservation.
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Algorithm 3 One-pass privacy preservation

Inputs

C : optimized clusters ensuring the K — anonymity

c : number of clusters

A': setof attributes

I : desired diversity

Output

C : clusters ensuring the I — diversity and t — closeness

1. fori=1:¢

2. forj=1: lenght(Ci)

3. uid < Ci(j)

4. temp < getDist (A”id, A+ Ci>

5. T(j, 1)« uid

6. T(j, 2) < temp

7. end for

8.  t< mean(T)

9. Anonymize all users in clusters using t-closeness:

10. fori=1: lenght (T)

1. if (T(i, 2) < t)

12. L1+ join(T(i, 1))

13.  else

14, L2+ join(T(i, 1))

15.  endif

16. end for

17.  C' + append (L1, L2) % returned the t-closeness anonymized cluster
18.  LD' < getDiversity (Ci>

19.  end for

20. while (diversity(LD) < 1) do

21.  Max <« cluster with maximum diversity value from LD
22, Min < cluster with minimum diversity value from LD
23.  Temp < Max + Min

24. C+ C—{Max, Min} + Temp

25.  end while

Algorithm 3 presents the process in a very simplified manner to achieve l-diversity
and t-closeness for the input k-anonymized clusters. As per the definition of t-closeness,
for each cluster, we group the users according to their dynamically computed t-value. We
calculate the t-value using the earth mover’s distance (EMD) [14]. As shown in Algorithm
3, there is an equal distance between each user and all other members of the current cluster
using function getDist (.). If we suppose that the attribute set of the current user uid is
A4 and the attribute set of all members of the same cluster is represented as A < ct,
then the equal distance can be computed in the temp variable in Equation (7), as follows:

T4 i »
temp = = Y| A" — 4 C'(j) %)
j=1

In this way, matrix T stores the EMD value for all of the cluster members. To
anonymize the users in that cluster, we compute the t-value by the mean of all distances
in matrix T. We have anonymous users that are satisfied and dissatisfied with the t-value.
Finally, the users in both lists append to reform the cluster. This ensures the prevention
of similarity attacks and attribute disclosure attacks in each cluster. Then, we extend the
clusters to satisfy the l-diversity privacy notion using the entropy l-diversity concept [41].

For each t-closeness-anonymized cluster, we can compute its diversity using entropy
and store its outcome in the matrix LD. The greedy algorithm ensures that each cluster
satisfies the l-diversity. The process continues until all of the clusters achieve l-diversity.
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Throughout the entire one-pass algorithm, because we do not eliminate any users from the
cluster, the privacy notion of k-anonymity still exists for the optimized clusters.

The proposed clustering algorithm ensures the privacy preservation of vertices/users
and their attributes, with minimal loss of sensitive information and minimal computational
burden. After ensuring that the clusters meet all three privacy preservation notions—k-
anonymity, I-diversity, and t-closeness—we further perform edge anonymization in OSNs.
For edge anonymization, we use the algorithm proposed in [41] for the proposed model.
As the CH node represents each cluster, the computation of super-edges among the clusters
is applied to achieve edge anonymization. This approach anonymizes all of the edges for
the weighted directed OSN graph. The outcome of the proposed model is clusters with
k-anonymity, l-diversity, t-closeness, and anonymized edges.

4. Experimental Results

This section explains the outcomes of the experimental work for performance analysis
of the proposed model with two state-of-the-art methods. We performed experiments
using MATLAB on Windows 10 with an Intel I3 processor and 4 GB RAM. Each scenario
was executed for 25 instances, and their performances were averaged. The first scenario
was a hybrid swarm-intelligence-based OSN clustering method called PSO-GA [39], and
the second method was l-diversity enhanced equi-cardinal (LECC) clustering [41] for
privacy preservation. The reasons for selecting these methods were as follows: (1) both
techniques are closely related to the proposed model because of their clustering approach,
(2) both methods have recently been proposed to achieve OSN anonymization, (3) PSO-
GA performs the clustering of OSNs to achieve anonymization, and (4) LECC performs
clustering to ensure the k-anonymity and 1-diversity using the distance graph properties.
Furthermore, LECC performed edge anonymization similar to the proposed method. We
introduced the threat of knowledge graphs for performance analysis of all methods.

4.1. Dataset and Performance Metrics

To analyze the efficiency of all methods, we performed experiments on a real-life Yelp
dataset [48]. The Yelp dataset holds a consumer review set, where every user is attached to
many other users and has information about those users’ profiles. We used two files from
this dataset for experimental analysis as friends and users. Those two files provided data
on the user attributes and the edge data among the users. The user files consist of a user
ID and 18 attributes of that user. To investigate the proposed method with PSO-GA and
LECC—state-of-the-art methods—we measured three performance parameters: degree of
anonymization (DoA), information loss (IL), and execution time (ET). The ET represents
the average execution time for each scenario of 25 instances required to perform the OSN
data anonymization. To compute the DoA of any user, we calculated the total number of
assigned users in its cluster, i.e., user DoA is similar to the DoA of its cluster. Thus, DoA in
Equation (8) is:

DoA = degree (Cy;) X i 8)

where C;, denotes the degree of anonymization of user u; that belongs to cluster C.
To compute the IL metrics, we used the formulation presented in [49]:

SSE

Il =357

©)
where SSE is the sum of squares within the cluster, and SST is the sum of squares
among clusters.

4.2. Variations in Cluster Size

This section presents the performance analysis of variations in the cluster size, i.e.,
the number of clusters. We changed the cluster size from 20 to 100, and set the maximum
number of users to 10,000. As we were working on a large dataset, we deemed that at least
20 clusters needed to be formed. This experimental study aimed to understand the effects
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of cluster size on the DoA, IL, and ET as performance metrics. The first observation of this
outcome is that with the increase in the cluster size, the anonymization decreased. The
primary reason for this is that the small number of clusters maintains the high number
of K-anonymous users, but increasing the cluster size decreases the proportion of at least
K-anonymous users in each cluster. Among the performances of the three methods, the
proposed method outperformed both LECC and PSO-GA significantly. The LECC showed
the second-best performance, with higher DoA for the input dataset compared to PSO-GA.

Figure 3 demonstrates the outcome of DoA for varying cluster size scenarios using
PSO-GA, LECC, and the proposed method.

4500
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BB\
ANN

2500 \!\

2000 %= PSO-GA
\ & LECC

1500 Proposed

1000 \ |

500 \—

20 40 60 80 100

DoA

Number of Clusters

Figure 3. Effect of the number of clusters on DoA (degree of anonymization) performance.

The proposed model improved the DoA performance by 20% compared to the second-
best method (LECC). The novel design of cluster optimization and the one-pass algorithm
of the proposed model are the main reasons for the performance improvement. The clusters
were optimized in the proposed model using the multiple graph properties, rather than
just the one property in the LECC method. The cluster optimization step of the proposed
model normalizes the OSN data and leads to efficient clustering. The one-pass algorithm
for ensuring the I-diversity and t-closeness improved the DoA performance.

Figure 4 demonstrates another vital outcome, IL, using all three methods.
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Figure 4. Effect of the number of clusters on IL (information loss) performance.

The outcome of IL with varying cluster sizes shows a similar trend to DoA performance,
with contrasting effects. The increasing cluster size leads to minimal loss of sensitive
information, while the higher number of clusters ensures a reduced number of at least
K-anonymous users. Therefore, this ensures a minimal loss of sensitive information for a
high number of clusters compared to a small number of clusters. Compared to the PSO-GA
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and LECC privacy preservation methods, the proposed anonymization approach reduced
the IL ratio significantly, with improved DoA. The existing PSO-GA method mainly focuses
on efficient cluster formation using a hybrid swarm intelligence model, without focusing on
complete privacy preservation notions; thus, it showed the worst performances of all three
methods for DoA and IL. The LECC method focuses on privacy preservation of the graph
elements using clustering, but it relies on a single graph distance property for k-anonymity.

Furthermore, clusters ensuring k-anonymity can be extended to achieve the l-diversity
notion in LECC, as k-anonymity and I-diversity suffer from more or less the same attribute
disclosure that leads to IL. The proposed model effectively overcomes the challenges faced
by LECC and PSO-GA by optimizing the clusters, using multiple graph properties for
hybrid decision making and a one-pass algorithm to achieve t-closeness and I-diversity in
order to reduce the IL caused in the LECC method.

PSO-GA takes a longer time for cluster formation compared to LECC and the proposed
approach, because of its iterative optimization model with a longer convergence time. The
LECC method achieved privacy preservation in the shortest time of all three techniques, as
it relies on simple K-means clustering for ECC and LECC. Figure 5 shows a comparison of
execution time with varying numbers of clusters.

400
350 /
300 ‘________.=_'
g 250_7‘4‘7//-
§ _ /-
g 200 — - PSO-GA
o 150 - 4 LECC
Proposed
100
50
0 T T T T 1
20 40 60 80 100

Number of Clusters

Figure 5. Effect of the number of clusters on ET performance.

The proposed model originated from the LECC approach, with the novel proposed
data normalization. The inclusion of eccentricity graph properties and t-closeness function-
ality led to a slight increase in processing time compared to LECC. However, the proposed
model significantly improved IL and DoA performances, and ET can be improved using
parallel computing methods.

4.3. Variations in Density

This analysis aims to compare the performance of PSO-GA, LECC, and the proposed
method based on the condition of the user density variation. We varied the user density
from 2000 to 20,000 for that purpose, with a constant cluster size of 100. The clusters produced
can be more significant if we give a greater number of users. Therefore, we ranged the user
density from 2000 to 20,000, and conducted our investigations. Figures 6-8 demonstrate
the outcome of this experiment for the parameters DoA, IL, and ET, respectively. Figure 6
indicates that DoA increased with the increase in user density.
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Figure 6. Effect of the number of users on DoA performance.

We observed that the increase in the DoA value was almost exponential, i.e., for
2000 users, the DoA outcome was approximately 2300, while for 20,000 users, the DoA
outcome increased to approximately 18,000. The proposed model achieved the greatest
DoA outcome for each user density scenario compared to the PSO-GA and LECC methods.
The main reasons for this performance enhancement are given in the above section. In
the proposed model, the initial phase ensures effective data normalization and initial
cluster formation. Moreover, cluster optimization ensures the creation of the reliable and
K-anonymous clusters using hybrid graph properties. Then, K-anonymous clusters are
extended by providing the I-diversity and t-closeness privacy notions. Similarly, Figure 7
demonstrates the outcome of IL with varying user densities for each method.

B PSO-GA

IL(%)

W LECC

¥ Proposed

2,000 5,000 10,000 15,000 20,000

NMumber of users

Figure 7. Effect of the number of users on IL performance.

The clusters formed are more meaningful due to the increase in the number of data
points, leading to minimal IL. The proposed model achieved a reduction in IL by utilizing
the multiple graph properties for cluster optimization, achieving privacy preservation of
all of the elements of the OSN graph, as well as high-level privacy preservation, including
t-closeness.

As shown in Figure 8, we observed a significant increase in execution time with
increased user density. LECC showed the minimum ET compared to the proposed method
and PSO-GA.
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Figure 8. Effect of the number of users on ET (execution time) performance.

Table 5 presents the average outcomes for the parameters DoA, IL, and ET, using
PSO-GA, LECC, and the proposed method.

Table 5. Comparative analysis of average performances.

PSO-GA LECC Proposed
DoA 4861 5211 5880
IL 46.46 38.78 34.55
ET 330.29 272.31 283.85

4.4. Limitations

Although the experimental result show an improvement in performance over the
existing methods, a few limitations of the proposed model need to be highlighted. Using
an improved clustering mechanism, we achieved k-anonymity. As we kept the number
of clusters fixed for the input dataset, this limits the scalability of the proposed model.
We needed to manually adjust the total number of clusters according to the size of the
dataset, leading to the erroneous and complex process of defining the correct number of
clusters required to divide the input OSN. We investigated the proposed model on just one
OSN dataset; in the future, we will extend our work to different OSN datasets. We did
not test the security of the proposed model, and this needs to be investigated further with
additional attacks similar to knowledge graph threats.

5. Conclusions and Future Directions

A novel anonymization model was proposed for OSNs to ensure minimal loss of
sensitive structural information and a high degree of anonymity. The proposed model
performs in three phases—namely, initial, cluster optimization, and privacy preservation.
All three phases address the challenges of state-of-the-art techniques. The normalization
of input OSN data using the statistical approach further improves the functionality of the
proposed model. The hybrid score computation of each vertex leads to more reliable cluster
formation than any single graph property. The one-pass algorithm not only achieved
protection against well-known attacks such as attribute disclosure, similarity attack, etc.,
but also reduced the IL. The experimental results prove the effectiveness of the proposed
model utilizing the Yelp OSN dataset and tested for various metrics (i.e., IL, DoA, and ET).
Experiments were conducted to evaluate the efficiency of the proposed model by varying
cluster sizes and user density. The average outcome of the proposed model improved
the DoA by approximately 20% and reduced the IL by 10% compared to state-of-the-art
methods. Several suggestions can be made for future research, such as (1) to improve the
proposed model by dynamic clustering rather than fixed clustering, (2) to evaluate the
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performance of the proposed model using other OSN datasets, and (3) to evaluate the
performance of the proposed model by introducing the other attacks aside from knowledge
graph attacks.
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