
Research Article
Nonlinear Extended Kalman Filter for Attitude Estimation of the
Fixed-Wing UAV

Tang Xiaoqian ,1 Zhao Feicheng,2 Tang Zhengbing,1 and Wang Hongying3

1Xi’an Aeronautical University, School of Electronic Engineering, Xi’an, China
2National Aviation University, Kyiv, Ukraine
3Sinohydro Bureau 3Co., Ltd, Xi’an, China

Correspondence should be addressed to Tang Xiaoqian; tangxiaoqian83@163.com

Received 29 October 2021; Accepted 4 January 2022; Published 1 February 2022

Academic Editor: Bhagwan Das

Copyright © 2022 Tang Xiaoqian et al..is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Flying vehicle’s navigation, direction, and control in real-time results in the design of a strap-down inertial navigation system
(INS). .e strategy results in low accuracy, performance with correctness. Aiming at the attitude estimation problem, many data
fusion or filtering methods had been applied, which fail in many cases, which attains the nonlinear measurement model, process
dynamics, and high navigation range. .e main problem in unmanned aerial vehicles (UAVs) and flying vehicles is the de-
termination of attitude angles. A novel attitude estimation algorithm is proposed in this study for the unmanned aerial vehicle
(UAV)..is research article designs two filtering algorithms for fixed-wing UAVs which are nonlinear for the attitude estimation.
.e filters are based on Kalman filters. .e unscented Kalman filter (UKF) and cubature Kalman filter (CKF) were designed with
different parameterizations of attitude, i.e., Euler angle (EA) and INS/unit quaternion (UQ) simultaneously..ese filters, EA-UKF
and INS-CKF, use the nonlinear process and measurement model. .e computational results show that among both filters, the
CKF attains a high accuracy, robustness, and estimation for the attitude estimation of the fixed-wing UAV.

1. Introduction

.eunmanned aerial vehicle (UAV) becomes an exploration
hotspot recently in the area of robotics [1]. Similarly,
microvehicles attain a lot of concentration due to their small
sizes, lower risk, and easy application. .e objectivity of the
UAV is tested in low altitudes due to the shadowing of GPS
signals [2]. Flying vehicles show great interest in the military
and civilian sectors. Different types of missions are ac-
complished with UAVs such as tracking, inspection,
searching, mapping, and much more. Recently, the advances
in the tracking feature decreases the size as well as the cost of
the camera [3, 4]. A navigation system is widely used in the
navigation of autonomous robots and for mapping. .ese
robots or vehicles are equipped with a camera for navigation
in a GPS environment. Mostly, the strap-down inertial
navigation system (SINS) occupies an electromechanical
system (EMS) that attains low cost and consumption of
power. .e performance and robustness of EMS based on

the INS improve due to nonlinear filtering, which helps in
attaining attitude estimation and tracking of the UAV [5].
.e information of attitude and position is attained by the
INS with abundant update rate, and information combi-
nation is the way to increase the accuracy. .e INS attains
the capability to estimate the pose of the camera using the
Kalman filter (KF) where the navigation measurement
system is for visual measurement and update [6–8]. On the
other hand, growing interest has been seen in using non-
linear filtering methods for attitude estimation of flying
vehicles. .e missions of UAVs need nonlinear dynamics,
filters initialization, and estimators. Even the design of the
vehicle is conservative. .e most important task for UAVs is
attitude estimation. Flying vehicles becomes cheaper and
reliable due to the growing range of applications in UAVs. It
also develops an interest in designing simple and robust
algorithms for the attitude estimation of flying vehicles.

In reference to [9], the UKF is proposed for the flight of
the UAV. .e state equation model is based on the attitude
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angle differential equation formed by the fusion algorithm.
.e EKF helps in measuring the data of the gyro, acceler-
ometer, and magnetometer. Static and dynamic experiments
show the effectiveness of the algorithm. Experimental results
show that the proposed scheme is accurate and effective.
Similarly, in [10], the study proposes the attitude heading
reference algorithm based on the cubature Kalman filter
(CKF) for low precision of AHRS. .is filter also helps in
solving the nonlocal sampling problem. In the interim, the
adaptive estimation algorithm realizes the estimation of
motion acceleration. .e simulation results show that the
proposed algorithm accurately estimates the attitude and
acceleration. In [11], the study proposes the low-computa-
tional complexity filter for attitude estimation of the UAV,
namely, the square root UKF filter based on the KF..e basic
equations of the KF are modified just because the feature of
the filter is dignified. .is research article bespoke to the
quadrotor UAV to attain the quaternion-based model. .e
simulation results verify the effectiveness of the proposed
algorithm. In reference to [12], an efficient approach is
proposed based on the Kalman filter..e purpose of the KF is
to provide the possible region in which tracking objects might
occur. It will also help in reducing the computational com-
plexity..e performance of the proposed scheme is compared
with other schemes. .e results reveal that the scheme attains
the best performance and accuracy. Last, in another study [9]
for the error of the attitude estimation algorithm, a UAV
attitude estimation algorithm based on the UKF is proposed.
.e Euler angle method defines the attitude algorithm model
of a vehicle. Similarly, the system state equation is developed.
.e filter algorithm helps in achieving the attitude angle of the
aircraft. .e simulation results show that the proposed al-
gorithm attains a high improvement in accuracy and re-
liability as compared to the EKF.

.e contribution of this research article is to design the
two nonlinear improved Kalman filters (NIKF) to approx-
imate the attitude of fixed-wing UAVs based on the INS..e
study designs the unscented Kalman filter (UKF) and cu-
bature Kalman filter (CKF) with the help of two different
types of parameterizations/based on the Euler angle (EA)
and inertial navigation system (INS). Both filters attain
a nonlinear process. .en, these filters result in two different
orientations, namely, EA-UKF and INS/UQ-CKF. Last, the
computational simulations define the reliability, perfor-
mance, and fitness of both filters.

.e study is planned as follows. .e introduction is
presented in Section 1. .e problem definition and its
proposed solution are defined in Section 2. .e state of art is
defined in Section 3. Section 4 defines the designing of
a nonlinear Kalman filter. In Section 5, attitude parame-
terization and estimation are presented. .e simulations are
done in Section 6. Section 7 presents the conclusion of this
study.

2. Problem Definition and Proposed Solution

.is section defines the problem statement and the proposed
solution in this study. Recently, a growing interest takes
place in the use of nonlinear filtering methods for the

attitude estimation of UAVs. .e missions assigned to flying
vehicles involve the usage of nonlinear dynamics and filters
initialization, and even the design of the vehicle is conser-
vative [13, 14]. .e design of the INS results in a high error,
low accuracy, and performance. .e main problem during
the flight mission is the determination of angles. .is also
involves the estimation and compensation of errors. Many
filters applied to attitude estimation fail due to highly
nonlinear dynamics and long-range system of navigation
[15]. To solve the abovementioned problems, the two
nonlinear filters are designed, i.e., EA-IUKF and INS-CKF.
.e proposed scheme also solves the both estimation and
compensation of attitude errors. .e scheme creates an
efficient strategy with the help of parameters and different
variables to reflect the current situation. It aims towards the
better performance of UAVs during the flight mission.

3. State of the Art

.is section defines the recent trends in this field. In ref-
erence to [16], sensors take place for the attitude estimation
of flying vehicles. .e study aims towards the flying problem
due to the high rate of precision. To solve this issue, the study
proposed the algorithm using the Kalman filters. .e al-
gorithm attains the capability of providing high attitude
estimation. .e computational simulations show that Kal-
man filters are a highly suitable method for attitude esti-
mation. In the study by Odry et al. [17], a fuzzy adaptive
Kalman filter (FAKF) for the attitude estimation of mobile
vehicles was proposed..e structure of the filter includes the
EKF and FAKF to calculate the vibration of the system,
acceleration, and distortions. Filter performance is evaluated
with the help of a test bench. .e optimization performs the
tuning of filter parameters. .e simulations results show the
effectiveness of the proposed scheme. Similarly, in [18], the
study proposes positioning technology. .e architecture of
the system attains the multisensor technology established on
the unscented Kalman filter (UKF). It avoids the high order
relationships of nonlinear equations. Last, the HIL platform
helps in performing the simulations which verify the ef-
fectiveness and improves the accuracy. In reference to [19],
the study design of the CKF is based on fast Euler attitude
and heading reference for flying vehicles smaller in size. .e
abovementioned article aims to derivate the low-cost model
mutual with quaternion attitude determination. It also uses
fast Euler to accurate the attitude update by which the real-
time solution increases. Additionally, the proposed scheme
improves the overall accuracy of the filter. .e simulation
results demonstrate that the algorithm attains an excellent
attitude solution in highly dynamic conditions. In [20, 21],
the studies present the target motion estimation solution
using the unmanned aerial vehicle (UAV). .e UAV
guidance law helps in solving the estimation problem
mentioned in this manuscript. .e designed estimator helps
in tracking the moving ground target and provides the
optimal solution in real-time..is study designs the Kalman
filtering method based on inverse kinematics. .e numerical
simulations verify the accuracy and feasibility of the
designed scheme..e simulation results show the stability in
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position and velocity. Last, in [22], the study design is on the
attitude estimation algorithm based on the complementary
extended Kalman filter (CEKF). .e inertial measurement
unit (IMU) helps in deriving the attitude angle in real-time.
.e filtering algorithms eliminate the noise errors thereby
improving the accuracy of the attitude solution. .e pro-
posed scheme is verified on MATLAB simulation. .e
computational results verify the effectiveness, accuracy, and
robustness of the algorithm.

4. Designing of the Nonlinear Kalman
Filter (NLKF)

.e NLKF is a state space-based algorithm based on two
phases. To calculate the state of the system, model in-
formation and measurement information are combined
[23, 24].

4.1. Phase 1: Prediction. In this phase, the filter generates the
prediction of system state vector xεRn at time t + 1..e error
covariance matrix is denoted by EεRn×n and is shown in the
following equation at time t.

􏽢x(t + 1|t) � F(􏽢x(t|t), u(t), w(t)),

E(t + 1|t) � F(t)E(t, t)F
T
(t) + K(t)Q(t)K

T
(t),

y(t + 1) � h(􏽢x(t + 1|t), v(t + 1)),

⎧⎪⎪⎨

⎪⎪⎩
(1)

where the estimation of the exact system state is denoted by
􏽢x, F(t) is the process model matrix, u is a control vector, w

denotes the process noise, K(t) is a process noise model
matrix, and v is the observation noise. .e process noise is
denoted by Q. .e matrix E should verify the following
condition.

E(t + 1) − cov[x(t + 1|t) − 􏽢x(t + 1|t)]≥ 0. (2)

4.2. Phase 2: Estimate Correction. In this phase, the obser-
vation model refined the prediction/estimate produced in
phase 1. Matrix E(t) is improved with a lower level of
uncertainties. .ey are calculated as

􏽢x(t + 1|t + 1) � 􏽢x(t + 1|t) + L(t + 1)􏽢e(t + 1),

E(t + 1|t + 1) � (I − L(t + 1)H(t + 1)E(t + 1, t)),
􏼨 (3)

where 􏽢e(t + 1) is the innovation, and the Kalman gainmatrix
L(t + 1) is given as follows:

􏽢e(t + 1) � [y(t + 1) − H(t + 1)􏽢x(t + 1|t)],

L(t + 1) � E(t + 1|t)H
T
(t + 1)A

− 1
(t + 1),

A(t + 1) � H(t + 1)E(k + 1|k)H
T
(t + 1) + M(t + 1)R(t + 1)M

T
(t + 1)􏽨 􏽩,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where H(t + 1) is the observation model matrix, the mea-
surement noise model matrix is M, and R is the covariance
matrix of Gaussian white noise. Similarly, F(t), K(t), and
H(t) are the Jacobian matrices. y vector contains the
measurement attained by the summing system and residual
reflects among the actual measurement [23].

5. Attitude Parameterization and Estimation of
the UAV

5.1. Parameterization of Euler Angle (EA). In moving body
axes frame, the flying airframe orientation and position
cannot be described. So, a fixed inertial axes system is used to
conclude the angular velocities of the airframe. Figure 1
shows the body frame and navigation frame. .ree se-
quential rotations are used to define the orientation of an
airframe concerning fixed inertial reference. .e most im-
portant is the directive of rotation in EA.

In the reference frame, the relationship between the
angular velocities and EA of the flight is given by

p � _φ − sθ _ψ,

q � cφ _θ + sφcθ _ψ,

r � −sφ _φ + cφcθ _ψ,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(5)

where c � cos and s � sin..e rotation angles are denoted by
φ, θ,ψ, i.e., roll, pitch, and yaw, respectively. Similarly, the
angular rates are denoted by p, q, and r. By assimilating the
following equations, the orientation of the airframe is ob-
tained, where t � tan. In the matrix form, it can be rewritten
as

_φ

_θ

_ψ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

1 sφtθ cφtθ

0 cφ −sin φ

0
sφ
cθ

cφ
cθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

q

r

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (6)

.e nonlinear filters attain effective results when
designed with the base of EA. It helps in making smooth
flight paths.
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5.2.UnscentedKalmanFilter (UKF)BasedonEA. .eUKF is
articulated in the base of EA coordinates for the estimation
of the airframe attitude of the UAV. In this part, the state
vector is extended while including the gyros biases vector
which is written as

􏽢g � gp gq gr􏽨 􏽩
T
. (7)

5.2.1. Prediction. .e control input vector and state vector
are defined as follows:

u � ωT
p q r􏼂 􏼃

T
,

􏽢x � φ θ ψ gp
gq gr􏽨 􏽩

T
.

(8)

.e roll, pitch, and yaw gyro biases are denoted by gp,
gq, and gr, respectively. Equation (1) can be reduced and can
be rewritten as

􏽢x(t + 1|t) � F(t)􏽢x(t|t) + U(t)u(t) + w(t),

E(t + 1|t) � F(t)E(t, t)F
T
(t) + Q(t),

􏼨 (9)

where F denotes the state transition matrix and U denotes
the control input matrix and are given as follows:

F �
O3×3 T

O3×3 O3×3
􏼢 􏼣,

G �
T

O3×3
􏼢 􏼣.

(10)

K(t) denotes the process noise model and is assumed to
be identical. Transformation matrix T coppices angular rates
to EA rates which are written as follows:

T �

1 sφtθ cφtθ

0 cφ −sφ

0
sφ
cθ

cφ
cθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

5.2.2. Correction. .e observation model is needed to refine
the estimation which is given as follows:

􏽢x(t + 1|t + 1) � (􏽢x(t + 1|t) + L(t + 1)z(t + 1)),

E(t + 1|t + 1) � (I − L(t + 1)H(t + 1))E(t + 1, t),

z(t + 1) � y(t + 1) − H(t + 1)􏽢x(t + 1|t).

⎧⎪⎪⎨

⎪⎪⎩
(12)

.e attitude of the UAV is estimated by a sensor as
follows:

y � φm θm ψm jp
jq jr􏽨 􏽩

T
,

φm � −ct2
cy

������
c
2
y + c

2
z

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

θm � −cs
cy

g
􏼠 􏼡,

ψm � −ct2
mycφ − mzsφ

mxcθ + mysφsθ + mzcφsθ
􏼠 􏼡,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where mx, my, and mz are the earth’s magnetic field
component. Similarly, cx, cy, and cz are the acceleration of
the accelerometer along the body axes of the vehicle. .e
gravity vector is written as

g � gx gy gz􏽨 􏽩
T

� 0 0 −1􏼂 􏼃
T
. (14)

5.3. Parametrization of the INS/UQ. .e state equations of
the INS are the error equations of the strap-down INS. .e
state variables are as follows:

X(t) � σq0 σq1 σq2 σq3 σen σee σeu σL σl σh 9jx 9jy 9jz 9ox 9oy 9oz Λox Λoy Λoz􏽨 􏽩
T
, (15)

Xb

Yb

Zb

Xn

Yn

Zn

Figure 1: Body frame (b) and navigation frame (n) [24].
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where σq denotes the quaternion error. σen, σee, and σeu

denote the error of north, east, and vertical. .e longitude,
latitude, and height are expressed by σL, σl, and σh, re-
spectively. 9j denotes the gyro drift error, and 9o denotes the
Markov gyro drift error. Similarly, Λo denotes the acceler-
ometer drift. With the help of an error model and equations,
a state equation can be built.

σ _Q
n

j � 0.5λuQ
n
j ωj

ij􏼐 􏼑σQ
n
j − 0.5λdω

n
inσQ

n
j + 0.5G Q

n
j􏼐 􏼑σωj

ij

− 0.5Y Q
n
j􏼐 􏼑σωn

in,

(16)

where σQn
j � σq0 σq1 σq2 σq3􏼂 􏼃

T.

σ _V
n

� σA
n
jf

j
− 2ωn

ie + ωn
en( 􏼁 × σV

n
+ A

n
jσf

j
+ V

n

× 2σωn
ie + ωn

en( 􏼁,
(17)

where σVn � σen σee σeu􏼂 􏼃
T.

σ _L

σ _l

σ _h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0
1
h

0

sL

h
0 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

σen

σee

σeu

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 0
V

n

h
2

V
e
sLtL

h
0

−V
e
sL

h
2

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

σL

σl

σh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

_9jx � _9jy � _9jz � 0,

_9o � −
1

Ta

9o + ω1,

_Λo � −
1

Tb

Λo + ω2,

(18)

where ωn
ie denotes the projection of the earth rotation rate

in the navigation frame. Similarly, ωn
en denotes the angular

rate of navigation in the navigation frame. ωj
ij denotes the

angular rate in the body frame. ωn
in denotes the angular

rate of the navigation frame in the inertial frame artic-
ulated in the navigation frame. Qn

j denotes the quaternion
that is attained by attitude. Ta and Tb denote the corre-
lation time, and ω1 and ω2 denote the Gaussian white
noise processes.
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5.4. Cubature Kalman Filter (CKF) Based on the INS/UQ.
.e state equation and measurement equation of the system
are given as

x(t) � f(x(t − 1)) + ω(t − 1),

z(t) � h(x(t)) + v(t),
􏼨 (20)

where f(x(t − 1)) and h(x(t)) are the known functions of
the system, ω(t − 1) denotes the system noise, and v(t) is
random measure noise. With the help of a sampling point,
this filter approaches the distributing function. It also in-
ternments features of random variables after the trans-
formation of a nonlinear system. .is filter also creates the
basic points with the help of the SRC rule. Basic points under
the rule are written as

τi
�

�
n

√
[1]i,

ωi
�

1
2nx

,

∴i � 1, . . . , 2n{ },

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(21)

International Journal of Optics 5



where n denote the measurement of state parameters. 1
defines the holohedral point set..e process of the CKF filter
is defined as follows.

5.4.1. Time Update. .e cubature points that are generated,
prediction of state, diffusion of cubature points, and state
prediction covariance matrix are given as follows:

X
i
(t−1) �

�������
E(t − 1)

􏽰
τi

+ 􏽢x(t − 1),

x(t) �
1
2n

X
i

(t−1),

X
i

(t−1) � f X
i
(t−1)􏼐 􏼑,

E(t|t − 1) �
1
2n

X
i

(t−1) X
i

(t− 1)􏼐 􏼑
T

− xtx
T
t + Q(t − 1).

(22)
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Figure 2: Estimation of EA.

Table 1: Position and orientation errors.

Algorithm Longitude (m) Latitude (m) East (m/s) North (m/s) Heading (deg)
UKF 9.7 10.3 4.8 1.5 2.8
CKF 4.3 4.0 2.0 0.8 0.9
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Figure 3: Estimation error of latitude and longitude.
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Figure 4: Estimation error in velocity (east and north).
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5.4.2. Measurement Update. .e calculation and trans-
mission of cubature points, measurement prediction, in-
novation covariance matrix, cross-correlation matrix, filter
gain matrix, current state estimation, and error covariance
matrix calculation are given as follows:

X
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(23)

6. Simulations and Discussion

.is section of the manuscript analyzed the designed scheme
based on the set of simulation data received from the
movement of the UAV over 500 s. .e simulation aims to
confirm the applicability of the designed algorithm for short
and long runs..is section offers the simulations of the UKF
and CKF to prove the effectiveness of each designed tech-
nique. .e simulations run on the computer with the
processor of Intel Core-i7, 16GB RAM, and 64-bit operating
system. MATLAB software was used for the computational
simulations.

Two different filters are analyzed and examined in this
section..e red line denotes the CKF and the blue line shows
the UKF. .ese two filters solve the common challenges
faced during the regular operation. EA estimated from the
UKF and CKF is presented. .e sensor installed in the UAV
provides the readings which help in initializing the in-
tegrations. .e performance of the system depends upon the
environment in which the operation takes place. It is clearly
shown in Figure 2 that the CKF has a better performance as
compared to the UKF. In roll and pitch, the oscillations are
much more as compared to yaw angle. But in comparison to

both algorithms, the CKF achieves higher accuracy and
stability. In the simulation process, the UKF takes a higher
processing load.

Table 1 provides the position and orientation errors
averages for fifteen runs. It was done to analyze the reliability
of both approaches. .e results showed that the CKF pro-
vides the best position and orientation as compared to the
UKF. Figure 3 shows the longitude and latitude errors
recorded. .e period of error recorded is 8min approxi-
mately. As shown in figure, the CKF shows less error as
compared to others concerning time. Similarly, in Figure 4,
the velocity against north and east is defined based on the
UKF and CKF. Both velocities are calculated and by the
algorithms and with the real parameters. It is shown in figure
clearly that east velocity increases after 220 s in the UKF,
while in the CKF, the value remains constant near to zero. In
north velocity, the error ratio of the UKF is more as
compared to the CKF. Last, Figure 5 shows the estimation
error of the heading. .e figure clearly shows that the error
span of the UKF ranges from ±4 to ±15, while the CKF
remains nearly to zero. .is section defines the reliability
and accuracy of the designed approach. Based on the results
obtained, the CKF provides the best results as compared to
the UKF.

7. Conclusion

.is research study presents the design of a nonlinear
Kalman filter for the attitude estimation of fixed-wing
UAVs..e simulation of the proposed scheme, i.e., AE-UKF
and INS-CKF was carried out. .e simulation results show
that the CKF algorithm can increase the precision of ve-
hicles, and it is inherently nonlinear as compared to other
designed algorithms. In many cases, both algorithms show
the same results, but the CKF is more precise, having a better
nonlinear performance, higher accuracy, and better filter
stability. .e most important advantage of the CKF is that it
is easy to implement.

7.1. Future Enhancement and Limitations. .e experimental
results show that the proposed scheme in this study increases
the accuracy and precision of the fixed-wing UAVs. It solves
the attitude estimation problems, and the approach is novel.
.e future recommendation is that the studies should focus
on establishing more accurate and effective techniques for
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Figure 5: Estimation error of heading.
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the attitude estimation of fixed-wing UAVs. .e schemes
also solve all the problems related to attitude estimation and
angle effectively.

.is study attains some limitations which are as follows.

(i) First, the proposed scheme only solves the attitude
estimation problems

(ii) Second, the projected elements of the state vector
are real numbers

(iii) .ird, the proposed scheme does not solve the
external disturbance issues

(iv) Finally, the study only explores the attitude esti-
mation of fixed-wing UAVs, and this design leaves
the possibility of attitude errors in some cases.
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[17] Á Odry, I. Kecskes, P. Sarcevic, Z. Vizvari, A. Toth, and
P. Odry, “A novel fuzzy-adaptive extended Kalman filter for
real-time attitude estimation of mobile robots,” Sensors,
vol. 20, no. 3, Article ID 803, 2020.

[18] W. You, F. Li, L. Liao, and M. Huang, “Data fusion of UWB
and IMU based on unscented kalman filter for indoor lo-
calization of quadrotor UAV,” IEEE Access, vol. 8,
pp. 64971–64981, 2020.

[19] X. Yin, X. Peng, G. Zhang, B. Che, and C. Wang, “Flight
control system design and autonomous flight control of small-
scale unmanned helicopter based on nanosensors,” Journal of
Nanoelectronics and Optoelectronics, vol. 16, no. 4, pp. 675–
688, 2021.

[20] F. Al-Turjman, H. Zahmatkesh, I. Al-Oqily, and R. Daboul,
“Optimized unmanned aerial vehicles deployment for static
and mobile targets’ monitoring,” Computer Communications,
vol. 149, pp. 27–35, 2020.
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