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Abstract

The methodology of Specific Peptides (SP) has been introduced within the context 
of enzymes. It is based on an unsupervised machine leaning (ML) tool for motif 
extraction, followed by supervised annotation of the motifs. In the case of 
enzymes, the classifier is the Enzyme Classification (EC) number. Here we 
demonstrate that this method reaches precision of 96.5% and recall of 89.1% on 
presently available protein sequences. We also apply this method to two other 
protein families, GPCR and ZF, find their corresponding SPs, and provide the code 
for searching any protein sequence for its classification under any such family.

1. Introduction.

Genes were perceived well before they have been determined to exist on 
chromosomes. In hindsight, it seems quite a surprise to find that they are just 
stretches of nucleotides within much larger sequences of DNA, often also 
interspersed by non-coding sections (introns). The identity of genes comes to life 
after being transcribed into RNA molecules, and translated into proteins, the 
important components of the machinery of living cells.

Proteins are molecular chains of amino acids. They are being studied by 
investigating the linear composition of amino-acid sequences, or their folding 
structures, or their functional properties, as revealed by their interactions with other 
molecules. In this paper, we discuss a different perspective of their structures, 
resulting from amino acid motifs, which are observed to be common to many 
proteins having the same function, or belonging to homolog genes of different 
species. 

We follow the methodology developed and tested in [1-3], pointing out the 
existence of Specific Peptides (SPs) which are motifs of length ≥ 7 amino acids, 
occurring on enzymes only. We reanalyze all enzymes using the updated Enzyme 
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Classification (EC) labelling, employed by SwissProt [4]. This analysis 
demonstrates the high predictive power of enzymatic SPs which will be labelled 
ESPs. This is followed by analyzing GPCR proteins, including the large group of 
non-OR proteins, expanding the results of a previous study of OR proteins [5].  We 
then continue to analyze Zinc Finger proteins and find their relevant SPs. Thus we 
end up with SPs defined for proteins belonging to all these families.

The analysis starts with the motif extraction method MEX [6], which is an 
unsupervised algorithm finding motifs with high occurrence in a given text. In 
enzyme classification this text contains 90% of all enzymes in the data set [4], to 
be labelled as the training set Ptrain. Next we use a supervised methodology: 
labelling all EC motifs according to the EC assignments of proteins in Ptrain, and 
discarding motifs which appear in Ntrain, which contains 90% of the non-
enzymatic proteins in the data. The prediction accuracy is finally tested on the 
remaining 10% of the data, Ptest and Ntest. 

Clearly assignments of SPs should be considered within the context in which they 
were derived. They are not supposed to annotate a free peptide, but only the motif 
appearing within a protein sequence. Still, as such, they can help identifying and 
annotating novel proteins, and may turn out to be very useful for artificial protein 
engineering [7] and for medical research and development [8].

2. Results
2.1Enzyme Specific Peptides

The SwissProt entry [4] (version 2021_01) contains 564,227 proteins of many 
species. In order to enable a training and testing procedure we divided randomly 
the enzymes which had a single EC annotation into two sets: 227,488 were 
designated to a training set (Ptrain) and 25,309 enzymes were designated to a test 
set (Ptest). In parallel we also constructed non-enzymatic training and test sets, 
Ntrain and Ntest, containing 264,739 and 29,416 proteins correspondingly. This 
validation set serves to discard motifs which are not specific to enzymes.
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Using the Enzyme Classification (EC) nomenclature, enzymes are classified into 
seven classes, EC1 to EC7, and within each EC class they are grouped into a 
hierarchy of four levels.
Some are classified just into the first level, numbered by the class, some at levels 2 
or 3, but most at level 4, which is often associated with homologs of the same gene 
in different species. Proteins which have enzymatic regions belonging to two 
different EC classes were discarded from the training set.

Following [4] we restricted our MEX search to motifs of length ≥7 amino acids. 
Details of our procedure of analysis are explained in the Methods section.
Our procedure leads to a set of 286,755 specific peptides which we label as ESPs. 
They are provided as a Json list in our github entry [9] which also includes the 
code for searching a protein for the occurrence of such ESPs.

In order to test the usefulness of ESPs in predicting the EC labelling of a protein, 
we ran it on the test sets Ptest and Ntest. An SP hit on Ptest is regarded as true 
positive (TP) if the Swissprot EC assignment of the enzyme appears on the EC tree 
of the SP. If no SP hits an enzyme, it is labelled as false negative (FN). If an SP 
hits a protein in Ntest, the latter is declared as false positive (FP). If no SP hits a 
protein in Ntest, it is regarded as true negative (TN).

The results are presented in Table 1:

Table 1. Classification of Enzymes according to ESPs. 

We use conventional definitions of Precision=TP/(TP+FP)  and 
Recall=TP/(TP+FN). The sizes of Ptest and Ntest are 25,309 and 29,416 
correspondingly. The 806 FP events include 300 from Ptest (with mismatched EC 
assignments) and 506 from Ntest.

2.2 GPCR

TP FP FN TN Precision Recall
22,283 806 2,726 28,910 96.5% 89.1%
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G protein coupling receptors (GPCR) play dominant roles in olfaction, vision and 
many other cellular functions. 

Olfactory Receptors (OR) were studied in [5] using motifs of length ≥5 derived by 
the MEX methodology. They [5] have demonstrated how the resulting motifs can 
be employed in providing the sketch of an evolutionary tree of species, and have 
provided a web-service for OR protein assignment on the basis of these motifs.

We extend our analysis to all Swissprot GPCRs. After motif extraction we start 
with human GPCRs, and exhibit the specificity of all motifs of length ≥ 7 to either 
OR proteins, or to non-OR (NOR) proteins within all GPCRs. There exist 156 OR 
motifs of length ≥ 7 with hits on the 469 human ORs, and 2896 NOR motifs hitting 
the 148 human NOR proteins. There is no overlap between these lists, i.e. they are 
specific to either OR or NOR proteins.

While the number of human OR proteins (469) is larger than the NOR proteins 
(148), the number of the NOR motifs is much larger (2896 vs 156 of length ≥ 7) 
because of the large variety of modalities which are served by NOR proteins.  
Turning to all Swissprot GPCRs, for all organisms, we expect to find a clear 
separation between OR and NOR, as well as discover a very large number of 
protein-SP biclusters in the NOR GPCRs. We find 562 OR proteins, leading to 367 
OR motifs with length ≥ 7, and 2481 NOR proteins with 3710 corresponding 
motifs. Once again, the two sets of motifs are specific to the two sets of proteins. 
We then proceed to search for protein-SP biclustering of the NOR data. The large 
number of NOR proteins and motifs allows for their sorting into clusters, as listed 
in Table 2.  Both OR and NOR SPs will be referred to as GSPs. Their lists are 
provided as Json files in our github entry [9].
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# Function # proteins #SPs #motifs
1 5-hydroxytryptamine receptor 93 98 151
2 Adhesion G protein-coupled receptor 49 92 134
3 Alpha  adrenergic receptor 52 62 92
4 Angiotensin II receptor 22 22 31
5 Beta adrenergic receptor 49 78 116
6 Blue-sensitive opsin  - Green-sensitive opsin  -  Rhodopsin 156 160 269
7 Cadherin EGF LAG seven-pass G-type receptor 9 30 62
8 Chemokine-like receptor 146 108 177
9 Dopamine receptor 43 49 76

10 Frizzled 53 117 119
11 G protein-coupled receptor kinase 12 19 40
12 Galanin receptor type 11 3 10
13 Gamma-aminobutyric acid type B receptor subunit 4 1 5
14 Gastric inhibitory polypeptide receptor 7 3 10
15 Gastrin/cholecystokinin type B receptor 10 9 14
16 Golgi pH regulator 9 13 18
17 Gonadotropin-releasing hormone receptor 17 11 20
18 G-protein coupled bile acid receptor 5 3 4
19 G-protein coupled receptor 163 160 273
20 Growth hormone-releasing hormone receptor 11 6 13
21 Histamine   receptor 20 41 60
22 Hydroxycarboxylic acid receptor 6 2 4
23 Latrophilin Cirl 10 66 83
24 Leukotriene B4 receptor 4 2 4
25 Lutropin-choriogonadotropic hormone receptor 12 13 28
26 Lysophosphatidic acid receptor 17 11 17
27 Medium-wave-sensitive opsin 27 50 44
28 Melanin-concentrating hormone receptor 6 4 5
29 Melanocortin receptor 19 12 21
30 Melanocyte-stimulating hormone receptor 81 118 146
31 Melanopsin 10 9 13
32 Melatonin-related receptor 24 10 23
33 Metabotropic glutamate receptor 45 100 146
34 Muscarinic acetylcholine receptor 35 73 108
35 Mu-type opioid receptor 13 5 25
36 N-arachidonyl glycine receptor 5 3 4
37 Neuromedin  receptor -- Neuropeptide  receptor 47 29 50
38 N-formyl peptide receptor  15 16 24
39 Nociceptin receptor 5 6 8
40 Orexin receptor type 10 17 25
41 Oxytocin receptor 13 10 22
42 P2Y purinoceptor 29 23 39
43 Parathyroid hormone/parathyroid hormone-related peptide receptor 12 16 28
44 Pituitary adenylate cyclase-activating polypeptide type I receptor 4 1 7
45 Platelet-activating factor receptor 8 7 10
46 Prokineticin receptor 8 7 11
47 Prostaglandin   receptor 29 26 39
48 Proteinase-activated receptor 18 11 19
49 Proto-oncogene Mas 5 1 2
50 Relaxin receptor 7 5 8
51 Serpentine receptor class 18 8 14
52 Short-wave-sensitive opsin 11 11 22
53 Smoothened homolog 4 12 13
54 Somatostatin receptor type 21 13 23
55 Sphingosine 1-phosphate receptor 16 14 19
56 Substance-K receptor 10 5 19
57 Taste receptor member 49 99 141
58 Thromboxane A2 receptor 5 3 4
59 Thyrotropin receptor 14 24 34
60 Trace amine-associated receptor 44 41 58
61 Urotensin-2 receptor 5 4 6
62 Vasoactive intestinal polypeptide receptor 19 5 16
63 Vasopressin  receptor 12 14 23
64 Vomeronasal type-1 receptor 26 22 39
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Table 2. 64 Protein clusters among NOR GPCR. #SPs refers to those which are 
specific to the cluster, while #motifs refers to other GSPs occurring in other NOR 
clusters as well.

Next we run all the GSPs against the Enzymes of our EC study. We find 63 hits of 
these motifs on 3 EC classes, thus providing EC identifications of 3 NOR classes. 
They are listed in Table 3:

EC classification NOR classification
2.7.11.14    Rhodopsin kinase Blue-sensitive opsin, Green-sensitive 

opsin, Rhodopsin
2.7.11.15    [Beta-adrenergic-
receptor] kinase

Beta adrenergic receptor

2.7.11.16    [G-protein-coupled 
receptor] kinase

G protein-coupled receptor kinase

Table 3. Three NOR classes which belong to three EC classes.

There exist 20 other sporadic hits of NOR GSPs on EC proteins, which are 
consistent with expected noise.

2.3 Zinc Finger proteins

We have analyzed 2582 Swissprot ZF proteins and extracted 1487 motifs of length 
≥7 which are declared to be ZSPs. 786 of all the proteins are human ZF proteins, 
and they display hits by 1412 of the SPs.

Since ZF proteins may contain several ZF domains, we encounter reappearance of 
motifs on different locations within the same protein. This is different from our 
previous studies of EC and GPCR proteins, where inter-protein multiple 
appearances were responsible for the generation of MEX motifs. Here we find that 
intra-protein recurrences play an important role.
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To illustrate this fact, we display in Table 4 some of the "popular" ZSPs, which 
have 100 or more hits on all human ZF proteins. On the right of the table we 
provide the sum of all shown hits for each protein as displayed here, and compare 
it to the total number of ZSPs hitting each protein. On the bottom we provide 
analogous counts for each ZSP.

It should be realized that SPs of length n can be contained within SPs of length >n, 
as can be seen in this table, which serves as an examples rather than a summary. 
Summary of all ZSPs and their hits on ZF proteins is provided in our github entry 
[9].

Clearly the repetitive appearances of SPs on a given protein reflect the existence of 
many ZF regions on the same protein. The latter is usually larger than the number 
of repeats of a single SP, since different SPs may belong to different ZF regions.
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Table 4. Number of hits by different SPs, displayed on different human ZF proteins. 
Large numbers correlate with the fact that many ZF regions can be found on the 
same protein.

There exist some proteins which act as enzymes and possess zing fingers. One 
outstanding example is PRDM9. This protein serves recombination hotspots during 
meiosis by binding nucleotides with its zinc fingers. The annotations of the human 
version of this protein are provided by https://www.uniprot.org/uniprot/Q9NQV7. 
They contains 14 ZF regions. The first starts at location 388 and has length of 24 
amino acids. The other 13 start at 524 and are of length 23 each. In Fig. 1 we 
display, in color code, the loci of hits by all ZSP and ESP motifs of length ≥ 7. 

Fig. 1 shows that the last 12 ZF domains display very high similarity and an exact 
periodicity. Comparing with Uniprot annotations we find that all ZF domains have 
the structure YVCRECxxxxxxxxHQRTHT, where the additional 8 amino acids, 

SP CEECGKAEKPYKCE GEKPYKCEECHKIIHTG HKRIHTGEK HTGEKPY HTGEKPYKCEIHTGEKP IHTGEKPY KCEECGK KPYKCEECGKPYKCEECGKPYKCEECGKAFRIHTGEK YKCEECG shown hits total hita
length 7 7 10 7 9 7 10 7 8 7 10 9 11 7 7
A6NK75 9 7 7 3 2 5 5 5 5 9 8 8 8 2 10 93 169
A6NN14 25 16 14 11 1 13 13 15 12 26 20 20 19 1 22 228 386
A6NNF4 10 14 12 4 4 11 10 9 8 13 11 11 9 4 12 142 251
A8MQ14 0 0 0 0 1 23 0 20 19 0 0 0 0 14 0 77 123
A8MTY0 7 6 6 4 3 8 5 8 8 7 7 7 7 3 8 94 174
A8MXY4 18 6 5 6 0 5 5 5 5 19 14 14 14 0 15 131 221
O43345 19 24 20 1 4 18 17 18 17 28 23 25 11 4 27 256 418
O75346 6 5 5 0 3 9 5 6 6 5 5 5 4 3 5 72 127
O75373 7 9 8 2 6 6 6 7 6 8 6 6 5 6 8 96 169
O75437 7 9 6 4 1 6 6 4 4 10 9 9 7 1 11 94 161
O95780 6 5 4 0 4 6 4 5 5 5 4 4 4 4 5 65 126
P0DKX0 11 6 6 1 3 4 4 6 4 14 7 7 6 4 12 95 167
P0DPD5 8 7 5 1 7 6 5 6 6 9 7 7 6 7 9 96 190
P17019 9 8 7 4 1 9 7 8 8 11 10 10 8 1 11 112 192
P17038 14 9 5 2 2 7 6 5 5 13 10 11 11 3 13 116 207
P35789 11 6 5 0 2 10 5 8 7 9 8 8 8 2 9 98 177
P52742 0 0 0 0 0 13 0 8 8 0 0 0 0 8 0 37 100
Q02386 0 7 5 0 0 13 6 3 3 6 5 6 0 3 7 64 110
Q03923 5 7 5 6 2 12 6 12 12 6 5 5 3 2 6 94 154
Q03924 7 4 3 1 2 4 2 4 4 6 4 4 4 2 6 57 111
Q03936 9 7 4 5 1 6 5 6 6 9 8 8 8 1 9 92 163
Q03938 8 4 3 1 5 4 2 3 3 8 6 7 7 5 7 73 132
Q05481 21 14 12 6 7 18 13 15 15 21 14 14 14 7 21 212 400
Q14593 5 5 3 3 2 6 3 4 4 5 4 5 5 2 6 62 120
Q5SXM1 3 5 4 0 9 10 4 10 10 4 4 4 2 10 6 85 160
Q68DY1 9 4 4 2 1 5 4 4 4 9 6 8 8 2 9 79 138
Q6ZN08 4 7 7 5 3 9 7 9 9 8 8 8 4 3 9 100 164
Q6ZR52 12 10 6 2 2 5 5 6 5 11 10 10 9 2 11 106 185
Q86V71 7 7 6 0 2 7 4 7 7 6 6 6 6 3 6 80 150
Q8IW36 6 5 3 0 2 4 3 4 4 6 6 6 4 4 6 63 117
Q8IYB9 10 3 2 1 4 9 2 10 9 6 3 3 3 4 6 75 138
Q8IYN0 6 5 5 1 1 6 4 6 6 6 5 5 5 2 6 69 120
Q8N7Q3 11 13 9 4 3 8 8 8 8 13 12 12 8 3 13 133 225
Q8N972 0 0 0 0 0 13 0 3 3 0 0 0 0 3 0 22 107
Q8TAQ5 2 2 2 0 1 15 2 12 12 2 2 2 2 11 2 69 153
Q8TD23 9 6 4 2 3 5 5 5 5 8 6 8 8 3 8 85 155
Q8TF20 7 7 5 0 3 13 5 16 13 7 5 5 5 11 7 109 201
Q8TF32 8 6 5 5 3 6 5 7 6 7 4 4 4 3 6 79 140
Q96IR2 0 5 5 0 0 17 4 9 9 0 0 0 0 5 0 54 108
Q96N22 9 4 3 3 3 8 3 8 8 5 4 4 4 3 5 74 134
Q96N38 9 5 4 2 2 5 4 6 5 8 4 4 4 2 6 70 130
Q96SE7 0 0 0 0 0 13 0 12 12 0 0 0 0 3 0 40 100
Q9H7R5 0 0 0 0 1 13 0 13 12 0 0 0 0 7 0 46 114
Q9H8G1 4 6 4 4 2 7 4 7 7 5 4 4 4 3 5 70 119
Q9HCG1 0 0 0 0 0 13 0 10 9 0 0 0 0 5 0 37 107
Q9P255 8 6 6 3 2 5 4 5 5 8 7 7 7 2 9 84 154
Q9UII5 9 10 6 5 3 12 7 12 12 11 7 7 5 3 9 118 201
Q9Y2Q1 9 8 6 4 1 6 6 6 5 9 8 8 7 1 8 92 165

shown hits 364 309 246 108 114 436 230 385 365 386 306 316 267 187 376
total hits 473 433 322 127 192 2136 327 1352 1158 509 364 391 303 966 477
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replaced by x, vary according to the nucleotide targeted by the ZF domain. In Fig. 
1 we note prevalent occurrence of the structure HQRTHTGEKPYVCRECGRGF 
which includes the suffix of a previous ZF domain and the prefix of the next ZF 
domain. The colors reflect occurrences of hits by ZSPs and ESPs. Between the 
suffix of one structure and the prefix of the next we find the quintet GEKPY which 
fills the gap between 23, the length of the ZF motif, and 28, the regular periodicity 
observed in this protein over the range of its last 12 ZF regions. 

MSPEKSQEESPEEDTERTERKPMVKDAFKDISIYFTKEEWAEMGDWEKTR
YRNVKRNYNALITIGLRATRPAFMCHRRQAIKLQVDDTEDSDEEWTPRQQ
VKPPWMALRVEQRKHQKGMPKASFSNESSLKELSRTANLLNASGSEQAQ
KPVSPSGEASTSGQHSRLKLELRKKETERKMYSLRERKGHAYKEVSEPQD
DDYLYCEMCQNFFIDSCAAHGPPTFVKDSAVDKGHPNRSALSLPPGLRIGP
SGIPQAGLGVWNEASDLPLGLHFGPYEGRITEDEEAANNGYSWLITKGRN
CYEYVDGKDKSWANWMRYVNCARDDEEQNLVAFQYHRQIFYRTCRVIR
PGCELLVWYGDEYGQELGIKWGSKWKKELMAGREPKPEIHPCPSCCLAFS
SQKFLSQHVERNHSSQNFPGPSARKLLQPENPCPGDQNQEQQYPDPHSRN
DKTKGQEIKERSKLLNKRTWQREISRAFSSPPKGQMGSCRVGKRIMEEESR
TGQKVNPGNTGKLFVGVGISRIAKVKYGECGQGFSVKDVITHQRTHTGEK
LYVCRECGRGFSWKSHLLIHQRIHTGEKPYVCRECGRGFSWQSVLLTHQR
THTGEKPYVCRECGRGFSRQSVLLTHQRRHTGEKPYVCRECGRGFSRQSV
LLTHQRRHTGEKPYVCRECGRGFSWQSVLLTHQRTHTGEKPYVCRECGR
GFSWQSVLLTHQRTHTGEKPYVCRECGRGFSNKSHLLRHQRTHTGEKPYV
CRECGRGFRDKSHLLRHQRTHTGEKPYVCRECGRGFRDKSNLLSHQRTHT
GEKPYVCRECGRGFSNKSHLLRHQRTHTGEKPYVCRECGRGFRNKSHLLR
HQRTHTGEKPYVCRECGRGFSDRSSLCYHQRTHTGEKPYVCREDE

Color code:
CRECGRGF  is an ESP
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HQRTHTGEKPYVC  is a ZSP
HQRTHTGEKPYVC  are compound hits by a ZSP and an ESP 

Fig. 1. The sequence of PRDM9_HUMAN Histone-lysine N-methyltransferase 
(Q9NQV7) and color coded display of hits by ESPs of EC 2.1.1.43 and ZSPs, 
which may partially overlap each other.

3. Summary and Discussion.

Our methodology is based on machine learning (ML) practices: MEX is an 
unsupervised tool for motif extraction; these motifs are then searched on protein 
sequences using supervised annotation to classify the results. In the case of 
enzymes, the classifier is the Enzyme Classification which is defined in terms of 
seven classes and four levels in each class.

ESPs are specific peptides whose presence on the amino acid sequence of the 
protein indicates its EC number, as well as the tree associated with it. This 
methodology was introduced in 2007 [1]. Other ML studies appeared in the 
meantime, trying to solve the same (or related) problems using various ML tools. 
Many neglected to notice that SPs can do the required EC prediction quite well, 
often even better than the new tools.

Some examples of recent ML methodologies are DeepEC [10] and MAHOMES 
[11]. DeepEC employs 3 deep convolutional neural networks and a homology 
analysis tool to the study of enzyme sequences. When applying it to a test set 
which uses 201 enzymes they obtained precision = 0.92 and recall = 0.455 (quoted 
from Table 2 in [10]). This is considerably worse than our results in Table 1, which 
were based on a much larger (25K) test set. Other five ML methods which they [9] 
compared themselves to, were even worse. 

MAHOMES[11] uses a decision-tree ML model, which is structure-based, 
employing physicochemical features specific to catalytic activity. Their main aim 
is to classify metals bound to proteins as enzymatic or non-enzymatic, and they 
succeed doing it with precision=0.922 and recall=0.901. Comparing to sequence-
based technologies, they find that DeepEC scores on their tasks are precision = 
0.905 and recall = 0.596. They find that another homology method, EFICAz2.5 
[12] (which lost to DeepEC according to [10]), had better statistics 
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(precision=0.922 and recall=0.901) but still falls short of their own [11]. For an 
older review of ML studies of enzymes see [13].

Our precision/recall results attest to the usefulness of the MEX unsupervised 
methodology in discovering relevant and unique motifs, the specific peptides 
(SPs). Our approach is not limited to enzyme studies. We have demonstrated this 
flexibility by investigating GPCR and Zinc-finger proteins, leading to a wealth of 
novel SPs. We provide in [9] a documented python code which allows for SP 
searches of all the functionalities which we have studied. It contains the lists of 
2,002 NOR GSPs, 351 OR GSPs and 1,482 ZSPs in addition to the 286,755 ESPs. 

Methods

Building the list of ESPs,

In order to run the Motif Extraction program (MEX) [6], we divided the 
enzymes training set into batches grouped by joint level 2 assignments, and 
batches of enzymes with single level 1 assignments.  Following [4] we 
restricted our MEX search to motifs of length ≥7 amino acids. The analysis led 
to 307,989 motifs. All motifs were then annotated after collecting the 
information of the IDs of enzymes hit by a particular motif (i.e. occurring in 
full on the amino acid chain of the enzyme) and how many times was a 
particular enzyme hit by a particular motif. 

The EC number description, indicating both class and level, can be viewed as 
an inverted tree with a maximum depth of 4. For every motif, we map the EC 
numbers of the enzymes it hits on the training set onto a single EC tree. 
Starting from level 4 and moving upwards, we search for the first level which 
is a unique descendent of a higher level. The EC number of this unique 
descendant is assigned to the motif. 

In order to remove motifs which may occur also on non-enzymatic proteins, 
we search for hits of all motifs on the non-enzymatic Ntrain set. Such motifs 
are removed from the list of specific peptides. Thus, to summarize, a motif of 
length ≥ 7 amino acids is labeled as an Enzyme Specific Peptide (ESP) if:

-it hits (i.e. appears in full on the amino acid chain of) enzymes belonging to 
only a single EC class of Ptrain 
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-and it does not hit any protein in Ntrain
This procedure leads to the reduction of the set of motifs to 286,755 specific 
peptides which we label as ESPs. They are provided as a Json list in 
our github entry [9] which also includes the code for searching the sequence of 
a protein for the occurrence of such ESPs on its amino acid chain..
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