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Abstract: Metalloproteins are a family of proteins characterized by metal ion binding, whereby
the presence of these ions confers key catalytic and ligand-binding properties. Due to their ubiquity
among biological systems, researchers have made immense efforts to predict the structural and
functional roles of metalloproteins. Ultimately, having a comprehensive understanding of metal-
loproteins will lead to tangible applications, such as designing potent inhibitors in drug discovery.
Recently, there has been an acceleration in the number of studies applying machine learning to predict
metalloprotein properties, primarily driven by the advent of more sophisticated machine learning
algorithms. This review covers how machine learning tools have consolidated and expanded our
comprehension of various aspects of metalloproteins (structure, function, stability, ligand-binding
interactions, and inhibitors). Future avenues of exploration are also discussed.

Keywords: metalloproteins; metalloenzymes; machine learning; deep learning; protein structure;
protein function; protein stability; inhibitor design; cleavage sites

1. Introduction

When oxygen molecules enter the human body through the lungs, they attach
to hemoglobin molecules in red blood cells by oxidizing the Fe2+ heme cofactor, pro-
ducing a low-spin, ferric-oxy complex. Should the iron in heme be rendered defunct, our
bodies would lack the most fundamental component for aerobic respiration. Proteins that
contain metal cofactors, such as hemoglobin, are termed metalloproteins, and they make up
nearly half of the entire protein population [1]. Aside from hemoglobin, another example
of a critical metalloprotein is ceruloplasmin [2], which prevents Fe2+ from being oxidized
prematurely in the bloodstream. Furthermore, alcohol dehydrogenase, the enzyme respon-
sible for breaking down toxic alcohol in humans and other animals, relies on a zinc ion
to coordinate its substrate [3]. Other organisms also take advantage of metalloproteins,
most notably every green plant species with proteins containing chlorophyll, which binds
to Mg2+. Magnesium provides structural integrity to chlorophyll, the molecule responsible
for harnessing energy for the entire biosphere by facilitating the efficient capture and
transfer of energy from antenna pigments (i.e., chlorophyll b) to the reaction center.

The abundance and ubiquity of metalloproteins have attracted much scientific endeav-
ors to understand the relationships between protein structures and functions [4,5], and
translate that understanding into real-life applications [6,7]. While traditional molecular
modeling approaches, such as classical molecular dynamics [8,9] and quantum mechan-
ics/molecular mechanics (QM/MM) methods [10], have often been used to study these
objectives, the usage of machine learning models has grown in popularity over the last
decade [11], as metalloproteins can now be studied in a computationally inexpensive
manner at a systems level. By designing and optimizing models to learn patterns and
distinctions from training and validation data sets, these machine learning models can even-
tually predict the properties and behaviors of any new inputs (i.e., test sets). In other words,
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the machine “learns“ to make judgments about its input. The ability of the model to learn
patterns from large datasets [12] makes it advantageous yet complementary to experimental
and the aforementioned molecular modeling approaches [13]. Machine learning can be
divided into three main types: supervised learning (uses labeled data for new output predic-
tions), unsupervised learning (uses unlabeled data to identify patterns), and reinforcement
learning (uses a learning agent to predict the correct output by maximizing its reward).
Some common examples of supervised learning algorithms include random forests [14],
support vector machines (SVM) [15], and linear regression. Unsupervised learning is used
for clustering and association (i.e., using hidden Markov models (HMMs) [16]). A neural
network, on the other hand, is a popular type of architecture that can be used for both su-
pervised and unsupervised learning. It models the human brain, where information flows
across axons of various synaptic weights, and different sets of data features are evaluated
at various points (using corresponding channels), much like a neural transmission [17]. In
addition, neural networks often contain many hidden layers of interconnected neurons
to model more complex problems (more commonly known as deep learning).

Machine (and deep) learning has recently displayed great potential in studying protein
structures. In 2018, the first version of AlphaFold, a protein structure prediction algorithm
based on deep convolutional residual neural networks, was developed by Google AI’s Deep-
Mind [18,19] and outperformed all other programs for the thirteenth edition of the critical
assessment of protein structure prediction (CASP). Two years later, during the fourteenth
edition of CASP, the second version of AlphaFold, which incorporates the revolutionary
attention mechanism [20], made virtually impeccable predictions for various amino acid
sequences [13] and predicted structures corresponding to 98.5% of the entire human pro-
teome [21]. The results were highlighted by Nature [22], and it was hailed as a milestone
in deep learning applications and biology. However, as famous as this accomplishment
is, machine learning has found its way into studying proteins long before it. For years,
researchers have developed programs that could analyze the functionality of enzymatic
sites by finding the sequence and structural patterns that could predict what a protein
might do and what pathology could ensue from defects at specific loci. The purpose of
these endeavors is that, eventually, integrating complex biomolecular theories into the prac-
tical design of functional proteins becomes feasible computationally. Ideally, algorithms
will determine the protein structure from an amino acid sequence, and combined with
experimental validation, one can recreate naturally-occurring proteins and tailor de novo
proteins to fulfill specific objectives.

In this review, our focus will be on metalloproteins, of which there has been much data
relating to structure and properties gathered over time. The large amount of experimental
data makes metalloproteins the perfect subject for machine learning approaches. Using var-
ious algorithms (random forest, neural network, SVM, etc.) [23], not only can one study
how metalloproteins structure themselves with the metal they bind, but also how that
relates to functionality, and how one can, in theory, design new proteins. Hence, the focus
of this review is distinct from other reviews on non-metal-containing proteins; for example,
this review covers unique challenges that machine learning can resolve (see Section 4),
such as differentiating between catalytic metal sites and inactive sites that are structurally
similar [12]. Furthermore, this review summarizes studies related to other properties, such
as metalloprotein stability, inhibition, and how and where substrate cleaving occurs.

2. Structural Analysis

In the past decades, there have been multiple attempts to understand metalloproteins
using theoretical or computational methods, while many established databases and soft-
ware documents have analyzed metal-binding processes [24–26]. For example, in 2000,
Dudev and Lim [27] conducted ab initio and continuum dielectric calculations of the free
energy change that occurs when a protein binds a metal ion in the presence of surrounding
water molecules. The study aimed to understand why ions bind to hydrophilic residues
directly instead of first coordinating water ligands. The results show that a low dielec-
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tric constant, which depends on the metal’s chemical environment, increases the binding
affinity of the ion to the hydrophilic core. Computationally, Dudev et al. [28] surveyed
the protein data bank (PDB) for protein structures containing Zn, Ca, Mn, and Mg to in-
vestigate the influence of the second shell on metal binding and selectivity. Then, in 2012,
Andreini et al. [29] presented the FindGeo program, which was used to determine the ge-
ometry of metal ion coordination. Written using FORTRAN 77 and Python, it takes PDB
files as input and finds ion-coordinating amino acid residues, determined using atoms
within a specified threshold distance. The method proves to be effective for determining
less regular metalloprotein geometries. While these endeavors have done much to deepen
our understanding of metalloproteins, it remains at the molecular level of obtaining new
knowledge relevant to specific proteins. In order to broaden the applicability of metallopro-
tein research, one should utilize a systems-level approach to engender new and testable
knowledge by exploiting the vast collection of data. In 1999, DeGrado et al. [30] published
an article on how to characterize and design novel metalloprotein structures computation-
ally. Although some plausible clues about constructing new structures were illuminated,
the observations amounted to generalizations. A more straightforward approach would be
to develop an algorithm that takes any amino acid sequence and predicts what behavior it
will possess (or not) as a folded protein.

This approach has become possible with the advent of machine learning and deep
learning [31]. AlphaFold has been a hallmark success, but the application of machine
learning in protein studies was already underway before it. For metalloproteins alone,
in 2007, Passerini et al. [32] applied an SVM to predict the existence of zinc metal-binding
sites within the human proteome. The results were promising, as the model accurately
predicts metal binding for some residues, and many of its predictions are confirmed by
previous works. It was significantly fallible, however, as its predictions are not assured
to be valid for metalloproteins in vivo: a protein it predicts to bind zinc might bind to other
metals. Four years later, Passerini et al. released MetalDetector v2.0 [33], which uses
a combination of algorithms (SVM, HMM, recurrent neural network) to predict metal
binding sites in proteins, including those without known structural similarities. Following
this study, another metal-binding site predictor, DeepMBS, was published [34]; it is based
on a deep convolutional neural network and is the first application of a deep learning
structure to such a site prediction. In 2014, Estellon et al. [35] published a study on iden-
tifying microbial iron-sulfur proteins using a HMM. After experimental validation, two
new proteins containing iron–sulfur clusters were identified. The examples above were
undoubtedly innovative at that time. However, a heavy setback is the limited scope of
what these models target.

The issue of scope did not go unattended, however. In 2005, Lin et al. [36] presented
an artificial neural network that could predict metal-binding residues in a metalloprotein
based on its primary sequence. By limiting themselves to strictly biologically-relevant
features (i.e., solvent-exposed surface area, secondary structure, amino acid physical prop-
erties, chemical properties, hydrophobicity) and using data from the PDB and the metal-
loprotein database, the authors designed a feedforward neural network. More than 90%
specificity in the predictions was achieved. For the metal elements tested, bulk and trace
metal predictions yielded >98% accuracy, and the application of one particular feature set
(corresponding to the amino acid chemical properties) displayed an impeccable sensitivity
of almost 100% for bulk metals. In 2008, Carugo published a study [37] along a similar line
of logic. The goal was to design a versatile program that determined if a protein required
a metal ion and whether it could discern which species of metal it required. Drawing
from the UniProt database, it took as variables the frequency of various amino acid clus-
ter structures, which are distinctive based on their conformations, hydrophobicities, and
whether they fold. The program itself uses a random forest, and the author discussed its
sensitivity, specificity, precision, and accuracy when predicting whether a protein could
incorporate a specific metal type or not. Although the results show that the model has
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varying accuracies, depending on the type of metal, all of the performance metrics indicate
that the model performs better than a random classifier.

These works show the progress in machine learning applications towards versatility
and prediction reliability, long before the method had primarily captured the public’s atten-
tion. Several years later, machine learning approaches were used to provide more holistic
answers to incompletely-answered questions. For instance, Liu and Altman developed
an enhanced version of the FEATURE program [38,39] by coupling loop modeling with
a Naïve Bayes (NB) classifier trained using features related to biochemical and structural
properties, which could predict calcium-binding sites in disordered regions with 70%
accuracy, thus expanding our repertoire of metal-binding site predictors to putative confor-
mations and regions that cannot be crystallized. On a related note, neural networks have
also been applied to the development of molecular potentials and force fields for molecular
dynamics simulations of metalloproteins [40–42], which in turn, can be used for structural
refinement and investigating other relevant processes, such as ligand binding. In another
study, Brylinski and Skolnick [43] addressed the above issue of metal binding in a 2012
study, where a new program called FINDSITE-metal was presented. This algorithm com-
bines structural and evolutionary information (using templates with varying sequence
identity to the target) with an SVM trained to assign a binding probability between a protein
residue and a metal ligand. As with Passerini et al. [32], the focus involves predicting
metal-binding proteins within the human proteome. One distinction of this research is
that the authors found that evolutionary-related proteins bind similar metals at the exact
locations with identical residues. Another key finding of the FINDSITE-metal study is
the dependency of the percentage of correctly predicted sites on native and distorted struc-
tures. Through a Monte Carlo process, Brylinski and Skolnick first generated distortions
to known crystal structures (at specific resolutions). The fraction of correctly predicted
sites (defined to be within a 4 Å distance between the predicted metal location and metal
location of the target structure) decreased slightly from 69.5% (crystal structure) to 67.2%
for a 2 Å RMSD-distorted structure and as low as 50.8% for a 6 Å RMSD-distorted structure.
When the distance between the crystal structure- and template-bound metal ion increases
to more than 4 Å, the predicted protein tends to bind to non-native ions instead of native
ions. This observation also holds for the distorted structures. This multi-faceted work of
Brylinski and Skolnick takes an early step into using machine learning to engineer artificial
metalloproteins, bringing us closer to turning our knowledge towards actual usage. In
recent years, researchers have made this goal explicit, presenting how machine learning
can boost efforts to engineer new structures.

3. Structural Design

The rules for selecting appropriate metal-coordinating residues and designing sites of
high metal-binding affinity, as well as the factors that determine ion selectivity at these sites,
have been investigated to a large extent by the de novo protein design community [30,44].
Nevertheless, manually navigating through these rules is highly impractical, even for recre-
ating a known structure, let alone designing an altogether new one. For such a reason,
many regarded computation as a viable alternative. As long as the predictions are reliable,
the process to achieve the desired protein structure is accelerated when experimentalists
can validate high-confidence predictions. In turn, new experimental data becomes available
to expand training sets and update machine learning models, such that there is constant
synergy between both computation and experimentation (otherwise known as active learn-
ing). The need to experimentally validate structure predictions was one of the topics in Lu’s
discourse [45] on metalloprotein design, which discussed limitations related to binding site
geometries and the lack of selectivity among different ions. As recent as 2021, Osadchy and
Kolodny [46] mapped out a theory on how to build a deep learning network that would
produce sequences resembling natural proteins for desired functions. It was postulated that
by studying copious amount of structures, it would be possible to teach various generative
models (autoregressive, energy-based, variational autoencoders, normalizing flow, gen-
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erative adversarial networks) to predict an input amino acid sequence with a predefined
property. Subsequently, other computational methods, such as Rosetta and molecular
dynamics, can evaluate these predicted properties, although experimental validation is
unequivocally the gold standard.

In 2018, Greener et al. [47] explored the combination of protein design and redesign
with deep generative models. In the study, conditional variational autoencoders (CVAE),
an inference-generation mechanism capable of outputting protein sequences that match
certain attributes (such as metal-binding or topological conformation), were used. With this
ability, the objective was to use unsupervised learning to design metal-binding sites in non-
metalloproteins and to write out amino acid sequences for brand new topologies (Figure 1).
The authors leveraged molecular dynamics to compute a minimal energy structure accord-
ing to the output sequence for the latter purpose. As for structural design, modifications
to sites in natural non-metal-binding human proteins were made to bind metals by chang-
ing a small number of amino acids. Although no experimental validation was yet known,
this result indicates that the information about metalloproteins can be expanded and new
metalloproteins can be designed according to specific needs. Given the ubiquity and
multi-functionality of metalloproteins [48], this capability could affect how human diseases
arising from the loss of metalloprotein activity are treated. If the same is possible for de-
fective metal-binding proteins by showing where the defects arise in their sequences, this
approach can evolve into a novel and effective diagnostic/therapeutic method.

Figure 1. Amino acid sequences generated by CVAE as determined by (A) similarity to input
sequence and (B) encoded protein topology that these sequences should conform to. This figure is
reproduced with permission from reference [47], in accordance with a Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), accessed on 2 February
2022.

Incidentally, the diagnostic aspect is precisely what Koohi-Moghadam et al. [49] had
in mind in a study on disease-related mutations using deep learning [50]. In order to study
the diverse types of human disorders caused by missense mutations in metalloproteins,
sequential and spatial configuration data of multiple distinct disease-related mutations,
along with several benign ones, were extracted. This dataset was used to train a multi-
channel convolutional neural network (MCCNN) that would ideally predict if a site is
associated with a disease for proteins that bind any metal type, though their examples
were limited only to Zn, Ca, and Mg due to sampling size limitations. To demonstrate
MCCNN’s effectiveness, the authors compared its performance with PolyPhen-2, a NB

http://creativecommons.org/licenses/by/4.0/
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classifier algorithm designed to predict amino acid substitution effects. Ultimately, MC-
CNN excels for all performance metrics except for sensitivity (Table 1 of reference [49]),
which was attributed to a dearth of training data. In short, with more extensive training,
future deep learning networks could very likely produce much more diverse and reliable
disease predictions. Mutations are nature’s redesign of existing proteins, albeit more often
for the worse. Learning from nature’s mistakes can assist us in avoiding them in our
endeavor to make functionally-meaningful proteins and even reverse the consequences
should there be a deviation.

4. Function

As with all proteins, the metalloprotein structure determines its function, and the ulti-
mate goal of structural alteration or design is to achieve wanted functions. It is noteworthy
that function is relevant to what substrate a protein binds, what happens to the substrate
during binding, and inherent physical properties of the protein, such as resistance to exter-
nal stress. In 2011, Chellapandi [51] reviewed several cases of metalloenzyme design using
various computational methods, including machine learning. The discussion contained
many software algorithms and QM/MM methods built for constructing new enzymes that
perform naturally occurring functions. These methods were able to design enzymes such
as phosphate-dependent aldolases that are comparable in activities to their natural counter-
parts, although controlling the stereoselectivity remains a challenge [52]. However, several
more competitive methods, such as amino acid or metal ion replacement and machine
learning, have arisen [53].

Concerning machine learning, in 2007, Liao et al., presented a study on engineering pro-
teinase K employing this approach [53]. Eight different algorithms
(ridge regression (RR), least absolute shrinkage, and selection operator (Lasso), partial least
square regression (PLSR), support vector machine regression (SVMR), linear programming
support vector machine regression (LPSVMR), linear programming boosting regression
(LPBoostR), matching loss regression (MR), one-norm regularization matching-loss re-
gression (ORMR)) that differed in the discrepancy between predicted and actual enzyme
activity, and what regularization function (L1-norm vs. L2-norm) was applied, were as-
sayed. The authors could synthesize proteinase K variants based on any desired amino acid
sequence, intending to produce functional enzymes that display resistance to overheating.
Three rounds of designing were run, each round building upon the previous to enhance
enzymatic activity. In the end, after synthesizing and testing 95 select variants, proteinase
activity was increased by a factor of 20. The authors predict that this strategy is transferable
to modifying other proteins, reducing the need for large amounts of variants, and disposing
the need for protein libraries and massive screening.

As machine learning algorithms have advanced in recent years, it is no surprise
that more works on protein function prediction have emerged. In 2019, Zou et al. [54]
published an article on a deep learning program, mlDEEPre, specialized to foretell what
multi-functional proteins can do, which turned out to possess unquestionably high reliabil-
ity by all measures and was an overall improvement to multiple previous models. It did not,
however, specifically address metalloenzymes. Later studies have made that focus, includ-
ing a study by Soni et al. [55], which aimed to enhance the predictability of protein-ligand
binding affinities (for both metallo- and non-metallo complexes). Their program, Bappl+,
scores the protein-ligand binding affinity by taking into account interaction energies and
entropies before passing it into training random forests. After evaluating the performance
of Bappl+ against three test datasets of protein-ligand complexes, it displayed superiority
compared to most existing scoring functions (see Table 2 of reference [55]).

In 2021, Feehan et al. [12] took the largest structure database of enzymatic/non-
enzymatic metalloproteins to train a decision-tree ensemble to differentiate between these
two categories. Numerous models were examined in search of the one with optimal
performance using test sets (Figure 2), using the Matthews correlation coefficient (MCC)
to prevent bias due to imbalance in the training set (76% non-enzymatic data). MAHOMES,
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the decision-tree ensemble marked on the upper-rightmost corner in Figure 2 and optimized
for precision and MCC, with predictions based on metal-binding sites, was evaluated
and compared to other enzymatic/non-enzymatic predictors. With a 92.2% precision,
MAHOMES outmatches sequence-based models such as DEEPre, EFICAz2.5, and DeepEC,
as well as catalytic residue-based ones, such as CRPred, CRHunter, and PreVAIL. Its
accuracy surpasses sequence-based but falls behind residue-based, and vice versa for recall,
so its superiority is dependent on context.

Figure 2. Comparison among candidate models according to precision and Matthews correla-
tion coefficient (MCC). The cross represents the optimal model that maximizes both metrics, and
is used by the authors for further tests. This figure is reproduced with permission from ref-
erence [12] in accordance with a Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/), accessed on 2 February 2022.

Furthermore, Feehan et al. were able to determine which features of metalloproteins,
such as electrostatics and binding pocket geometries, were most representative of its
enzymatic nature. Using a Jaccard index for various features, a scale was developed
where 0 means that the features are entirely the same between enzymatic/non-enzymatic
and 1 means the opposite. In this case, the Rosetta energy summed over the spherical
volume of the binding site turns out to be distinctive. The role of volume as a key player
becomes pertinent considering how catalytic pocket and residue volumes also set enzymatic
metalloproteins apart. In the same year, Vornholt et al. [56] published an article where
methods to systematically engineer artificial metalloenzymes (ArMs) for specific purposes
were proposed, in which machine learning was used to predetermine function from amino
acid sequence. The authors explored the performance of neural networks, SVM, and
gradient boosting on five catalytic reactions and found that gradient boosting provided
the best overall performance for predicting enzymatic activity. A combination of machine
learning and a systematic screening approach was used to identify active variants, which
increased the activity of engineered variants by up to 15-fold compared with the wild type.
Overall, machine learning has revolutionized how metalloprotein functions are studied.

5. Protein Stability

Often, it is noteworthy to perform catalytic reactions in extreme environments beyond
the tolerance of natural enzymes. This requires a purposeful design, such as the study by
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Liao et al. [53], which demonstrates how machine learning can contribute to improving
the stability of protein structures under high heat.

As asserted before, one characteristic that makes metalloproteins suited for machine
learning is the abundance of data collected about them. In 2019, Mazurenko et al. [57]
published a perspective on incorporating machine learning to engineer enzymes, and
enzyme stability was one of the many focal points. The authors highlighted how protein
stability predictors (such as thermostability change or solubility change upon mutation)
have the most plentiful data available for learning (see Table 1 of reference [57]). In general,
protein stability makes for a suitable area of study all in itself, with its rich databases, such
as ProTherm [58] among others.

In 2019, Montanucci et al. [59] used several machine learning methods, including
SVMs and decision trees, to study the energetic stabilization/destabilization scale caused
by a point mutation in metalloprotein structures. Stabilization/destabilization is defined
by how the mutation changes the Gibbs free energy difference (∆∆G), i.e., a negative
change implies stabilization, and a positive change implies destabilization. Drawing
from datasets like ProTherm, the upper limit of ∆∆G prediction was determined based
on the uncertainty and spread of these values in the dataset, which reported multiple
∆∆G values of the same protein mutation under varying experimental conditions like pH
and temperature. An upper bound of 0.8 for the Pearson correlation coefficient (between
experimental and predicted data) was found [59]. Then, in 2020, along a similar line of
motive to Mazurenko et al., Li et al. [60] presented ThermoNet, a convolutional neural
network that takes the three-dimensional data of proteins with point mutations and trains
it to predict if a particular mutation would stabilize or destabilize the structure, and
whether it is benign or pathogenic. When a protein forms from its primary structure, it
entails a Gibbs free energy change, which depends on the replacement of any amino acid
within the sequence. The authors tested the program against the human p53 protein and
myoglobin. For each mutation, there was a reverse mutation. While the model produced
rather conservative predictions, it was generally unbiased and the predictions for mutation
and reverse mutation followed a strong negative correlation.

ThermoNet foretells stabilizing and destabilizing effects with equal accuracy, whereas
other ∆∆G predictive methods are biased towards predicting destabilizing effects. This bias
purportedly arises from unbalanced training sets (consisting of primarily destabilizing
mutations) and model overfitting. Figure 3 presents FoldX, a highly-used, non-specific
∆∆G predictor, as a comparison to ThermoNet using the ClinVar dataset as a benchmark.
ClinVar contains ∆∆G values corresponding to benign and pathogenic missense vari-
ants. ThermoNet evidently outperforms ClinVar, with most predictions falling within
the −5 kcal/moL to +5 kcal/moL experimentally-observed region. The discrepancy be-
tween FoldX values and ClinVar is increased for pathogenic variants, while ThermoNet
maintains robust performance for either variant. With more analogous tools at hand, one
may finally defer memorizing structural stability patterns to machines that can process that
information with more efficiency and make quality predictions.

6. Inhibitor Design

Not all metalloprotein activities are beneficial. Under certain circumstances, their
activities have to be inhibited when they are implicated in human diseases, like cancer.
Moreover, since many microbes also rely on metalloproteins, inhibitors can be designed
to combat microbial infections. Instead of using traditional methods like docking and
molecular dynamics to predict inhibitors [61], using machine learning to screen inhibitors
is a swifter and computationally inexpensive approach. One example is illustrated by Shi
et al. [62], where the authors review work done to inhibit metallo-β-lactamases (MBLs) and
destroy bacterial drug resistance. While surveying a variety of methods used to discover
new molecules, the authors discussed the possibility of utilizing deep learning, given its
accomplishments in chemical structure construction and predicting protein–ligand binding.
This possibility has been realized in many similar works, as discussed below.
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Figure 3. Comparison of the performance between ThermoNet and FoldX. This figure is reproduced
with permission from reference [60], accessed on 2 February 2022.

In 2018, Song et al. [63] published research on using random forests to identify in-
hibitors for matrix metalloproteases (MMPs). The inhibitors must selectively bind and
take effect against carcinogenic MMPs while being innocuous towards those that counter
the disease. With this in mind, the authors trained the model one MMP at a time for seven
MMPs (MMP-2,3,7,8,9,13,14) to learn for each MMP the properties an inhibitor should
possess. Judging from amino acid frequencies at different positions across 4000 peptide
inhibitor samples, substantial new knowledge on what signature amino acid sequences
should inhibitors of specific MMP types have and how specific the binding would be was
added. Aside from Song et al., there was another work on a particular MMP by Li et al. [64].
Inhibitors for the MMP-12 enzyme were predicted using k-nearest neighbor (k-NN), ran-
dom forest, C4.5 decision tree, and SVM. These models were trained against 90 inhibitors
+ 94 non-inhibitors before testing against 52 inhibitors + 47 non-inhibitors. Their perfor-
mances vary, but all conform to very high standards, with accuracy & 90%. In addition,
a recursive feature elimination (RFE) capable of selecting choice features was appended so
that the machine can classify inhibitory/non-inhibitory more effectively. Programs with
RFE have higher performance than those without, but more crucially, it helped elect 36
essential features that help distinguish between MMP-12 inhibitors and non-inhibitors. The
implication of these results goes far beyond one metalloenzyme family, since, theoretically,
any enzyme that matches an extensive inhibitor database can become a subject of learning.

In later years, the scope of inhibitor studies has increased. For example, in 2021,
Tinivella et al. [65] published research on inhibiting human carbon anhydrase (hCA),
which strongly relates to cancer. Using algorithms (random forests, k-NN, SVM, NB, etc.)
implemented in Python’s scikit-learn and drawing credible data from ChEMBL release 26,
multiple models were trained to determine if a given molecule is an active inhibitor for any
isoform of hCA, as well as how selective that molecule would be. The models include SVM,
NB, and tree-based algorithms such as random forests, all displaying accuracy >70%, and
their success significantly relates to a unique feature of the work. Traditionally, an hCA
inhibitor is active when <20 nM of the enzyme remains active following inhibition and
inactive when activity exceeds 100 nM. On the other hand, the authors decided to vary
that threshold for each specific isoform and, as a result, considerable improvements were
made. Another research study of a different theme was presented by Cañizares-Carmenate
et al. [66]. Inhibitors for vasoactive metalloproteases to treat cardiovascular conditions
were discovered. First, NB and multilayer perceptron (MLP) were tested as candidate
models for a quantitative structure–activity relationship (QSAR) model and found the latter
superior. Then, inhibitors predicted by QSAR were examined through docking experiments
using thermolysin (TLN), a close bacterial homolog of human neprilysin and angiotensin-
converting enzyme, both vasoactive metalloproteases. Ultimately, 18 possible chemicals
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with low binding free energy to TLN, a sign of effective binding, were identified, leading
to an optimistic prediction of how the method will boost efficiency and save costs.

7. Cleavage Sites

The MMPs mentioned previously are a subgroup of metalloproteinases, which in turn
are a group of proteases that cleave peptide substrates. All proteinases perform their
action at an active site, a cleft structure responsible for catalysis. As proteases are among
the most prominent enzyme families, they control a broad range of bioactivities and possess
immense potential for biotechnological applications [67,68]. Therefore, it is essential to find
these active cleavage sites and how they interact with substrates.

For metalloproteinases, much attention has focused on MMPs in recent years. In 2017,
Wang et al. [68] conducted a study on predicting the cleavage site for multiple MMP types
by using machine learning to make inferences about lesser-known MMPs using knowledge
from better known ones (also known as transfer learning). Only for MMP-12 does transfer
learning fail, while for MMP-3, it falls short for specificity alone. The other MMPs present
transfer learning as irrevocably advantageous. Overall, the method demonstrates improve-
ment over alternative computational methods mentioned, like PROSPER, Cascleave, etc.
Nevertheless, as stated, the transfer learning algorithm will be subject to modification once
more experimental data become available. Incidentally, Singh et al. [69] published an article
in 2019, also on using transfer learning to predict where cleavage occurs in MMPs. Results
produced by TrAdaBoost, an established boosting-based transfer learning algorithm, were
compared to two of its variants called dynamic (D-) TrAdaBoost and multisource (M-)
TrAdaBoost, and an SVM control group (see Table 2 of reference [69]). As aforementioned,
transfer learning starts from better understood MMPs (source) to infer about less under-
stood ones. For this purpose, shared enzymatic traits are assigned higher weights than
non-shared. One flaw of TrAdaBoost is that these weights tend to converge after several
boosting iterations, and the purpose of D-TrAdaBoost is to add a correction factor for this
convergence [70]. In addition, M-TrAdaBoost tackles the possibility of poor equivalency of
properties by allowing for multiple learning sources [71]. The results show that TrAdaBoost
and its variants act optimally for different MMP types but do not consistently outperform
SVM (and marginally when they do).

Further research has shown that one possible path to significantly enhancing per-
formance relies on convolutional layers. Moreover, in 2019, Liu et al. [72] introduced
DeepCalpain, a deep neural network (DNN) designed for cleavage site prediction in Ca2+-
dependent metalloproteases called calpains. As a result, the network outperformed pro-
grams such as PoPS, GPS-CCD, and LabCaS much more significantly. The area under
the curve (AUC) in Figure 4 is a measure of prediction reliability for classifiers, and Deep-
Calpain is the best performer. In addition, DeepCalpain can analyze mutated calpains
present in various cancers and decide how the mutation affects cleaving target proteins. Us-
ing clinical data, it was determined that patients with no less than six mutations in calpain
cleavage sites are significantly less likely to survive liver hepatocellular or head and neck
squamous cell carcinoma. Another application of convolutional neural networks (CNNs) is
in the analysis run by Li et al., [73] using the DeepCleave program on caspases and MMPs.
DeepCleave was used to discern cleavage sites and the identity of substrates. Using three
convolutional layers to build the CNN, the authors used kernels of three different sizes
for the second and third layers. Following those layers, an attention layer automatically
selects the most relevant generated features. These features are tunable, allowing a compar-
ison to assess the performance of having different numbers of kernels and the presence and
absence of an attention layer across three caspases (caspases-1,3,6) and MMPs (MMP-2,9,7).
Results show that the attention layer impact performance the most and that at its best,
DeepCleave rises to the standards of the most cutting-edge predictors, such as Cascleave
and PROSPER. In brief, there is ample evidence to believe that algorithmic sophistica-
tion is key to making better predictions, the only issue being that the scope of the study
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has remained relatively limited. Future works should focus on expanding the categories
of metalloproteins researched.

Figure 4. DeepCalpain compared with similar protease prediction programs according to AUC.
This figure is reproduced with permission from reference [72], accessed on 2 February 2022. Copyright
© 2019 Liu, Yu, Dong, Zhao, Liu, Zhang, Li, Du and Cheng.

8. Conclusions

We provided an overview on the advances of machine learning applications in the field
of metalloproteins, which is of great scientific interest due to their universality and versatil-
ity in design and function. On the whole, the machine learning procedure is to construct
a suitable model that addresses the aim of study, train it using a set of (properly curated)
data with features related to the property in question (such as structure, function, stability,
etc.), validate the model, and make new predictions in order to test the model. Over the past
two decades, this method has grown in reliability and popularity. Moreover, it has the
potential to guide and readdress how mechanisms underlying metalloprotein function
are understood fundamentally. For example, machine learning has provided new insights
into how mutations affect structure and function, how diseases, such as cancer, relate
to pathological alterations to metalloenzymes, and how treatments for such diseases can
be customized. Overall, as machine learning advances and more data becomes widely
available, significant strides will take place in understanding how metalloproteins influence
biological processes. As discussed below, however, new challenges lay ahead.

9. Future Directions

Limitations persist for several points of interest. The most notable shortcoming is
that most works remain on the level of supervised learning by drawing labeled data from
established databases, with scant applications of unsupervised learning, such as generative
models. While most studies focus on property prediction, and fewer studies relate to de novo
design, the examples of designing artificial metalloenzymes (Section 4) and the discovery of
new metalloprotease inhibitors (Section 6) show that machine learning is progressing along
the right path. Nevertheless, future research should focus more on expanding the breadth
and depth of experimental data applied to these predictive models. That being said,
ensuring that the data is adequately curated is of utmost importance for model training,
as the classic saying goes, “Garbage in, garbage out“.
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Another insufficiency lies in the somewhat limited scope of metalloproteins studied.
Studies investigating cleavage sites, for instance, focus predominantly on MMPs, and
stability preponderantly implies under-heating. However, the human body is vulnerable
to multiple factors that impact protein activity (pH level imbalance, heavy metal poisoning,
etc.). Additionally, many essential metal-binding proteins come from myriad families, such
as hemoglobin, as discussed above. Therefore, expanding the range of studies to other
families would be meaningful.

Lastly, the exclusive focus on human metalloproteins constitutes an issue as well.
As mentioned in the beginning, these proteins are ubiquitous and are crucial to viabil-
ity across species. Understanding how photosynthetic metalloproteins are engineered,
for example, could boost agricultural production. Moreover, knowing how drugs can be de-
signed to inhibit metalloenzymatic actions in harmful microbes could help cure infections.
As premature as this goal might be, it is worthwhile and profitable.
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