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Active machine learning enables the automated selection of the most valuable next experiments to 

improve predictive modelling and hasten active retrieval in drug discovery. Although a long 

established theoretical concept and introduced to drug discovery approximately 15 years ago, the 

deployment of active learning technology in the discovery pipelines across academia and industry 

remains slow. With the recent re-discovered enthusiasm for artificial intelligence as well as improved 

flexibility of laboratory automation, active learning is expected to surge and become a key technology 

for molecular optimizations. This review recapitulates key findings from previous active learning 

studies to highlight the challenges and opportunities of applying adaptive machine learning to drug 

discovery. Specifically, considerations regarding implementation, infrastructural integration, and 

expected benefits are discussed. By focusing on these practical aspects of active learning, this review 

aims at providing insights for scientists planning to implement active learning workflows in their 

discovery pipelines.  

 

Active machine learning is an active field of applied machine learning research, striving to conceive 

experimental selection functions that aid in identifying the most valuable next experiment [1] – thereby 

putting machine learning into the driver seat of iterative molecular design efforts (Figure 1). [2,3] To this 

end, novel experimental protocols are either generated by the algorithm or selected from a pre-

generated set of possible experiments. [1] The value of an experiment can be defined by a range of 

different notions, but commonly includes some anticipated benefit to improve the performance of the 

machine learning method – most commonly derived from predictive confidence measures that enable 

selecting data with the highest predictive uncertainty. [2] Additional formalizations can be added that 

aid steering experimental design towards molecular structures with desired properties, such as 

improved biological activity, enhanced pharmacokinetics, or innovative scaffolds. [4–8] 

Although the concept of active machine learning has been conceived more than 30 years ago [9–11] and 

has been applied in select drug discovery campaigns for more than 15 years [12], its broader 

deployment to drug discovery pipelines across academia and industry has been surprisingly slow. [2] 

Possible reasons for these delays were attributed to two separate challenges. Firstly, infrastructural 

incompatibilities with rigid experimental high-throughput technologies popular among drug discovery 

facilities often made the deployment of such adaptive methods unfeasible. [13,14] Furthermore, the 



introduction of active machine learning coincided with a general disenchantment of computational 

methods for drug discovery caused by unmet expectations that hampered trust and investments 

[15,16]. With improving flexibility of automation technology and a re-discovered enthusiasm for the 

deployment of artificial intelligence across drug discovery pipelines, active learning is expected to see a 

surge of applications [3,17,18]. To ensure that the setup of these pipelines is done with the greatest 

chance of success, it is important to consider the conclusions from previously published applications of 

active machine learning to drug discovery and other chemistry optimizations. This review provides a 

summary of the most important practical considerations for discovery teams interested in installing 

active learning by aggregating findings from previous applications of active learning to drug discovery 

campaigns.  

Implementing the right workflows 

A crucial component of an active learning workflow is the selection and training of a suitable machine 

learning model. Virtually all flavors of currently popular algorithms have been implemented in active 

learning pipelines (Table 1), including random forest models [4,5,19], Gaussian processes [20,21], 

support-vector machines [12,22,23], and (deep) neural networks [24,25]. This is encouraging since it 

suggests the applicability of a wide range of machine learning models to active learning, thereby 

enabling research teams to augment their machine learning model of choice. Whether any model 

architecture is particularly suited to actively learn a specific drug discovery challenge, similarly to large-

scale benchmarking studies in classical QSAR, will be the subject of future studies. Even more 

importantly, a surge of recent papers have advocated for the utility of alternative learning approaches 

such as meta-learning [26], transfer-learning [27], multi-task learning [28], few-shot learning [29], as 

well as generative models [30]. Their integration within active learning pipelines might lead to strong 

synergies with even further improved accuracy or data economy.  

While machine learning model selection does not appear to critically impact learning efficiency, the 

implemented data selection function strongly influences learning trajectories, model improvement, and 

quality of retrieved molecular material [2,6,21,31]. Commonly, active learning selection functions are 

designed to select the data least understood by the model in an effort to add new knowledge to the 

training data. This notion can be formalized through mathematical formulations of predictive 

uncertainty. Commonly, predictive uncertainty is quantified from the predictive variance across an 

ensemble of models [5,6,23,31] or through a distance measure to a decision boundary. [22,32] An 

opportunity exists to derive more complex formulations of utility for an experiment, for example by 

directly considering the predictive architecture of the model. [2] Further studies will be necessary to 

understand in which scenarios such more complex functions could provide any advantages over simpler 

models [5,21,33]. 

Particularly powerful active learning campaigns in drug discovery will account for the multi-objective 

character of its molecular optimizations while enabling the integration of orthogonal biochemical data 

and information. This could, for example, include notions of chemical or experimental tractability [4,7] 

or include chemistry-focused measures of anticipated novelty such as scaffold-diversity or physical 

simulations of potential binding modes [5,6,8]. Through such tailored integrations, active learning can 

specifically support drug discovery pipelines beyond simple data-driven optimizations. Furthermore, 

benchmarking implementations for success as defined by medicinal chemistry guidelines, such as 



improved retrieval of novel active chemotypes [4–6] or robustness against enriching false assay positives 

[31] can aid selecting implementations that appear most promising for drug discovery applications [2].  

When to start and when to stop learning 

One of the first question a drug discovery team seeking to implement active learning will face is when to 

start an active learning campaign to best support a project. In essence, the question revolves around 

whether active learning should be implemented right at the beginning of a project and be used in the 

acquisition of the very first data, or whether there is value in harnessing historic data to augment the 

model. A general trend seems to be that multiple of the prospective active learning studies rely on 

providing an initial training data set (Table 1) [4,5,7] while the retrospective studies investigate active 

learning behavior when starting without prior data [6,31]. To date, no systematic comparison has been 

made and it is not entirely clear whether different initialization strategies impact the transferability of 

drawn conclusions across studies. Active learning performance is dependent on model quality [21,34], 

which potentially questions the utility of “cold-starting” active learning. However, analysis of learning 

trajectories has shown that even in the first iterations, active learning will select experiments in a more 

balanced manner compared to other strategies such as random or greedy sampling [35]. Furthermore, it 

is clear that different initial training datasets impact active learning behavior [23,25,36] while it seems 

distinct “cold-started” active learning campaigns are overall consistent and tractable [6,31,35]. While 

more evaluations are necessary to better understand the implications of different starting points for 

active learning campaigns, such decisions are expected to be mostly driven by the availability of 

resources and quality of prior data. While there certainly might be a reporting bias, the good news is 

that all active learning implementations have shown a significant benefit for projects following adaptive 

experimental design early or later in the study [2].  

A similar practical question revolves around when to stop the active learning campaign. Tightly 

connected to this question is our ability to anticipate the performance of our current model and 

understanding the benefits of acquiring additional data. It has been shown that external data can be 

practically employed to either track the performance of the currently learned machine learning model 

[22] or be used to estimate expected hit rates in future screening iterations [37]. While these 

formalizations provide useful tools to aid adjusting expectations, the external data requirements might 

be difficult to meet and therefore of limited practical relevance. Instead of relying on external data, it 

has been shown that machine learning and simulated data can be harnessed to anticipate the 

performance of the current machine learning model [36,38]. Similarly, tracking changes in model 

architecture or predictive confidence on unlabeled data can assist in making decisions on when 

additional active learning iterations appear ineffective [4,5,36]. Researchers have also investigated 

opportunities to assess the expected increase in model performance from additional rounds of active 

learning: multiple studies have consistently shown that active learning curves typically indicate an 

exponential decay of error [6,22,23,31,34] and researchers have used analytical modelling and statistics 

to estimate the benefits of adding additional training data [31,35]. Through such efforts, transparency of 

expected performance and necessary resources can be created.  

In practice, rather than relying on sophisticated estimations of learning rates, most active learning 

campaigns will be terminated either because of depleted resources or because a certain goal, such as 

the identification of a desirable molecular solution (Figure 2), has been achieved [1,7,38]. Additionally, 

multiple recent active learning platforms have highlighted the potential to not exclusively focus on 



explorative learning but adaptively switch selection strategies or balance selection according to multiple 

explorative and exploitative objectives [4,5,24]. Thereby, rather than halting learning and changing 

selection towards hit identification, such hybrid platforms can continuously learn and adapt their 

behavior according to prospective hit rates [2,39]. It has been argued that such platforms will benefit 

from the multi-objective selection criteria and focus learning on the most relevant regions of chemical 

space [5,24]. Therefore, such platforms can be expected to see the largest amount of traction in 

deployment and will shape automated molecular optimizations in the future. 

The infrastructure bottlenecks 

One of the key discrepancies between most active learning conceptualizations and the practical reality 

of biochemical testing is the sequential character of active learning contrasting the parallelization of 

experimentation [2,6]. Virtually all in vitro experiments have been sufficiently miniaturized to enable the 

rapid testing of multiple hypotheses simultaneously. In fact, most experimental protocols and 

equipment are designed to capture multiple samples rather than testing one-by-one, making sequential 

single experiments unfeasible. Additionally, with increasing model complexities and associated training 

costs, some active learning workflows have found it unfeasible to re-train the model architecture for 

every new data point included [25,40]. Taken together, many workflows will have experimental or 

computational necessities to select multiple experiments with a single machine learning model before 

the model can be updated. Unfortunately, naively adding the top candidates has been shown to lead to 

redundancies in the selected experiments [5] and thereby significantly decrease active learning 

performance [6]. Recent active learning research has therefore focused on formalizations to improve 

batch selection of experiments with various proposed strategies. For example, researchers have actively 

forced diversity by restricting the sampling of the active learning function into poorly understood 

subsets [4,8] or by decreasing the density of the investigated experimental space through subsampling 

[7]. Instead of restricting the design space, another promising strategy is to iteratively regularize the 

active learning selection, either by grouping of experiments [38], through assessing the similarity of 

experimental parameters [32], or by consulting the model architecture to estimate perceived 

differences of potential experiments [5]. Alternatively, multiple distinct selection functions can be 

defined that steer the selection of independent experiments and thereby avoid redundancy [8,24]. 

While all these different approaches have been shown to reduce redundancy and boost active learning 

performance when batch selection is necessary, it is not entirely clear what the advantages of these 

distinct strategies are.  Further evaluations will be necessary to directly compare such strategies and 

identify guidelines to pick the best batch selection method for a specific project. 

Even if careful batch selection is implemented, a major hurdle in the deployment of active learning 

workflows remains the rigidness of high-throughput platforms commonly implemented across 

pharmaceutical and biotechnological companies. Such platforms are carefully designed and optimized to 

enable rapid screening of pre-defined compound libraries, for example through pre-plating of 

collections and installation of robotic automation that is implemented to quantitatively increase the 

throughput of such campaigns. However, these setups prevent adaptive cherry-picking of individual 

compounds. Thereby, the most valuable experiments according to active learning objectives is not 

individually accessible without significant overhead. This has prevented the deployment of adaptive 

machine intelligence and instead shifted the focus of software development on high-throughput data 

analysis [41]. However, the increasing awareness of distinct needs across projects has made improving 



flexibility and adaptability of high-throughput testing platforms a key objective of compound 

management and experimental high-throughput technologies [13,17,42,43]. 

Accordingly, innovative experimental platforms that implement the required flexibility have enabled 

some of the most significant active learning studies published (Table 1). Naik et al. developed a pipeline 

where individual compounds were distributed with help of a liquid handling station and effects were 

analyzed via automated microscopy [38]. Granda et al. used a flow-based platform with 27 pumps to 

drive an eight chamber reaction platform with in-line NMR analytics to automatically discover novel 

chemistry [44]. Desai et al. integrated in-line synthesis, purification, and biological testing in a 

microfluidic platform that is driven by random forest-based active learning to discover novel Abl kinase 

inhibitors [4]. While the fully-integrated character of these platforms is a truly impressive technological 

advancement, their suitability for active learning campaigns is exclusively determined by their ability to 

adapt experimental design after every performed experiment. Multiple systems have been implemented 

that follow less automated approaches and streamline experimental design involving more manual labor 

[5,6,19,32]. These will enable the deployment of active learning in a wide range of settings without 

advanced laboratory hardware and broaden the scope of machine learning-driven optimization. 

Nevertheless, given the ultimate goal of automation to reduce manual intervention for improved 

throughput and reproducibility, active learning-driven automation will likely play a key role in future 

drug discovery efforts. 

Adjusting expectations 

It is clear that active learning is only one of many experimental design technologies that have been 

applied successfully in the drug discovery context. For example, diversity selections [45] and iterative 

screenings [43] are popular approaches to compound management and high-throughput screening. 

Some small-scale comparisons have shown that active learning might enable a more fine-tuned 

approach that adjusts to prior data and can be programmed to more rapidly home in on promising 

solutions [6,23]. Another popular method in the chemical science is factorial design, providing 

experimental guidelines to explore the impact of different parameters systematically.  However, many 

relevant challenges in the chemical sciences have increasingly large parameter spaces that cannot be 

effectively enumerated. If active learning reaches a similar acceptance and becomes easily accessible 

through innovative software solutions [46,47], it might provide a competitive option for optimizing 

chemistry on complex and high-dimensional response surfaces.  A small number of studies have 

compared performance of active learning campaigns to human optimizations and have found that active 

learning not only outcompetes the queried experts but also performed optimizations in a more 

systematic and explorative manner [19,32]. While the number of queried human experts in these 

studies is yet too small to draw definite conclusions, the consistently observed benefit of active learning 

in independent studies is promising. Further studies will be necessary to fully delineate the advantages 

of active learning and other experimental design approaches in different use cases, but it appears as if 

active machine learning is certainly ready to perform automated optimization campaigns with at least 

competitive outcomes to other approaches. 

Large scale retrospective analysis have shown that active learning can identify highly accurate machine 

learning models using between half and down to one order of magnitude less data compared to classical 

machine learning and data subsampling approaches (Figure 3) [22,31,34,36,40]. Although the reasons 

for this higher efficiency are not yet completely understood, it seems that reduced redundancy and bias 



as well as acquiring more meaningful data to span decision boundaries are major factors in this 

improved performance [12,22,31]. Thereby, without taking into account potential technological 

overhead for physically implementing active learning campaigns, it appears that screening costs can be 

reduced by at least 50% and up to 90%. Hypothetically, the costs could even be further decreased if 

concepts like cost-sensitive learning are considered [2]. Importantly, through this increased efficiency, 

sampling of larger parameter spaces becomes feasible and thereby potentially provides improved 

solutions [40]. With these benefits in mind, it is important to point out that performance will continue to 

vary widely from project to project [22,31]. Future method development efforts will need to focus on 

defining applicability domains for active learning workflows and provide transparency about expected 

performance [48]. This will be particularly challenging in the context of active learning, since this 

technology is particularly attractive for cases with limited data. Without data, however, a priori 

feasibility assessments will be challenging [49]. Admittingly, this challenge applies to any predictive 

technology applied to a novel use case, and active learning might eventually prevail as an adaptive 

approach, enabling rapid adjustment of experimental protocols according to improving understanding of 

the underlying design challenges [39,50].  

Conclusions 

With increasing deployment of flexible laboratory automation [4,17,44] and given the recent re-

discovered enthusiasm for machine learning applications in drug discovery and development, active 

machine learning will become a key technology to guide molecular optimizations [2,18]. The set of 

previously published active learning applications serve as guideposts to inform future pipeline 

deployment [4–6,38]. These publications have outlined clear benefits of adaptive machine learning, 

both in terms of model improvement [4,38] as well as in the quality of retrieved molecular material 

[5,6]. A decreasing amount of necessary prior data (Table 1) and an increasing inclusion of orthogonal 

data and computations, including physical simulations and pharmacokinetic predictions, are trends likely 

to gain further traction in automated molecular optimizations [5,7,8]. Key methodological developments 

will have to delineate benefits of complex (batch) selection approaches [2] as well as defining the 

applicability domain and the anticipated benefits of active learning for a broad range of different 

applications [35,48]. Available implementations of active learning will simplify deployment without the 

need for re-implementing and re-validating code for individual projects [46,47]. Furthermore, 

integration of innovative learning approaches such as multitask-learning or generative models can 

potentially generate strong synergies in the future. Overall, active learning and related algorithmic tools 

are expected to qualitatively improve the reproducibility, throughput, and robustness of future drug 

discovery pipelines and provide an important tool in the search for innovative molecular solutions. 

Acknowledgements 

Daniel Reker is supported by the Swiss National Science Foundation (grants P2EZP3_168827 and 

P300P2_177833), the MIT-IBM Watson AI Lab, and the MIT SenseTime alliance. 

  

 

 

 



Table 1: Examples of prospective active learning studies applied in drug discovery settings for the 

identification of small molecular probes with desired biological activity. Iterations corresponds to the 

number of compound selected through the active learning. 

Target(s) Prior data Iterations Model Infrastructure Ref. 

GPCRs 20,000 10 QBag Manual Fujiwara 2008 [6] 

GPCRs 215,967 29 Bayesian Manual Besnard 2012 [7] 

Abl kinase 36 90 Random forest Flow Desai 2013 [4] 

CXCR4 287 90 Random forest Manual Reker 2016 [5] 

Protein 
localizaton 

96 1670 Structure 
learning 

Liquid 
handling 

Naik 2016 [38] 

 

 

Figure 1: Active learning concept and key practical considerations in the setup of a novel active learning 

workflow. 

 

 

Figure 2: Molecular structures identified through active learning against a range of different therapeutic 

targets [4–8]. 

 



 

Figure 3: Expected benefit of active learning in terms of dataset reduction. Results are aggregated from 

a broad range of different active learning implementations and applications [22,31,36,38,40].  
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[21] Ahmadi M, Vogt M, Iyer P, Bajorath J, Fröhlich H. Predicting potent compounds via model-based 
global optimization. J Chem Inf Mod 2013;53:553–9. 

[22] Lang T, Flachsenberg F, Von Luxburg U, Rarey M. Feasibility of Active Machine Learning for 
Multiclass Compound Classification. J Chem Inf Mod 2016;56:12–20. 
https://doi.org/10.1021/acs.jcim.5b00332. 

[23] Fusani L, Cabrera AC. Active learning strategies with COMBINE analysis: new tricks for an old dog. 
J Comput-Aided Mol Des 2019;33:287–94. https://doi.org/10.1007/s10822-018-0181-3. 

[24] Häse F, Roch LM, Kreisbeck C, Aspuru-Guzik A. Phoenics: A Bayesian Optimizer for Chemistry. ACS 
Cent Sci 2018;4:1134–45. https://doi.org/10.1021/acscentsci.8b00307. 

[25] Zhang Y, Lee A. Bayesian semi-supervised learning for uncertainty-calibrated prediction of 
molecular properties and active learning. Chem Sci 2019. https://doi.org/10.1039/C9SC00616H. 

[26] Finn C, Abbeel P, Levine S. Model-agnostic meta-learning for fast adaptation of deep networks. 
34th Int. Conf. Mach. Learn. ICML 2017, vol. 3, 2017, p. 1856–68. 

[27] Pan SJ, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010;22:1345–59. 



https://doi.org/10.1109/TKDE.2009.191. 

[28] Unterthiner T, Mayr A, Klambauer G, Steijaert M, Wegner J, Ceulemans H, et al. Deep learning as 
an opportunity in virtual screening. Adv Neural Inf Process Syst 2014;27. 

[29] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. Adv. Neural Inf. Process. 
Syst., vol. 2017–Decem, 2017, p. 4078–88. 

[30] Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating Focused Molecule Libraries for Drug 
Discovery with Recurrent Neural Networks. ACS Cent Sci 2018;4:120–31. 
https://doi.org/10.1021/acscentsci.7b00512. 

[31] Reker D, Schneider P, Schneider G, Brown J. Active learning for computational chemogenomics. 
Future Med Chem 2017;9:381–402. https://doi.org/10.4155/fmc-2016-0197. 

[32] Duros V, Grizou J, Xuan W, Hosni Z, Long D-L, Miras HN, et al. Human versus Robots in the 
Discovery and Crystallization of Gigantic Polyoxometalates. Angew Chem Int Ed 2017;56:10815–
20. https://doi.org/10.1002/anie.201705721. 

[33] De Grave K, Ramon J, De Raedt L. Active learning for high-throughput screening. Discov. Sci. 
Conf., Springer; 2008, p. 185–96. 

[34] Rakers C, Reker D, Brown JB. Small Random Forest Models for Effective Chemogenomic Active 
Learning. J Comput Aided Chem 2017;8:124–42. 

[35] Reker D, Brown JB. Selection of Informative Examples in Chemogenomic Datasets. Methods Mol. 
Biol., 2018. https://doi.org/10.1007/978-1-4939-8639-2_13. 

[36] Li B, Rangarajan S. Designing compact training sets for data-driven molecular property prediction. 
ArXiv Prepr ArXiv190610273 2019. 

[37] Buendia R, Kogej T, Engkvist O, Carlsson L, Linusson H, Johansson U, et al. Accurate Hit Estimation 
for Iterative Screening Using Venn–ABERS Predictors. J Chem Inf Mod 2019;59:1230–7. 
https://doi.org/10.1021/acs.jcim.8b00724. 

[38] Naik AW, Kangas JD, Sullivan DP, Murphy RF. Active machine learning-driven experimentation to 
determine compound effects on protein patterns. ELife 2016;5. 
https://doi.org/10.7554/eLife.10047. 

[39] Donmez P, Carbonell JG, Bennett PN. Dual strategy active learning. Mach. Learn. ECML 2007, 
Springer; 2007, p. 116–27. 

[40] Smith JS, Nebgen B, Lubbers N, Isayev O, Roitberg AE. Less is more: Sampling chemical space with 
active learning. J Chem Phys 2018. https://doi.org/10.1063/1.5023802. 

[41] Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R. Statistical practice in high-throughput 
screening data analysis. Nat Biotechnol 2006;24:167–75. https://doi.org/10.1038/nbt1186. 

[42] Paricharak S, Ijzerman AP, Bender A, Nigsch F. Analysis of Iterative Screening with Stepwise 
Compound Selection Based on Novartis In-house HTS Data. ACS Chem Biol 2016;11:1255–64. 
https://doi.org/10.1021/acschembio.6b00029. 

[43] Mayr LM, Bojanic D. Novel trends in high-throughput screening. Curr Opin Pharm 2009;9:580–8. 
https://doi.org/10.1016/j.coph.2009.08.004. 



[44] Granda JM, Donina L, Dragone V, Long DL, Cronin L. Controlling an organic synthesis robot with 
machine learning to search for new reactivity. Nature 2018;559:377–81. 
https://doi.org/10.1038/s41586-018-0307-8. 

[45] Meinl T, Ostermann C, Berthold MR. Maximum-score diversity selection for early drug discovery. 
J Chem Inf Mod 2011;51:237–47. 

[46] Green DVS, Pickett S, Luscombe C, Senger S, Marcus D, Meslamani J, et al. BRADSHAW: a system 
for automated molecular design. J Comput-Aided Mol Des 2019:1–19. 
https://doi.org/10.1007/s10822-019-00234-8. 

[47] Danka T, Horvath P. modAL: A modular active learning framework for Python 2018. 

[48] Rakers C, Najnin RA, Polash AH, Takeda S, Brown JB. Chemogenomic Active Learning’s Domain of 
Applicability on Small, Sparse qHTS Matrices: A Study Using Cytochrome P450 and Nuclear 
Hormone Receptor Families. ChemMedChem 2018;13:511–21. 
https://doi.org/10.1002/cmdc.201700677. 

[49] Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. Comparison of Different 
Approaches to Define the Applicability Domain of QSAR Models. Molecules 2012;17:4791–810. 
https://doi.org/10.3390/molecules17054791. 

[50] Baram Y, El-Yaniv R, Luz K. Online choice of active learning algorithms. JMLR 2004;5:255–91. 

 


