
Anooja Ali  et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 1300 - 1307 
 

1300 
 

 

 
ABSTRACT 
 
Proteins interact each other to perform many cellular 
activities. These interactions can be considered as Protein 
Protein Interaction networks (PPI). Interacting proteins form 
protein complexes. Mapping nodes between networks is 
denoted as alignment. The main intention of network 
alignment approach is to identify the protein complexes, 
which in turn helps to identify the functionality of protein 
complexes in various cellular systems. These interactome 
units form the conserved pathways between the networks. So 
network alignment requires lot of attention and several 
algorithms and techniques have been proposed to address this. 
The study of PPI is widely recognized to know more about the 
underlying complex disease because proteins associated with 
any disease get connected and form subgraphs or pathways. In 
this paper, the authors compared the various aligners, the 
performance evaluation metrics, the common databases used 
for PPI evaluation and the importance of PPI network in 
biomedical research. 
 
Key words : Alignment, Biological Similarity, Complex 
Diseases, Network, Protein Complexes, Topological 
Similarity.  
 
1. INTRODUCTION 
 
Biomolecules are produced by the cells of a living being. The 
major biomolecules that play an important role in any living 
organism are proteins. Proteins are responsible for several 
functionalities for the existence of life. Proteins are made of 
linear sequence of amino acids. Proteins interact each other 
and this interaction can be marked as a network, also known 
as PPI network [1]. In PPI network proteins corresponds to 
vertices and the interactions corresponds to edges.  
 
Studies on the structure of biological networks have obtained 
wide range of significance. The exponential increase in 
biological data provides lot of challenges to research 

 
 

strategies. Comparison between two networks can be done by 
graph alignment [2]. Network alignment is the equivalent to 
subgraph isomorphism [3]. Subgraph isomorphism is NP 
complete, means the performance of the algorithms 
developed so far were not completely accurate. If interaction 
between proteins are for a short period of time to perform any 
specific biological activity and later they dissipate, they are 
transient PPI [4].  Interactions may vary according to several 
factors like stimuli, time and cellular features. Interactions 
also vary according to the location of protein.  Proteins while 
interacting with other proteins perform multiple 
functionalities [5].  

 

Similarity between two graph structures can be identified by 
evaluating their topology [6]. This process can be referred as 
network alignment. Network alignment is divided into two 
categories, Global and local network alignment. Global 
network alignment increases the number of nodes by mapping 
nodes from one network to another network. . Local network 
alignment considers substructure mapping and global 
alignment considers the entire network and starts mapping 
[7].  

 
Fig.1 shows the comparison between local network alignment 
and global network alignment. Shaded region indicates 
different alignment of nodes and are differentiated by 
different dashed lines. Alignment varies according to the 
methodology of alignment and the networks under 
consideration. Network alignment concentrates on evaluating 
topological or sequential similarity between sequences. 
Several wide advances have been proposed in past few years, 
most of the approaches are derived from the previous ones and 
few of them are widely different. The parameters that were 
used to evaluate solutions are varying over the years.  
 
The knowledge of protein protein interactions can be used to 
diagnose diseases like auto immune disorders and cancer [8]. 
Several studies proved that rather than considering individual 
molecules, considering the interactions as a network is 
effective for many complex multi genetic diseases [9]. The 
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genes that are associated will have similar biological 
processes. Identifying the candidate genes based on these 
molecular interactions in PPI network helps to separate 
healthy and disease causing genes [10]. These hypothesis and 
relationships recommend an innovative paradigm for the 
analysis of complicated mutagenic diseases and cancers. 
 

 
Figure 1: Local network alignment versus Global network 
alignment. (a) Shaded region indicates those nodes have 
different alignment (b) the two networks are aligned to a 

common subnetwork. 
 

In this paper, the authors address the definition of network 
alignment and the assessment of networks with respect to 
topological and biological measures. The rest of the paper is 
organized as follows:  Next section begins with the definition 
of network alignment, followed by the evaluation of different 
measures for alignment. Following this, the evaluation of 
popular aligners are performed and the role of network 
alignment in diagnosing complex diseases are discussed. The 
authors conclude the manuscript by addressing the various 
open research problems. 
 
2. NETWORK ALIGNMENT 
 
Network alignment aims at finding the similarity between two 
networks, N1 and N2. Each network is a set of vertices and 
edges, N1 = (V1, E1), N2 = (V2, E2).  The interaction between 
protein of the two network is denoted by edge (u1, u2).  
Network alignment aims at calculating an injective function, f 
represented as  
 
      f (u1,u2)={u2, where u1ЄN1 and u2ЄN2}                (1) 

 
If it is possible to perform alignment for every node of the first 
network with a node in the second network, then the 
alignment is considered as completely defined. If alignments 
cannot be made for all the nodes, then the problem of network 
alignment is partially defined. 

2.1 Topological Assessment 
 
There are several matrix to evaluate the topology of network. 
Edge Correctness (EC) and Symmetric Substructure Score 
(S3) are the common matrices. EC aligns edges from the first 
network to the second network. EC aligns edges from the first 
network to the second network.  The percentage of edges 

aligned is represented in (2). 

     (2) 
S3 is completely based on the composite graph structure 
obtained by integrating the two networks. It is independent of 
the network population. The common topological structures 
of PPI network is clique structure [11]. Cliques are fully 
dependent on connected subgraph. The drawback of this 
approach is that fully connected subgraphs cannot be satisfied 
in all cases with protein complexes. Dense subgraph is the 
second topological structure with the preliminary concept that 
in any closely compacted network, interactions within a 
protein complex are robust than the interactions between 
complexes [12]. Clique and dense subgraph assent with 
protein subgraph with priority and these methods penalizes 
for missing interactions. Combining the predictions based on 
overlap score and topological methods identifies the excelling 
prediction. 

2.2 Biological Assessment 
 
Topological assessment does alignment by identifying a 
matching node. Considering the shortcomings of topological 
assessments mentioned above, it is not good to rely only on 
topological assessment. Biological assessment is done with 
respect to the functional similarity between two proteins that 
are aligned.  Functional similarity is evaluated by comparing 
the functionality of either the nodes or proteins.  
 
PPI network is subdivided into various modules based on 
functionality or biological similarity [13]. If the topological 
and functional similarities are present, then they can be 
merged under a particular functional module [14]. This 
functional module is also called as larger node or as a super 
protein node. The entire PPI network is viewed in various 
levels. Fusion happens at each level between super protein 
nodes of the next level. Fusion combines gene ontology 
information by union. Merging of protein at each level is the 
main concern. 

3.  GLOBAL NETWORK ALIGNMENT  

Global alignment aligns two different networks and derives a 
common sub network. Pairwise network alignment form the 
base for global network alignment. All the primary 
approaches identify motif by considering Basic Local 
Alignment Search Tool, called as BLAST bit scores and PPI 
network information [15]. Local network alignments fall of 
due to inconsistency. The main category of global aligners are 
IsoRank aligners and GRAAL based aligners.  

3.1 IsoRank Aligners 
 
IsoRank aligners are based on the compatibility between 
sequence order and topological structure [16].  It is based on 
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functional similarity and the similarity between proteins is 
estimated using a pattern similar to Google’s PageRank 
algorithm [17]. Ranking is based on the number of links to 
that page. Consider 3 pages, P1, P2 and P3.  PageRank will be 
transferred from one page to another page, if it is the target of 
outgoing link. Consider the link from P2 to P1 and P3 to P1. 
Rank calculation is given in (3).         
 
   Rank (P1) = Rank (P2) + Rank (P3)                               (3) 
 
IsoRank has the advantage of finding match for nodes that 
does not have a proper match. IsoRank aligners cannot 
categorize k-regular graphs.  The possibility of over fitting 
increases in IsoRank with the increase in the number of true 
positives. IsoRankN generates aligned clusters of multiple 
networks based on spectral clustering [18]. 

3.2 GRAAL Aligners  
Graph Alignment Aligners (GRAAL) are based on 
topological similarity. GRAAL approach is similar to seed 
and extend approach of BLAST. It identifies a seed vertex and 
from the seed it aligns vertices greedily on radius 
measurement. GRAAL aligners has different category, each 
with a set of advantages and disadvantages. Table I 
summarizes the different aligners, their methodologies and 
drawbacks. The different variants in GRAAL family are 
Hungarian GRAAL (H-GRAAL), Matching based Integrative 
GRAAL (MI-GRAAL) and Common Neighbors based 
GRAAL (C-GRAAL). In GRAAL aligners, any induced 
subgraph is indicated as a graphlet and the each graphlet 
consist of two to a maximum of five nodes. Graphlet orbits are 
automorphic. Fig.2 indicates the 73 orbits of graphlet. 

Table I: Summary of different GRAAL Aligners 
Aligner Methodology Drawback 
GRAAL 
[7]. 

Topological 
similarity,  
Graphlet degree 
signature. 

Cannot perform 
efficient vertex 
pairing 

H-GRAAL 
[19]. 

Graphlet degree 
signature,  Hungarian 
algorithm,  
Topological similarity 

Higher runtime 

MI-GRAAL 
[20]. 

Combination of 
multiple techniques 

Complex while 
integrating 
various matrices 

C-GRAAL 
[21]. 

Biological similarity, 
Matching based on 
common neighbor 

Less effective 
vertex alignment 

3.3 Other Aligners  
When there are only two input networks, most of the existing 
aligners work pairwise. Several aligners are developed to 
perform alignment in cases where the number of input 
networks are more than two. In this section the authors 
discuss various aligners like Gr mlin [22], PROPER [23], 
MAGNA [24] and SMETANA [25]. 

Gramiln is General and Robust Alignment of multiple 
interaction networks. Gr mlin is the only algorithm that 
consider network data as insufficient for alignment. Gr mlin 
is unique, because it need phylogenic information also for 
alignment. Gr mlin is a two-step aligner and in first step 
pairwise scoring function for edges and nodes are developed. 
In second step iterations are done on initial alignment and 
continued till the final alignment is obtained. Gr mlin 
consider four events for each node. They are protein 
duplication, protein deletion, protein mutation and paralog 
mutation.  
 
PROPER is PROtein protein interaction network alignment 
based on PERcolation. The algorithm is based on the presence 
of identical pattern or motif across different species. This 
constitutes the sequence similarity. PROPER is a two-step 
algorithm where in the first step considers the sequence 
similarity. The highest sequence similarity pair is considered 
as the seed set for percolation algorithm. In the second step it 
considers the topological structure and seed sets generated 
from the initial step. This is the map percolation step and it 
aligns the remaining couples. MAGNA is the first aligner to 
use genetic algorithm to solve network alignment. MAGNA 
is maximizing the accuracy in Global network alignment. 
The principle of genetic algorithm states that the crossover of 
parents will generate a population of alignments and the 
fittest alignment will survive [26]. The major contribution of 
MAGNA is the crossover function. MAGNA consider 
permutations and alignments are mutually the same.  
 
SMETANA is Semi- Markov random walk scores Enhanced 
by consistency Transformation for Accurate Network 
Alignment. The key feature of SMETANA is the calculation 
of maximum expected alignment. SMETANA is also a two 
phase aligner. In the initial step semi-Markov random walk 
model is developed and node correspondence scores are 
calculated. Similarity score matrix shows the possibility of 
aligning nodes of two networks. Nodes are aligned from one 
network to another if the neighbors are similar. If the 
neighbors of a node n1 in network N1 are similar to the 
neighbors of the node n2 in network N2, then n1 and n2 can be 
mapped. Let N (n1) and N (n2) denotes the neighbors of n1 
and n2 respectively. The quality of mapping between n1 and 
n2 can be represented as (4). 

 

              (4) 
 
Similarity between the nodes can be expressed with a cost 
function α [27]. Mapping, R can be expressed as in (5) and A 
corresponds the Eigen vector. The normalized sequence 
similarity is E. Few approaches integrates topological and 
biological similarity. 
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Figure 2: G0 to G29 indicates graphlets ranging from 2 nodes to 5 nodes.The 73 different orbits are  labelled. 
Fi 
g                       (5) 
,m 
Each protein in the PPI network is considered as a vector and 
if the neighbors of two proteins have the same degree, then 
these proteins are assumed to be similar. The biological 
similarity between proteins is based on the expect value (E- 
value). 

4. PPI NETWORK AND DISEASES 

PPI network consist of a group of proteins that interact each 
other in pathway analysis and functional complexes [28]. In 
case of cancer, cancer genes cluster together and they always 
co-occur in network. These disease genes form highly 
interconnected proteins and they take up tangential position 
of interactome [29]. PPI network demonstrates the specificity 
between proteins. Every PPI comprises of seed protein or 
candidate protein with direct neighbors [30]. 
 
The difference between healthy and disease states can be 
explored using PPI. Identifying the candidate gene for a 
disease along with their interaction with other protein plays a 
key role in finding the phenotype- genotype associations. So it 
is advised that the advanced way to know further about the 
disease is to investigate the gene candidate and its interacting 
partners [31]. Any mutation on the interacting protein create 
similar phenotype. Gene candidates estimated using PPI can 
be used to formulate the genetic backbone of the disease. 
 

To identify the potential drug target of a disease, rather than 
considering highly connected protein, the less connected 
nodes in the network are more sensitive and need to be 
considered with high priority for discovering the target drug 
[32]. The correlation between genotype and phenotype is 
highly sophisticated, considering the network of 
interconnected genes will be an excellent hypothesis in 
identifying the molecular pathway of the disease phenotype. It 
is obvious to conclude that the genes which are closely 
associated in a network will have comparable biological suit. 
The possibility of more computational advent to differentiate 
disease and healthy genes are progressing. 
 
Approaches for disease detection using PPI network falls in 
three categories. (1) Neighborhood clustering method- 
Neighbors of a node will be related in terms of topological or 
functional similarity and they will fall under the same cluster. 
Seed and extent method can be incorporated without 
clustering [33]. (2) Diffusion based techniques- Random walk 
is used for seed protein and the walker moves randomly to any 
protein neighbor. Frequency of visiting nodes in the network 
corresponds to the rank of protein. (3) Learning methods- 
These methods are mainly concentrated on graphlet degree 
signature or neural embedding. They initially capture all the 
known protein disease interaction and then work as 
downstream predictor by learning the representations as 
input. 
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4.1 Application of PPI in Cancer Detection   
A precise systematic methodology for evaluating cancer 
proteins can yield several biological knowledge to disclose the 
molecular influence in cancer. The metastatic and 
non-metastatic tumors were classified using PPI network and 
gene expression panels. Cancer proteins has the tendency to 
interact with more proteins and they will become the 
prominent central hub in a network there by increasing the 
disease gene’s participation and centrality. Cancer proteins 
have a high dimension of structural realm which helps them 
to be a part of many protein interaction. The global and local 
network features of the cancer proteins were studied in [34]. 
This study confirms that the structure of cancer and 
non-cancer genes are widely variant. So it can be concluded 
that the structure of protein network changes in the 
progression of cancer. By investigating the topological 
structures it is noticed that the essential protein or control 
protein will have higher centrality and higher Betweenness.  
 

 
Figure 3: Interactions made by proteins CKB, ACTN1 and 

ACTN4 as essential proteins. 
 

In figure.3 CKB, ACTN1 and ACTN4 are essential proteins. 
These hub genes are used to construct PPI. α-Actinins appear 
in various isoforms. Among these ACTN1 and ACTN4 
increases the motility of cancer cells. So they are closely 
related to cancer malignasies [35]. It is observed that these 
proteins act as hub nodes in PPI and get co-expressed. 
Creatine Kinase B (CKB) is closely linked to cancer and there 
by having maximum edges with other nodes. 
 
The distance between the essential proteins will be lesser and 
will have weaker clustering co-efficient [36]. The interacting 
proteins will be co expressed and form protein complexes. A 
new method for essential protein discovery outperform the 
regular measures like Betweenness centrality, Degree 
centrality, Closeness centrality, Subgraph centrality and 
Eigenvector centrality [37]. The research on identifying 
whether protein complex can be considered as essential 

protein is in progress. Few researches considered that 
essential proteins are also called as hub. Essential proteins 
will always interact with majority of neighbors. Few other 
researches pointed that essential protein complexes will also 
have essentiality feature. Few protein complexes are already 
known while others are obtained by considering the 
interaction of essential proteins within PPI network. 
 
The connectivity patterns of the proteins associated with 
diseases are widely unexplored. It is found that for 60% of 
diseases, the proteins linked to the disease are over 
represented or dominant in any higher order network [38]. 
This gives insight to the fact that they have similar structural 
characteristics. 

5. PPI DATASETS 

Network alignment problem is NP hard in nature. The lack of 
a proper guaranteed aligner increases the complexity of 
alignment. Also, there is no final measure of alignment. 
Presence of noise in the dataset affect topological similarity. 
There are several databases available to perform alignment 
between networks. The different databases are NAPA bench 
[39], IsoBase [40], Protein Reference Database (HPRD) [41] 
and BioGRID [42]. IsoBase is the commonly used dataset for 
global network alignment. Table 2 denotes the four main 
species that are commonly under study. This is summarized 
based on Isobase dataset. 
 
Table 2: Summary of Isobase dataset on four major species. 
Species No: of Nodes No: of Edges 

 
Saccharomyces cerevisiae 
(Yeast) 

6,659 38,109 

Drosophila melanogaster 
(Fly) 

14,098 26,726 

Homo sapiens (Human) 22,369 43,757 
Mus musculus 
(Mouse) 

24,855 452 

 
Presence of noise is more in real time dataset. This leads to 
missing PPI and hinders network alignment. IsoBase can 
group proteins that are related to each other by some 
functional similarity. IsoBase generates IsoBase clusters. 
Most of the real world PPI have many shortcomings like 
missing interactions and they are error prone. So then came 
the necessity of a synthetic dataset. NAPA bench overcomes 
these issues by knowing the true alignment. 

6. OPEN RESEARCH PROBLEMS 

Literature survey indicates that there are a few areas for future 
work. The authors figure out a few open research problems 
about network alignment. Exploring these problems can 
possibly give better results. Research on PPI is sometimes 
bound to the dataset under consideration.  
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6.1 Weightage for Similarity Feature   
Existing network aligners concentrate on heuristic algorithm 
to develop alignment. If we concentrate on topological 
alignment only, when the location of protein varies, the 
functionality also varies. Most of the aligners work in two 
steps with initially measuring sequence similarity using 
BLAST bit scores or E values. So the challenge is to develop 
an aligner that consider evaluation in terms of topological and 
biological similarities. 

6.2 Parameterization for Different type of Network  
For different network the evaluation is bound to find the 
correct parameterization for the alignment of these networks. 
The pre requisite for few aligners is the knowledge about the 
network. One such aligner is Gr mlin. It need advance 
phylogenic information. Due to this reason it is not possible to 
compare any aligners which doesn’t require advance 
information with them. The performance of topological 
matrices are advancing. This should not be at the cost of 
biological measures.  

6.3 Larger Datasets   
Most of the existing network alignment works are 
concentrated mainly on smaller networks. Comparison 
between larger networks is still an unexplored research area. 
Any pairwise alignment methods can be extended by greedy 
techniques for larger datasets. 

6.4 Non-Availability of Positive Samples   
The number of positive samples available for a disease is less 
than the number of unknown or negative samples. This will 
create an imbalance while training the model for any 
classification problem. All the existing databases provide 
information about candidate protein for a specific disease 
[42]. Non disease genes are very rarely present in any 
database. 

6.5 Limiting the Degree of Interaction of Nodes in PPI 
If two proteins X and Y have similar partners for interaction 
(A, B, C). If X and Y share only few interaction interfaces 
with binding sites of A, B and C. According to Triadic 
Closure Principle, X and Y interact each other, if the path 
connecting X and Y have length of two [43]. If the nodes have 
high degree of interaction, multiple shortcuts will be present 
in the network. To avoid bias due to multiple degree of nodes, 
few researches suggested to restrict interaction degree of 
every node by L3. Research is progressing to finalize the 
limiting degree of every node in PPI.     

7. CONCLUSION 

In this paper, the authors performed a survey on the aligners 
for PPI network. Following this the biological and topological 
matrices were evaluated. Later the popular state of art 
aligners are demonstrated with their methodologies and 
drawbacks. This review was focused on the importance of PPI 

network in biomedical research. Interpreting the topological 
structure of PPI by identifying the candidate gene and its 
interaction can act as a target for treatment of several auto 
immune disorders and cancer. Disease pathways are 
crumbled and moderately planted in PPI network. So learning 
the disease pathways over the set of predefined protein 
association can provide new advances in disease protein 
discovery. 
 
Any research on network alignment aims to improve the 
performance evaluation metric and the time complexity. 
Datasets plays an important role in the performance of 
aligners. Identifying the protein species in these well studied 
species helps to uncover the complexes present in poor 
studied species. Creating a framework for measuring the 
different aligners and the evaluation metric along with the 
data set to be used will definitely help the biologist to 
categorize the best aligner to use. 
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