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Abstract 
 

Cognitive radio (CR) technology is an effective solution to the spectrum scarcity issue. 
Collaborative spectrum sensing is known as a promising technique to improve the 
performance of spectrum sensing in cognitive radio networks (CRNs). However, collaborative 
spectrum sensing is vulnerable to spectrum data falsification (SSDF) attack, where malicious 
users (MUs) may send false sensing data to mislead other secondary users (SUs) to make an 
incorrect decision about primary user (PUs) activity, which is one of the key adversaries to the 
performance of CRNs.  In this paper, we propose a coalition based malicious users detection 
(CMD) algorithm  to detect the malicious user in CRNs. The proposed CMD algorithm can 
efficiently detect MUs base on the Geary’C theory and be modeled as a coalition formation 
game. Specifically, SSDF attack is one of the key issues to affect the resource allocation 
process. Focusing on the security issues, in this paper, we analyze the power allocation 
problem with MUs, and propose MUs detection based power allocation (MPA) algorithm. The 
MPA algorithm is divided into two steps: the MUs detection step and the optimal power 
allocation step. Firstly, in the MUs detection step, by the CMD algorithm we can obtain the 
MUs detection probability and the energy consumption of MUs detection. Secondly, in the 
optimal power allocation step, we use the Lagrange dual decomposition method to obtain the 
optimal transmission power of each SU and achieve the maximum utility of the whole CRN. 
Numerical simulation results show that the proposed CMD and MPA scheme can achieve a 
considerable performance improvement in MUs detection and power allocation. 
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1. Introduction 

The increasing of wireless services is accompanied with a huge demand on the spectrum 
resource. However, most of the channels have already been allocated according to static 
spectrum allocation policy. Various reports have shown that the licensed spectrum remains 
unoccupied for more than 70% periods [1]. The concept of cognitive radio (CR) has been 
considered as a promising technology to improve spectrum utilization. 

CR technology allows the secondary users (SUs) to employ the spectrum holes by licensed 
primary users (PUs) with limited the performance degradation caused to PUs’ communication, 
which can improve spectrum utilization and enhance the efficiency of spectrum sharing [2]. 
For the initial step, SUs sense the licensed spectrum and collect the information of PUs for 
available opportunities, which is the basis for all implementations. Thus the design of reliable 
and accurate spectrum sensing method is crucial to CR technology. However, the sensing 
performance is susceptible to the fast changing wireless environment and interference signal 
due to the openness of spectrum and non-protective and competitiveness of SUs’ opportunistic 
access [3]. Moreover, owing to the openness of wireless channels and the selfish behavior of 
SUs, CR networks are suffered from various kinds of security issues or attacks such as 
spoofing, jamming, and wiretap, etc [4]. Spectrum sensing attack is one of the security issues 
and it can be grouped into two major categories: primary users emulation (PUE) attack, the 
attacker emulates the characteristics of the PU to obtain exclusive spectrum usage [5]; 
spectrum sensing data falsification (SSDF) attack, attackers may report incorrect sensing data 
to neighboring SUs or fusion center (FC) leading to a degradation on performance of the 
collaborative spectrum sensing [6]. In this paper, we focus on the SSDF attack and call the 
attackers as malicious users (MUs). 

1.1 Related Work 
The novel analysis on attacks and defense strategies attract people’s attention in recent years 
for new security threats and challenges in CR network (CRN). Notably, as the focus of this 
paper, the research on SSDF attack and defense has gained significant achievements recently 
[7]-[13]. The approaches of SSDF attacks detection depend on the types of MUs as well as 
spectrum sensing results from SUs. In [7], the authors proposed a scheme to detect SSDF 
attack by dynamic learning the behavior of SUs in cooperative spectrum sensing (CCS) but 
they did not analyze the consociation of attackers. In [8], a reputation-based CCS with the 
assistance of honest users is proposed. However, the proposed scheme cannot be applied to the 
scenario that sensing results of all SUs are far from those of honest users, and leads little 
contribution to final decision. In [9], the authors proposed a defense scheme using 
kernel-based learning methods and statistical signal processing method in combination, which 
focus on statistical analysis of the sensing signal of SUs  at the price of energy consumption. In 
[10], the authors propsed a muti-channels based detection technique by comparing the sensing 
reports of neighboring SUs, which can be applied in the scenario with 20% MUs. According to 
[11], Min et al. considered to use the shadow fading correlation to detect MUs, which can 
reduce the impact of MUs on the performance of distributed cooperative sensing. A detection 
scheme proposed in [12] utilizes the outlier of energy sensors, considering a centralized 
spectrum sensing and a few MUs. In addition, a detection scheme proposed in [13] utilizes the 
spatial information correlation between SUs, which can be just applied in the scenario with a 
few MUs at the cost of much energy consumption. Above mentioned detection schemes are 
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suitable for a few MUs and do not consider energy consumption in the process of MUs 
detection.  

SUs decided to access the idle channels belong to the PUs based on the sensing results, and 
optimize the power allocation to achieve a higher efficiency of the spectrum resource while 
limiting the performance degradation cause to PUs. Specifically, the effects of SSDF attack on 
the resource allocation process reflect in two aspects: 1) the false sensing results of malicious 
users mislead the detection of primary users and influence the spectrum access of other 
secondary users; 2) malicious users would send false information to decrease the 
communication quality of other SUs. The traditional resource allocation problem in CRNs has 
been widely studied in the literature [14]-[17]. In [14], the authors proposed a centralized 
optimal power allocation to the cognitive transmitters, which considers the maximum 
interference constraint of PUs and minimum SINR constraint of SUs. The performance of 
power allocation in cooperative approaches is better than the non-cooperative ones according 
to [15], in which the authors proposed a optimization algorithm to maximize the utility in 
multi-cell CRNs, involving the exchange of prices to deal with the interference between cells 
and using cooperative power allocation approaches to improve the total sum-rate. A 
sensing-based power allocation model is proposed in [16], where the influence from the 
sensing probability is considered and the total throughput over multi-variables is optimized. 
Furthermore, joint cell selection and power allocation problem are analyzed in CR small cell 
network in [17]. 

Focusing on the security issues, a novel analysis is proposed in this paper, which combines 
MUs detection with the impact on optimal power allocation in CRNs. The traditional MUs 
detection schemes don’t work well with the SSDF attack, in order to improve the MU 
detection accuracy, the spatial correlation theory is used to detect independent and cooperative 
attack from MUs. In addition, the MUs detection process is performed as a coalition formation 
game which is able to achieve the highest accuracy of MUs detection. Specifically, the energy 
consumption in the MUs detection process as well as the degree of participation is considered 
in the optimization problem. 

1.2 Contribution 
In the paper, we analyze the resource allocation problem among CRNs based on malicious 
users detection scheme, where the MUs detection process is considered as a coalition game, 
and the Geary’C theory is used to improve the MUs detection accuracy. The main 
contributions of this paper can be summarized as follows: 
 Coalition based Malicious users Detection: We design a coalition based MUs detection 

algorithm for CRNs. The Geary’C theory [18] is the core of MUs detection, which is used 
to calculate the spatial correlation of SUs between their neighbors. According to the 
difference of spatial correlation between honest users (HUs) which report true sensing 
result and malicious users (MUs) which launch the SSDF attack, the MUs could be 
detected. The CMD algorithm can be applied to both independent and collaborative 
attack of MUs, which can achieve considerable performance improvement compared 
with the traditional MUs detection method. 

 Coalition Game Modeling of MUs Detection: The process of MUs detection algorithm 
can be formulated as a coalition formation game with a nontransferable utility to 
effectively improve the probability of MUs detection while decrease energy consumption. 
In the coalition game, the players are all the SUs in CRNs, and the utility function is 
composed of the accuracy of MUs detection and energy consumption factors  of each 
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coalition. SUs adjust the coalition partition base on the Pareto order and record the 
partition to guarantee the stability of the game. 

 MUs Detection based Power Allocation Algorithm: The optimal power allocation 
problem jointly considering the impact from MUs with untruthful or false behavior. The 
problem is a multi-variable optimization problem which consists of three parts: sum-rate 
of SUs, the detection probability of MUs and energy consumption by MUs detection. 
According to its convex characteristic, dual decomposition is used in this paper to solve 
the problem. 

The rest of the paper is organized as follows. In Section 2, we describe the topology of 
system model. The coalition based MUs detection algorithm and the associate a coalition 
game are presented in Section 3. In Section 4, we analyze the MUs detection based optimal 
power allocation algorithm which can be solve by the dual decomposition method. The 
simulation results are presented and discussed in Section 5 and finally the conclusions are 
drawn in Section 6. 

2. System Model 
In this section, we present the topology of CRNs and analyze both independent and 
collaborative SSDF attack models. 

2.1 Network Model 
We consider a CRN comprised of one PU, one SU base station (SBS) acts as the FC of N  SUs, 
where a half-duplex stationary transmission model is used. The number of channels available 
for SU i (i.e. PU is absent in this channel temporarily) is M. Note that a channel can only be 
assigned to one SU. According to the behavior of SUs, they are divided into two types: HUs 
and MUs. Namely, HUs: SUs sense the PU channel and report the faithful sensing results to 
the FC; MUs: SUs would tamper the sensing data based on their intention before sending to the 
FC, which leads to a wrong decision by FC about the actual status of PUs and degrade the 
CRN performance. Moreover, once MUs access the idle channels, they could attempt to 
prohibit HUs from using the channels which decrease the probability of HUs to use the idle 
channel. We focus on the number of MUs is less than HUs since it is meaningless to study a 
network where a majority of users are malicious. The system model is shown in Fig. 1. 

Energy detectors is used to detect the presence of the PU, the probability of detection and 
false alarm of SU i are given by 𝑃𝑃𝑑𝑑,𝑖𝑖and 𝑃𝑃𝑓𝑓𝑓𝑓,𝑖𝑖 respectively [19]: 

𝑃𝑃𝑑𝑑,𝑖𝑖 = 𝑃𝑃{𝑌𝑌 > 𝜆𝜆|𝐻𝐻1} = 𝑄𝑄((𝜆𝜆 − 𝛾𝛾𝑖𝑖)�𝜏𝜏𝑠𝑠𝑓𝑓𝑠𝑠/(2𝛾𝛾𝑖𝑖 − 1))                 (1) 
𝑃𝑃𝑓𝑓𝑓𝑓,𝑖𝑖 = 𝑃𝑃{𝑌𝑌 > 𝜆𝜆|𝐻𝐻0} = 𝑄𝑄((𝜆𝜆 − 1)�𝜏𝜏𝑠𝑠𝑓𝑓𝑠𝑠)                           (2) 

where hypothesis 𝐻𝐻0 represents the absence of PU while 𝐻𝐻1 states the present. 𝑌𝑌 denotes the 
obtained statistic energy from the PU, 𝜆𝜆 is the decision threshold of the energy detector, 𝛾𝛾𝑖𝑖 is 
the received SNR of SU i from the PU, 𝑓𝑓𝑠𝑠 represents the sampling frequency and 𝜏𝜏𝑠𝑠 means the 
sensing time. The noise at the SUs is assumed to be independent and identically distributed 
Gaussian noise 𝒩𝒩(0,1). The received power of SU i from the PU can be expressed as [20]: 

𝑃𝑃𝑖𝑖𝑟𝑟 = 𝑃𝑃𝑡𝑡 − (10𝜇𝜇𝑜𝑜 lg(𝑑𝑑𝑖𝑖/𝑑𝑑𝑜𝑜)) + 𝐺𝐺𝑖𝑖)(𝑑𝑑𝑑𝑑)                               (3) 
where 𝑃𝑃𝑡𝑡 is the transmit power of the PU, 𝜇𝜇𝑜𝑜 is the path-loss exponent, 𝑑𝑑𝑖𝑖 is the distance from 
the PU to SU i, and 𝑑𝑑𝑜𝑜 is the reference distance, 𝐺𝐺𝑖𝑖 is the log-normal shadowing coefficient 
which can be accounted by 𝑒𝑒𝑖𝑖𝑋𝑋 where 𝑋𝑋𝑖𝑖 ∽ 𝒩𝒩(0,𝜎𝜎2). 
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Fig. 1. System model 

2.2 Attack Model 
We consider two kinds of attacking strategies: independent attack and collaborative attack 
[21]. For independent attack, MUs report false sensing results based on their own profit, MUs 
may report a lower detection probability of the PU for disturbing the normal operation of PU 
systems, or report a higher false alarm probability in order to decrease access opportunities of 
HUs. 

For collaborative attack, a malicious agent (MA) is located on the edge of the CRN, which is 
the control consoler of MUs. Firstly, MUs send faithful sensing results to the MA. The MA 
makes the decision based on sensing results from MUs. Then the MA adjusts the detection 
decisions to launch the cooperative attack before sending them back to MUs. Finally, all MUs 
report the received decisions from MA to the FC. 

3. Coalition based Malicious Users Detection Algorithm 
The MUs could cause serious security threats in CRNs, through falsifying their sensing output 
and increasing false alarms. MUs could obtain more opportunities at the cost of HUs’ loss, 
which decreases the sum-rate of the whole CRN while increasing the interference to the PU 
system. In order to detect MUs efficiently we provide a coalition based MUs detection scheme, 
which could detect the MUs by a cooperative manner and achieve much higher detection 
accuracy than the methods in the literatures. 

3.1 Coalition Formation 
Based on local sensing results from Eq. (1), SU i needs to search potential cooperative SUs, 
namely, its neighbors under the following conditions: 
 Step1: If SU j satisfies�𝑃𝑃𝑑𝑑,𝑖𝑖 − 𝑃𝑃𝑑𝑑,𝑗𝑗� ≤ a, the SU j is considered as one of SU i’s neighbors 

and enter into the same coalition, where 𝑃𝑃𝑑𝑑,𝑖𝑖 
and 𝑃𝑃𝑑𝑑,𝑗𝑗 are the sensing results of SU i and 

SU j respectively. 
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 Step2: If SU i is selected to join the coalition partition, other SUs with the maximum 𝑃𝑃𝑑𝑑,𝑖𝑖 
would be selected from the remaining sets 𝑵𝑵R = {𝑵𝑵− 𝑖𝑖}, and repeat Step1. 

 Step3: After Step1 and Step2, the remaining disjoint SUs chose join the nearest coalition 
until no single SU exist. 

 Step4: Adjust the coalition partition base on the merge and split order until find the 
optimal coalition partition 𝒯𝒯n∗ = arg  max𝒯𝒯n∈T V(𝒯𝒯n). 

3.2 Geary’C Theory 
Due to the selfish behavior, MUs may decrease the performance of cooperative sensing of the 
whole CRN to obtain more profit. In order to distinguish MUs in each coalition depend on 
their behaviors, we use the Geary’C theory. Geary’C theory is one of the spatial statistics 
indicators to determine if adjacent observations of the same phenomenon are correlated, which 
is useful to find the difference partly measures the autocorrelation between a user and its 
neighboring users. The Geary’C can be expressed as follows [18]: 

𝐶𝐶 = 𝑛𝑛�−1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛�
𝑖𝑖=1

∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)2𝑛𝑛�
𝑗𝑗=1

𝑛𝑛�
𝑖𝑖=1

2∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑛𝑛�
𝑗𝑗=1

𝑛𝑛�
𝑖𝑖=1

                                (4) 

where 𝑛𝑛� is the number of all units in local range, 𝑦𝑦𝑖𝑖 and 𝑦𝑦𝑗𝑗 are pixel value of unit i and unit j. 
𝑦𝑦� is the mean of pixel value of all units, 𝑤𝑤𝑖𝑖𝑖𝑖 is the weight factor between unit i and unit j. The 
Geary’C theory presents the correlations between all units.  

In our system model, SUs are regarded as units whereas a coalition is considered as the local 
range. The pixel value of a unit is regarded as the received power of SUs from PU. In fading 
environment, sensing results from nearby HUs are similar. Therefore, based on the Geary’C 
theory, HUs have smaller spatial correlation compared with MUs in a coalition. Each SU takes 
turns as the coalition head to make the final decision for a coalition. Assume MUs cannot 
adjust the sensing report collected from others, thus the coalition head can make a true 
decision. We use Geary’C theory to calculate the spatial correlation of SU 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 which is the 
autocorrelation between SU i and its neighboring SUs in coalition 𝑆𝑆𝑘𝑘 is denoted as 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘): 

𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑃𝑃𝑖𝑖

𝑟𝑟−𝑃𝑃𝑗𝑗
𝑟𝑟)2𝑛𝑛𝑘𝑘

𝑗𝑗=1
1

𝑛𝑛𝑘𝑘−1
∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑃𝑃𝑖𝑖

𝑟𝑟−𝑃𝑃𝑟𝑟����)2𝑛𝑛𝑘𝑘
𝑗𝑗=1

                                              (5) 

where 𝑛𝑛𝑘𝑘 is the number of SUs in 𝑆𝑆𝑘𝑘, 𝑃𝑃𝑖𝑖𝑟𝑟 and 𝑃𝑃𝑗𝑗𝑟𝑟 are received power of SU i and SU j from PU, 
𝑃𝑃𝑟𝑟��� is the average received power of SUs in coalition 𝑆𝑆𝑘𝑘. 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖−1 is the weight factor of 
spatial correlation between SU i and SU j, and 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between SU i and SU j. 

Notably, the values of 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) lie between 0 and the given thresholds 𝜀𝜀0, 𝜀𝜀1 and 𝜀𝜀2. Values 
of 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) lie in the proper range mean the correlation between SU i and other SUs in 𝑆𝑆𝑘𝑘 is 
positive, which show that SU i is a HU, otherwise, it is a MU. 

Furthermore, the percentage of MUs in coalition 𝑆𝑆𝑘𝑘 also could affect the value of 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘). 
Notably, even we focus on the case when the total percentage of MUs is less than 50%, the 
tough case when the percentage of MUs is more than 50% could happen. We consider two 
kinds of scenario with respect to the percentage of MUs in each coalition, that are, Honest 
Case and Suspected Case: 
 Honest Case (HC): the percentage of MUs is less than 50% of 𝑆𝑆𝑘𝑘. 

𝐷𝐷𝑖𝑖(𝑆𝑆𝑘𝑘) = �1  if 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) > 𝜀𝜀0 
0 if 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) ≤ 𝜀𝜀0                                       (6) 

 Suspected Case (SC): the percentage of MUs is more than 50% of 𝑆𝑆𝑘𝑘. 

𝐷𝐷𝑖𝑖(𝑆𝑆𝑘𝑘) = � 1  if 𝜀𝜀1 < 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) < 𝜀𝜀2 
0 if 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) ≥ 𝜀𝜀2  or 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘) ≤ 𝜀𝜀1                        (7) 
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where 𝐷𝐷𝑖𝑖(𝑆𝑆𝑘𝑘) = 1 denotes that SU i is considered as a MU, otherwise 𝐷𝐷𝑖𝑖(𝑆𝑆𝑘𝑘) = 0. 𝜀𝜀0, 𝜀𝜀1 and 
𝜀𝜀2 are given decision thresholds. 𝑃𝑃𝑟𝑟��� is critical for calculating the spatial correlations of SUs in 
𝑆𝑆𝑘𝑘. In HC, 𝑃𝑃𝑟𝑟��� is the dominate factor for spatial correlation of SUs and the difference between 
the spatial correlations of HUs and MUs is clear. However, in SC, there are more MUs than 
HUs, which increases the difficulty of MUs detection. Since the distinction of the spatial 
correlations between HUs and MUs are tiny. To overcome this problem, double threshold 𝜀𝜀1 
and 𝜀𝜀2 are used here to enhance the detection accuracy. The optimal values of threshold 𝜀𝜀0, 
𝜀𝜀1 , 𝜀𝜀2 can be obtained by exhausted search method. 

The detection probability of MUs 𝑃𝑃𝑑𝑑𝑀𝑀(𝑆𝑆𝑘𝑘) and energy consumption of detecting MUs 
𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) in are two important factors which should be taken into consideration during in 
coalition formation. 𝑃𝑃𝑑𝑑𝑀𝑀(𝑆𝑆𝑘𝑘) can be formulated as: 𝑃𝑃𝑑𝑑𝑀𝑀(𝑆𝑆𝑘𝑘) = 𝑛𝑛𝑘𝑘𝑑𝑑/𝑛𝑛𝑘𝑘, where 𝑛𝑛𝑘𝑘 is the number 
of SUs in 𝑆𝑆𝑘𝑘 and 𝑛𝑛𝑘𝑘𝑑𝑑 is the number of MUs in 𝑆𝑆𝑘𝑘 which can be correctly detected. 

3.3 Energy Consumption 
The total energy consumption of SU i 𝐸𝐸𝑖𝑖𝑇𝑇(𝑆𝑆𝑘𝑘) in 𝑆𝑆𝑘𝑘 can be divided into two parts: energy 
consumption for MUs detection 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘)  and energy consumption for information 
transmission to SBS in uplink 𝐸𝐸𝑖𝑖𝑈𝑈(𝑆𝑆𝑘𝑘). 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) is related to the communication between SU i 
and other SUs in 𝑆𝑆𝑘𝑘 which consist of two parts:  
 Calculate spatial correlation: SU i report the sensing results of PU to the head of 𝑆𝑆𝑘𝑘 and 

the head of 𝑆𝑆𝑘𝑘 calculate spatial correlation in 𝑆𝑆𝑘𝑘. 
 Make decision: SU i take turns to performed as the head of 𝑆𝑆𝑘𝑘 to make decision and 

broadcast the detection result to all the SUs in 𝑆𝑆𝑘𝑘. 
Meanwhile, 𝐸𝐸𝑖𝑖𝑈𝑈(𝑆𝑆𝑘𝑘) comes from five parts [22]: 

 Transceiver Chain 𝐸𝐸𝑖𝑖𝑇𝑇𝑇𝑇(𝑆𝑆𝑘𝑘): the energy consumption of typical transmitters and receivers 
for SU i. 

 Channel Estimation 𝐸𝐸𝑖𝑖𝐶𝐶𝐶𝐶(𝑆𝑆𝑘𝑘): the energy consumption of the uplink channel estimation 
process from SU i to the SBS. 

 Coding and Decoding 𝐸𝐸𝑖𝑖𝐶𝐶𝐶𝐶(𝑆𝑆𝑘𝑘) : SU i applies channel coding and modulation to 
information symbols in the uplink. 

 Linear Processing 𝐸𝐸𝑖𝑖𝐿𝐿𝐿𝐿(𝑆𝑆𝑘𝑘): The transmitted and received vectors of information symbols 
at the SBS are generated by transmit precoding and processed by receive combining. 

In general, the total energy consumption of SU i in coalition 𝑆𝑆𝑘𝑘 is given as follows: 
𝐸𝐸𝑖𝑖𝑇𝑇(𝑆𝑆𝑘𝑘) = 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) + 𝐸𝐸𝑖𝑖𝑈𝑈(𝑆𝑆𝑘𝑘) = 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) + 𝐸𝐸𝑖𝑖𝑇𝑇𝑇𝑇(𝑆𝑆𝑘𝑘) + 𝐸𝐸𝑖𝑖𝐶𝐶𝐶𝐶(𝑆𝑆𝑘𝑘) + 𝐸𝐸𝑖𝑖𝐶𝐶𝐶𝐶(𝑆𝑆𝑘𝑘) + 𝐸𝐸𝑖𝑖𝐿𝐿𝐿𝐿(𝑆𝑆𝑘𝑘) (8) 

3.4 Coalition Formation Game 
Depending on the sensing results and the spatial correlation of SUs, the SUs could decide their 
coalitions to detect the MUs. The structure of coalition formation directly affects the accuracy 
and the energy consumption of MUs detection in a coalition. To devise suitable cooperative 
strategies among the SUs, we model the coalition formation as a coalitional game with a 
non-transferable utility which provides useful tools to decide the optimal coalition partition. 
To model the game, we make the following definitions: 
Coalition Formation Game: Let G = {𝒩𝒩, ν} be a coalition game with a non-transferable 
utility [23], where 𝒩𝒩 is the set of players SU 𝑖𝑖 ∈ 𝒩𝒩, and ν is utility function of the game. 
Coalition Partition: A coalition partition is a distribution of players 𝒩𝒩  forming disjoint 
coalitions in CRN. The set of all possible coalition partitions is denoted as 𝑇𝑇 = {𝒯𝒯0,𝒯𝒯1, … ,𝒯𝒯𝑛𝑛}, 
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where 𝒯𝒯𝑛𝑛 represents the coalition partition of the CRN at iteration n. We define the initial state 
𝒯𝒯0 = {{1}, … , {𝑁𝑁}} which composed of singletons of player. 
Utility: A non-transferable utility  𝜐𝜐(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛) of coalition 𝑆𝑆𝑘𝑘 at iteration n is denoted as the 
objective function, which is given as: 

     𝜐𝜐(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛) = �𝑃𝑃𝑑𝑑
𝑀𝑀(𝑆𝑆𝑘𝑘)−

∑ 𝐸𝐸𝑖𝑖
𝐷𝐷(𝑆𝑆𝑘𝑘)𝑛𝑛𝑘𝑘

𝑖𝑖=1
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

 if 0 ≤ 𝑛𝑛 ≤ 𝑛𝑛𝑚𝑚
0                                         otherwise

          (9) 

where 𝑃𝑃𝑑𝑑𝑀𝑀(𝑆𝑆𝑘𝑘) is the detection probability of MUs and 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) is energy consumption of 
detecting MUs of SU i in 𝑆𝑆𝑘𝑘. 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑙𝑙𝑜𝑜𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

2  is the maximum energy consumption of SU i, 
where 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  is maximum distance between arbitrary two SUs and 𝑙𝑙𝑜𝑜  is the energy 
consumption per kilometer. 𝑛𝑛𝑚𝑚 is the maximum number of SUs per coalition can be served. It 
is clear that energy consumption increase with the increasing number of SUs per coalitions 
while the probability of detection and false alarm for PU will increase simultaneously. Notably, 
𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛) is not divisible among the SUs since the utility of SU i in 𝑆𝑆𝑘𝑘 is equal to 𝜐𝜐(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛), 
namely, satisfy  𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛) = 𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛) ∀ 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 , where 𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛) is the utility of SU i in 
coalition 𝑆𝑆𝑘𝑘 for the non-transferable utility of coalition formation game [24]. 

Thus, the total utility  V(𝒯𝒯n) of the CRN at iteration time n is given by: 
       𝑉𝑉(𝒯𝒯𝑛𝑛) = ∑ 𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛)|𝒯𝒯𝑛𝑛|

j=1                                              (10) 
where |𝒯𝒯𝑛𝑛| is the number of coalition at iteration n . 

According to [23], we apply Pareto order to adjust the structure of coalitions based on 
twofold: firstly, increase 𝑃𝑃𝑑𝑑𝑀𝑀(𝑆𝑆𝑘𝑘)  which could enhance the performance of CRNs while 
decrease disturbing the normal operation of PU systems; and secondly, decrease 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) with 
the purpose of maximizing the total utility of the CRN. 
Coalition Repartition: At iteration n, SU i choose to deviate from one coalition to another 
only if the following conditions are satisfied: 

�
𝑉𝑉(𝒯𝒯𝑛𝑛+1) > 𝑉𝑉(𝒯𝒯𝑛𝑛)

𝜐𝜐�𝑆̃𝑆𝑘𝑘,𝒯𝒯𝑛𝑛+1� > 𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛)                                              (11) 

where 𝑆̃𝑆𝑘𝑘 is the new coalition, if SU i joins 𝑆𝑆𝑘𝑘 at iteration n, 𝑆̃𝑆𝑘𝑘 = 𝑆𝑆𝑘𝑘 ⋃{𝑖𝑖}, and the coalition 
partition turns from 𝒯𝒯𝑛𝑛 to 𝒯𝒯𝑛𝑛+1. 𝑉𝑉(𝒯𝒯𝑛𝑛) is the total utility of CRNs at iteration n . 
For two coalition 𝑆𝑆𝑘𝑘 and 𝑆𝑆−𝑘𝑘, where 𝑆𝑆−𝑘𝑘 denotes one of the coalitions except 𝑆𝑆𝑘𝑘, they choose 
to merge as a new coalition only if the following condition are satisfied: 

  �
𝑉𝑉(𝒯𝒯𝑛𝑛+1) > 𝑉𝑉(𝒯𝒯𝑛𝑛)

𝜐𝜐�𝑆̃𝑆𝑘𝑘,𝒯𝒯𝑛𝑛+1� > 𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛) + 𝜐𝜐(𝑆𝑆−𝑘𝑘,𝒯𝒯𝑛𝑛)                       (12) 

where 𝑆̃𝑆𝑘𝑘 is the new coalition, e.g. 𝑆𝑆𝑘𝑘 decides to merge to 𝑆𝑆−𝑘𝑘 at iteration n, 𝑆𝑆𝑘𝑘 and 𝑆𝑆−𝑘𝑘 merge, 
𝑆̃𝑆𝑘𝑘 = {𝑆𝑆𝑘𝑘 ⋃𝑆𝑆−𝑘𝑘}. The coalition partition 𝒯𝒯𝑛𝑛  will be recorded to avoid the coalition game 
getting into infinite loops and guarantee the coalition game can achieve the equilibrium. 
Coalition Partition Record: Denote ℋ = {ℎ0,ℎ1, … ,ℎ𝑛𝑛} as the record set at iteration n, 
where ℎ𝑛𝑛 = �𝑉𝑉(𝒯𝒯𝑛𝑛), �𝜐𝜐(𝑆𝑆1,𝒯𝒯𝑛𝑛), … , 𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛), … , 𝜐𝜐�𝑆𝑆|𝒯𝒯𝑛𝑛|,𝒯𝒯𝑛𝑛���  presents the total utility of 
CRN and individual utility of each coalition at iteration n. The record set ℋ guarantees that 
the same coalition partition cannot be appeared in the coalition formation process. If 
𝒯𝒯𝑛𝑛+1 ≠ 𝒯𝒯𝑛𝑛, ℎ𝑛𝑛+1 is not equal to any records in ℋ, ℋ = {ℎ0,ℎ1, … ,ℎ𝑛𝑛,ℎ𝑛𝑛+1} at iteration n+1 
otherwise the coalition optimization reaches convergence. 

Specifically, if one of the following conditions is satisfied, coalition repartition stops: 1) If 
the record set ℋ includes all the possible records and all the possible coalition partition of the 
CRN; 2) If the coalition partition achieves the optimal, the utility of the CRN based on the 
energy consumption and the MU detection probability achieves the maximum. To 
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demonstrate the stability of the proposed coalition game, we introduce the conception of 
defection function D, Dhp, D-stable and Dhp-stable as following [25]: 
Definition 1 A defection function D is the function that can map each partition 𝒯𝒯𝑛𝑛 of 𝒩𝒩 into a 
group of collections in 𝒩𝒩. A partition is D-stable if no players intend to leave 𝒯𝒯𝑛𝑛 to form the 
collections allowed by D. 
Specifically, if the partition 𝒯𝒯𝑛𝑛  is D-stable, the partition is Pareto optimal. However, the 
partition is not ever-present. The D-stable exits only with the following two conditions [23]: 
 For each pair of disjoint sub-coalitions 𝑆𝑆1𝑆𝑆  and 𝑆𝑆2𝑆𝑆  in 𝑆𝑆𝑘𝑘 ∈ 𝒯𝒯𝑛𝑛 , 𝜐𝜐�𝑆𝑆1𝑆𝑆 ⋃𝑆𝑆2𝑆𝑆� > 𝜐𝜐(𝑆𝑆2𝑆𝑆) 

or  𝜐𝜐�𝑆𝑆1𝑆𝑆 ⋃𝑆𝑆2𝑆𝑆� > 𝜐𝜐(𝑆𝑆1𝑆𝑆) is satisfied. 
 For the partition 𝒯𝒯𝑛𝑛 = {𝑆𝑆1, … , 𝑆𝑆|𝒯𝒯𝑛𝑛|}, a incompatible coalition 𝑆𝑆′ ∈ 𝒩𝒩  formed by SUs 

belonging to different 𝑆𝑆𝑘𝑘 ∈ 𝒯𝒯𝑛𝑛. If the partition 𝒯𝒯𝑛𝑛 is D-stable, all incompatible coalitions 
should satisfy  𝜐𝜐(𝑆𝑆′ ⋂𝑆𝑆𝑘𝑘) > 𝜐𝜐(𝑆𝑆′), ∀𝑘𝑘 ∈ {1, … , |𝒯𝒯𝑛𝑛|}. 

Definition 2 A defection function Dℎ𝑝𝑝 is the function that can map a partition 𝒯𝒯𝑛𝑛 of 𝒩𝒩  into a 
partition based on merge-split operation. A partition 𝒯𝒯𝑛𝑛 = {𝑆𝑆1, … , 𝑆𝑆|𝒯𝒯𝑛𝑛|} is Dℎ𝑝𝑝-stable if no 
group of players could leave only using merge-split operation and form new partitions. 
We use Pareto order as the comparison relation which is monotonous, transitive and linear and 
rule is merge-split. 
Lemma 1 For an arbitrary coalition formation game, the comparison relation is monotonous, 
transitive, irreflexive and linear, and it can reach the optimal D-stable partition if such a 
partition exists. Otherwise, the final network partition is Dℎ𝑝𝑝-stable [25]. 

In this paper, the coalition formation game reaches stable, only if there are no SUs change 
their coalitions, and the utility of the whole CRN  𝑉𝑉(𝒯𝒯𝑛𝑛∗) achieve the maximum where the 
coalition partition 𝒯𝒯𝑛𝑛∗ is called the optimal coalition partition. 
The process of coalition formation game is summarized as follows: 
 Coalition Formation: SUs search potential coalition members by broadcast their local 

sensing results, which cause two kinds of forms. Split: SU i leaves 𝑆𝑆𝑘𝑘 and joins 𝑆𝑆−𝑘𝑘; 
Merge: 𝑆𝑆𝑘𝑘 merge to 𝑆𝑆−𝑘𝑘 and form 𝑆̃𝑆𝑘𝑘. 

 Coalition Partition: Calculate the total utility of the CRN 𝑉𝑉(𝒯𝒯𝑛𝑛+1) and utility of each 
coalition in potential partition  𝜐𝜐(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛+1). Compare the utility between current coalition 
partition 𝒯𝒯𝑛𝑛 and potential coalition partition 𝒯𝒯𝑛𝑛+1 to decide whether to set the coalition 
repartition. 

 Coalition Partition Record Update: If 𝒯𝒯𝑛𝑛  turns 𝒯𝒯𝑛𝑛+1  the new record 
ℎ𝑛𝑛 = �𝑉𝑉(𝒯𝒯𝑛𝑛+1), �𝜐𝜐(𝑆𝑆1,𝒯𝒯𝑛𝑛+1), … , 𝜐𝜐(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛+1), … , 𝜐𝜐�S|𝒯𝒯n+1|,𝒯𝒯n+1���  are stored in the 
record ℋ. Otherwise, the record set ℋ remains unchanged. 

 Coalition Stabilize: Repeat above three steps until reach the convergence of the coalition 
partition. 

The four steps of the coalition formation are repeated till no SUs intent to leave the current 
partition, resulting in a stability partition. 
Proof : The proof for the stability of the proposed coalition game is given in Appendix A. 

We outline the coalition based malicious user detection (CMD) algorithm in Table 1. 
 

Table 1. Coalition based Malicious User Detection (CMD) Algorithm 
Coalition based Malicious User Detection (CMD) Algorithm  

1. Initialization: 
MUs and SUs are randomly distributed in the given range, initialize the coalition 𝒯𝒯0 =

{{1}, … , {𝑁𝑁}} and the record set ℋ = {ℎ0}, n=0. 
2. Local Spectrum Sensing: 



4670                                                                                          Huang et al.: Coalition based Optimization of Resource Allocation with 
Malicious User Detection in Cognitive Radio Networks 

SUs obtain the sensing results of PUs by Eq.(1) and Eq.(2) 
3. Step 1: Coalition Partition 
4. for SUs in CRN 𝑖𝑖 = 1 to N do 

SU i share the sensing results with others and list the potential coalitions. Suppose the current 
coalitional partition 𝒯𝒯𝑛𝑛 = {𝑆𝑆1, … , 𝑆𝑆|𝒯𝒯𝑛𝑛|}. There exists N possible coalitional partitions 
𝒯𝒯𝑛𝑛1, … ,𝒯𝒯𝑛𝑛𝑁𝑁. 

5. end for 
6. 1) Calculate spatial correlation 

for coalitions 𝑘𝑘 = 1 to |𝒯𝒯𝑛𝑛| do 
for SUs in coalition 𝑆𝑆𝑘𝑘 𝑖𝑖 = 1 to 𝑛𝑛𝑘𝑘 do 

Calculate 𝐶𝐶𝑖𝑖(𝑆𝑆𝑘𝑘), and 𝑪𝑪 = {𝐶𝐶1(𝑆𝑆𝑘𝑘), … ,𝐶𝐶𝑛𝑛𝑘𝑘(𝑆𝑆𝑘𝑘)}, by Eq.(5), and find out MUs by Eq.(5) 
and Eq.(6) to find out MUs 

end for 
end for 

7. 2) Calculate energy consumption 
for coalitions 𝑘𝑘 = 1 to  |𝒯𝒯𝑛𝑛| do 

for SUs in coalition 𝑆𝑆𝑘𝑘  𝑖𝑖 = 1 to 𝑛𝑛𝑘𝑘 do 
Calculate 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘), and E = {𝐸𝐸1𝐷𝐷(𝑆𝑆𝑘𝑘), … ,𝐸𝐸𝑛𝑛𝑘𝑘

𝐷𝐷 (𝑆𝑆𝑘𝑘)} from Eq.(8) 
end for 

end for 
8. Step 2: Coalition Repartition: 

1) If SU i decides whether to join to another coalition based on Eq.(11), update ℋ. 
2) If 𝑆𝑆𝑘𝑘 decides to merge with another coalition partition by Eq.(12), update ℋ 

9. Repeat 
Step 1 and Step 2 
Untill 
Find the optimal coalition partition 𝒯𝒯n∗ = arg  max𝒯𝒯n∈T V(𝒯𝒯n) 

4. Optimal Power Allocation with Malicious users Attacks 
SUs access the idle channels belong to the PUs based on the sensing results, and optimize the 
power allocation to achieve a higher efficiency of the spectrum resource while limiting the 
performance degradation cause to PUs. Specifically, in this paper, SSDF attack of MUs 
disrupts the decision-making of FC and affects the power allocation in CRN. So, we should 
consider MUs in the power allocation process. 

In this paper, SU i decides to access channel based on the sensing results, thus the data 
transmission time of SU i is given by 𝑇𝑇 − 𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑐𝑐, where 𝜏𝜏𝑠𝑠 is the sensing time, 𝜏𝜏𝑐𝑐  is the 
information exchanging time between SU i and its neighbors, and 𝑇𝑇 is the length of the frame. 
For the sake of simplicity, we assume 𝑇𝑇, 𝜏𝜏𝑠𝑠 and 𝜏𝜏𝑐𝑐  are fixed value. The sum rate overall 
channels of SU i in coalition 𝑆𝑆𝑘𝑘 can be expressed as: 

        𝑅𝑅𝑖𝑖(𝑆𝑆𝑘𝑘) = �𝑇𝑇−𝜏𝜏𝑠𝑠−𝜏𝜏𝑐𝑐
𝑇𝑇

�𝑃𝑃(𝐻𝐻0)𝜃𝜃𝑖𝑖 ∑ 𝑟𝑟𝑖𝑖𝑙𝑙𝑀𝑀
𝑖𝑖=1                           (13) 

where 𝑟𝑟𝑖𝑖𝑙𝑙 is the transmission rate of SU i in channel l given by: 

  𝑟𝑟𝑖𝑖𝑙𝑙 = log2(1 + 𝑃𝑃𝑖𝑖
𝑙𝑙𝐺𝐺𝑖𝑖,𝐵𝐵

𝑙𝑙

𝑁𝑁0
)                                       (14) 

where 𝑃𝑃𝑖𝑖𝑙𝑙 is the transmit power of SU 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘 in channel l, 𝐺𝐺𝑖𝑖,𝐵𝐵𝑙𝑙  is the channel gain between SU 
i and SBS over channel l. 𝑁𝑁0 is the variance of the Gaussian noise in channel l. The 𝑃𝑃(𝐻𝐻0) is 
the prior i knowledge of the status of the PU. 𝜃𝜃𝑖𝑖  is the willing factor, which shows the 
probability of SU i to join in the MUs detection process. In our scheme, the SU i can decide 
whether to join in the MUs detection process based on the tradeoff between the achievable rate 
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and the energy consumption. To achieve the social benefit and promote SUs participate in the 
MUs detection process, compensation rule is used to allows SUs which join in the MUs 
detection obtain higher opportunity to access the idle channel. Let will factor 𝜃𝜃𝑖𝑖 equals to the 
access probability of SU i of idle channel, the SU i which did not contribute in MUs detection 
will be excluded to use the idle channels belong to the PU. 

On the one hand, the total power allocation of SU i in all channels should not exceed a limit 
power constraint  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, thus we have: 

  ∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀
𝑖𝑖=1 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,   ∀𝑖𝑖, 𝑙𝑙                                       (15) 

On the other hand, notice that FCC claims that there should be a power mask on 
opportunistic transmissions even the channels are detected to be idle. In order to effectively 
protect the PU from harmful interference, the interference power constraint can be formulated 
as follows: 

  𝑃𝑃𝑖𝑖𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙 ≤ Γ𝑙𝑙 ,   ∀𝑖𝑖, 𝑙𝑙                                         (16) 
where 𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙  is the channel gain between SU i and PU over the channel l, Γ𝑙𝑙 is the maximum 
interference power could be acceptable by PU over the channel l. 

In this paper, we aim at maximizing the total utility of SUs by considering the detection 
probability of MUs and the energy consumption. The detection probability of MUs and the 
energy consumption are increasing functions with the number of SUs. Focusing on mitigating 
malicious users attacks, where the percentage of MUs < 50% we maximize the utility of the 
CRN, and balance the tradeoff between 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) and 𝐷𝐷𝑖𝑖(𝑆𝑆𝑘𝑘) of SU i in 𝑆𝑆𝑘𝑘. The normalized 
expression is used here to ensure the value of each part is in an order of magnitude. The power 
allocation optimization problem based on malicious users detection can be described as 
optimization problem P1: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑖𝑖
𝑙𝑙,𝑃𝑃𝑑𝑑

𝑀𝑀,𝑛𝑛𝑘𝑘
𝑈𝑈 = ��(

𝑅𝑅𝑖𝑖(𝑆𝑆𝑘𝑘)
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

+
𝐸𝐸𝑖𝑖𝑈𝑈(𝑆𝑆𝑘𝑘)
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛))
𝑛𝑛𝑘𝑘

𝑖𝑖=1

|𝒯𝒯𝑛𝑛|

𝑘𝑘=1

 

       𝑠𝑠. 𝑡𝑡.   𝐶𝐶1 :  ∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀
𝑖𝑖=1 ≤ 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚                                                                  (17) 

 𝐶𝐶2:  𝑃𝑃𝑖𝑖𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙 ≤ Γ𝑙𝑙                                                                       (18) 
 𝐶𝐶3 : ∑ 𝑛𝑛𝑘𝑘 = 𝑁𝑁|𝒯𝒯𝑛𝑛|

𝑘𝑘=1                                                                       (19) 
 𝐶𝐶4: 𝑃𝑃𝑖𝑖𝑙𝑙 ≥ 0                                                                                 (20) 
 𝐶𝐶5: 𝐷𝐷0 ≤ 𝑃𝑃𝑑𝑑𝑀𝑀(𝑆𝑆𝑘𝑘) ≤ 1                                                              (21) 

where 𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘 ,𝒯𝒯𝑛𝑛) is the utility of SU i  joint energy consumption and the MU detection 
probability in 𝑆𝑆𝑘𝑘  at coalition partition   𝒯𝒯𝑛𝑛 , particularly 𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛) = 𝜐𝜐(𝑆𝑆𝑘𝑘,𝒯𝒯𝑛𝑛)  due to the 
non-transferable character of coalition formation game. 𝑛𝑛𝑘𝑘 is the number of SUs in 𝑆𝑆𝑘𝑘, |𝒯𝒯𝑛𝑛| is 
the number of coalitions at iteration n, 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 in the maximum achievable rate of SU i . 
𝐷𝐷0 = 0.8  is the lowest bound for the detection probability of MUs. 𝐸𝐸𝑖𝑖𝑈𝑈(𝑆𝑆𝑘𝑘)  is energy 
consumption for information transmission from SU i to SBS in uplink of 𝑆𝑆𝑘𝑘. 

The problem P1 is a multi-variables optimization problem which is NP hard. The objective 
function of optimization problem P1 consists of three parts: sum-rate of SUs, the probability 
detection of MUs and energy consumption.  

In order to solve the problem, we use alternating optimization method [26], which can get 
optimal value of multi-variables by an alternative manner. Firstly, MUs detection step, we use 
the proposed CMD algorithm to find the optimal coalition partition 𝒯𝒯n∗ = arg  𝑚𝑚𝑚𝑚𝑚𝑚𝒯𝒯𝑛𝑛∈𝑇𝑇 𝑉𝑉(𝒯𝒯𝑛𝑛), 
calculate the optimal MUs detection probability 𝑃𝑃𝑑𝑑𝑀𝑀∗(𝑆𝑆𝑘𝑘) and the number of 𝑆𝑆𝑘𝑘 𝑛𝑛𝑘𝑘∗  based on 
an initial transmit power of SU i 𝑃𝑃𝑖𝑖𝑙𝑙(0). Secondly, the power allocation optimization step, we 
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can use the Lagrange dual decomposition method to get the optimal transmit power 𝑃𝑃𝑖𝑖𝑙𝑙∗ based 
on the 𝑃𝑃𝑑𝑑,𝑖𝑖

𝑀𝑀∗(𝑆𝑆𝑘𝑘) and 𝑛𝑛𝑘𝑘∗  of optimal coalition partition 𝒯𝒯n∗ obtained from the previous MUs 
detection step. Repeat these two steps till convergence. 

Based on the MUs detection steps, the probability detection of MUs 𝑃𝑃𝑑𝑑,𝑖𝑖
𝑀𝑀 (𝑆𝑆𝑘𝑘) and the energy 

consumption 𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘)  of MUs detection of SU 𝑖𝑖 ∈ 𝑆𝑆𝑘𝑘  at 𝒯𝒯n∗  have been calculated, thus 
𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘 ,𝒯𝒯n) can be considered as a constant and in the following we optimize the transmit power 
of SUs in CRN. Therefore, in the power allocation step, optimization problem P1 can be 
expressed as problem P2: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃𝑖𝑖
𝑙𝑙
𝑈𝑈 = ��(

𝑅𝑅𝑖𝑖(𝑆𝑆𝑘𝑘)
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

+
𝐸𝐸𝑖𝑖𝑈𝑈(𝑆𝑆𝑘𝑘)
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘 ,𝒯𝒯n∗))

𝑛𝑛𝑘𝑘
∗

𝑖𝑖=1

|𝒯𝒯n∗|

𝑘𝑘=1

 

𝑠𝑠. 𝑡𝑡.   𝐶𝐶1,  𝐶𝐶2,  𝐶𝐶3                                                                                  (22) 
 

To solve the problem P2 effectively, we focus on the optimal power of SU i in coalition 𝑆𝑆𝑘𝑘 
and the objective function of P2 can be written as: 

 

    𝑈𝑈𝑖𝑖 = 𝐹𝐹1,𝑖𝑖 ∑ 𝑟𝑟𝑖𝑖𝑙𝑙𝑀𝑀
𝑙𝑙=1 + 𝐹𝐹2,𝑖𝑖                                           (23) 

 

where 𝐹𝐹1,𝑖𝑖 = �𝑇𝑇−𝜏𝜏𝑠𝑠−𝜏𝜏𝑐𝑐
𝑇𝑇

�𝑃𝑃(𝐻𝐻0)𝜃𝜃𝑖𝑖 and 𝐹𝐹2,𝑖𝑖 = 𝐸𝐸𝑖𝑖
𝑈𝑈(𝑆𝑆𝑘𝑘)
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

+ 𝜐𝜐𝑖𝑖(𝑆𝑆𝑘𝑘 ,𝒯𝒯n∗) ,Therefore, the original 
optimization problem P1 can be transformed to a convex optimization problem with respect to 
𝑃𝑃𝑖𝑖𝑙𝑙. Notably, the solution of the dual problem and the original problem has a gap zero based on 
its slater's condition according to [27]. The Lagrangian dual of problem P2 is given as: 
 

𝐿𝐿�𝑃𝑃𝑖𝑖𝑙𝑙 ,𝛼𝛼,𝝁𝝁� = 𝐹𝐹1,𝑖𝑖� log2 �1 +
𝑃𝑃𝑖𝑖𝑙𝑙𝐺𝐺𝑖𝑖,𝐵𝐵𝑙𝑙

𝑁𝑁0
�

𝑀𝑀

𝑙𝑙=1

+ 𝐹𝐹2,𝑖𝑖 

 −𝛼𝛼� ∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀
𝑙𝑙=1 −𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚� − ∑ 𝜇𝜇𝑙𝑙𝑀𝑀

𝑙𝑙=1 (𝑃𝑃𝑖𝑖𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙 − Γ𝑙𝑙  )        (24) 
 

where 𝛼𝛼 and vector 𝝁𝝁 = [𝜇𝜇𝑙𝑙]𝑙𝑙=1𝑀𝑀   are the dual variables associated with the transmit power 
constraint Eq.(13) and the interference power constraint given in Eq.(14) respectively. 
If all constraints of optimization problem as P2 are satisfied, the optimal solution does exist 
according to the convex optimization theory. The optimal power allocation 𝑃𝑃𝑖𝑖𝑙𝑙∗  can be 
expressed as: 
 

𝑃𝑃𝑖𝑖𝑙𝑙∗ = [ 𝐹𝐹1,𝑖𝑖

ln2(𝛼𝛼+𝜇𝜇𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃
𝑙𝑙 )

− 𝑁𝑁0
𝐺𝐺𝑖𝑖,𝐵𝐵
𝑙𝑙 ]                                        (25) 

 
Proof  The details of the proof is given in Appendix B. 

We outline the MUs detection based power allocation (MPA) algorithm in Table 2. 
 

Table 2. MUs detection based power allocation (MPA) algorithm 
MUs detection based power allocation (MPA) algorithm  

1. Initialization: 𝑛𝑛 = 0,𝑡𝑡1 = 0, 𝑡𝑡2 = 0 , 𝑃𝑃𝑖𝑖𝑙𝑙 = 0, 𝑃𝑃𝑑𝑑,𝑖𝑖
𝑀𝑀 = 0, 𝐸𝐸𝑖𝑖𝐷𝐷 = 0 

2. Repeat 
for 𝑖𝑖 = 1:𝑁𝑁 do 
1) The MUs detection step: 

Find 𝑃𝑃𝑑𝑑,𝑖𝑖
𝑀𝑀∗, 𝐸𝐸𝑖𝑖𝐷𝐷∗ by using the CMD algorithm. 

            Update 𝑃𝑃𝑑𝑑,𝑖𝑖
𝑀𝑀 (𝑛𝑛 + 1) = 𝑃𝑃𝑑𝑑,𝑖𝑖

𝑀𝑀∗, 𝐸𝐸𝑖𝑖𝐷𝐷(𝑛𝑛 + 1) = 𝐸𝐸𝑖𝑖𝐷𝐷∗ 
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       2) The optimal power allocation step: 
      for 𝑙𝑙 = 1:𝑀𝑀  do 

Update 𝜇𝜇𝑙𝑙,𝑡𝑡1+1 by 𝜇𝜇𝑙𝑙,𝑡𝑡1+1 = 𝜇𝜇𝑙𝑙,𝑡𝑡1 + 𝑎𝑎1(𝑃𝑃𝑖𝑖𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙 − Γ𝑙𝑙)  
              If 𝜇𝜇𝑙𝑙,𝑡𝑡1+1 < 0, set 𝜇𝜇𝑙𝑙,𝑡𝑡1+1 = 0 and stop; Otherwise, stop when |𝜇𝜇𝑙𝑙,𝑡𝑡1+1 − 𝜇𝜇𝑙𝑙,𝑡𝑡1| ≤ ϵ1. 
             Update 𝛼𝛼𝑡𝑡2+1 by 𝛼𝛼𝑡𝑡2+1 = 𝛼𝛼𝑡𝑡2 + 𝑎𝑎2(∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀

𝑙𝑙=1 −𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)  
              If 𝛼𝛼𝑡𝑡2+1 < 0, set 𝛼𝛼𝑡𝑡2+1 = 0 and stop; Otherwise, stop when  |𝛼𝛼𝑡𝑡2+1 − 𝛼𝛼𝑡𝑡2| ≤ ϵ1  

Find 𝑃𝑃𝑖𝑖𝑙𝑙∗by Eq.(25). 
end for 

Update 𝐏𝐏i(n + 1) =  𝐏𝐏𝑖𝑖∗, 𝐏𝐏i = [ 𝑃𝑃𝑖𝑖𝑙𝑙]𝒍𝒍=𝟏𝟏𝑴𝑴  
Untill  
|𝑃𝑃𝑑𝑑,𝑖𝑖

𝑀𝑀 (n + 1) − 𝑃𝑃𝑑𝑑,𝑖𝑖
𝑀𝑀 (n)| ≤ ϵ2, |𝐸𝐸𝑖𝑖𝐷𝐷(n + 1) − 𝐸𝐸𝑖𝑖𝐷𝐷(n)| ≤ ϵ2and 

 |𝐏𝐏i(n + 1) − 𝐏𝐏i(n)| ≤ ϵ2, 𝑛𝑛 = 𝑛𝑛 + 1 stop 
end for 

3.   Output the optimal utility 𝑈𝑈𝑖𝑖∗ and calculate the optimal utility of CRN 𝑈𝑈∗ . 
  Where 𝑎𝑎1 > 0 and 𝑎𝑎2 > 0 are the step size, and ϵ1 > 0 and ϵ2 > 0 are given constants. 

5. Simulation Results 
In this section, we present numerical simulation results to assess the performance of the 
proposed CMD and MPA algorithm. In the simulations, we consider a 5𝑘𝑘𝑘𝑘 × 5𝑘𝑘𝑘𝑘 square 
area and one PU is located at the center, 𝑁𝑁 = 100 SUs are randomly distributed around the PU. 
The remaining parameters are varied in the given range to compare the performance of the 
proposed algorithms with different algorithms in the literatures under different conditions. We 
focus on the performance of the CMD algorithm in energy consumption of MUs detection  
𝐸𝐸𝑖𝑖𝐷𝐷(𝑆𝑆𝑘𝑘) and the detection probability of MUs 𝑃𝑃𝑑𝑑,𝑖𝑖

𝑀𝑀 (𝑆𝑆𝑘𝑘), and the MPA algorithm in the power 
allocation utility of the whole CRN with different maximal transmission power 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, the 
number of idle channel 𝑁𝑁𝑐𝑐 and willing factor 𝜃𝜃. Simultaneously, we compare the performance 
of the CMD algorithm with random coalition based MUs detection (RCMD) algorithm, 
centralized MUs detection (CD) algorithm [13] and cooperative neighboring cognitive radio 
nodes (COOPON) algorithm [10]. Based on the performance of the three algorithms above, 
we consider the performance of the MPA algorithm with random coalition MUs detection 
based power allocation (RMPA) algorithm and centralized MUs detection based power 
allocation (CMPA) algorithm. 
    Fig. 2 shows the energy consumption of MUs detection in CMD algorithm and CD 
algorithm in both sparse scenario (SS) and dense scenario (DS). In SS, there are 4 SUs per km 
square and 16 SUs per km square in DS. For both of these two cases, the energy consumption 
of MUs detection of CMD and CD algorithm increase as the number of SUs increase. 
Especially, the proposed CMD algorithm yields a considerable energy consumption reduction 
with respect to the CD algorithm. Due to the total distance between SUs in DS is shorter than 
in SS, the energy consumption of the proposed CMD algorithm is higher in SS than DS. 
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Fig. 2. The energy consumption of MUs detection vs. SUs 

 

  
Fig. 3. The detection probability of MUs vs. 𝜀𝜀0 

 
In Fig. 3, we compare the detection probability of MUs 𝑃𝑃𝑑𝑑𝑀𝑀 as a function of threshold 𝜀𝜀0 for 

CMD, RCMD and CD algorithm, and the percentage of MUs ranges from 10% to 30%. 
According to the result, there exists the optimal threshold 𝜀𝜀0 where the probability of detection 
MUs is maximized for three algorithms. Benefit from coalition formation game, the proposed 
CMD algorithm is robust as compared with the RCMD and CD algorithms, more than 80% 
percent of MUs still can be detected with the increase of threshold 𝜀𝜀0. 
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Fig. 4.  Detection probability of MUs vs the percentage of Mus 
 

Fig. 4 shows that as the percentage of MUs increases, the 𝑃𝑃𝑑𝑑𝑀𝑀 of CMD, RCMD, CD and 
COOPON algorithm decrease. For the first three algorithms, 𝜀𝜀0 is used to detect MUs in HC. 
When the percentage of MUs is more than 50%, which is in SC, we use double threshold to 
make the final decision of the first three algorithms. It is because the spatial correlation of SUs 
is mainly influenced by the received power of MUs, which cause a tiny difference of the 
spatial correlation difference between SUs and MUs and increase the difficulty to detect MUs. 
Nevertheless, compared with RCMD and CD algorithm, the 𝑃𝑃𝑑𝑑𝑀𝑀 of the proposed CMD 
algorithm is highest. The COOPON algorithm focuses on comparing the report of channel of 
the neighboring SUs to detect MUs. With the increasing of the percentage of MUs, more and 
more neighboring SUs report false report of channel, which increase the difficulty of the 
comparing process and decrease 𝑃𝑃𝑑𝑑𝑀𝑀. Due to use of the different thresholds in HC and SC and 
coalition game, the 𝑃𝑃𝑑𝑑𝑀𝑀 of the proposed CMD algorithm is better than the COOPON algorithm. 

  
Fig. 5. The utility of power allocation vs. percentage of MUs 
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Fig. 5 demonstrates the total utility of power allocation versus the percentage of MUs with 
different 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚, 𝑁𝑁𝑐𝑐 and 𝜃𝜃 for  MPA , RMPA  and CMPA algorithms, where the transmit power 
constraint 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ranges from 20mw to 25mw and the number of idle channels 𝑁𝑁𝑐𝑐 changes from 
10 to 15. For the three algorithms, the utility decreases for different 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑁𝑁𝑐𝑐  with 
increasing percentage of MUs. In addition, the proposed MPA achieves higher utility 
compared with RMPA and CMPA algorithm when the willing factor 𝜃𝜃 = 1. However, when 
the willing factor 𝜃𝜃 = 0.5, the total utility of MPA algorithm decreases, which indicates that if 
only 50% SUs join in the MUs detection scheme will cause severer influence to the 
performance of the whole system. Notably, even when 𝜃𝜃 = 0.5, the proposed MPA algorithm 
can achieve higher utility compared with the RMPA algorithm when the percentage of MUs > 
17.5% of the whole CRN. According to the results, the proposed MPA algorithm is quite 
efficient in an unreliable environment, even half of the SUs participate in MUs detection the 
total utility is higher than other algorithms.  

  
Fig. 6. The utility of power allocation vs. 𝜀𝜀0 

 
Fig. 6 represents that the utility of 𝑆𝑆𝑘𝑘  as a function of the detection threshold 𝜀𝜀0  with 

different percentage of MUs, where the percentage of MUs ranges from 10% to 50% and 
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 25𝑚𝑚𝑚𝑚, 𝑁𝑁𝑐𝑐 = 15 and 𝜃𝜃 = 1. Generally, the utility of power allocation in 𝑆𝑆𝑘𝑘 decreases 
as the percentage of MUs increases, since MUs detection becomes more difficult as the 
percentage of MUs increases. In addition, when the percentage of MUs in 𝑆𝑆𝑘𝑘 is 50%, half of 
the SUs are MUs, the proposed MPA algorithm still can work properly. 

6. Conclusion 
In this paper, we firstly propose a coalition based malicious users detection (CMD) algorithm 
to detect the malicious user in the CRN. The Geary’C theory is used in the proposed CMD 
algorithm to get the spatial correlations between SUs in the same coalition, and detected the 
MUs by the difference between them. In addition, we analyze the power allocation problem 
with MUs attack and propose a MUs detection based power allocation (MPA) algorithm, the 
proposed MPA algorithm composed of three parts: sum-rate of CRN, the MUs detection 
probability and the energy consumption of MUs detection. The multi-variables optimization 
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problem can be solved by alternating optimization method and divided into two sub-problems: 
the MUs detection and the optimal power allocation. In the MUs detection step, by the CMD 
algorithm we can obtain the MUs detection probability and the energy consumption of MUs 
detection. In the optimal power allocation step, we use the Lagrange dual decomposition 
method to obtain the optimal transmission power of each SU and achieve the maximum utility 
of the whole CRN. Finally, we highlighted the benefit of using our MPA algorithm comparing 
to the RMPA and CMPA algorithm in literatures. In the future work, we could improve the 
performance of SSDF attack in the CRN from three aspects: 1) multiple spectrum bands 
sensing, SUs need to sense the presence of many PUs simultaneously; 2) more types of MUs, 
high sensing probability and low sensing probability of MUs will be considered separately; 3) 
considering more characteristic, more characteristic about the MUs detection algorithm in the 
CRN will be studied, such as the receiver operating characteristic, algorithm complexity and 
so on. 

7. Appendix 

Appendix A: Stability of Coalition Formation Games 
We prove the stability by contradiction. Considering the energy consumption of MUs 
detection 𝐸𝐸𝑖𝑖𝐷𝐷, 𝑛𝑛𝑘𝑘  the number of SU i in 𝑆𝑆𝑘𝑘 and the number of coalitions available for SU i  is 
limited. Furthermore, according to the record set ℋ , SU i is prevented from revisiting 
previously joined coalitions again. Therefore, convergence of the algorithm is guaranteed. In 
other words, there must be a final coalition partition for the proposed CMD algorithm. If the 
final partition is D-stable, arbitrary initial coalition partitions can reach D-stable because of the 
operations in the proposed coalition game are based on Pareto order. Otherwise, we assume 
the final partition of the proposed game is not Dℎ𝑝𝑝-stable, a partition 𝒯𝒯′ is formed by using 
merge-split operation to leave the partition exist. It illustrates that a new partition will be 
generated and the proposed game cannot stop, which conflict with the assumption and the fact 
that the algorithm is converged, thus, the partition 𝒯𝒯′ do not exist and the final partition is 
Dℎ𝑝𝑝-stable. Hence, the proposed CMD algorithm can reach stability. 

Appendix B: The proof of Eq.(25) 
In order to judge on convexity of the optimization problem P2, we analyze the character of 

second partial derivative ∂
2𝐿𝐿�𝑃𝑃𝑖𝑖

𝑙𝑙,𝛼𝛼,𝝁𝝁�
∂2𝑃𝑃𝑖𝑖

𝑙𝑙  as follow: 
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− 𝛼𝛼 − 𝜇𝜇𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙                             (26) 
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                                        (27) 

It is clear that 𝐹𝐹1,𝑖𝑖 = �𝑇𝑇−𝜏𝜏𝑠𝑠−𝜏𝜏𝑐𝑐
𝑇𝑇

�𝑃𝑃(𝐻𝐻0)𝜃𝜃𝑖𝑖 > 0, we get 𝜕𝜕
2𝐿𝐿�𝑃𝑃𝑖𝑖

𝑙𝑙,𝛼𝛼,𝜇𝜇�
𝜕𝜕2𝑃𝑃𝑖𝑖

𝑙𝑙 ≤ 0 and the problem P2 is 

convex. The Karush-Kuhn-Tucker (KKT) conditions of problem P2 can be expressed as 
follow: 

∂𝐿𝐿�𝑃𝑃𝑖𝑖𝑙𝑙 ,𝛼𝛼,𝝁𝝁�
∂𝑃𝑃𝑖𝑖𝑙𝑙
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− 𝛼𝛼 − 𝜇𝜇𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙 = 0 

      ∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀
𝑖𝑖=1 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 0                                              (28) 
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     α�∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀
𝑖𝑖=1 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚� = 0                                        (29) 
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The multipliers 𝛼𝛼 and 𝝁𝝁 = [𝜇𝜇𝑙𝑙]𝑙𝑙=1𝑀𝑀  are calculated by using the subgradient algorithm, which 
converges to the optimal solution of convex problems within a small range by using a constant 
step length. According to the subgradients [28], 𝛼𝛼  and 𝜇𝜇𝑙𝑙 are given by: 

𝜇𝜇𝑙𝑙,𝑡𝑡1+1 = [𝜇𝜇𝑙𝑙,𝑡𝑡1 + 𝑎𝑎1(𝑃𝑃𝑖𝑖𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃𝑙𝑙 − 𝛤𝛤𝑙𝑙)]+                         (32) 
  𝛼𝛼𝑡𝑡2+1 = [𝛼𝛼𝑡𝑡2 + 𝑎𝑎2(∑ 𝑃𝑃𝑖𝑖𝑙𝑙𝑀𝑀

𝑙𝑙=1 −𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚)]+                        (33) 
where 𝑎𝑎1 > 0 and  𝑎𝑎2 > 0  are the step size,   𝑡𝑡1  and  𝑡𝑡2  are the iteration number, [𝑥𝑥]+ ≜
𝑚𝑚𝑚𝑚𝑚𝑚 (0,𝑥𝑥). From KKT condition above, it is observed that the optimal solution satisfies 
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      𝑃𝑃𝑖𝑖𝑙𝑙 = 𝐹𝐹1,𝑖𝑖
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Since the transmit power cannot be negative, thus the optimal power allocation strategy is 
𝑃𝑃𝑖𝑖𝑙𝑙∗ = 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝐹𝐹1,𝑖𝑖

𝑙𝑙𝑙𝑙2�𝛼𝛼+𝜇𝜇𝑙𝑙𝐺𝐺𝑖𝑖,𝑃𝑃𝑃𝑃
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− 𝑁𝑁0
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𝑙𝑙 , 0�  and Eq.(25) is proved. 
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