
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

33

A Review on IoT Operating Systems

Amal Antony
Student

Department of Computer Science, Naipunnya
Institute of Management and Information

Technology, Pongam, Thrissur

Sarika S., PhD
Assistant Professor

Department of Computer Science, Naipunnya
Institute of Management and Information

Technology, Pongam, Thrissur

ABSTRACT
An IoT development board is a small-form-factor system,

complete with microprocessor(s), memory, input/output

functions providing the user with all the features of a

functional computer. The MCU based smaller variants house

limited hardware resources and do not demand an operating

system. But the more powerful single board computers require

an operating system to efficiently manage its resources and

control the hardware. The choice of operating system depends

on the microcontroller architecture, on-board memory,

software stack used, real-time computing requirements,

implementation environment and cost of the system.

Operating systems for IoT applications require additional

functionalities like network support, power usage monitoring,

secondary storage management, multithreading and so on.

This paper intends to survey the different IoT operating

systems available in the market and studies the various

considerations on the selection of OS for IoT development

boards.

General Terms

Internet of Things, Operating System, Single Board Computer,

Embedded Systems

Keywords

IoT, operating system, embedded system, smart devices,

embedded Linux, open-source, development board

1. INTRODUCTION
The "Internet of Things" abbreviated as IoT is a

comprehensive model including all kinds of computing

devices, that are connected to the Internet. These devices are

otherwise called “things” or “smart objects” [1]. In theory, a

device can be attached to almost any real world object like

vehicles, home appliances, industrial, mechanical or electrical

machines and even a person to let the object communicate to

the Internet. IoT finds applications in buildings and home

automation, smart cities, smart industry or manufacturing,

wearables, healthcare devices and automotive. The recent

developments in IoT are focused on edge computing and on-

device AI capabilities [2]. In order to comply with all of these

requirements and applications, an operating system is

essential for every IoT device. Having an operating system

simplifies the developers‟ job and contributes to

standardization. Continuous development by industry

practitioners and researchers is very essential in this domain

so as to provide support for changing hardware configurations

and communication standards. An ideal IoT OS has to support

different hardware architectures, boards and devices.

There are a number of IoT OSs like Contiki-OS, RIOT and

Zephyr to name a few. IoT devices run on low capacity

microcontrollers. So, applications running on this platform

has to be lean and energy-efficient. It is a prerequisite for an

IoT OS to have the essential Transmission Control

Protocol/Internet Protocol (TCP/IP) capabilities for seamless

integration with the global internet. Apart from providing

support for TCP and UDP, modern IoT operating systems are

trying to accommodate new standards like Internet Protocol

version 6 (IPv6) over Low-Power Wireless Personal Area

Networks (6LoWPAN), Routing over Low Power and Lossy

Networks (ROLL), Bluetooth Low Energy (BLE) and

Bluetooth Meshes.

This paper aims to establish the need for an IoT operating

system and provide a framework for choosing an OS. The

study is done from a hobbyists or builder‟s perspective, that

the complexities of academic research is overlooked at some

parts. Only those IoT OSs that are available in the market or

maintained as open source projects have been considered for

the purpose of the study. Proprietary and special purpose

software products do not come under the purview of this

paper.

The rest of the paper is organized as follows. Section 2

introduces the common IoT hardware platforms. Section 3

delves into IoT operating systems in detail, with subsections

discussing the functions of an IoT OS, parameters in the

selection of an OS and popular IoT operating systems. Section

4 discusses the usage and adoption of IoT OSs. Section 5

includes the conclusion and insights.

2. IOT HARDWARE PLATFORMS
IoT hardware encompasses all devices capable of connecting

to the Internet. IoT devices can otherwise mean „smart objects.

These „things‟ or „objects‟ are responsible for providing

useful information during their transactions on a network. On

one hand, there are specialized wearable gadgets like the

Google Glass or Fitbit, which are very compact IoT devices.

The other category of IoT hardware includes general purpose

development boards or Single Board Computers (SBCs) [3].

These development boards allow engineers to create

prototypes of IoT solutions and test them, before it can be

mass produced. The peculiarity about these development

boards is that they are very flexible and can be used to create

applications for any domain. This allows open source building

and collaboration between engineers. IoT boards can range

from an 8-bit MCU to a 32-bit or 64-bit fully functional

computer. These boards can have various features like USB

interfacing, video output, audio jacks, networking, GPIO pins

and wireless communication chips. The IoT environment

consists of protocols, network designs, and service

architectures that binds together millions of IoT devices to

exchange data. It is essential to learn about the hardware

platforms and development boards used for IoT prototyping,

so that the synergy between IoT hardware platforms and IoT

operating systems can be better understood. This section

details the IoT development boards in common use and their

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

34

features. A summary of IoT hardware platforms has been

included as a table (Table 1).

2.1 Arduino
Arduino is undoubtedly the most favourite development board

among developers and hobbyists. There is an active

community working on this platform. Arduino has a broad

range of boards, from simple 8-bit microcontroller boards to

products for wearables, IoT items, three-dimensional (3-D)

printing, and much more. The most popular model of Arduino,

the Arduino Uno (Figure 1) is based on ATmega328P

microcontroller. An Arduino board is programmed with the

help of an IDE, using a type B USB cable. The company also

offers boards like Arduino Yun, with on-board Wi-Fi (IEEE

802.11 b/g/n) and Ethernet (IEEE 802.3 10/100Mb/s) [3]. But,

Arduino is known around the world for its low-cost 8-bit and

16-bit models. Low end boards like these does not require an

OS. Code for Arduino follows the structure and conventions

of C language. Support for peripherals, sensors and actuators

is provided through header files. Once the code is saved on

the board, it is executed in an endless loop [4].

2.2 Raspberry Pi
Raspberry Pi (Figure 2) is a family of single-board computers

that comes with great processing power in a small package

and provides the functionalities of a desktop computer.

Raspberry Pi‟s development began in 2006 it was finally

released on 19 February 2012 as two models: Model A and

Model B. After the sale of 3 million units by May 2014,

Model B+ was announced in July 2014. Raspberry Pi or RPi,

as it is known in the hobbyist circles, can support an operating

system and is seen as a low-cost replacement for desktop PCs.

The operating system is installed on an SD card and provides

you the familiar interface that you expect from a Linux or

Windows computer [5]. Raspberry Pi supports a number of

operating systems, including Raspbian Linux, Ubuntu Mate,

and Windows 10 IoT Core. As Raspberry Pi can maintain a

complete operating system, it has support for languages like

C/C++, Python, and JavaScript. The latest iteration of the

board, the Raspberry Pi 4 features a Quad core 64-bit ARM-

Cortex A72 running at 1.5GHz.

Figure 2 Raspberry Pi Model B

Figure 1 Arduino Uno

Table 1. Comparison of IoT hardware platforms

Brand Model CPU RAM

Arduino 17+ models
Atmel AVR, ARM Cortex-

M0+,ARM Cortex-M3, Intel Quark
16KB – 64MB

Raspberry Pi A,A+,B,B+,3,4,Zero
ARM Cortex-A7, ARM Cortex A-53,

ARM Cortex-A72
256 MB - 4 GB

Nvidia

Jetson Nano, Jetson

Xavier NX, Jetson

AGX Xavier, Jetson

TX2

NVIDIA Carmel ARM

v8.2,Denver 2/ ARM A57

complex

4 GB-16 GB

BeagleBoard BeagleBone Black ARM Cortex-A8 512 MB

2.3 BeagleBone Black
BeagleBone Black is a development board from the family of

BeagleBoard platforms (Figure 3). It is powered by a TI Sitara

AM335x ARM Cortex-A8 processor running at 1 GHz, with 4

GB of on-board flash memory, 512 MB of DDR3L DRAM,

and a 3-D graphics accelerator. It has 46-pin headers, an

Ethernet port, and several other means to enable

communication. It supports the Debian, Android, and Ubuntu

operating systems. BeagleBone has been developed as an

open-source platform and all of its datasheets are available in

BeagleBone community‟s website [3]. The BeagleBoard,

especially the BeagleBone Black version, is easy and

inexpensive to set up and use. It consumes low power and

thus needs no additional cooling or heat sinks. BeagleBoard

also has products such as BeagleBone Blue, PocketBeagle,

BeagleBone AI, BeagleBoard X15and BeagleBoard XM.

https://en.wikipedia.org/wiki/Atmel_AVR
https://en.wikipedia.org/wiki/ARM_Cortex-M0%2B
https://en.wikipedia.org/wiki/ARM_Cortex-M0%2B
https://en.wikipedia.org/wiki/ARM_Cortex-M3
https://en.wikipedia.org/wiki/Intel_Quark
https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_Cortex-A72

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

35

Figure 3 BeagleBone Black

2.4 NVIDIA Jetson
Jetson is designed as a powerful computer that lets the user

run artificial intelligence and machine learning applications,

while taking up only very little power and space [3]. Products

in the Jetson portfolio include Nano (Figure 4), Xavier NX,

AGX Xavier, and TX2. Among these products, Jetson AGX

Xavier is the first computer designed specifically for

autonomous machines. All Jetson boards come bundled with

software libraries for deep learning, computer vision, GPU

computing, multimedia processing, and much more. Jetson

relies on the Linux environment and provides better

performance than other development boards. The availability

of proprietary AI and ML tools from NVIDIA reduces the

work for developers. One of the biggest advantage that Jetson

offers is the GPU-accelerated parallel processing. This makes

Jetson an ideal choice for developers looking to implement

machine learning projects. Jetson hardware is ideal for

training and inference phase of deep learning problems. Jetson

is commonly deployed as Network Video Recorders (NVRs),

smart home robots, and intelligent gateways [6].

Figure 4 NVIDIA Jetson Nano

3. OPERATING SYSTEMS FOR IOT

DEVICES

3.1 Definition
An IoT Operating System is a relatively new term and a

loosely defined one. There is a lack of literature on the

taxonomy and development of IoT operating systems. An IoT

Operating System is a piece of software which provides for a

channel of interaction between the user and IoT device and

manages all hardware and software resources. It is no

different from a regular operating system like Unix or

Windows. The difference lies in the hardware architecture of

the host system and the resource constraints. An operating

system specifically designed for IoT applications which can

run under the minimal resources available in an IoT device,

can be termed as an IoT OS. It can be said that IoT OS is an

extension of embedded system OS. An IoT OS ensures

connectivity between IoT applications and embedded systems

[7]. Even though IoT OS is an evolution of embedded OS, IoT

brings in additional set of constraints and requirements that

need to be addressed. Embedded operating systems have been

upgraded or augmented to incorporate IoT-specific features.

Popular IoT OSs include TinyOS, Contiki, mbedOS, Ubuntu

Core, Yocto, Windows 10 for IoT and so on [8], [9].

3.2 Functions of an IoT Operating System

Technical systems require an operating system as it is the

major interface with which the user can interact with the

computer and manage how programs functions within the

computer system [10]. It takes care of the important processes

behind the scenes – managing the hardware resources,

providing a user interface and executing and rendering

services to application programs [11]. Unlike desktop

operating systems or general purpose OS, IoT OS is designed

to work with the limited resources and provide capabilities

like rapid development tools, standardization, easy

maintenance, support for various hardware platforms,

portability of application programs and seamless integration

with global internet [12], [13]. The functions performed by an

IoT OS are outlined below:

3.2.1 Provides a Hardware Abstraction

Layer(HAL)

A HAL can be defined as all the software that is directly

dependent on the underlying hardware [14]. On more

elaborate terms, hardware abstraction layer (HAL) can be

defined as a layer of programming or code to allow general

communication between the software and hardware

components of a system. This reduces the work of application

developer. HAL bridges the gap between hardware and

software. Otherwise, developers will have to hard-code

drivers, kernels, or APIs for each hardware device. This

would be a tedious task considering the diversity of IoT

hardware platforms. Hardware abstraction provided by IoT

operating systems gives developers access to all OS controlled

devices like Bluetooth, camera, video output, audio, sensors

and storage directly [15].

3.2.2 Power Management
Integrated power management techniques have been

implemented on SoCs by several manufacturers. The

microcontroller has the ability to enter a sleep state or standby

mode to save power. The microcontroller (MCU) stops

performing computations in sleep state; But, it will retain any

current data, and all peripheral functions will be halted [16].

An OS can efficiently manage these sleep states and monitor

the power usage of attached peripherals or sensors. IoT

devices which run continuously for infinitely long periods of

time can benefit from this power saving technique.

3.2.3 Concurrency Management
IoT devices today support multi-core or multi-processor

setups. This makes concurrent computing an important

element of embedded computing as well. The traditional

methods used for parallel programming used in regular

operating systems are not suitable for IoT systems with time

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

36

and resource constraints and raises the possibility of dead-

locks. So, algorithms which prioritize these requirements

have to be implemented for IoT OS [17]. In the case of

peripheral control or reading data from sensors, concurrent

execution is not as important. The usage of event-driven

asynchronous execution or collective IO is a viable solution.

But when it comes to data and signal processing systems, the

OS has to manage the parallelization of processes.

3.2.4 User Interface

As mentioned before, OS provides an interface between the

user and the device. Some Linux based distributions available

for IoT initially boots into the terminal, from where you can

invoke a GUI. As in the NOOBS operating system for

Raspberry Pi, the GUI is started by typing „startx‟ in the

terminal [5]. Most IoT OS vendors go with a graphical

interface considering the large number of hobbyists or

amateurs as users.

The input and output operations can also be discussed under

this head. Inputs to an IoT device maybe through USB

interface or GPIO pins. Most IoT development boards

provides a full-fledged video output. With additional

hardware, IoT boards can also support touch screen input, the

example of which can be seen in a POS system or ATM.

3.2.5 Memory Management:
An IoT OS has the responsibility of managing the primary

memory of the device. The memory management function

keeps track of the current status in every memory location,

whether it‟s allocated or free. It measures how memory is

allocated over processes, deciding which gets memory, when

they receive it, and how much they are free [18].

3.2.6 Process Scheduling
Regarding an IoT OS, processes Scheduling simply refers to

managing the processes currently in the system memory. In

very simple terms, it decides the order of executing things

[19]. Scheduling prioritizes processes, loads them into the

ready queue of the system and then send for the execution.

Short, medium, and long-term scheduling can be implemented

by the operating system [18].

3.2.7 Shared Libraries
The operating system provides several utility libraries for the

developer, which is available to all supported development

platforms and programming languages. These dynamically

linked libraries can be used by any number of application

programs without making copies in the main memory. A lot

of memory can be saved this way and is ideally suited for the

resource constrained environment of IoT. Developers can

make use of these shared libraries and reduce the computing

overhead. The functionalities like logging utility, TCP/IP,

cryptography, time synchronization are provided by shared

libraries [19]. Another example would be the SELinux library

providing security in Linux systems [20].

3.2.8 Hardware Virtualization
The primary motive behind IoT device virtualization is to

different IoT devices and service functions with several

applications. Virtualization enables the limited hardware

resources to be shared among multiple users [19]. It ensures

efficient usage of the resources available and restricts access

to particular group of users. In the wider sense, virtualization

also includes dockers and containers, creating secure

application environments which can be deployed over cloud

or local network [21].

3.3 Parameters for the Choice of an IoT

Operating System
The following parameters must be considered before making

the selection of an IoT operating system:

3.3.1 Reliability and Stability
An OS installed on IoT devices must not crash unexpectedly.

IoT devices are supposed to run without powering down, for a

very long time. If the OS crashes or shows glitches,

debugging the system software after deployment is a difficult

job to carry out. An OS which has support from vendor or an

active user community must be selected.

3.3.2 Footprint
IoT devices are bound to operate with limited resources. The

OS is expected to have low memory, power and processing

requirements [12]. The scheduling and process management

algorithms must also suit the IoT paradigm.

3.3.3 Scalability
Scalability here refers to the ability to extend the OS to

operate on the two types of IoT devices – nodes and gateways

[8]. This way, system architects and administrators will only

have to deal with a single OS, which runs on all kinds of

devices. Scalability can also mean the ability of the OS to

improve over time through updates [10]. A scalable OS,

which is able to run on a variety of 8-bit,16-bit or 32-bit

microcontrollers, will be easier to deploy.

3.3.4 Portability

Portability means that a system developed in one environment

should execute in another environment without the need for

rewriting the code [22]. This quality allows developers to

switch between IoT hardware platforms without the need to

alter the OS. Portability and adaptability is an important

feature of embedded system. It is also recommended to have

some standard interface (e.g., POSIX), for good portability of

applications, for minimizing maintenance, as well as to

provide the ability to easily connect to other devices on the

Internet [23].

3.3.5 Modularity

Apart from the kernel, every functionality can be designed as

an add-on to the operating system so that a minimal version of

the OS can be run if the situations demand it [8]. A modular

architecture allows to replace or add kernel components

dynamically at run time. In a modular kernel, components

providing similar functionality will be stored in files called

modules and can be loaded when the system needs that

functionality [24]. An IoT device will require a modular

operating system that separates the core kernel from

middleware, protocols, and applications.

3.3.6 Hardware agnostic operation

There are several IoT hardware platforms available in the

market. Keeping this in mind, it is important that the OS

supports different hardware platforms – leading to

standardization and ease in deployment [12].

3.3.7 Network Connectivity & Protocol

Support
The Internet of Things is a model of “connected” devices. So,

the OS must support different connectivity and networking

protocols, such as Ethernet, Wi-Fi, BLE, IEEE 802.15.4,

TCP/IP, etc. [1]. An IoT OS will allow the developers to

select the specific protocol stacks required for the application,

thus saving memory on the device and reducing the costs. It

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

37

can help upgrade existing devices to new connectivity options

without altering the core code of the OS [23].

3.3.8 Security

The operating system must provide the first layer of security

for the IoT system. As the device is continuously

communicating with the Internet, it is susceptible to threats

and attacks. OS can have add-ons that bring security to the

device by way of encryption, SSL/TLS certification

management, user authentication routines, VPN and firewall

[12].

3.3.9 Eco-system & Application Development
The suitability of the OS for application development and

debugging can make a big impact on the speed of

development and time-to-market. If the OS is developer

friendly, deployment of IoT applications can be done more

efficiently. In addition to the basic C environment, the use of

other programming languages and libraries is highly desirable,

for example python, C ++ and STL, but that highly depends

on the development toolchain adopted by the developer or

organization [23].

3.4 Popular IoT Operating Systems
A partial list of popular IoT operating systems is presented

here. An overview of all the operating systems discussed in

this section can be seen in Table 2.

3.4.1 Mbed OS
MbedOS is the Real Time Operating System (RTOS)

developed by ARM delivered as an open source product with

an Apache 2.0 license. Mbed OS is designed for Cortex-M

microcontrollers, and incorporates a tiny RTOS based on

CMSIS-RTOS RTX, TLS protocol, networking standards and

common device drivers in a modular architecture [1]. It is

specifically designed for 32-bit ARM architecture. MbedOS

supports features such as multithreading, 6LoWPAN, BLE,

Wi-Fi, sub-GHz, Near Field Communication (NFC), Radio-

Frequency Identification (RFID) and Long Range Low-Power

Wide Area Network(LoRaLPWAN) [13]. Minimal system

requirements and support for different development boards

make it a highly preferred IoT OS.

3.4.2 Contiki
Among the IoT research community, Contiki has greater

acceptance. The low memory requirements make Contiki well

suited for low power devices. It is written in C language.

Contiki offers multithreading through protothread and uses

the cooperative or preemptive scheduling for the processes

[13]. Contiki provides support for multiple network stacks

with a comprehensive set of features like IPv6, 6LoWPAN,

RPL and CoAP. It can run on IoT platforms like wismote, sky

and z1. Contiki and its code simulator Cooja has been used as

a development tool in several wireless sensor projects [1].

3.4.3 RIOT OS
RIOT is an open source IoT operating system. RIOT was

initially developed as part of a research project by FU Berlin,

INRIA, and HAW Hamburg. It is based on the microkernel

named FireKernel, that was targeting wireless sensor

networks. RIOT is designed to be energy efficient and

modular with very low memory requirements [1]. RIOT

implements modular design and uniform API access for

independent hardware abstraction. RIOT supports C and C++

programming languages. It also provides multithreading with

tickless, pre-emptive and priority based scheduler. RIOT also

offers an emulator called Native which acts as a hardware

virtualizer, helping in application development without

actually having a development board [13]. RIOT has support

for hardware architectures such as AVR, ARM7, Cortex-M0 -

M0+ -M3 -M4 -M7, Cortex-M23, ESP8266, ESP32, MIPS32,

MSP430, PIC32, RISC-V and x86 [25]

3.4.4 Apache Mynewt
Mynewt is an open source OS with Apache License 2.0,

developed by the Apache Software Foundation [1]. The OS

features a flexible and powerful Bluetooth Low Energy stack

(BLE 5) implementation called NimBLE which provides the

option to choose HOST only or CONTROLLER only or

FULL stack. Mynewt facilitates cross-platform migration as it

supports a great number of hardware platforms. It is designed

to be hardware agnostic and can work with Cortex M0-M4

micro controllers, MIPS and RISC-V. It is designed as a pre-

emptive, multi-tasking real time operating system kernel.

Mynewt‟s Hardware Abstraction Layer (HAL) abstracts the

MCU‟s peripheral functions, allowing developers to easily

write cross-platform code [26]. All these features make

Mynewt suitable for IoT boards with low computing power

and memory resources.

3.4.5 Zephyr
Zephyr is an open source OS maintained by the Linux

Foundation. Zephyr works on two OS design philosophies- a

microkernel for less constrained IoT devices and a nanokernel

for constrained devices. It supports multithreading with

cooperative, priority-based, Earliest Deadline First (EDF),

non-preemptive and preemptive scheduling [13]. The Zephyr

OS is based on a small-footprint kernel designed for use on

resource-constrained and embedded systems ranging from a

simple embedded environmental sensors and LED wearables

to sophisticated embedded controllers, smart watches, and IoT

grids. The Zephyr kernel supports multiple architectures,

including ARM Cortex-M, Intel x86, ARC, NIOS II, Tensilica

Xtensa and RISC-V 32 which makes the OS compatible with

over 200 development boards [27]. C and C++ are the

languages used to develop applications in Zephyr. Zephyr

provides a complete network stack for communication and

includes multiple protocols. The applications can be

developed, built and tested using the native posix port.

Table 2 Overview of IoT Operating Systems

IoT Operating System Provider License Processor/CPU

Mbed OS ARM Apache 2.0 ARM Cortex-M

Contiki OS
Thingsquare

3-clause BSD

ARM Cortex-M, MSP430, AVR,

x86,…

RIOT OS
FU Berlin

LGPLv2.1

ARM Cortex-M, MSP430, ARM7,

AVR, x86, Cortex-M23, ESP8266,

ESP32, MIPS32, MSP430,…….

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

38

Apache Mynewt Apache Foundation Apache 2.0 Cortex-M, RISC-V

Zephyr Linux Foundation
Apache 2.0

ARM Cortex-M, x86, ARC,

NIOS II,...

Android Things Google Apache 2.0/GPLv2
High-end processors such as x86,

ARM Cortex-A (32/64)

Windows 10 IoT Microsoft Corporation Commercial
ARM Cortex-A7, Snapdragon 400,

ARM Cortex-A53

Embedded Linux

Multiple providers

GPL, GPLv2,…..

ARM Cortex-A8,

ARM Cortex A-53,

ARM Cortex A7 ARM Cortex-A9,

Intel Core i3,i5,i7,.......

3.4.6 Android Things
Android Things is an IoT operating system developed and

maintained by developed by Google. Google announced its

IoT OS Brillo at Google I/O 2015, which was rebranded to

Android Things. As the name indicates, it is a simplified and

trimmed down variant of Android, designed to run on low-

power IoT devices. It supports development in both C and

C++ programming language. It is built on top of monolithic

kernel and provides completely fair scheduler [13].

The Peripheral I/O APIs allow apps to communicate with

sensors and actuators using industry standard protocols and

interfaces. The interfaces supported by Android Things are

GPIO, PWM, I2C, SPI, UART. Apps for IoT devices can be

built using existing Android development tools, APIs, and

resources along with new APIs that provide low level I/O and

libraries for common components like temperature sensors,

display controllers, and more [28]. Android Things provides

a GUI interface, but its high memory requirements make it

unsuitable for low-end, constrained IoT devices; rather, it is

designed for high-end devices. Currently, Android Things OS

supports two development boards - Raspberry Pi 3 Model B

and NXP i.MX7D.

3.4.7 Windows 10 IoT
Microsoft ventured into embedded systems domain with

Windows CE in 1996. Microsoft has now withdrawn support

for Windows CE and has moved to Windows 10 IoT. The

operating system includes the stability and user-friendliness of

Windows family of products. Windows 10 IoT comes in three

flavours: IoT Enterprise, IoT Core and Server IoT. Licensing

of the OS is done through OEM channels. Where reliability

and safety are important, Windows OS is preferred over free

or open source ones. Windows 10 IoT finds applications in

aerospace, automotive, healthcare and industrial

systems. Microsoft has built several other products around

IoT. Windows 10 IoT brings Artificial Intelligence (AI) and

Machine Learning (ML) to smart devices with Windows ML

and support from Azure IoT Edge [29]. Windows 10 IoT

supports boards like AAEON Up Squared, DragonBoard 410c,

NXP i.MX 7, NXP i.MX 8M/8M Mini and Raspberry Pi 2/3B.

3.4.8 Embedded Linux

Embedded Linux does not refer to an individual OS; it is a

categorization. Rather than discussing each Linux based

operating system separately, all of those products have been

discussed under this head. Linux is a very versatile

environment suitable for IoT development and is very

adaptable in nature. Some examples of embedded linux

distributions are Raspbian, Yocto, Ubuntu Core, RTLinux,

OSMC, Arch Linux ARM, Gentoo and openSUSE. Embedded

Linux‟s popularity can be attributed to its core characteristics:

reliability, configurability and low system requirements.

Linux works only on embedded systems with at least a 32-bit

address space [30]. Contributions from developers all over the

world are making Linux stronger by time. Commercially

licenced and “closed” operating systems are not

recommended if modifications are to be made to match the

requirements of the deployment environment. The flexibility

of Linux, combined with consistency in performance,

architectural tiers, virtualization and cloud support makes

Linux distros a popular choice among IoT developers [12].

4. DISCUSSION
Section 3 of this paper presented an overview of the popular

options available as IoT OS. It can be observed that most of

the system software products mentioned in Section 3 are open

source projects. To compare open source solutions with

commercial software, the factors like technical specifications

(such as support for hardware, functionality, reliability,

performance, network connectivity and standards), software

license of the product, project governance, founding members,

commercial and community support, and the userbase has to

be considered.

Contiki, Zephyr, Mynewt, and RIOT introduced in this paper

are open source system software without integrated cloud

services [1]. Contiki and RIOT are both mature software

projects with an active developer community.

Google‟s Android Things in combination with Android

operating system, Google cloud infrastructure, and other

cloud services can be used in high-performance devices with

x86 architecture. The only downside is that the OS will

exclusively support Google product portfolio and will not let

the developers to test software products or services from other

vendors.

The other leading environment is ARM mbed OS. It has the

backing of Arm Holdings and targets low-performance MCU

based devices. Mbed has greater importance considering the

share of ARM products in the market.

Embedded Linux is also a favourite among developers. Some

Linux variants are delivered as free operating systems, while

others are maintained as open source projects.

https://developer.android.com/things/sdk/pio/index.html
https://up-board.org/upsquared/specifications/
https://developer.qualcomm.com/hardware/dragonboard-410c
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-7-processors:IMX7-SERIES
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors:IMX8-SERIES

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

39

Windows 10 IoT is a commercial solution and is a widely

adopted OS 52% of Edge nodes or Gateways use Windows

operating system [31]. So, developers adopt Windows OS on

IoT devices to ensure better communication between all

devices on the network. Considering wide range of

customizable services and software offered by Microsoft,

Windows 10 IoT is expected to improve its position in the

coming years.

To provide perspective on the usage and adoption of IoT OSs,

the IoT Developer Survey 2019, undertaken by the Eclipse

Foundation can be taken as reference. Linux held on to its top

position among operating systems. The survey does not

disclose the share of Linux in total IoT usage, but shows

Windows holding second position with 20 percent. Other than

Linux, the other popular choices include Windows, mbed OS,

RIOT OS, Contiki and others. The share of non-Linux

operating systems is illustrated through a graph (Figure 5)

[31].

Figure 5 Market share of non-Linux IoT operating systems

5. CONCLUSION
IoT operating systems are used by hobbyists, developers and

researchers. There are several options available in the market

as both free and commercial distributions. Open source

development and cross platform applications are experiencing

great growth in the field of IoT. The availability of low cost

development boards makes IoT more pervasive, open and

community driven. This has encouraged industry leaders like

Google, Microsoft, Canonical, Intel, ARM, MATLAB and

Apache to venture into developing system software or a

complete software suite for IoT solutions. Innovations like

NVIDIA Jetson, ThingSpeak [32] and TensorFlow Lite

indicates that the IoT industry is working towards a better

coupling with evolving technologies like cloud computing,

data analytics, machine learning and GPU computing.

Single Board Computers are not just tools for prototype

development; they are adopted in several parts of the world as

low-cost alternatives to desktop computers. The introduction

of simple and intuitive operating systems like Raspbian,

KODI distributions and Android has a great role to play in

that. So, there is a need to create more general purpose,

customer oriented operating systems targeting SBCs. IoT

solutions can be developed for any domain. But in general,

there is a convergence towards creating a connected world as

proposed by concepts like Internet of Everything and Campus

of Things. In the years to come IoT will grow into a

mainstream technology and there will be standardization in

IoT operating systems and development environments.

6. ACKNOWLEDGMENTS
The author would like to acknowledge the support provided

by the academic institution Naipunnya Institute of

Management and Information Technology in completing this

paper. The information and insights derived from community

discussion forums and developer groups are also thankfully

acknowledged.

7. REFERENCES
[1] Amiri-Kordestani, Mahdi, and Hadj Bourdoucen. "A

survey on embedded open source system software for

the internet of things." Free and Open Source Software

Conference. Vol. 2017. 2017.

[2] “TensorFlow Lite,” TensorFlow. [Online]. Available:

https://www.tensorflow.org/lite

[3] K. J. Singh and D. S. Kapoor, "Create Your Own

Internet of Things: A survey of IoT platforms.," in IEEE

Consumer Electronics Magazine, vol. 6, no. 2, pp. 57-68,

April 2017

[4] “loop(),” Arduino Reference. [Online]. Available:

https://www.arduino.cc/reference/en/language/structure/

sketch/loop/

14.10%

19.60%

8% 7.70%

6.10%
4.70%

1.40%

20%

11%

6% 6%
5% 5%

3%

0%

5%

10%

15%

20%

25%

Windows No OS/ Bare-
metal

Other Mbed OS Contiki RIOT OS Zephyr

2018 2019

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 24, May 2020

40

[5] Pritish Sachdeva and Shrutik Katchii, “A Review Paper

on Raspberry Pi”, International Journal of Current

Engineering and Technology, Vol.4, No.6 ,pp. 3818-

3819, 2014.

[6] “Bringing the Power of AI to Millions of

Devices,” NVIDIA.[Online].Available:https://www.nvid

ia.com/en-us/autonomous-machines/embedded-

systems/jetson-nano/

[7] "Top 15 Best IoT Operating System For Your IoT

Devices in 2020", UbuntuPIT, 2020. [Online].

Available: https://www.ubuntupit.com/best-iot-

operating-system-for-your-iot-devices/

[8] a. vikasG, "IoT Operating Systems", Devopedia, 2020.

[Online]. Available: https://devopedia.org/iot-operating-

systems

[9] D. Guinard, "Operating Systems for IoT Embedded

Systems – Web of Things", Webofthings.org, 2020.

[Online].Available:https://webofthings.org/2016/12/12/i

ot-os-embedded/

[10] A. Prabhu. S, G. Prabhu and P. R, "A STUDY OF

OPERATING SYSTEM FOR EMBEDDED

SYSTEMS", International Journal of Latest Trends in

Engineering and Technology, no., pp. 54-58, 2016.

Available:https://www.ijltet.org/journal/148299172610.

pdf

[11] Operating Systems. [Online]. Available:

https://homepage.cs.uri.edu/faculty/wolfe/book/Reading

s/Reading07.htm

[12] “IoT Operating Systems,” Arrow.com, 10-Sep-2018.

[Online].Available:https://www.arrow.com/en/research-

and-events/articles/iot-operating-systems

[13] Y. B. Zikria, S. W. Kim, O. Hahm, M. K. Afzal, and M.

Y. Aalsalem, “Internet of Things (IoT) Operating

Systems Management: Opportunities, Challenges, and

Solution,” Sensors, vol. 19, no. 8, p. 1793, 2019

[14] S. Sungjoo and A. Jerraya, “Introduction to Hardware

Abstraction Layers for SoC,” in Embedded Software for

SoC, Boston, MA: Springer, 2003, pp. 179–186.

[15] “Hardware Abstraction: Definition & Purpose”,

Study.com[Online].Available:https://study.com/academ

y/lesson/hardware-abstraction-definition-purpose.html

[16] B Kumar, "The Role of Sleep Mode in Embedded

Systems", eeweb, 2020. [Online]. Available:

https://www.eeweb.com/profile/kumarb/articles/the-

role-of-sleep-mode-in-embedded-systems

[17] Schramm, Norbert, and Anita Sabo. "Concurrent

programming method for embedded systems." 9th

International Symposium of Hungarian Researchers on

Computational Intelligence and Informatics. Vol. 41.

2008.

[18] Wael Alabdulaly,” Memory Management techniques

and Processes Scheduling”, International Journal of

Scientific & Engineering Research”, Volume 7, Issue 4,

pp. 1182-1184, 2016

[19] “Embedded Operating Systems for the IoT,”

cs.virginia.edu. [Online]. Available:

https://www.cs.virginia.edu/~bjc8c/class/cs6501-f18/

[20] “Main Page,” SELinux Wiki. [Online]. Available:

http://www.selinuxproject.org/page/Main_Page

[21] Ogawa, Keigo, et al. "IoT Device Virtualization for

Efficient Resource Utilization in Smart City IoT

Platform." 2019 IEEE International Conference on

Pervasive Computing and Communications Workshops

(PerCom Workshops). IEEE, 2019.

[22] Jabeen, Qamar, et al. "A survey: Embedded systems

supporting by different operating systems”,

International Journal of Scientific Research in Science,

Engineering and Technology ,Vol.2, Issue 2,pp. 664-

673, 2016.

[23] Milinković, Aleksandar, Stevan Milinković, and

Ljubomir Lazić. "Choosing the right RTOS for IoT

platform." Proceedings of the international scientific

professional symposium Infoteh, Jahorina. 2015.

[24] Qutqut, Mahmoud H., et al. "Comprehensive survey of

the IoT open-source OSs." IET Wireless Sensor

Systems 8.6 (2018): 323-339.

[25] “The friendly Operating System for the Internet of

Things. Learn more.,” RIOT. [Online]. Available:

https://www.riot-os.org/#usage

[26] “Apache Mynewt,” Apache Mynewt. [Online].

Available: https://mynewt.apache.org/

[27] “Supported Boards,” Supported Boards - Zephyr Project

Documentation, 14-Feb-2020. [Online]. Available:

https://docs.zephyrproject.org/latest/boards/index.html

[28] “Android Things 1.0 Features and APIs Android

Developers,” Android Developers. [Online]. Available:

https://developer.android.com/things/versions/things-1.0

[29] Terry Warwick, “Overview of Windows 10 IoT Core -

Windows IoT,” Overview of Windows 10 IoT Core -

Windows IoT | Microsoft Docs. [Online]. Available:

https://docs.microsoft.com/en-us/windows/iot-

core/windows-iot-core

[30] Embedded Linux. [Online]. Available:

https://www.itu.dk/research/rces/emli.html

[31] Iot.eclipse.org, 2020. [Online]. Available:

https://iot.eclipse.org/resources/iot-developer-

survey/iot-developer-survey-2019.pdf

[32] “ThingSpeak for IoT Projects,” IoT Analytics -

ThingSpeak Internet of Things. [Online]. Available:

https://thingspeak.com/

IJCATM : www.ijcaonline.org

