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Abstract: Wind speed’s distribution nature such as uncertainty and randomness
imposes a challenge in high accuracy forecasting. Based on the energy distribution
about the extracted amplitude and associated frequency, the uncertainty measure-
ment is processed through Rényi entropy analysis method with time-frequency nat-
ure. Nonparametric statistical method is used to test the randomness of wind speed,
more precisely, whether or not the wind speed time series is independent and iden-
tically distribution (i.i.d) based on the output probability. Seasonal characteristics of
wind speed are analyzed based on self-similarity in periodogram under scales range
generated by wavelet transformation to reasonably divide the original dataset and
effectively reflect the seasonal distribution characteristics. Experimental evaluation
based on the dataset from National Renewable Energy Laboratory (NREL) is given
to demonstrate the performance of the proposed approach.

Keywords: Wind speed distribution; uncertainty measurement; randomness
evaluation; nonparametric statistical; rényi entropy

1 Introduction

Renewable energy resources such as the wind energy have been treated as an alternative energy to solve
the issues in environmental pollution and energy crisis [1], and they have been widely used in the electricity
generation. Accurate and reliable uncertainty measurement of the wind resource is conductive to establish the
forecasting model with high generality ability [2]. Pryor et al. [1] briefly analyzed the inherent challenges and
uncertainty factors such as wind uncertainty nature and climate distribution in the attribution of the future
wind energy based on the historical data trends. In order to improve the validity of the wind source
analysis, many literature proposed the uncertainty measurement of the wind resource by using the
probabilistically analysis. Kwon [3] proposed a probability model to quantitatively analyze the
uncertainty of the wind energy and figured out that there was about 11% uncertainty in the average
energy production after normalization. Aien et al. [4] discussed the necessary of the uncertainty analysis
of the renewable energy in engineering systems. Analogically, the considered approaches based on
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hydrological evaluation methods [5–7] were presented to analyze the uncertainty effects in climate changes
and wind power penetration etc. In fact, there is another issue which can cause the portion problem of the
wind power forecasting due to the randomness [8,9]. Du et al. [10] discussed the significant
characteristics of the randomness in wind power system output related to the generation power. In
particular, the potential influence to the power capacity credit on different output levels. Roy et al. [11]
gave a comprehensively and quantitatively description for the randomness of wind speed to evaluate the
outputs variability used for power integration and reserve. Ding et al. [12] utilized the stochastic
optimization method to discuss the negative effect from the randomness of the wind energy, and proposed
an optimized pumped-hydro-storage plant scheduling to reduce the potential influence on power system
operation. Wang et al. [13] proposed a forecasting methods to analyze the wind speed uncertainty based
on the analytical model, especially, the uncertainty of the wind speed can be qualitatively quantitatively
analyzed based on the multi-objective water cycle algorithm. However, this method still requires a large
amount of data as an analysis sample to obtain a quantitatively estimated interval. Soulouknga et al. [14]
investigated the wind speed at 10 m height to analyze the samples’ characteristics and the energy
potential, and provided the recommendation installation strategies by evaluation of the power density and
available energy. Groch et al. [15] provided a method to empircally assement the wind power’s loss of
generation events based on the historicitical observation. More precisely, the statistical analysis of meso-
scale wind speed obtained by the turbines at a wind farm were discussed in detal. The outlined literature
figured out that the methodology can be applied for high wind speed shutdown events, as well as any
event of interest even below cut-in. Ciulla et al. [16] figured out that the wind power curve of wind speed
can be generally described by the statistical analysis to describe the instantaneous wind speed. The
probability desnsity functions, power curves and neural networsk were respectively used to analyze the
first phase, second phase and third phase based on the fitting processes on real production samples of one
year. Ren et al. [17] analyzed the challenges caused by the uncertainty and intermittency of the wind
power, and provided the definition of wind power intermittecny as well as the quantitative results for
evaluation. The experiments based on one China wind farm was given to demonstrate the final
performance of the proposed approaches.Typically, the outlined methods’ generality ability in wind speed
forecasting can be further significantly improved by analyzing the following issues:

1. Uncertainty measurement. How to reduce the negative effect from the uncertainty in wind resource?
What are the variation patterns of uncertainty in different seasons?

2. Randomness evaluation. Does the wind speed time series obey independent and identically
distribution under different time scale?

The main objective of this paper is to analyze the outlined issues to improve the forecasting accuracy,
promote the model configuration and enhance the model robustness. This paper is organized as follows. The
proposed approach including the uncertainty measurement and randomness evaluation is given in Section 2.
In Section 3, experimental evaluation is given to verify the performance of the proposed approach, and this
paper is concluded in Section 4.

2 Proposed Approach

The proposal for the outlined issues is given as follows: (1) Powerful time-frequency analysis method
Rényi entropy benefits the investigation of the energy distribution according to amplitude and frequency.
Wavelet decomposition method is used to extract the stationary component in wind speed to reduce the
negative effect from the uncertainty in wind resource. (2) Nonparametric statistical method is used to test
if there are mixed distributions in wind speed and whether the wind speed is independent and identically
distribution in different seasons. The uncertainty measurement is processed to analyze wind speed time
series by evaluating the energy distribution based on the extracted amplitude and associated frequency.
The randomness evaluation is presented to check whether or not the observation is a randomly generated
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series based on the output probability. Finally, experimental comparison based on the dataset from NREL in
2004 is given to evaluate the performance of the proposed approach.

2.1 Uncertainty Measurement
Time series uncertainty measurement is one of the bases for information decision and model control.

Statistical method is usually selected to measure the uncertainty of the time series in mathematical
modeling. The effective measurement uncertainty benefits the capability improvement in time series
computation and analysis. Uncertainty variability exists in wind power system at all levels. Wind speed’s
nature such as randomness, seasonality and uncertainty increases the difficulty in forecasting modeling
with high accuracy. Wind flow modeling will be reliable if the uncertainty in wind resources is properly
estimated [18]. The uncertainty in wind resource is mostly related to the energy distribution which
depends on the wind turbine model, wind flow frequency and other factors related to climate. Rényi
entropy as the generalized expression for Shannon entropy and Hartley entropy is a time-frequency
analysis method, which is dedicated to analyze the nonlinear and non-stationary time series by evaluating
the energy distribution based on the extracted amplitude and associated frequency. For the given time
series Xtf gt¼1;2;…with the corresponding probability pi ¼: Pro Xt ¼ ið Þ. Rényi entropy is defined by

Ha Xtð Þ ¼ 1

1� a
log2

X
i¼1;…;n

pai

� �
(1)

where a � 0; a 6¼ 1, and it is the order of the Rényi entropy, which can be adjusted to calculate the spectrum
of the Rényi entropy used for the measurement of the energy distribution varies on time and scales. Ha Xtð Þ is
non-increasing in a because of

dHa Xtð Þ
da

¼ �1

1� að Þ2
X

i¼1;…;n
zi log zi=pið Þ < 0 (2)

where zi ¼ paiP
j¼1;…;n p

a
j
. In general, the lowerHa Xtð Þ is, the smaller uncertainty associated to time series Xt is.

Otherwise, Xt may be composed by many uncertainty factors associated to energy flows, and the
corresponding distribution performs a loosely packed situation related to higher entropy. Rényi entropy
can derive a good quality measurement for the wind speed uncertainty over time, which also provides an
estimation of the time series based on a quantitative measure of sample quality. Typically, the longer time
series is, the more uncertainty is. Another significant issue about the random should be considered besides
the uncertainty measurement. In wind speed modeling, the forecasting accuracy would beyond the control if
the observation sample obeys a completely random distribution. The objective of the random test is to test
if the given time series Xtf gt¼1;2;… is complete random by inferring the associated characteristics. The
model’s forecasting accuracy and output robustness etc. cannot be guaranteed for an approximately random
time series because the example in the forecasting issue may obey a chaotic distribution.

2.2 Randomness Evaluation
Statistical methods refer to nonparametric tests are usually used to test whether the wind speed time

series is independent and identically distribution (i.i.d). More precisely, the randomness in wind speed
will be effectively evaluated based on the distribution-invariant properties associated to random
processes. The goodness-of-fit criteria and several entropies are the famous methods used for sample
distribution comparison [19]. There is no underlying distribution in the utilized sample are usually
assumed in non-parametric testing. The null and alternative hypotheses are simplified as, Null
Hypothesis: Wind speed time series sequence is i.i.d related to random; Alternative Hypothesis: The
outlined sequence is not random.
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Assuming the given time series with mean l1 ¼
2n1n2
n1 þ n2

þ 1 and variance

r21 ¼
2n1n2 2n1n2 � n1 � n2ð Þ
n1 þ n2ð Þ2 n1 þ n2 � 1ð Þ, the corresponding marginal probability distributions based on the

permutations and combinations is formulated as,

fR rð Þ ¼
Cr=2�1
n1�1 Cr=2�1

n2�1

.
Cn1
n1þn2 ; if r is even

Cðr�1Þ=2
n1�1 Cðr�3Þ=2

n1�1 þ Cðr�3Þ=2
n1�1 Cðr�1Þ=2

n1�1

.
Cn1
n1þn2 ; if r is odd

8<
: (3)

where r is a positive number for order, and R is the observed number of runs. n1 is the number of those
samples, which is larger than the given median in the given time series. n2 is the ones which are smaller
or equal to the median in sequence. The critical region related to the probability of the false alarm (PFA)
is stated as

� a=2ð Þ � R� l1j j=r1 (4)

where � að Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z

a;1ð Þ
e�t2=2dt. The test for randomness is to check whether or not the observation is a

randomly generated series based on the output probability.

2.3 Seasonal Characteristics Analysis
Wind speed is essentially a non-stationary meteorological time series, and the corresponding distribution

approximately presents the different seasonal characteristics in different seasons. WT composes of discrete
and continuous wavelet transformation, which is widely used in time series analysis through the multi-
frequency bands with multi-resolutions along with time. WT can detect the wind variation pattern and
capture the seasonal feature in different seasons [20]. Morlet function is dedicated to the meteorological
time series analysis because its waveform shape is close to the analyzed signal. The continuous wavelet
transformation is defined by

W s; sð Þ ¼ c
�1

2
w s�

1
2

Z
ð�1;1Þ

xðtÞw� t � s
s

� �
dt (5)

where xðtÞ is the given time series, and w� denotes the complex conjugate operator with respect to mother
function wðtÞ 2 L2ðRÞ. The Fourier transformation wðxÞ related to wðtÞ satisfies the admissibility

condition cw ¼ R
ð�1;1Þ

wðxÞj j2
xj j2 dx < 1. W s; sð Þ is the wavelet coefficient, and s is the translation

parameter associated to time t. s is a scale factor refer to xðtÞ, which is used for the frequency
measurement. The similarity of the seasonal characteristics with respect to xðtÞ can be captured based on
the scale s along with the time t. The similarity among the different seasonal characteristics in
periodogram will be higher if the corresponding W s; sð Þ is larger. This procedure is conductive to capture
the seasonal characteristics of the wind speed by measuring the periodic similarity in periodogram.

3 Experimental Evaluation

3.1 Data Description
The sample used for experimental evaluation is downloaded from the National Renewable Energy

Laboratory (NREL) at: http://www.nrel.gov/electricity/transmission/. The sample contains two variables:
wind speed (M/S) and netpower (MW). The site number of the utilized sample is 06996, and the
sampling frequency is 10 minutes/point. In order to effectively reflect the seasonal characteristics of wind
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speed trend in a whole year, the sample size is 52703 � 1 (only the wind speed) from January 1, 2004 to
December 31, 2004 is selected for analysis.

3.2 Uncertainty Measurement and Randomness Evaluation
The uncertainty measurement of the wind speed benefits the estimation of the potential changes. Rényi

entropy is conductive to analyze the wind speed’s uncertainty based on the corresponding amplitudes and
frequency information. Smaller Rényi entropy means less uncertainty in wind speed. Otherwise, the
analyzed signal will be more complex. The change trend between the order a and Rényi entropy Ha Xtð Þ
in the formula (1) is intuitively shown in Fig. 1.

In general, Ha Xtð Þ decreases when a increases based on Fig. 2. Ha Xtð Þ trends to the constant value when
a ! 1. Ha Xtð Þ estimates all the possible probability related to the wind speed time series X when a ! 0.
Ha Xtð Þ is approximately equal to the Shannon entropy when a ¼ 1, which can be used to solve the problem
in quantitative measurement of the sample information. Without loss of generality, the time scale, day, month
and seasons are used to demonstrate the change trend in wind speed. The uncertainty of wind speed in winter
is higher than other three seasons whatever on day or month. The random analysis of the wind speed based on
the Non-parametric test methods has been given in Tab. 1.

The longer wind speed time series is, the more uncertainty is. LB and UB indicate the lower and upper
boundar of evaluation, respectively. For instance, the uncertainty on the whole spring is significantly higher
than the ones on month or day. According to the order of the sequence priority order in uncertainty and
radomness:

UWinter > USpring > UAutumn > USummer

Figure 1: Rényi entropy of the wind speed in four seasons
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In fact, many researches have proposed some strategies to reduce the negative effect from the uncertainty
in wind resource. The uncertainty in wind resource can be treated as a percent of the wind speed. The
quantitative measurement about the uncertainty in wind speed is implemented through a specified
confidence degree that wind speed falls within the specified interval. This paper provides an optimal
solution to reduce the influence of the uncertainty in wind resource by utilizing the WT.

Moreover, median crossing test is used to estimate the randomness of wind speed, which is essentially a
non-parametric test for randomness. In fact, the forecasting accuracy would beyond the control if the
observation or sample is a truly random. In particular, the long-term forecasting accuracy cannot be
guaranteed for an approximately random time series, and the typical example is the forecasting issue
related to the chaos. According to three divided time scales: day, month and whole seasons, all the test
decision using the Matlab inline function ‘runstest’ for the test of randomness indicate that the null
hypothesis should be rejected. More precisely, it is false that wind speed time series sequence is i.i.d

Figure 2: The trajectory of wind speed in four seasons

Table 1: The random analysis of the wind speed

Probability Spring Summer Autumn Winter

LB UB LB UB LB UB LB UB

1st testing 0 0.0457 0 0.2791 0 0.0048 0 0.4507

2nd testing 0 0.4208 0 0.0389 0 0.3809 0 0.3941

3rd testing 0 0.4863 0 0.3914 0 0.4235 0 0.2348

4th testing 0 0.2433 0 0.2979 0 0.3601 0 0.4021

Average 0 0.2990 0 0.2518 0 0.2923 0 0.3704
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related to random at the default 5% significance level. This represents that wind speed is not a randomly
generated series based on the output probability according to the outlined time scale.

3.3 Seasonal Characteristics Analysis
The uncertainty measurement and randomness evaluation of wind speed indicate that: the establishment

of the forecasting model with high accuracy should consider the difference of the distribution feature in
different seasons. Usually, the distribution type of the wind speed has a continuous spectrum due to the
periodically change and external climates conditions. In fact, the precisely change period of the wind
speed is difficult to estimate due to the complicated meteorological interaction and distribution
characteristics. But the seasonal characteristics including the approximate period can be effectively
derived based on the scalogram percentage of energy distribution generated by the WT. Wind speed’s
trend and seasonality can be sufficiently reflected based on self-similarity related to the WT coefficient in
periodogram under various scales to investigate the corresponding seasonal characteristics. Note that, WT
coefficient in periodogram may be not independent and identical due to the potential noisy. In fact, the
energy distribution of the signal and noise is different, so wavelet filter method is used to improve the
seasonal characteristics analysis accuacy. Seasonal characteristics analysis results about July and
November are intuitively displayed in Figs. 3 and 4, respectively.

Two seasonal distribution characteristics of the wind speed can be derived based on the SCA. The one is
the first distinguish seasonal characteristics. For instance, July is a typical month with this distribution. Half
day (about 67 points) is approximately treated as the minimum period under scales 1–256 along with time.
The distribution characteristics is local periodicity and seasonal. The distribution characteristics of the other
one is seasonal but no obvious periodicity along with time, for instance, November is a typical month with
the outlined seasonal characteristics.

The vertical-axiswhich is essentially about the scale s in Figs. 3 and 4 represents the pseudo-frequencies
estimated by matlab inline function ‘scal2frq’. The estimated frequencies are 66 and 146, which can be
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Figure 3: Seasonal characteristics analysis (July)
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approximately treated as the ‘true’ frequency to investigate the seasonal characteristics. There are two
seasonal distribution pattern based on WT spectrum: (1) the ones related to seasons with half-day of
periodic, which is seasonal and local periodicity such as summer and winter; (2) the other one is seasonal
but no obvious periodicity along with time, such as the autumn and spring. In order to accurately analyze
the wind speed’s seasonal characteristics, the statistical results related to the wavelet coefficient matrices
W s; sð Þf gm�n is given in Tab. 2.
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Figure 4: Seasonal characteristics analysis (November)

Table 2: Statistical results

Season Months MedianW ðs; sÞ l r rSS rW ðs;sÞ
Spring March −0.0194 0.1507 4.1324 −0.1167 Mar. vs. Apr. −0.1192

April −0.1125 0.2631 5.4016 −0.1473 Apr. vs. May. −0.2041

May −0.1981 0.2347 5.3180 −0.0214 May. vs. Jun. −0.1309

Summer June −0.0988 0.0814 4.2341 −0.0225 Jun. vs. Jul. −0.5526

July 1.1494 0.2619 3.5559 −0.1920 Jul. vs. Aug. −0.3147

August 0.1367 0.2008 3.7416 −0.0627 Aug. vs. Sep. −0.2303

Autumn September 0.0778 0.1801 3.8877 −0.2208 Sep. vs. Oct. −0.0235

October 0.0878 0.2285 3.1071 0.2644 Oct. vs. Nov. 0.0335

November −0.2399 0.2437 3.3770 0.0206 Nov. vs. Dec. 0.0973

Winter December −0.5107 0.4225 4.5610 0.0404 Dec. vs. Jan. 0.1155

January −0.4444 0.3639 4.3104 −0.0545 Jan. vs. Feb. −0.1478

February 0.5799 0.1179 4.1928 0.3189 Feb. vs. Mar. −0.3224

296 EE, 2020, vol.117, no.5



where medianW ðs; sÞ, l, r and rSS are the median value, expectation, variance and self-similar coefficient
related to wavelet coefficient matrices W s; sð Þf gm�n. The proper subsets division is generated based on
the similarity between the different seasonal characteristics. The months in different seasons are divided
into the following subsets in Tab. 3.

The months are merged into one subset if the self-similar coefficient rSS is smaller than the correlation
coefficient rW ðs;sÞ related to the last and next month. In particular, June, July and August are merged into one
subset due to rW ðs;sÞ > rSS . This indicates that these months have a higher similarity about seasonal
characteristics than the self-similarity in each month. Based on the outlined discussion, larger sample may
not benefit the establishment of the high-accuracy model unless the training sample contains the sufficient
seasonal characteristics information used for testing. Wind speed’s seasonal characteristics will be
sufficiently reflected in the wind speed forecasting process.

4 Conclusions

The uncertainty, randomness as well as the seasonal characteristics of wind speed is mainly considered
in this paper. Three time-scale, i.e., day, month and whole year for the uncertainly evaluation of wind speed
is properly analyzed based on the Rényi entropy. The nonparametric statistics evaluation methods are used
to check if the time series is stationary and provide the lower and upper boundarys of the probability
evaluation. Similarity among the different seasonal characteristics of wind speed are effectively
reflected to analyze the seasonal distribution characteristics, and provide the effective strategies to
properly divide the original dataset. Finally, experimental evaluation based on the dataset from NREL
in 2004 is given to verify the effectiveness of the proposed approach. In our further work, the
dynamical analysis with ability of error correction and adaptive adjustment in combination with the
proposed approach in this paper will be considered.
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Table 3: Divided subsets based on SCA

Seasons Subsets Months

Spring 1 March

2 April & May

Summer 3 June, July & August

Autumn 4 September

5 October

6 November

Winter 7 December & January

8 February

EE, 2020, vol.117, no.5 297



References
1. Pryor, S. C., Barthelmie, R. J. (2011). Assessing climate change impacts on the near-term stability of the wind

energy resource over the United States. Proceedings of the National Academy of Sciences, 108(20), 8167–
8171. DOI 10.1073/pnas.1019388108.

2. Deng, X., Shao, H. J., Hu, C. L., Jiang, D. B., Jiang, Y. T. (2020). Wind power forecasting methods based on deep
learning: a survey. Computer Modeling in Engineering & Sciences, 122(1), 273–301. DOI 10.32604/
cmes.2020.08768.

3. Kwon, S. (2010). Uncertainty analysis of wind energy potential assessment. Applied Energy, 87(3), 856–865. DOI
10.1016/j.apenergy.2009.08.038.

4. Aien, M., Rashidinejad, M., Fotuhi-Firuzabad, M. (2014). On possibilistic and probabilistic uncertainty
assessment of power flow problem: a review and a new approach. Renewable and Sustainable Energy Reviews,
37, 883–895. DOI 10.1016/j.rser.2014.05.063.

5. Shao, H. J., Deng, X. (2018). AdaBoosting neural network for short-term wind speed forecasting based on seasonal
characteristics analysis and lag space estimation. Computer Modeling in Engineering & Sciences, 114(3), 277–293.

6. Shao, H. J., Deng, X., Jiang, Y. T. (2018). A novel deep learning approach for short-term wind power forecasting
based on infinite feature selection and recurrent neural network. Journal of Renewable and Sustainable Energy, 10
(4), 043303. DOI 10.1063/1.5024297.

7. Ayoub, H., Hani, E. H. B. (2020). Performance and cost analysis of energy production from offshore wind turbine.
Energy Engineering, 117(1), 27–39. DOI 10.32604/EE.2020.010372.

8. Li, H., Yu, M., Zhang, Q., Wen, H. (2020). A numerical study of the aerodynamic characteristics of a high-speed
train under the effect of crosswind and rain. Fluid Dynamics &Materials Processing, 16(1), 77–90. DOI 10.32604/
fdmp.2020.07797.

9. Dutkiewicz, M., Machado, M. R. (2019). Measurements in situ and spectral analysis of wind flow effects on
overhead transmission lines. Sound and Vibration, 53, 161–175.

10. Du, C., Wang, X., Wang, X., Shao, C. (2016). Comprehensive value assessment of wind power by layer. IEEE
Transactions on Power Systems, 31(2), 1238–1247. DOI 10.1109/TPWRS.2015.2427854.

11. Roy, S. (2013). Power output by active pitch-regulated wind turbine in presence of short duration wind variations.
IEEE Transactions on Energy Conversion, 28(4), 1018–1025. DOI 10.1109/TEC.2013.2282992.

12. Ding, H., Hu, Z., Song, Y. (2012). Stochastic optimization of the daily operation of wind farm and pumped-hydro-
storage plant. Renewable Energy, 48, 571–578. DOI 10.1016/j.renene.2012.06.008.

13. Wang, J., Niu, T., Lu, H., Guo, Z., Yang, W. et al. (2018). An analysis-forecast system for uncertainty modeling of
wind speed: a case study of large-scale wind farms. Applied Energy, 211, 492–512. DOI 10.1016/j.
apenergy.2017.11.071.

14. Soulouknga, M. H., Doka, S. Y., Revanna, N., Djongyang, N., Kofane, T. C. (2018). Analysis of wind speed data
and wind energy potential in Faya-Largeau, Chad, using Weibull distribution. Renewable Energy, 121, 1–8. DOI
10.1016/j.renene.2018.01.002.

15. Groch, M., Vermeulen, H. J. (2019). Modeling high wind speed shut-down events using meso-scale wind profiles
and survival analysis. IEEE Transactions on Power Systems, 34(6), 4955–4963. DOI 10.1109/
TPWRS.2019.2921940.

16. Ciulla, G., D’Amico, A., Di Dio, V., Brano, V. L. (2019). Modelling and analysis of real-world wind turbine power
curves: assessing deviations from nominal curve by neural networks. Renewable Energy, 140, 477–492. DOI
10.1016/j.renene.2019.03.075.

17. Ren, G., Wan, J., Liu, J., Yu, D., Söder, L. (2018). Analysis of wind power intermittency based on historical wind
power data. Energy, 150, 482–492. DOI 10.1016/j.energy.2018.02.142.

18. Shao, H. J., Wei, H. K., Deng, X., Xing, S. (2017). Short-term wind speed forecasting using wavelet transformation
and AdaBoosting neural networks in Yunnan wind farm. IET Renewable Power Generation, 11(4), 374–381. DOI
10.1049/iet-rpg.2016.0118.

298 EE, 2020, vol.117, no.5

http://dx.doi.org/10.1073/pnas.1019388108
http://dx.doi.org/10.32604/cmes.2020.08768
http://dx.doi.org/10.32604/cmes.2020.08768
http://dx.doi.org/10.1016/j.apenergy.2009.08.038
http://dx.doi.org/10.1016/j.rser.2014.05.063
http://dx.doi.org/10.1063/1.5024297
http://dx.doi.org/10.32604/EE.2020.010372
http://dx.doi.org/10.32604/fdmp.2020.07797
http://dx.doi.org/10.32604/fdmp.2020.07797
http://dx.doi.org/10.1109/TPWRS.2015.2427854
http://dx.doi.org/10.1109/TEC.2013.2282992
http://dx.doi.org/10.1016/j.renene.2012.06.008
http://dx.doi.org/10.1016/j.apenergy.2017.11.071
http://dx.doi.org/10.1016/j.apenergy.2017.11.071
http://dx.doi.org/10.1016/j.renene.2018.01.002
http://dx.doi.org/10.1109/TPWRS.2019.2921940
http://dx.doi.org/10.1109/TPWRS.2019.2921940
http://dx.doi.org/10.1016/j.renene.2019.03.075
http://dx.doi.org/10.1016/j.energy.2018.02.142
http://dx.doi.org/10.1049/iet-rpg.2016.0118


19. Zhang, S., Liu, H., Qiang, J., Gao, H., Galar, D. et al. (2019). Optimization of well position and sampling
frequency for groundwater monitoring and inverse identification of contamination source conditions using
Bayes’ theorem. Computer Modeling in Engineering & Sciences, 119(2), 373–394. DOI 10.32604/
cmes.2019.03825.

20. Bhaskar, K., Singh, S. N. (2012). AWNN-assisted wind power forecasting using feed-forward neural network.
IEEE Transactions on Sustainable Energy, 3(2), 306–315. DOI 10.1109/TSTE.2011.2182215.

EE, 2020, vol.117, no.5 299

http://dx.doi.org/10.32604/cmes.2019.03825
http://dx.doi.org/10.32604/cmes.2019.03825
http://dx.doi.org/10.1109/TSTE.2011.2182215

	Seasonal Characteristics Analysis and Uncertainty Measurement for Wind Speed Time Series
	Introduction
	Proposed Approach
	Experimental Evaluation
	Conclusions
	flink5
	References


