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Abstract 

The problem of making optimaJ decisions in uncer­
tain conditions is central to Artificial Intelligence 
If the state of the world is known at all times, the 
world can be modeled as a Markov Decision Pro 
cess (MDP) MDPs have been studied extensively 
and many methods are known for determining op 
timal courses of action or policies The more 
realistic case where state information is only par­
tially observable Partially Observable Markov De­
cision Processes (POMDPs) have received much 
less attention The best exact algorithms for these 
problems can be very inefficient in both space and 
lime We introduce Smooth Partially Observable 
Value Approximation (SPOVA), a new approxima­
tion method that can quickly yield good approxima­
tions which can improve over time This mediod 
can be combined with reinforcement learning meth 
ods a combination that was very effective in our test 
cases 

1 Introduction 
Markov Decision Processes (MDPs) have proven to be useful 
abstractions for a variety of problems When a domain fits 
into the MDP framework, a variety of methods can be used 
that are practical for small- to medium-sized problems Un­
fortunately many interesting domains cannot be modeled as 
MDPs In particular domains in which the stale of the prob-
lem is not fully observable at all times cannot be modeled 
as MDPs Partially Observable Markov Decision Processes 
(POMDPs) extend the MDP framework to include partially 
observable state information With this extension we are able 
to model a larger and more interesting class of problems but 
we are no longer able to use the solution methods that exist 
for MDPs 

POMDP algorithms are much more computationally m 
tensive than their MDP counterparts The reason for this 
complexity is that uncertainty about the true state of model 
induces a probability distribution over the model states Most 
MDP algorithms work by determining the value of being in 
one of a finite number of discrete states while most POMDP 
algorithms are forced to deal with probability distributions 
This difference changes a discrete optimization problem into a 
problem that is defined over a continuous space This increase 
in complexity is manifested in the performance of POMDP 

algorithms The best algorithms can take prohibitively large 
amounts of time even for very small problems 

Our approach, Smooth Partially Observable Value Approx 
imation (SPOVA) uses a smooth function that can be adjusted 
with gradient descent methods This provides an extremely 
simple improvement rule that is amenable to reinforcement 
learning methods and wil l permit an agent to gradually im­
prove its performance over time 

In our lest cases we found that agents using this rule could 
rapidly improve their behavior to near-oplimal levels in a frac­
tion of the time required to run traditional POMDP algorithms 
to completion 

The following section wil l introduce ihe MDP formalism, 
and section 3 wil l show how this can be extended lo include 
partial observability Section 4 introduces a smooth approx­
imation Lo the max function that is the basis of our SPOVA 
algorithms A simple gradient descent SPOVA algorithm is 
described in section 5, and results for this algorithm are pre­
sented in section 6 where it finds optimal policies for two 
test worlds An approach based on simulated exploration and 
reinforcement learning is introduced in section 7, where re­
sults are presented showing (his method rapidly finds good 
policies Section 8 briefly discusses other related work, and 
section 9 contains concluding remarks 

2 Markov Decision Processes 
One useful abstraction for modeling uncertain domains is. the 
Markov Decision Process or MDP An MDP divides the world 
into states with actions that determine transition probabilities 
between these Mates The states are chosen so that each state 
summarizes all that is known about the current status of ihe 
world the probability of the next state is a function of the 
current slate and acuon only, not any of the previous states or 
actions More formally wesay that forany actions and string 
of slates and actions 

This is called the Markov Property 
An MDP is a 4-tuple, (S A, TtR) where 5 is a finite set of 

stales Mis a finite set of actions, T is a mapping from sxA into 
distributions over the states in S, and R is a reward function 
that maps from S to real-valued rewards This paradigm can 
be extended to distributions over rewards, or to map from 
S x A to rewards or distributions over rewards There may be 
an additional element, / which specifies an initial slate 

A policy for an MDP is a mapping from S lo actions in A 
It can be an explicit mapping, or it can be implicit in a value 
function Vt that maps from elements of S to real values This 
value function represents the value of being in any state as the 
expected sum of rewards that can be garnered from that point 
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forward We can use a value function to assign actions to 
states in s by choosing the action that maximizes the expected 
value of the succeeding states Policies can be defined for two 
types of problems, finile-honzon, where the number of steps 
or actions permitted has a hard limit, and infinite-horizon 
where there is no fixed ume limit The infinite-honzon case 
still can respect the value of time by incorporating a cost 
or negative reward with each step, or by discounting future 
rewards by a discount factor 

For any MDP there exists an optimal value function V* that 
can be used to induce an optimal policy The present value of 
the rewards expected by an agent acting on an optimal policy 
will be at least as great as that received by an agent under any 
other policy There are several methods for determining opti­
mal policies forMDPs One effective method for determining 
a value function for the infinite horizon case is value iteration 
[Bellman, 1957] If the transition probabilities for the model 
are not known reinforcement learning [Sutton, 1988] can be 
used to learn an optimal policy through exploration 

When separate value functions are maintained for each ac­
tion these functions are often called Q functions When re­
inforcement learning is used to learn Q-funuions it is called 
Q learning [Watkins, 1989] Our algorithms do not maintain 
separate value functions for each action As we wil l discuss 
below, we regard this as simply an implementation detail and 
not an important distinction for our approach 

3 Partial Observability 
It is important to realize that although actions have uncertain 
outcomes in MDPs there is never any uncertainly about the 
current slate of the wor ld Before taking any action an agent 
may be uncertain about the consequences of its action but 
once the action is taken, the agent wi l l know the outcome 
This can be an extremely unrealistic assumption about the 
abil ity of an agent s sensors to distinguish between world 
slates 

A Partially Observable Markov Decision Process (POMDP) 
is just l ike an M D P wi th outputs attached to the slates The 
outputs can be thought of as sensor observations lhai provide 
(usually) uncertain information about die state of the world 
as hints about the true state of the world or as sensor inputs 
More formally a POMDP is a 5-tuple (S A T R O), where 
S A, T, and R are defined as in an M D P and O maps from 
stales in 5 to a set of outputs Note thai if O assigns a unique 
output to every stale and the init ial stale is known then the 
POMDP becomes an M D P because the slate information is 
ful ly observable POMDPs can be extended to make S map 
from states to distnbutions over outputs or from S xA to out­
puts or dislnbutions over outputs There may be an additional 
element, / lhal determines an iniual distribution over stales 

The change to partial observability forces an important 
change in die type of information an agent acting in a world 
must maintain For the fu l ly observable case, an agent wi l l 
always know what slate i( is in but for the partially observ 
able case an agent that wishes to act optimally musi maintain 
considerably more information One possibility is a complete 
history of all actions taken and all observations made Since 
this representation can become arbitranly large the mainte­
nance of a jo in t probabil i ty distribution over the stales in 5 
often is more tractable This distnbution sometimes is referred 
to as a belief state 

It can be shown that the Markov properly holds for the belief 
stales induced by a POMDP This means that in pnnciple we 
can construct an M D P from the belief states of a POMDP find 

an optimal policy for the M D P and then use this policy for the 
POMDP Unfortunately most interesting POMDPs induce a 
very large or infinite number of belief stales making direct 
application of M P D algorithms to POMDPs impractical 

A survey of existing POMDP algonlhms [Lovejoy 1991] 
shows lhal many POMDP algonlhms work by constructing a 
finite representation of a value function over belief stales ihen 
iteralively updating this representation, expanding the hon 
zon of the policy ll implies until a desired depth is reached 
For some classes of problems [Sondik 1971] infinite-horizon 
policies w i l l have finite representations and value functions 
car be obtained for these problems by expanding ihe hon 
zon until the value function converges lo a stable value In 
practice infinite horizon policies often can be approximalcd 
by extremely long finite horizons even if convergence is not 
obtained Regardless of whether they are run lo convergence 
existing exact algorithms can take an exponential amount of 
space and time lo compute a policy even if the policy itself 
does not require an exponential size representation These 
drawbacks have led lo a number of approximation algonlhms 
that work by discretizing the belief space The most advanced 
methods dynamically adjust the resolution of the discretiza­
tion for different parts of the belief space but it is unclear 
whether this can be done efficiently for large problems 

Tl is worth noting for the reader unfamiliar wi th this area 
that most POMDPs with known solutions have less than 10 
stales and that exact solutions to POMDPs wi th tens of stales 
can lake anywhere from minutes lo days if convergence is 
obtained at all 

We w i l l introduce a new approximate method for deter 
mining infinite horizon policies for POMDPs This mediod 
differs from existing methods in that it uses a continuous and 
differenliable representation of the value function 

4 The Differentiable Approximation 
The first and perhaps most important decision thai must be 
made in any approach to this problem is how to represent the 
value function Sondik showed [1971] that an optimal finile-
honzon value function can be represented as the max over a 
finite set of linear functions of the belief state For a belief 
stale b a vector representing a distribution over the states of 
the world the value function can be represented as 

where T is a set of vectors the same dimension as b defining 
planes in value x belief space Each 7, in V can be shown 
to represent a fixed policy, meaning that we are maximizing 
over a set of policies to find the one that is best in a particular 
region of the belief space (See [Littman 1994] for an in-
depth interpretation of the 7 vectors ) Graphically 7, is a 
hyperplane in value space and die max of these functions 
forms a convex piecewise linear surface The significance of 
Sondik s result is that it provides a potentially compact means 
of representing the optimal value function for finile-honzon 
problems although it does not make any guarantees that \V\ 
will be tractably small 

For very large horizons Ihe value function may be quite 
smooth as il may be comprised of a very large number of 
vectors For infinite horizons the value function may be 
comprised of an infinite number of pieces which means that 
it is likely to be smooth in at least parts of die belief space 
In any case, because it is the maximum of a set of linear 
functions, 11 wil l be convex For these reasons, a good candi 
date for a differentiate approximation of the infinite horizon 
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Figure 1 Closeness of the MAX approximation as k increases 

vaJue function would be a convex function that behaves l ike 
max The fo l lowing function works rather nicely and is the 
foundation of the smooth approximation made by SPOVA ' 

To keep things simple we wil l assume that the true value 
function, V , is always positive and that the individual com­
ponents of the the are all positive This assumption 
comes with no loss of generality since we easily can shift the 
function into the positive part of the value space to satisfy 
these conditions This can be done by replacing with 

where w is a constant offset 
Since the ft) s are always positive the second partial denva 

live in each of the dimensions is always positive and the 
function is always convex The function wil l behave like an 
over-estimate of max that is smoothed at the corners Fig­
ure I shows a two-dimensional example of how this works 
We have chosen and graphed 
our differentiate max approximator for different values of 
it The convex piecewise linear function below the smooth 
curves is the max function (Only one belief dimension is 
shown because the second is 1 minus the first) Notice that 
as k increases, the approximation approaches the shape of 
the convex surface that is the max of the linear functions 
The height of the function is less important than the shape 
here since the policy induced by a value function depends on 
relative not absolute, value assignments 

The k parameter gives us a great deal of flexibility For 
example, if we believe that the infinite horizon value function 
can be represented by the max of a small set of linear functions 
we may choose a large value for k and try for a very close 
approximation On the other hand, if we believe the optimal 
infinite horizon value function is complex and highly textured 
requiring more components than we have time or spate to 
represent, a smaller value of k will smooth the approximate 
value function to partially compensate for a lower number of 
7 vectors 

5 The basic SPOVA algorithm 
The main advantage of a continuous representation of the 
value function is that we can use gradient descent to adjust 

'Thereareotherpossiblechoicesfor soft max approximations 
See for example, [Mardnetz ctal 1993] 

the parameters of the function to improve our approximation 
Ideally, we could use data points from the optimal value func 
lion V", to construct T Such information generally is not 
available bul an approach similar to value iteration for MDPs 
can be to make our value equation look more like V* We 
know from value iteration that the optimal value equation for 
an MDPmust satisfy the following constraint 

Since a POMDP induces an MDP in the belief states of the 
POMDP, we know mat tins equation must hold for the optimal 
value function for POMDPs as well This gives us a strategy 
for improving the value function Search for inconsistencies 
in our value function, then adjust the parameters in the di 
recti on that minimizes these inconsistencies This is done by 
computing the Bellman residual [Bellman 1957], 

where next{b, a) is the set of belief slates reachable from b on 
taking action a We can then adjust the 7s in the direction that 
minimizes the error By using a smooth max approximation 
described above, we are able to use a typical gradient descent 
approach where a is interpreted as a 
step size or learning rale In this case die weights correspond 
to the components of the 7 vectors so the update for thejth 
component of the vector turns out to be 

This equation for the gradient has several appealing properties 
The (b 7,)* part increases with the contribution 7, makes to 
the value function so the 7,s that contribute most to the value 
function are changed the most This is then multiplied by b]t 
reflecting ihe influence of die probability of being in state j on 
Ihe/* component of die gradient of We also can interpret k 
as a measure of how 'ngid the system is For small values of 
k many weights wil l be updated with each change However 
for large values of k, the component of the gradient 
wi l l permit only minuscule changes to all bul the the 7^ that 
maximize/? 7, Figure 2 shows the SPOVA algonthm 

Figure 2 The SPOVA algori thm 

Since it is impossible to sample all possible belief states, 
we used the simple approach of randomly selecting belief 
states Empirically, we found that we obtained the best results 
when we varied K during the run-t ime Typical ly we would 
start k at 1 2 and increase k l inearly unti l it reached 8 0 when 
75% of the requested number of updates were performed As 
shown in Figure 1, small values of K make smoother and more 
general approximations Small values of k also spread the 
effect of updates over a wider area, in some sense increasing 
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the energy ' of the system This gradual increase in k can be 
thought of as a form of simulated annealing 

The updates can be repealed unti l some termination con 
dit ion is met either a fixed l imit in the number of iterations 
a m in imum number of consecutive samples processed wi th 
out E exceeding some threshold or perhaps something more 
problem specific 

Whi le we do not yet have a convergence proof for this algo 
n thm, we are optimist ic that wi th enough iterations decaying 
a and sufficiently large F that as k lends toward infinily the 
value function w i l l converge to the optimal value function if 
the function has a finite piecewise linear representation This 
is because our error function w i l l become arbitrarily close 
to the Bel lman residual as k increases For a large number 
of updates the system should move towards its only stable 
equi l ibr ium point the point at which the value function is 
consistent and, therefore optimal for all points in the belief 
space 

One question that has not been addressed is how lo pick, 
the number of 7 vectors to use For a sub-optimal number of 
vectors, the gradient descent approach wi l l adjust these vec­
tors in the direction of lower error even though convergence 
may not be possible Our algorithms do not yet automatically 
determine the optimal number of vectors needed to converge 
to the value function in the l imi t One practical way lo in 
corporate this abil i ty would be to code what we did by hand 
use a binary search to find the smallest number of vectors that 
gives an optimal policy (one that is no worse than the best 
policy produced wi th a larger number of vectors) 

6 SPOVA results 
We tried the basic SPOVA algorithm initialized wi th random 7 
vectors for two grid worlds thai have appeared in the literature 
The first, shown in Figure 3 is a 4x 4 world from [Cassandra ei 
al 1994] Movement into adjacent squares is permitted in the 
four compass directions but an attempt to move off the edge of 
the wor ld has no effect, returning the agent to its original state 
w i th no indication thai anything unusual has happened A l l 
slates have zero reward and the same appearance except for 
the bottom nght stale which has a +1 reward and a distinctive 
appearance 

The init ial state for this problem is a uniform distribution 
over all but the bottom right state Any action taken from the 
bol iom right state results in a transition to any one of the re 
maining zero reward slates wi th equal probability (1 e return 
to the init ial distribution) For this problem we are interested 
in the optimal inf inite-honzon policy wi th a discount factor of 

Wi th a momenl s thought, it should be clear that the 
opUmal policy for this model alternates between moving East 
and South Thus does not mean that the optimal infinite hon-

Figure 4 Policy quality vs number of iterations for gradient 
descent in the 4 x 4 world 

zon value function is easily obtainable In fact there are 887 
belief stales that are reachable from tge init ial state and the 
optimal value function defined over all belief states requires 
20 vectors using Sondik's representation 

We ran gradient descent with just I vector for 50 000 iter­
ations and compared the value of the resulting approximate 
policy lo the value of Ihe optimal policy at 1000 iteration 
intervals We did this by laking a snapshot of the value func 
tion at each interval then simulating 10 000 steps through 
the world and counting Uie average reward per slep garnered 
during this period This provides an estimate of the current 
policy quality We compared this against ihe policy quality 
for the known opumal policy for the same lime period F ig­
ure 4 shows a graph of die average reward garnered per step 
vs the number of iterations performed The horizontal line is 
the value of the optimal policy computed using the Witness 
algorithm [Cassandra et al, 1994], perhaps the fastest known 
exact algorithm Both algonthms required time on the order 
of CPU minulcs 

Our second problem shown in Figure 5 is f rom [Russell 
andNorvig 1994] It is a 4 x 3 gr id-world wi th an obstruction 
al (2 2) The coordinates are labeled in x,y pairs making 
(I 3) the (op left There is no discounting but a penalty of 
0 04 is charged for every step that is taken in this wor ld The 
two reward stales +1 and I are both directly connected lo a 
single zero reward absorbing stale Original ly this problem 
was used in a ful ly observable context, but wc have made 
it partially observable by l imning state information to lhat 
obtained from one east-looking and one west-looking wal l 
detector Each is activated when Uiere is a wal l in the im­
mediately adjacent square For example this makes (1 1) 
(1 3) and (3 2) indistinguishable The init ial slate is selected 
uniformly al random from the nonterminal stales 

Unl ike lhe4 x 4 world, transitions are not deterministic Ev­
ery action succeeds w i ih probabil i ty 0 8 and fails w i th proba 
bi l i ty 0 2 morning the agent in a direction perpendicular f rom 
the intended one If such a movement is obstructed by a wal l 
ihen the agent w i l l stay put instead Mov ing right from (1 3), 
for example w i l l move the agent right w i t i probability 0 8, 
down with probability 0 1 and nowhere with probability 0 1 

We ran the gradient descent method for 400 000 iterations 
with 3 vectors and obtained the results in Figure 6 The 
algorithm requires many samples about 250 000 (42 CPU 
minutes), before it has enough data in the relevant port ion 
of the space to calculate an approximately optimal policy 
The comparison policy shown in the figure wi th a reward per 
slep of 0 1108 was obtained after over 12 CPU hours using 
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Figure 6 Performance of the gradient descent algorithm on 
the 4x3 world showing the policy quality as a function of the 
number of iterations 

the Witness algorithm and uses 30 vectors In this case the 
Witness algorithm did not converge although recent results 
in [Littman et al, in press] indicate that convergence or near 
convergence may not be necessary in all cases to obtain a good 
policy from the Witness Algorithm 

One perhaps surprising aspect of our approximation method 
is thai the number of vectors required is drastically lower 
than that for an exact solution We were initially surprised 
to discover that the 4 x 4 problem requires a single vector, 
making the value function linear Part of the savings comes 
from the fact that our simulations considered only reachable 
belief states while exact solutions like the Witness algorithm 
construct policies that cover the entire belief space Also 
many more vectors may be required to specify a correct value 
function than are needed to specify a correct policy From the 
policy perspective, it is sufficient to know the relative value 
of all of the belief states not their exact value, making the 
shape of the value function much more important than the 
specific values it returns For the 4 x 4 problem any function 
that assigns a higher value to belief slates that suggest that 
the agent is closer to the southeast comer of the world will be 
sufficient A simple linear function is all that is needed here 

"The use of a smooth function also can reduce the number of 
vectors required For example, a complex bend that is formed 
by many hyperplanes in the exact value function often can be 
approximated very closely by a single smooth bend 

7 A reinforcement learning approach 
The straightforward gradient descent method can bnng our ap-
proximate value function fairly close to the exact one Wim a 
sufficient number of iterations the average difference over the 
entire state space wil l be very small A possible shortcoming 

of this method is that it cannot guarantee that the approxima-
tion wil l not differ significantly from V at critical parts of the 
space, such as the initial state In addition random selection 
of belief states may waste time refining the value function in 
parts of the belief space that would rarely, if ever, be visited 
by an agent following an optimal policy Finally the gradient 
descent method like some exact methods docs not make use 
of information about the initial distribution over states This 
information can greatly limit the number of reachable belief 
states making the problem easier 

We have implemented a second variation on our SPOVA 
approach SPOVA-RL (Smooth Partially Observable Value 
Approximation with Reinforcement Learning) which avoids 
these problems The algorithm uses the known model to sim­
ulate transitions in the environment Effectively,it explores' 
the belief state space with the aim of finding high-utility re­
gions This tends to focus the updates to the value function on 
belief states that are likely to be encountered by an agent us 
ing an optimal or near-optimal policy The SPOVA-RL update 
rule for a belief stale b is show in Figure 7 

For each transition, the algorithm applies the same 7,, up­
date as (he gradient descent algorithm but we compute Em 
with to respect the belief stale that is encountered in the simu 
lation rather than by maximizing over all possible successor 
states Where b is the belief state at time t and b' is the belief 
state al time we compute 

To ensure sufficient exploration of the world we chose 
initial values for the 7 vectors that guaranteed an overestimate 
for every possible belief state This forced the algorithm to 
disprove the optimistic estimates by visiting different areas of 
the belief space This rather simplistic policy was sufficient 
for our examples but we are investigating the application of 
some of the methods that have been used foT MDPs 10 improve 
the speed of convergence and to provide stronger guarantees 
that enough of the belief space wil l be covered 

We ran the algorithm on the same two worlds as before 
The results are shown in Figures 8 and 9 SPOVA-RL finds 
an approximately optimal policy for the 4x4 world in about 
80 iterations (1 4 seconds) and for the 4x3 world in about 
6000 iterations (59 seconds) 

By focusing its efforts on the most important states in the 
belief space SPOVA-RL is able to learn a nearly optimal 
policy extraordinarily quickly While some of this speed may 
come at the expense of accurate value estimations for rarely 
visited states this is an acceptable price to pay for many 
domains 

As a final experiment, we investigated the world shown in 
Figure 10 This world is designed to require a value function 
with more than one vector (Intuitively, being in a linear com­
bination of the A-states is much worse than being definitely in 
one or the other) Figure 11 shows the expected result, namely 
that SPOVA-RL effectively approximates an optimal 3-vector 
policy 
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Figure 8 Performance of the SPOVA-RL algorithm on the 
4x4 world showing the policy quality as a function of the 
number of epochs 

Figure 9 Performance of the SPOVA-RL algorithm on the 
4x3 world showing the policy quality as a function of the 
number of epochs 

Figure 10 A simple domain requiring more a nonlinear value 
function States labelled A are indistinguishable, but actions 
b and c can lead either to a +1 or a -I reward depending 
on which if the A-states the agent is in Action a leads to a 
distinctive state (either C or D) which enables the agent to 
find out where it is 

Figure 11 Performance of the SPOVA-RL algorithm on the 
environment shown in Figure 10 With one vector, SPOVA 
RL finds a policy of value 0 134 (the lower horizontal line) 
With three vectors SPOVA-RL quickly finds the optimal one-
vector policy but after about 600 iterations abandons u in 
favour of the more complex 3-vector policy, which eventually 
reaches the optimal value of 0 225 (the upper horizontal line) 

8 Relation to other work 
Many MDP and POMDP algorithms determine Q values 
rather than a single value function as we have done here 
The problem of determining the best action from an ordinary 
value function requires an agent to consult a model to simulate 
one step into the future and consider the value of possible next 
sidles An agenl using Q values docs not need to look ahead 
in this fashion since the value of each action is represented 
directly In the case of Q learning a model is not even needed 
to construct die Q values as they are learned directly from 
agent s experience This so-called model-free' property of 
Q-leaming does not carry over to POMDPs The agenl must 
know something about the dynamics of the world if a com­
pact stale description is lo be maintained over time Without 
a model this state description cannot be evolved and an agent 
would be forced either lo guess about its true location or to 
define value functions or Q functions over its enure history 
Thus, reengineenng a POMDP algorithm to compute Q func 
tions rather than a value function may change the analysis of 
the algorithm, but it does not change fundamentally the nature 
of the problem as it is alleged to do for MDPs In fact for 
the SPOVA implementations we have discussed here it is a 
trivial change 

Another approach lo the problem of partial observability 
is lo simply pretend that the sensor observations correspond 
exactly lo states Deterministic policies constructed for this 
sensor space usually fail miserably typically resulting in 

looping behavior This can be alleviated lo some extent by 
using tondomized policies of the kind first proposed for use 
in games of partial information Jaakola et al tin press] have 
shown how to learn from reinforcement using randomized 
policies demonstrating thai the approach is not unreasonable 
in some cases 

A linear value approximator is combined with a clever 
model learning mechanism in [McCallum 1993] and [Chns-
man 1992] It may be possible to generalize their approach 
lo include more complex functions like those represented by 
SPOVA A neural network based approach is used in [Lin 
and Mitchell 1992] They consider a vanely of approaches 
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thai can make use of an agent s history to learn hidden stale 
information The idea of a smoothed or soft" max has been 
around for a while It is the basic idea behind the use of the 
Boltzman distribution for action selection in [Watkins, 19891 
and a similar approach has been used in neural networks in 
for example [Martinetz et al 1993] We suspect that it may 
be possible to adapt these approximators for use in POMDPs 
using a similar approach to the one described here although 
we have not yet investigated this fully In recent work by 
Littman et al fin press] an update rule was developed inde 
pendently that can be interpreted as a special case of SPOVA 
This was shown to be adequate for determining good policies 
for problems with over 30 states 

9 Conclusions and future work 
We have investigated SPOVA, an approximation scheme for 
partially observable Markov decision problems based on a 
continuous, differentiate representation of the value func­
tion A simple ' value iteration' algorithm using gradient 
descent and random sampling is shown lo find approximately 
optimal policies but requires a large number of samples from 
the belief slate space We conjectured that many of these sam­
ples correspond to very unlikely or even unreachable belief 
states and therefore designed SPOVA-RL, a reinforcement 
learning algonthm that focuses its value function updates on 
belief slates encountered during actual exploration of the slate 
space SPOVA RL was able to solve the 4x4 and 4x3 worlds 
very quickly suggesting that optimism concerning the value 
of generalized approximation methods for POMDPs may be 
justified 

The nexl steps are to tackle larger problems, lo obtain con 
vergence results and to incorporate methods for learning the 
environment model We currently are investigating the appli­
cation of a new algonthm for learning dynamic probabilistic 
networks (DPNs) [Russell et a l , 1994] Such algorithms can 
find decomposed representations of the environment model 
that should allow very large stale spaces to be handled Fur 
thermore, the DPN provides a reduced representation of the 
belief stale that may facilitate additional generalization in the 
representation of the value function We plan lo use the overall 
approach lo learn to drive an automobile 
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