
A state-of-the-art survey of advanced optimization methods in
machine learning

Muhamet Kastratia and Marenglen Bibaa

a University of New York in Tirana, Tirana, Albania

Abstract
The main objective of this paper is to provide a state-of-the-art survey of advanced optimization

methods used in machine learning. It starts with a short introduction to machine learning

followed by the formulation of optimization problems in three main approaches to machine

learning. Then optimization is presented along with a review of the most recent state-of-the-art

methods and algorithms that are being extensively used in machine learning in general and deep

neural networks in particular. The paper concludes with some general recommendations for

future work in the area.

Keywords 1
Optimization methods, machine learning, deep neural networks, gradient descent, stochastic

gradient descent

1. Introduction

In recent years, machine learning has made

significant progress and received enormous

attention in the research community and

industry. Machine learning is applied

successfully to a wide range of problems

ranging from image recognition, speech

recognition, text classification, online

advertising, web search, recommendation

systems, etc. However, there also exist many

challenging problems in machine learning

including minimization of loss (error) function,

hyperparameters tuning, feature selection,

dimensionality reduction, finding the optimum

combination from a pool of base classifiers, etc.

Optimization is an efficient and robust tool to

tackle some of these challenges, and since its

beginning has played a vital role in statistical

and machine learning. In today’s data-intensive

technology era, machine learning models in

general, and deep neural networks in particular,

rely more and more on optimization methods

[1].

Proccedings of RTA-CSIT 2021, May 2021, Tirana, Albania

EMAIL: muhamet.kastrati@gmail.com;

marenglenbiba@unyt.edu.al

©️ 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

The relationship between optimization

methods and machine learning is one of the

most relevant topics in modern computational

science.

More recently a lot of work has been done

by both the optimization and machine learning

community by achieving state-of-the-art results

on this matter. Generally, it is considered a

relationship of great intimacy, optimization has

proved to be a core tool in machine learning and

at the same time, machine learning can be

considered as an important source of inspiration

for new optimization ideas [2].

From point of view of gradient information

in optimization, popular optimization can be

grouped into three major classes: the first-order

optimization methods, which are mainly based

on stochastic gradient methods, the second

class comprises of high-order optimization

methods, here Newton’s method represents a

typical example of this class and the third class

comprises of heuristic derivative-free

optimization methods, in which the coordinate

descent method is a representative [3].

mailto:muhamet.kastrati@gmail.com
mailto:marenglenbiba@unyt.edu.al

The interplay of optimization and machine

learning has also attracted the attention of

various researchers and practitioners.

This paper serves as a complementary one to

those previously published, at the same time

provides a state-of-the-art review on advanced

optimization methods used in machine

learning. First, it gives a short introduction to

machine learning followed by the formulation

of optimization problems in three main types of

machine learning approaches. Then, an

overview of state-of-the-art advanced

optimization methods used in machine learning

in general and deep neural networks, in

particular, has been presented. Finally,

conclusions are drawn in the last section.

2. Background

The following is given a short introduction

to machine learning models, followed by

optimization methods and algorithms to

facilitate understanding of these two fields and

the interaction among them.

2.1. Machine learning

Machine learning is a subfield of artificial

intelligence that deals with building a computer

system that learns from data without being

explicitly programmed [4, 5].

The authors in [6] start their definition for

machine learning as data modeling and go

further by treating machine learning as an

optimization problem. In [7], author begins his

formulation with “machine learning is

programming computers to optimize a

performance criterion using example data or

past experience”. These authors and others in

their work treat machine learning as an

optimization problem, which is our main goal

of this section. Furthermore, almost all machine

learning problems can be defined as an

optimization problem [8]. This is done by

having a solution (model) space defined, and an

optimality criterion (objective function)

determined. By taking into consideration that

the solution (model) space can be very large or

even infinite, usually is searched for the best

suboptimal solutions [6]. By having the

solution (model) space and objective function

defined, then, any appropriate optimization

method can be used to solve the machine

learning problem as an optimization one.

As described in [6, 7] there are three main

types of machine learning approaches:

supervised learning, unsupervised learning, and

reinforcement learning [9].

2.1.1. Optimization problems in
supervised learning

Optimization problems in supervised

learning aimed to find a function that best

minimizes the loss function L on the training

sample N, with respect to some parameters 𝜃,

when both input 𝑥𝑖 and output 𝑦𝑖 are given

[3, 10, 11]

min
𝜃

1

𝑁
∑𝑁

𝑖=1 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) (1)

Support Vector Machine - here loss function

is a typical form of structured risk

minimization. In this case, usually, the

regularization items are added into the

objective function to alleviate overfitting [3]

min
𝜃

1

𝑁
∑𝑁

𝑖=1 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) + 𝜆|𝜃 ∥2
2 (2)

here 𝜆 is a fixed parameter that usually is

determined through cross-validation.

2.1.2. Optimization problems in
unsupervised learning

The main task here is to find a function that

best minimizes the loss function on training,

when only input is given without output

(target), for a set of defined parameters.

For the k-means clustering algorithm, the

optimization problem can be formulated as

minimizing the following loss function [3]

min
𝑆

∑𝐾
𝑘=1 ∑𝑥∈𝐒𝐤

∥ 𝑥 − 𝜇𝑘 ∥2
2
 (3)

with 𝐾 being the number of clusters, 𝑥 feature

vector of samples, 𝜇𝑘 represents the center of

cluster 𝑘, and 𝑆𝑘 that represents the sample set

of cluster 𝑘. The main goal of the objective

function considers minimizing the variance

through all clusters.

In the case of principal component

analysis (PCA) the goal of the objective

function is to minimize the reconstruction

errors and has the form as given below:

min ∑𝑁
𝑖=1 ∥ 𝑥𝑖 − 𝑥𝑖 ∥2

2 (4)

𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 = ∑𝐷′
𝑗=1 𝑧𝑗

𝑖𝑒𝑗 𝐷 >> 𝐷′, (4.1)

Here 𝑁 denotes the number of samples, 𝑥𝑖

denotes the 𝐷-dimensional vector, 𝑥𝑖 denotes

the reconstruction of 𝑥𝑖. In the second part of

the equation above, 𝑧𝑖 = 𝑧1
𝑖 , . . . , 𝑧𝐷′

𝑖 denotes the

projection of 𝑥𝑖 in 𝐷′-dimensional coordinates,

and 𝑒𝑗 denotes the standard orthogonal basis

under 𝐷′.

In probabilistic models, the optimization

goal is to find an optimal probability density

function of 𝑝(𝑥), which maximizes the

logarithmic likelihood function (MLE) [3] of

the training samples,

max ∑𝑁
𝑖=1 ln𝑝(𝑥𝑖, 𝜃) (5)

2.1.3. Optimization problems in RL

Here the main task is to maximize the

expected reward after executing a series of

actions which are defined by a policy mapping

function [3, 9].

max
𝜋

𝑉𝜋(𝑠) (6)

 𝑉𝜋(𝑠) = 𝐸[∑∞
𝑘=0 𝛾𝑘𝑟𝑡+𝑘|𝑆𝑡 = 𝑠] (6.1)

2.2. Optimization

Optimization is a mathematical discipline that

is used to solve any problem involving decision

making, whether in engineering or economics.

The basic idea used in optimization is choosing

the best solution among various available

alternatives, in the sense of the given objective

function [12]. According to [13] an

optimization problem can be defined in this

form:

minimize
𝑥

𝑓0(𝑥)

subj. to 𝑓𝑖(𝑥) ≤ 𝑏𝑖 𝑖 = 1, … , 𝑚,

where vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) represents the

optimization variable of the problem and

𝑓0: 𝐑𝑛 → 𝐑 is the objective function,

𝑓𝑖: 𝐑𝑛 → 𝐑, 𝑖 = 1, . . . , 𝑚 are denoted the

(inequality) constraint functions and with

𝑏1, . . . , 𝑏𝑚 are denoted limits for the constraints.

Depending on the particular forms of the

objective and constraint functions there is a

taxonomy of optimization problems including

linear, quadratic, semi-definite, semi-infinite,

integer, nonlinear, goal, geometric, fractional,

etc. [13, 14].

In this paper, we have tried to reflect mainly

on the advanced optimization methods that are

used in machine learning in general and deep

neural networks in particular.

3. Optimization methods in
machine learning

The following is given an overview of the

state-of-the-art optimization methods applied in

machine learning models.

3.1. First-order methods

First-order optimization methods are also

known as gradient-based optimization and as

the name implies, these methods are mainly

based on first-order derivatives or gradient

descent. This section dealt with state-of-the-art

first-order optimization methods in machine

learning that are currently in use apart.

a. Gradient Descent - is one of the oldest

and most popular algorithms used to perform

optimization. Because of its relevant role in

solving optimization problems in machine

learning and deep learning, it is part of every

state-of-the-art deep learning library (e.g.

lasagne’s, caffe’s, and keras’) [15].

The key idea behind gradient descent is to

minimize an objective function 𝐿(𝜃)

parameterized by a model’s parameters 𝜃 ∈ ℝ𝑑

by performing the iterative update of the

parameters in the opposite direction of the

gradient of the objective function Δ𝜃𝐿(𝜃) with

regard to the parameters. During the gradient

procedure, a learning rate η is used, that

determines step-size or how much to move in

each iteration until an optimal value is reached.

The iteration process is repeated until the

derivative becomes zero, which means we have

reached the minimum value [15]. As described

by [15] there are three distinct variants of

gradient descent known as batch gradient

descent, mini-batch gradient descent, and

stochastic gradient descent, which differ in how

much data is used during the gradient procedure

of the objective function.

Batch gradient descent - also called villa

gradient descent, is a simple variant of gradient

descent that performs gradient procedure of the

cost function w.r.t. to the parameters 𝜂 for the

entire training dataset at once [15]

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃) (7)

One of the key advantages of batch gradient

descent is its ability to guarantee to converge to

the global optimum for the convex function and

to a local optimum for the non-convex one.

The main drawback of batch gradient

descent is the run-time, it can be very slow

because the entire dataset used to perform just

one update, at the same time, is inconvenient for

datasets that are too large to fit in memory.

Stochastic gradient descent - in contrast to

batch gradient descent, it does not use the entire

dataset but rather performs parameter update

only for one training example at a time.

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) (8)

Because the stochastic gradient descent uses

only one training example before updating the

gradients, especially in the case of a large

training set, it can be much faster compared to

batch gradient descent. Due to being much

faster, it can also be used to learn online.

However, there is a drawback in the context of

the parameters, they will “oscillate” toward the

minimum rather than converge smoothly.

Further details on the stochastic gradient

descent can be found in the following section.

Mini-batch gradient descent - this approach

benefits from combining the best of both worlds

and performs an update for every mini-batch of

n training examples:

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) (9)

There are two main advantages to this: first,

it further reduces the variance of the parameter

updates, which can lead to more stable

convergence. Second, it can make use of highly

optimized matrix optimizations typical to state-

of-the-art deep learning libraries. In general,

mini-batch has sizes ranging from 50 up to 256

but this can be larger depending on the

applications. Because of its advantages, mini-

batch gradient descent is a method of choice for

training a neural network and the term SGD

usually is employed also when mini-batches are

used [8, 15].

b. Stochastic Gradient Descent (SGD) [16] -

was proposed to allow online updates for large-

scale datasets, which was considered as the

main disadvantage faced with batch gradient

descent, caused by high computational

complexity in each iteration. SGD is based on

the idea of using only one example randomly

selected to update the gradient per iteration

[16]. Therefore, the cost of the SGD algorithm

is independent of the number of examples used

and can achieve sublinear convergence speed

[17]. In this way, the SGD reduces the update

time especially when deals with large data sets,

and this makes it possible to significantly

accelerates the calculation. In strong convex

problem, SGD can achieve the optimal

convergence speed [18, 19].

c. Momentum [20] - is a method that helps

SGD to increase the rate of convergence in the

relevant direction and reduce the oscillations.

All this was made possible by adding the

momentum term of the update vector of the

previous time step to the current update vector

[15]. On the other hand, ravines are areas in a

slope, where the surface curvature is steeper in

one dimension than another and these are

common around local optima. When oscillating

in these ravines, SGD progress becomes very

slow to obtain the local optimum position. To

handle this slow progress, SGD adds up a

parameter called Momentum. Usually, the good

momentum term is considered 𝛾 = 0.9, which

accelerates the convergence in the relevant

direction.
𝜈𝑡 = 𝛾𝜈𝑡−1 − 𝜂∇𝜃𝐽(𝜃)
𝜃 = 𝜃 − 𝜈𝑡

 (10)

with 𝛾 is denoted momentum term, 𝜈𝑡−1 is

update vector in the previous step, 𝜂∇𝜃𝐽(𝜃) is

update vector in the current step and with

𝜃 = 𝜃 − 𝜈𝑡 is denoted update of the parameter.

In other words, the idea of using momentum

is similar to the ball effect down a hill. It starts

with an initial momentum value and

accumulates momentum as it goes down a hill,

it speeds up on the way (until finally terminal

velocity is reached, i.e. 𝛾 < 1). In the same

way, the momentum term increases when

moving in the direction of the gradient and

decreases updates for dimensions whose

gradient is in different directions. As a result,

the convergence speeds up and oscillation has

been reduced [15].

d. Nesterov Accelerated Gradient (NAG)

[21] - is intended to further improve the

traditional momentum method [22]. It is based

on the idea of using the momentum term 𝛾𝜈𝑡−1

to move the parameters 𝜃. By using the term

𝜃 − 𝛾𝜈𝑡−1 makes enable estimation of the next

position of the parameters (the gradient is

missing for the full update), in other words, a

rough idea of where parameters are going to be.

As result, is possible to effectively look ahead

by calculating the gradient with regard to the

approximate future position of the parameters

instead of the current position.

e. AdaGrad [23] - is another gradient-based

optimization algorithm. It is based on the idea

of adapting the learning rate dynamically based

on the historical gradient in some previous

iteration. In other words, adopting smaller

learning rates for features occurring often, and

higher learning rate for features not occurring

often. By doing this, it is well-suited for dealing

with sparse data. Here are the updating

formulae as presented by [15]

𝑔𝑡,𝑖 = ∇𝜃𝐽(𝜃𝑡,𝑖)

Then, the SGD update performed for every

parameter 𝜃𝑖 at each step 𝑡 takes the form:

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂 ⋅ 𝑔𝑡,𝑖

As given in the equation above, Adagrad adopts

the general learning rate dynamically 𝜂 for

every parameter 𝜃𝑖 at each step 𝑡 based on the

previous gradients computed for 𝜃𝑖.

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+𝜖
⋅ 𝑔𝑡,𝑖 (12)

where 𝐺𝑡 ∈ ℝ𝑑𝑥𝑑 here is a diagonal matrix

where each diagonal element 𝑖, 𝑖 is the sum of

the squares of the gradients w.r.t. 𝜃𝑖 up to time

step 𝑡, 𝜖 is a smoothing term that avoids

division by zero, 𝑔𝑡,𝑖 is the gradient of the loss

function with respect to the parameter 𝜃𝑖 at time

step 𝑡 [15].

As mentioned above, the Adagrad is

characterized by the ability to adapt the learning

rate dynamically based on historical data,

which makes it convenient to handle sparse data

[24].

f. AdaDelta [25] - is an extension of Adagrad

that is aimed to reduce its weaknesses with

regard to the learning rate. In contrast to the

previous method, which accumulates all past

gradients, the new method restricts the

accumulating window of the past gradients to

some fixed size 𝑤.

The running average 𝐸[𝑔2]𝑡 at time 𝑡 then

depends only on the previous average and the

current gradient [15]:

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 − (1 − 𝛾)𝑔2
𝑡 (13)

where 𝐸[𝑔2]𝑡 is the running average at time

step 𝑡 that depends only on the previous average

and the current gradient. The parameter is

updated as:
Δ𝜃𝑡 = −𝜂 ⋅ 𝑔𝑡,𝑖

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡
 (14)

In Adadelta there is no need to set the

learning rate because it is defined by default and

has been eliminated from the update rule [15].

g. RMSProp [26] - is an adaptive learning

rate method proposed independently at about

the same time as AdaDelta. Both RMSProp and

AdaDelta aimed to tackle the radically

diminishing learning rates issue of AdaGrad.

h. Adaptive moment estimation (Adam) [8] -

is one of the most-popular first-order gradient-

based optimization algorithms, which combines

the advantages of both AdaGrad and RMSProp.

Adam is based on adaptive estimates of lower-

order moments. Some of the main benefits of

this method are as follows: easy to implement,

computationally efficient, requires less memory

space, invariant to diagonal rescale of the

gradients, and appropriate for problems with

large data and/or a large number of parameters

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡

�̂�𝑡 =
𝜈𝑡

1−𝛽2
𝑡

 (15)

Here 𝑚𝑡 and 𝑣𝑡 are denoted the estimates of the

first and the second moment of the gradients

respectively.

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+𝜖
⋅ 𝑔𝑡,𝑖 (16)

As proposed by authors in [15], good default

values for the tested machine learning problem

are 0.001 for stepsize, 0.9 for 𝛽1, 0.999 for 𝛽2,

and 10−8 for 𝜖.

i. Nesterov-accelerated Adaptive Moment

Estimation (Nadam) [27] - was proposed to

further improve Adam, by combining the

benefits of both Adam and NAG. Adam is

characterized by two main components - a

momentum and an adaptive learning rate.

Although, regular momentum can be shown

conceptually and empirically to be inferior to

NAG algorithm.

 (j) Other recent adaptive optimizers -

several new variants of adaptive optimizers

have been proposed more recently. These

include AdamW [28], SC-Adagrad and SC-

RMSProp [29], Yogi [30], and Adafactor [31].

k. Variance Reduction Methods - over the

years several variance reduction techniques

have been proposed. Some of the most well-

known including stochastic average gradient

(SAG) [32], stochastic dual coordinate descent

(SDCA) [33], stochastic variance reduction

gradient (SVRG) [17], incremental surrogate

optimization (MISO) [34] and SAGA [35].

SAG - is a variance reduction method that

has been proposed with the aim to improve the

convergence speed. SAG iterations have a

linear convergence rate that makes them faster

than SGD, and has favorable advantages

compared to other stochastic gradient

algorithms, especially when the loss function is

smooth and convex [32, 36].

SVRG - SGD is characterized by slow

convergence due to the inherent variance. The

SVRG method was proposed with the idea to

overcome this drawback. It has the same fast

convergence rate with SAG and SDCA for

smooth and strongly convex functions, but

unlike SAG and SDCA it does not require the

storage of gradients. As result, SVRG has very

good performance and easily applicable to

complex models such as non-convex neural

networks [17, 37, 38].

l. Alternating Direction Method of

Multipliers (ADMM) [39, 40] - is a very simple

and well-known optimization method that is

suitable for distributed convex optimization and

in particular to problems that are present in

applied statistics and machine learning [41, 42].

It has the root in the augmented Lagrangian

method (aka. the method of multipliers).

As presented by authors in [42], thanks to its

ability to deal with objective functions

separately and synchronously, ADMM turned

out to be a method of choice in the field of

large-scale data-distributed machine learning

and big-data related optimization. It is

characterized by its capability to efficiently

analyze, parallelize, and solve large

optimization problems in a wide range of

applications [43].

Many different variants of ADMM have

been proposed including stochastic alternating

direction method of multipliers (S-ADMM)

algorithm [41, 44], which incrementally

approximates the full gradient in the linearized

ADMM formulation, zeroth-order online

alternating direction method of multipliers

(ZOO-ADMM), which enjoys advantages of

both worlds, gradient-free operation and

ADMM to accommodate complex structured

regularizers [45].

m. Frank-Wolfe Method - also known as

conditional gradient algorithm for smooth

optimization, was originally proposed by Wolfe

in 1956. It is one of the simplest and earliest

known iterative algorithms used for solving

quadratic programming problems with linear

constraints [46]. The idea underlying the Frank-

Wolfe method is to approximate the convex

objective function with a linear function. For

further details and extensions, we refer to [46,

47, 48].

3.2. High-order methods

The use of curvature information in addition

to the gradient offers a convenient approach

where an objective function exhibits a highly

nonlinear and is ill-conditioned. For example,

second-order optimization methods have been

proposed with this aim in mind. When these

methods are used in the context of machine

learning, they work effectively by providing

faster convergence rates, stability to parameter

tuning, and robustness to problem conditioning.

However, the benefits derived from the use of

curvature information in the form of a dense

Hessian matrix come at the cost of increased

per-iteration complexity [3, 49].

In the last decades, with the continuous

improvement of high-order optimization

methods, there has been increased interest in the

exploration of large-scale data by using

stochastic techniques [50, 51, 52]. Following,

we provide a brief introduction on some of the

most prominent second-based methods

including the conjugate gradient method,

classical quasi-Newton method, the Hessian-

Free method, and natural gradient.

a. Conjugate gradient (CG) - can be seen as

being between the method of steepest descent

and Newton’s method. It is one of the most

effective iterative methods used for solving

sparse systems of linear equations [53], but can

be easily applied to solve nonlinear

optimization problems [54]. In general, the

first-order methods are simple but characterized

by a slow convergence rate, and the second-

order methods are fast but characterized by high

computational cost. The idea underlying CG is

to combine both methods and develop

something in between, whose goal is to

accelerate the convergence rate like high-order

and at the same time using the advantages of the

first-order information [3].

b. Quasi-Newton Methods - methods of

Newton or quasi-Newton’s type are typically

well-known to be the most convenient choice

for solving nonlinear minimization problems

when the objective function is twice

continuously differentiable [55]. As we

mentioned previously, gradient descent

employs first-order information, but it suffers

from a slow convergence rate. To overcome this

limitation, several more sophisticated second-

order methods have been introduced, e.g.,

Newton’s method [56]. Newton’s method is

based on the idea of using both the first-order

derivative (gradient) and the second-order

derivative (Hessian matrix) to approximate the

objective function with a quadratic function.

This process repeats until the updated variable

converges.

During the last decades, several methods

based on Newton’s has been developed and

some of the most well-known include BFGS

[57] and L-BFGS [58].

c. Stochastic Quasi-Newton Method - both

stochastic Newton (SN) and stochastic quasi-

Newton (SQN) methods have been proposed as

a solution to overcome some issues present in

first-order optimization methods. The central

idea of these methods is to combine the speed

of Newton’s method and the scalability of first-

order methods by integrating curvature

information. The resulting class of these

combined methods is enjoying increasing

popularity as a robust method for several large-

scale machine learning tasks [59]. Many

different variants and extensions have been

proposed to further improve the efficiency of

SN and SQN methods including online-

LBFGS, which is variants of BFGS proposed

by [50], block BFGS [60] and its stochastic

variant [61], two sampled QN methods such as

sampled LBFGS and sampled LSR1, which are

proposed by [59].

d. Hessian-Free Method - the working

principle of the Hessian-free (HF) method is

quite similar to Newton’s method, which

incorporates second-order gradient

information. In contrast to Newton’s method

discussed above, for HF method as the name

implies does not make any approximation to the

Hessian H, but rather the product Hd is

accurately computed using the finite

differences method [62].

Sub-sampled Hessian-Free Method - HF

optimization is also known as truncated-

Newton, is a popular method, and has also been

subject to a number of studies in the

optimization research community for decades,

but never seriously applied in machine learning

because of its limitations. In order to overpass

these limitations, a sub-sampled technique has

been introduced in HF, resulting in an improved

HF method [62, 63].

e. Natural Gradient - the natural gradient

descent approach [64] is an optimization

method typically inspired from the perspective

of information geometry, and is often used as

an alternative to conventional stochastic

gradient descent. Over the last decades, has

received increased interest, motivating many

new and related approaches.

In some applications, a smaller number of

iteration is required in the natural gradient

compared to gradient descent, which makes it

an attractive alternative method. However,

computing the natural gradient has been shown

to be impractical for models with very many

parameters such as large neural networks, due

to the extreme size of the Fisher matrix [65].

3.3. Derivative-free methods

For some optimization problems arising

from practical applications, the derivative of

objective and constraint functions may not exist

or is difficult to calculate. This is where the use

of derivative-free, or zeroth-order, optimization

comes into play. Derivative-free optimization

(DFO) is a discipline in mathematical

optimization that aimed to find the optimal

solution without requiring the availability of

derivatives [66, 67].

In general, there are two major types of ideas

with regard to derivative-free optimization. To

the first type belong heuristic algorithms and

the second type is made up of the coordinate

descent method.

a. Heuristic algorithms - heuristic and

metaheuristic techniques have been

successfully used to solve several optimization

problems in the different research areas of

science and engineering. Some of the most

well-known examples of these techniques

include optimization methods include genetic

algorithms, simulated annealing, differential

evolution, harmony search, ant colony

algorithms, and particle swarm optimization.

Although, the implementation strategy of

heuristic or metaheuristic algorithm in large-

scale machine learning problems is still rarely

investigated [67]. Therefore, these techniques

are not thoroughly discussed in this paper but

for further details we refer to [68].

b. Coordinate descent method (CD) - is a

well-known typical derivative-free [69]

optimization technique, which is based on the

idea of updating one variable at a time by

minimizing a single-variable subproblem. It is

very simple and easy to be implemented and

can be very efficient and scalable when applied

to large-scale machine learning problems.

4. Conclusion

Over the last decades, there has been a huge

interest in optimization across multiple fields in

science and engineering including machine

learning. However, there also exist many

challenging problems in machine learning

because of the increasing scale and complexity

of machine learning and computational

platforms.

Optimization is an efficient and robust tool

to tackle some of these challenges, and since its

beginning has played a vital role in statistical

and machine learning. In today’s data-intensive

technology era, machine learning models in

general, and deep neural networks in particular

rely more and more on optimization methods.

More recently a lot of work has been done

by both the optimization and machine learning

community by achieving state-of-the-art results

on this matter. Generally, optimization has

proved to be a core tool in machine learning and

at the same time, machine learning can be

considered as an important source of inspiration

for new optimization ideas.

We hope that the issues discussed in this

paper will push forward the discussion in the

area of optimization and machine learning, on

the same time it may serve as complementary

material for other researchers interested in both

these topics.

5. References

[1] G. Lan, “Lectures on optimization

methods for machine learning,” H. Milton

Stewart School of Industrial and Systems

Engineering, Georgia Institute of

Technology, Atlanta, GA, 2019.

[2] S. Sra, S. Nowozin, and S. J. Wright,

Optimization for machine learning. Mit

Press, 2012.

[3] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A

survey of optimization methods from a

machine learning perspective,” IEEE

Transactions on Cybernetics, vol. 50, no.

8, pp. 3668–3681, 2020.

[4] P. Domingos, “A few useful things to

know about machine learning,”

Communications of the ACM, vol. 55, no.

10, pp. 78–87, 2012.

[5] A. L. Samuel, “Some studies in machine

learning using the game of checkers,” IBM

Journal of research and development, vol.

3, no. 3, pp. 210–229, 1959.

[6] I. Kononenko and M. Kukar, Machine

learning and data mining. Horwood

Publishing, 2007.

[7] E. Alpaydin, Introduction to machine

learning. MIT press, 2010.

[8] D. P. Kingma and J. Ba, “Adam: A method

for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[9] A. Haj-Ali, N. K. Ahmed, T. Willke, J.

Gonzalez, K. Asanovic, and I. Stoica, “A

view on deep reinforcement learning in

system optimization,” arXiv preprint

arXiv:1908.01275, 2019.

[10] C. Gambella, B. Ghaddar, and J. Naoum-

Sawaya, “Optimization problems for

machine learning: a survey,” European

Journal of Operational Research, 2020.

[11] S. Bubeck, “Theory of convex

optimization for machine learning,” arXiv

preprint arXiv:1405.4980, vol. 15, 2014.

[12] E. K. Chong and S. H. Zak, An

introduction to optimization. John Wiley

& Sons, 2004.

[13] S. Boyd, S. P. Boyd, and L. Vandenberghe,

Convex optimization. Cambridge

university press, 2004.

[14] K. P. Bennett and E. Parrado-Hernandez,

“The interplay of optimization and

machine learning research,” Journal of

Machine Learning Research, vol. 7, no.

Jul, pp. 1265–1281, 2006.

[15] S. Ruder, “An overview of gradient

descent optimization algorithms,” 2016.

[16] H. Robbins and S. Monro, “A stochastic

approximation method,” The annals of

mathematical statistics, pp.400–407,

1951.

[17] R. Johnson and T. Zhang, “Accelerating

stochastic gradient descent using

predictive variance reduction,” in

Advances in neural information

processing systems, 2013, pp. 315–323.

[18] A. Nemirovski, A. Juditsky, G. Lan, and

A. Shapiro, “Robust stochastic

approximation approach to stochastic

programming,” SIAM Journal on

optimization, vol. 19, no. 4, pp. 1574–

1609, 2009.

[19] A. Agarwal, M. J. Wainwright, P. L.

Bartlett, and P. K. Ravikumar,

“Information-theoretic lower bounds on

the oracle complexity of convex

optimization,” in Advances in Neural

Information Processing Systems, 2009, pp.

1–9.

[20] N. Qian, “On the momentum term in

gradient descent learning algorithms,”

Neural networks, vol. 12, no. 1, pp. 145–

151, 1999.

[21] Y. Nesterov, “A method for unconstrained

convex minimization problem with the

rate of convergence...),” 1983.

[22] I. Sutskever, J. Martens, G. Dahl, and G.

Hinton, “On the importance of

initialization and momentum in deep

learning,” in International conference on

machine learning, 2013, pp. 1139–1147.

[23] J. Duchi, E. Hazan, and Y. Singer,

“Adaptive subgradient methods for online

learning and stochastic optimization.”

Journal of machine learning research, vol.

12, no. 7, 2011.

[24] R. Ward, X. Wu, and L. Bottou, “Adagrad

stepsizes: Sharp convergence over

nonconvex landscapes,” in International

Conference on Machine Learning, 2019,

pp. 6677–6686.

[25] M. D. Zeiler, “Adadelta: an adaptive

learning rate method,” arXiv preprint

arXiv:1212.5701, 2012.

[26] T. Tieleman and G. Hinton, “Lecture 6.5-

rmsprop, coursera: Neural networks for

machine learning,” University of Toronto,

Technical Report, 2012.

[27] T. Dozat, “Incorporating nesterov

momentum into adam,” 2016.

[28] I. Loshchilov and F. Hutter, “Decoupled

weight decay regularization,” arXiv

preprint arXiv:1711.05101, 2017.

[29] M. C. Mukkamala and M. Hein, “Variants

of rmsprop and adagrad with logarithmic

regret bounds,” arXiv preprint

arXiv:1706.05507, 2017.

[30] M. Zaheer, S. Reddi, D. Sachan, S. Kale,

and S. Kumar, “Adaptive methods for

nonconvex optimization,” in Advances in

neural information processing systems,

2018, pp. 9793–9803.

[31] N. Shazeer and M. Stern, “Adafactor:

Adaptive learning rates with sublinear

memory cost,” arXiv preprint

arXiv:1804.04235, 2018.

[32] N. L. Roux, M. Schmidt, and F. R. Bach,

“A stochastic gradient method with an

exponential convergence rate for finite

training sets,” in Advances in neural

information processing systems, 2012, pp.

2663–2671.

[33] S. Shalev-Shwartz and T. Zhang,

“Stochastic dual coordinate ascent

methods for regularized loss

minimization,” Journal of Machine

Learning Research, vol. 14, no. Feb, pp.

567–599, 2013.

[34] J. Mairal, “Optimization with first-order

surrogate functions,” in International

Conference on Machine Learning, 2013,

pp. 783–791.

[35] A. Defazio, F. Bach, and S. Lacoste-Julien,

“Saga: A fast incremental gradient method

with support for non-strongly convex

composite objectives,” in Advances in

neural information processing systems,

2014, pp. 1646–1654.

[36] M. Schmidt, N. Le Roux, and F. Bach,

“Minimizing finite sums with the

stochastic average gradient,”

Mathematical Programming, vol. 162, no.

1-2, pp. 83–112, 2017.

[37] Z. Allen-Zhu and E. Hazan, “Variance

reduction for faster non-convex

optimization,” in International conference

on machine learning, 2016, pp. 699–707.

[38] S. J. Reddi, A. Hefny, S. Sra, B. Poczos,

and A. Smola, “Stochastic variance

reduction for nonconvex optimization,” in

International conference on machine

learning, 2016, pp. 314–323.

[39] R. Glowinski and A. Marroco, “Sur

l’approximation, par elements finis

d’ordre un, et la resolution, par

penalisation-dualite d’une classe de

problemes de dirichlet non lineaires,”

ESAIM: Mathematical Modelling and

Numerical Analysis - Modelisation

Mathematique et Analyse Numerique, vol.

9, no. R2, pp. 41–76, 1975.

[40] D. Gabay and B. Mercier, “A dual

algorithm for the solution of nonlinear

variational problems via finite element

approximation,” Computers &

mathematics with applications, vol. 2, no.

1, pp. 17–40, 1976.

[41] H. Ouyang, N. He, L. Tran, and A. Gray,

“Stochastic alternating direction method

of multipliers,” in International

Conference on Machine Learning, 2013.

[42] S. Boyd, N. Parikh, and E. Chu,

Distributed optimization and statistical

learning via the alternating direction

method of multipliers, 2011.

[43] D. Hallac, C. Wong, S. Diamond, A.

Sharang, R. Sosic, S. Boyd, and J.

Leskovec, “Snapvx: A networkbased

convex optimization solver,” The Journal

of Machine Learning Research, vol. 18,

no. 1, pp. 110–114, 2017.

[44] W. Zhong and J. Kwok, “Fast stochastic

alternating direction method of

multipliers,” in International Conference

on Machine Learning, 2014, pp. 46–54.

[45] S. Liu, J. Chen, P.-Y. Chen, and A. Hero,

“Zeroth-order online alternating direction

method of multipliers: Convergence

analysis and applications,” in

International Conference on Artificial

Intelligence and Statistics. PMLR, 2018,

pp. 288–297.

[46] M. Frank, P. Wolfe et al., “An algorithm

for quadratic programming,” Naval

research logistics quarterly, vol. 3, no. 1-

2, pp. 95–110, 1956.

[47] K. L. Clarkson, “Coresets, sparse greedy

approximation, and the frank-wolfe

algorithm,” ACM Transactions on

Algorithms (TALG), vol. 6, no. 4, pp. 1–30,

2010.

[48] M. Patriksson, The traffic assignment

problem: models and methods. Courier

Dover Publications, 2015.

[49] S. B. Kylasa, “Higher order optimization

techniques for machine learning,” Ph.D.

dissertation, Purdue University Graduate

School, 2019.

[50] N. N. Schraudolph, J. Yu, and S. Gunter,

“A stochastic quasi-newton method for

online convex optimization,” in Artificial

intelligence and statistics, 2007, 436–443.

[51] R. H. Byrd, S. L. Hansen, J. Nocedal, and

Y. Singer, “A stochastic quasi-newton

method for large-scale optimization,”

SIAM Journal on Optimization, vol. 26,

no. 2, pp. 1008–1031, 2016.

[52] P. Moritz, R. Nishihara, and M. Jordan, “A

linearly-convergent stochastic l-bfgs

algorithm,” in Artificial Intelligence and

Statistics, 2016, pp. 249–258.

[53] J. R. Shewchuk et al., “An introduction to

the conjugate gradient method without the

agonizing pain,” 1994.

[54] J. Nocedal and S. Wright, Numerical

optimization. Springer Science & Business

Media, 2006.

[55] D. Steck and C. Kanzow, “Regularization

of limited memory quasi-newton methods

for large-scale nonconvex minimization,”

arXiv preprint arXiv:1911.04584, 2019.

[56] M. Avriel, Nonlinear programming:

analysis and methods. Courier

Corporation, 2003.

[57] J. Nocedal, “Updating quasi-newton

matrices with limited storage,”

Mathematics of computation, vol. 35, no.

151, pp. 773–782, 1980.

[58] D. C. Liu and J. Nocedal, “On the limited

memory bfgs method for large scale

optimization,” Mathematical programing,

vol. 45, no. 1-3, pp. 503-528, 1989.

[59] A. S. Berahas, M. Jahani, and M. Takac,

“Quasi-newton methods for deep learning:

Forget the past, just sample,” arXiv

preprint arXiv:1901.09997, 2019.

[60] W. Gao and D. Goldfarb, “Block bfgs

methods,” SIAM Journal on Optimization,

vol. 28, no. 2, pp. 1205–1231, 2018.

[61] R. Gower, D. Goldfarb, and P. Richt´arik,

“Stochastic block bfgs: Squeezing more

curvature out of data,” in International

Conference on Machine Learning, 2016,

pp. 1869–1878.

[62] J. Martens, “Deep learning via hessian-

free optimization.” in ICML, vol. 27, 2010,

pp. 735–742.

[63] R. H. Byrd, G. M. Chin, W. Neveitt, and J.

Nocedal, “On the use of stochastic hessian

information in optimization methods for

machine learning,” SIAM Journal on

Optimization, vol. 21, no. 3, pp. 977–995,

2011.

[64] S.-I. Amari, “Natural gradient works

efficiently in learning,” Neural

computation, vol. 10, no. 2, 1998.

[65] J. Martens, “New insights and perspectives

on the natural gradient method,” arXiv

preprint arXiv:1412.1193, 2014.

[66] J. Larson, M. Menickelly, and S. M. Wild,

“Derivative-free optimization methods,”

arXiv preprint arXiv:1904.11585, 2019.

[67] A. S. Berahas, R. H. Byrd, and J. Nocedal,

“Derivative-free optimization of noisy

functions via quasi-newton methods,”

SIAM Journal on Optimization, vol. 29,

no. 2, pp. 965–993, 2019.

[68] M. Kastrati, and M. Biba, “Stochastic local

search: a state-of-the-art review”.

International Journal of Electrical and

Computer Engineering, 11(1), 716, 2021.

[69] D. P. Bertsekas, “Nonlinear

programming,” Journal of the Operational

Research Society, vol. 48, no. 3, pp. 334–

334, 1997.

