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Abstract  
The main objective of this paper is to provide a state-of-the-art survey of advanced optimization 

methods used in machine learning. It starts with a short introduction to machine learning 

followed by the formulation of optimization problems in three main approaches to machine 

learning. Then optimization is presented along with a review of the most recent state-of-the-art 

methods and algorithms that are being extensively used in machine learning in general and deep 

neural networks in particular. The paper concludes with some general recommendations for 

future work in the area. 
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1. Introduction 

In recent years, machine learning has made 

significant progress and received enormous 

attention in the research community and 

industry. Machine learning is applied 

successfully to a wide range of problems 

ranging from image recognition, speech 

recognition, text classification, online 

advertising, web search, recommendation 

systems, etc. However, there also exist many 

challenging problems in machine learning 

including minimization of loss (error) function, 

hyperparameters tuning, feature selection, 

dimensionality reduction, finding the optimum 

combination from a pool of base classifiers, etc. 

Optimization is an efficient and robust tool to 

tackle some of these challenges, and since its 

beginning has played a vital role in statistical 

and machine learning. In today’s data-intensive 

technology era, machine learning models in 

general, and deep neural networks in particular, 

rely more and more on optimization methods 

[1]. 
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The relationship between optimization 

methods and machine learning is one of the 

most relevant topics in modern computational 

science.  

More recently a lot of work has been done 

by both the optimization and machine learning 

community by achieving state-of-the-art results 

on this matter. Generally, it is considered a 

relationship of great intimacy, optimization has 

proved to be a core tool in machine learning and 

at the same time, machine learning can be 

considered as an important source of inspiration 

for new optimization ideas [2]. 

From point of view of gradient information 

in optimization, popular optimization can be 

grouped into three major classes: the first-order 

optimization methods, which are mainly based 

on stochastic gradient methods, the second 

class comprises of high-order optimization 

methods, here Newton’s method represents a 

typical example of this class and the third class 

comprises of heuristic derivative-free 

optimization methods, in which the coordinate 

descent method is a representative [3].  
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The interplay of optimization and machine 

learning has also attracted the attention of 

various researchers and practitioners.  

This paper serves as a complementary one to 

those previously published, at the same time 

provides a state-of-the-art review on advanced 

optimization methods used in machine 

learning. First, it gives a short introduction to 

machine learning followed by the formulation 

of optimization problems in three main types of 

machine learning approaches. Then, an 

overview of state-of-the-art advanced 

optimization methods used in machine learning 

in general and deep neural networks, in 

particular, has been presented. Finally, 

conclusions are drawn in the last section. 

2. Background 

The following is given a short introduction 

to machine learning models, followed by 

optimization methods and algorithms to 

facilitate understanding of these two fields and 

the interaction among them. 

2.1. Machine learning 

Machine learning is a subfield of artificial 

intelligence that deals with building a computer 

system that learns from data without being 

explicitly programmed [4, 5].  

The authors in [6] start their definition for 

machine learning as data modeling and go 

further by treating machine learning as an 

optimization problem.  In [7], author begins his 

formulation with “machine learning is 

programming computers to optimize a 

performance criterion using example data or 

past experience”. These authors and others in 

their work treat machine learning as an 

optimization problem, which is our main goal 

of this section. Furthermore, almost all machine 

learning problems can be defined as an 

optimization problem [8]. This is done by 

having a solution (model) space defined, and an 

optimality criterion (objective function) 

determined. By taking into consideration that 

the solution (model) space can be very large or 

even infinite, usually is searched for the best 

suboptimal solutions [6]. By having the 

solution (model) space and objective function 

defined, then, any appropriate optimization 

method can be used to solve the machine 

learning problem as an optimization one.  

As described in [6, 7] there are three main 

types of machine learning approaches: 

supervised learning, unsupervised learning, and 

reinforcement learning [9]. 

2.1.1. Optimization problems in 
supervised learning 

Optimization problems in supervised 

learning aimed to find a function that best 

minimizes the loss function L on the training 

sample N, with respect to some parameters 𝜃, 

when both input 𝑥𝑖 and output 𝑦𝑖 are given 

[3, 10, 11] 

min
𝜃

1

𝑁
∑𝑁

𝑖=1 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) (1) 

Support Vector Machine - here loss function 

is a typical form of structured risk 

minimization. In this case, usually, the 

regularization items are added into the 

objective function to alleviate overfitting [3] 

min
𝜃

1

𝑁
∑𝑁

𝑖=1 𝐿(𝑦𝑖, 𝑓(𝑥𝑖, 𝜃)) + 𝜆|𝜃 ∥2
2 (2) 

here 𝜆 is a fixed parameter that usually is 

determined through cross-validation. 

2.1.2. Optimization problems in 
unsupervised learning 

The main task here is to find a function that 

best minimizes the loss function on training, 

when only input is given without output 

(target), for a set of defined parameters. 

For the k-means clustering algorithm, the 

optimization problem can be formulated as 

minimizing the following loss function [3] 

min
𝑆

∑𝐾
𝑘=1 ∑𝑥∈𝐒𝐤

∥ 𝑥 − 𝜇𝑘 ∥2
2
    (3) 

with 𝐾 being the number of clusters, 𝑥 feature 

vector of samples, 𝜇𝑘 represents the center of 

cluster 𝑘, and 𝑆𝑘 that represents the sample set 

of cluster 𝑘. The main goal of the objective 

function considers minimizing the variance 

through all clusters.  

In the case of principal component 

analysis (PCA) the goal of the objective 

function is to minimize the reconstruction 

errors and has the form as given below:  

min ∑𝑁
𝑖=1 ∥ 𝑥𝑖 − 𝑥𝑖 ∥2

2         (4) 

𝑤ℎ𝑒𝑟𝑒  𝑥𝑖 = ∑𝐷′
𝑗=1 𝑧𝑗

𝑖𝑒𝑗       𝐷 >> 𝐷′,  (4.1) 

Here 𝑁 denotes the number of samples, 𝑥𝑖 

denotes the 𝐷-dimensional vector, 𝑥𝑖 denotes 



the reconstruction of 𝑥𝑖. In the second part of 

the equation above, 𝑧𝑖 = 𝑧1
𝑖 , . . . , 𝑧𝐷′

𝑖  denotes the 

projection of 𝑥𝑖 in 𝐷′-dimensional coordinates, 

and 𝑒𝑗 denotes the standard orthogonal basis 

under 𝐷′. 

In probabilistic models, the optimization 

goal is to find an optimal probability density 

function of 𝑝(𝑥), which maximizes the 

logarithmic likelihood function (MLE) [3] of 

the training samples,  

max ∑𝑁
𝑖=1 ln𝑝(𝑥𝑖, 𝜃) (5) 

2.1.3. Optimization problems in RL 

Here the main task is to maximize the 

expected reward after executing a series of 

actions which are defined by a policy mapping 

function [3, 9]. 

max
𝜋

𝑉𝜋(𝑠)  (6)

  𝑉𝜋(𝑠) = 𝐸[∑∞
𝑘=0 𝛾𝑘𝑟𝑡+𝑘|𝑆𝑡 = 𝑠] (6.1) 

2.2. Optimization 

Optimization is a mathematical discipline that 

is used to solve any problem involving decision 

making, whether in engineering or economics. 

The basic idea used in optimization is choosing 

the best solution among various available 

alternatives, in the sense of the given objective 

function [12]. According to [13] an 

optimization problem can be defined in this 

form: 

minimize
𝑥

𝑓0(𝑥)

subj. to 𝑓𝑖(𝑥) ≤ 𝑏𝑖  𝑖 = 1, … , 𝑚,

where vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) represents the 

optimization variable of the problem and 

𝑓0: 𝐑𝑛 → 𝐑 is the objective function, 

𝑓𝑖: 𝐑𝑛 →  𝐑, 𝑖 = 1, . . . , 𝑚 are denoted the 

(inequality) constraint functions and with 

𝑏1, . . . , 𝑏𝑚 are denoted limits for the constraints. 

Depending on the particular forms of the 

objective and constraint functions there is a 

taxonomy of optimization problems including 

linear, quadratic, semi-definite, semi-infinite, 

integer, nonlinear, goal, geometric, fractional, 

etc. [13, 14].  

In this paper, we have tried to reflect mainly 

on the advanced optimization methods that are 

used in machine learning in general and deep 

neural networks in particular. 

3. Optimization methods in 
machine learning 

The following is given an overview of the 

state-of-the-art optimization methods applied in 

machine learning models. 

3.1. First-order methods 

First-order optimization methods are also 

known as gradient-based optimization and as 

the name implies, these methods are mainly 

based on first-order derivatives or gradient 

descent. This section dealt with state-of-the-art 

first-order optimization methods in machine 

learning that are currently in use apart. 

a. Gradient Descent - is one of the oldest 

and most popular algorithms used to perform 

optimization. Because of its relevant role in 

solving optimization problems in machine 

learning and deep learning, it is part of every 

state-of-the-art deep learning library (e.g. 

lasagne’s, caffe’s, and keras’) [15].  

The key idea behind gradient descent is to 

minimize an objective function 𝐿(𝜃) 

parameterized by a model’s parameters 𝜃 ∈ ℝ𝑑 

by performing the iterative update of the 

parameters in the opposite direction of the 

gradient of the objective function  Δ𝜃𝐿(𝜃)  with 

regard to the parameters. During the gradient 

procedure, a learning rate η is used, that 

determines step-size or how much to move in 

each iteration until an optimal value is reached. 

The iteration process is repeated until the 

derivative becomes zero, which means we have 

reached the minimum value [15]. As described 

by [15] there are three distinct variants of 

gradient descent known as batch gradient 

descent, mini-batch gradient descent, and 

stochastic gradient descent, which differ in how 

much data is used during the gradient procedure 

of the objective function.  

Batch gradient descent - also called villa 

gradient descent, is a simple variant of gradient 

descent that performs gradient procedure of the 

cost function w.r.t. to the parameters 𝜂 for the 

entire training dataset at once [15] 

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃)       (7) 

One of the key advantages of batch gradient 

descent is its ability to guarantee to converge to 

the global optimum for the convex function and 

to a local optimum for the non-convex one. 



The main drawback of batch gradient 

descent is the run-time, it can be very slow 

because the entire dataset used to perform just 

one update, at the same time, is inconvenient for 

datasets that are too large to fit in memory. 

Stochastic gradient descent - in contrast to 

batch gradient descent, it does not use the entire 

dataset but rather performs parameter update 

only for one training example at a time. 

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃; 𝑥(𝑖); 𝑦(𝑖)) (8) 

Because the stochastic gradient descent uses 

only one training example before updating the 

gradients, especially in the case of a large 

training set, it can be much faster compared to 

batch gradient descent. Due to being much 

faster, it can also be used to learn online. 

However, there is a drawback in the context of 

the parameters, they will “oscillate” toward the 

minimum rather than converge smoothly. 

Further details on the stochastic gradient 

descent can be found in the following section. 

Mini-batch gradient descent - this approach 

benefits from combining the best of both worlds 

and performs an update for every mini-batch of 

n training examples: 

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) (9) 

There are two main advantages to this: first, 

it further reduces the variance of the parameter 

updates, which can lead to more stable 

convergence. Second, it can make use of highly 

optimized matrix optimizations typical to state-

of-the-art deep learning libraries. In general, 

mini-batch has sizes ranging from 50 up to 256 

but this can be larger depending on the 

applications. Because of its advantages, mini-

batch gradient descent is a method of choice for 

training a neural network and the term SGD 

usually is employed also when mini-batches are 

used [8, 15]. 

b. Stochastic Gradient Descent (SGD) [16] - 

was proposed to allow online updates for large-

scale datasets, which was considered as the 

main disadvantage faced with batch gradient 

descent, caused by high computational 

complexity in each iteration. SGD is based on 

the idea of using only one example randomly 

selected to update the gradient per iteration 

[16]. Therefore, the cost of the SGD algorithm 

is independent of the number of examples used 

and can achieve sublinear convergence speed 

[17]. In this way, the SGD reduces the update 

time especially when deals with large data sets, 

and this makes it possible to significantly 

accelerates the calculation. In strong convex 

problem, SGD can achieve the optimal 

convergence speed [18, 19]. 

c. Momentum [20] - is a method that helps 

SGD to increase the rate of convergence in the 

relevant direction and reduce the oscillations. 

All this was made possible by adding the 

momentum term of the update vector of the 

previous time step to the current update vector 

[15]. On the other hand, ravines are areas in a 

slope, where the surface curvature is steeper in 

one dimension than another and these are 

common around local optima. When oscillating 

in these ravines, SGD progress becomes very 

slow to obtain the local optimum position. To 

handle this slow progress, SGD adds up a 

parameter called Momentum. Usually, the good 

momentum term is considered 𝛾 = 0.9, which 

accelerates the convergence in the relevant 

direction. 
𝜈𝑡 = 𝛾𝜈𝑡−1 − 𝜂∇𝜃𝐽(𝜃)
𝜃 = 𝜃 − 𝜈𝑡

 (10) 

with 𝛾 is denoted momentum term, 𝜈𝑡−1 is 

update vector in the previous step, 𝜂∇𝜃𝐽(𝜃) is 

update vector in the current step and with 

𝜃 =  𝜃 − 𝜈𝑡 is denoted update of the parameter. 

In other words, the idea of using momentum 

is similar to the ball effect down a hill. It starts 

with an initial momentum value and 

accumulates momentum as it goes down a hill, 

it speeds up on the way (until finally terminal 

velocity is reached, i.e. 𝛾 < 1). In the same 

way, the momentum term increases when 

moving in the direction of the gradient and 

decreases updates for dimensions whose 

gradient is in different directions. As a result, 

the convergence speeds up and oscillation has 

been reduced [15]. 

d. Nesterov Accelerated Gradient (NAG) 

[21] - is intended to further improve the 

traditional momentum method [22]. It is based 

on the idea of using the momentum term 𝛾𝜈𝑡−1 

to move the parameters 𝜃. By using the term 

𝜃 − 𝛾𝜈𝑡−1 makes enable estimation of the next 

position of the parameters (the gradient is 

missing for the full update), in other words, a 

rough idea of where parameters are going to be. 

As result, is possible to effectively look ahead 

by calculating the gradient with regard to the 

approximate future position of the parameters 

instead of the current position. 



e. AdaGrad [23] - is another gradient-based 

optimization algorithm. It is based on the idea 

of adapting the learning rate dynamically based 

on the historical gradient in some previous 

iteration. In other words, adopting smaller 

learning rates for features occurring often, and 

higher learning rate for features not occurring 

often. By doing this, it is well-suited for dealing 

with sparse data. Here are the updating 

formulae as presented by [15] 

𝑔𝑡,𝑖 = ∇𝜃𝐽(𝜃𝑡,𝑖) 

Then, the SGD update performed for every 

parameter 𝜃𝑖 at each step 𝑡 takes the form: 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂 ⋅ 𝑔𝑡,𝑖 

As given in the equation above, Adagrad adopts 

the general learning rate dynamically 𝜂 for 

every parameter 𝜃𝑖 at each step 𝑡 based on the 

previous gradients computed for 𝜃𝑖. 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+𝜖
⋅ 𝑔𝑡,𝑖 (12) 

where 𝐺𝑡 ∈ ℝ𝑑𝑥𝑑 here is a diagonal matrix 

where each diagonal element 𝑖, 𝑖 is the sum of 

the squares of the gradients w.r.t. 𝜃𝑖 up to time 

step 𝑡, 𝜖 is a smoothing term that avoids 

division by zero, 𝑔𝑡,𝑖 is the gradient of the loss 

function with respect to the parameter 𝜃𝑖 at time 

step 𝑡 [15]. 

As mentioned above, the Adagrad is 

characterized by the ability to adapt the learning 

rate dynamically based on historical data, 

which makes it convenient to handle sparse data 

[24]. 

f. AdaDelta [25] - is an extension of Adagrad 

that is aimed to reduce its weaknesses with 

regard to the learning rate. In contrast to the 

previous method, which accumulates all past 

gradients, the new method restricts the 

accumulating window of the past gradients to 

some fixed size 𝑤. 

The running average 𝐸[𝑔2]𝑡 at time 𝑡 then 

depends only on the previous average and the 

current gradient [15]: 

𝐸[𝑔2]𝑡 = 𝛾𝐸[𝑔2]𝑡−1 − (1 − 𝛾)𝑔2
𝑡 (13) 

where 𝐸[𝑔2]𝑡 is the running average at time 

step 𝑡 that depends only on the previous average 

and the current gradient. The parameter is 

updated as:  
Δ𝜃𝑡 = −𝜂 ⋅ 𝑔𝑡,𝑖

𝜃𝑡+1 = 𝜃𝑡 − Δ𝜃𝑡
 (14) 

In Adadelta there is no need to set the 

learning rate because it is defined by default and 

has been eliminated from the update rule [15]. 

g. RMSProp [26] - is an adaptive learning 

rate method proposed independently at about 

the same time as AdaDelta. Both RMSProp and 

AdaDelta aimed to tackle the radically 

diminishing learning rates issue of AdaGrad. 

h. Adaptive moment estimation (Adam) [8] - 

is one of the most-popular first-order gradient-

based optimization algorithms, which combines 

the advantages of both AdaGrad and RMSProp. 

Adam is based on adaptive estimates of lower-

order moments. Some of the main benefits of 

this method are as follows: easy to implement, 

computationally efficient, requires less memory 

space, invariant to diagonal rescale of the 

gradients, and appropriate for problems with 

large data and/or a large number of parameters 

 

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡

�̂�𝑡 =
𝜈𝑡

1−𝛽2
𝑡

  (15) 

Here 𝑚𝑡 and 𝑣𝑡 are denoted the estimates of the 

first and the second moment of the gradients 

respectively. 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖+𝜖
⋅ 𝑔𝑡,𝑖 (16) 

As proposed by authors in [15], good default 

values for the tested machine learning problem 

are 0.001 for stepsize, 0.9 for 𝛽1, 0.999 for 𝛽2, 

and 10−8 for 𝜖. 

i. Nesterov-accelerated Adaptive Moment 

Estimation (Nadam) [27] - was proposed to 

further improve Adam, by combining the 

benefits of both Adam and NAG. Adam is 

characterized by two main components - a 

momentum and an adaptive learning rate. 

Although, regular momentum can be shown 

conceptually and empirically to be inferior to 

NAG algorithm.  

 (j) Other recent adaptive optimizers - 

several new variants of adaptive optimizers 

have been proposed more recently. These 

include AdamW [28], SC-Adagrad and SC-

RMSProp [29], Yogi [30], and Adafactor [31].  

k. Variance Reduction Methods - over the 

years several variance reduction techniques 

have been proposed. Some of the most well-

known including stochastic average gradient 

(SAG) [32], stochastic dual coordinate descent 

(SDCA) [33], stochastic variance reduction 

gradient (SVRG) [17], incremental surrogate 

optimization (MISO) [34] and SAGA [35]. 

SAG - is a variance reduction method that 

has been proposed with the aim to improve the 

convergence speed. SAG iterations have a 

linear convergence rate that makes them faster 

than SGD, and has favorable advantages 

compared to other stochastic gradient 



algorithms, especially when the loss function is 

smooth and convex [32, 36]. 

SVRG - SGD is characterized by slow 

convergence due to the inherent variance. The 

SVRG method was proposed with the idea to 

overcome this drawback. It has the same fast 

convergence rate with SAG and SDCA for 

smooth and strongly convex functions, but 

unlike SAG and SDCA it does not require the 

storage of gradients. As result, SVRG has very 

good performance and easily applicable to 

complex models such as non-convex neural 

networks [17, 37, 38]. 

l. Alternating Direction Method of 

Multipliers (ADMM) [39, 40] - is a very simple 

and well-known optimization method that is 

suitable for distributed convex optimization and 

in particular to problems that are present in 

applied statistics and machine learning [41, 42]. 

It has the root in the augmented Lagrangian 

method (aka. the method of multipliers).  

As presented by authors in [42], thanks to its 

ability to deal with objective functions 

separately and synchronously, ADMM turned 

out to be a method of choice in the field of 

large-scale data-distributed machine learning 

and big-data related optimization. It is 

characterized by its capability to efficiently 

analyze, parallelize, and solve large 

optimization problems in a wide range of 

applications [43].  

Many different variants of ADMM have 

been proposed including stochastic alternating 

direction method of multipliers (S-ADMM) 

algorithm [41, 44], which incrementally 

approximates the full gradient in the linearized 

ADMM formulation, zeroth-order online 

alternating direction method of multipliers 

(ZOO-ADMM), which enjoys advantages of 

both worlds, gradient-free operation and 

ADMM to accommodate complex structured 

regularizers [45].  

m. Frank-Wolfe Method - also known as 

conditional gradient algorithm for smooth 

optimization, was originally proposed by Wolfe 

in 1956. It is one of the simplest and earliest 

known iterative algorithms used for solving 

quadratic programming problems with linear 

constraints [46]. The idea underlying the Frank-

Wolfe method is to approximate the convex 

objective function with a linear function. For 

further details and extensions, we refer to [46, 

47, 48]. 

3.2. High-order methods 

The use of curvature information in addition 

to the gradient offers a convenient approach 

where an objective function exhibits a highly 

nonlinear and is ill-conditioned. For example, 

second-order optimization methods have been 

proposed with this aim in mind. When these 

methods are used in the context of machine 

learning, they work effectively by providing 

faster convergence rates, stability to parameter 

tuning, and robustness to problem conditioning. 

However, the benefits derived from the use of 

curvature information in the form of a dense 

Hessian matrix come at the cost of increased 

per-iteration complexity [3, 49].  

In the last decades, with the continuous 

improvement of high-order optimization 

methods, there has been increased interest in the 

exploration of large-scale data by using 

stochastic techniques [50, 51, 52]. Following, 

we provide a brief introduction on some of the 

most prominent second-based methods 

including the conjugate gradient method, 

classical quasi-Newton method, the Hessian-

Free method, and natural gradient. 

a. Conjugate gradient (CG) - can be seen as 

being between the method of steepest descent 

and Newton’s method. It is one of the most 

effective iterative methods used for solving 

sparse systems of linear equations [53], but can 

be easily applied to solve nonlinear 

optimization problems [54]. In general, the 

first-order methods are simple but characterized 

by a slow convergence rate, and the second-

order methods are fast but characterized by high 

computational cost. The idea underlying CG is 

to combine both methods and develop 

something in between, whose goal is to 

accelerate the convergence rate like high-order 

and at the same time using the advantages of the 

first-order information [3].  

b. Quasi-Newton Methods - methods of 

Newton or quasi-Newton’s type are typically 

well-known to be the most convenient choice 

for solving nonlinear minimization problems 

when the objective function is twice 

continuously differentiable [55]. As we 

mentioned previously, gradient descent 

employs first-order information, but it suffers 

from a slow convergence rate. To overcome this 

limitation, several more sophisticated second-

order methods have been introduced, e.g., 

Newton’s method [56]. Newton’s method is 



based on the idea of using both the first-order 

derivative (gradient) and the second-order 

derivative (Hessian matrix) to approximate the 

objective function with a quadratic function. 

This process repeats until the updated variable 

converges. 

During the last decades, several methods 

based on Newton’s has been developed and 

some of the most well-known include BFGS 

[57] and L-BFGS [58]. 

c. Stochastic Quasi-Newton Method - both 

stochastic Newton (SN) and stochastic quasi-

Newton (SQN) methods have been proposed as 

a solution to overcome some issues present in 

first-order optimization methods. The central 

idea of these methods is to combine the speed 

of Newton’s method and the scalability of first-

order methods by integrating curvature 

information. The resulting class of these 

combined methods is enjoying increasing 

popularity as a robust method for several large-

scale machine learning tasks [59]. Many 

different variants and extensions have been 

proposed to further improve the efficiency of 

SN and SQN methods including online-

LBFGS, which is variants of BFGS proposed 

by [50], block BFGS [60] and its stochastic 

variant [61], two sampled QN methods such as 

sampled LBFGS and sampled LSR1, which are 

proposed by [59].  

d. Hessian-Free Method - the working 

principle of the Hessian-free (HF) method is 

quite similar to Newton’s method, which 

incorporates second-order gradient 

information. In contrast to Newton’s method 

discussed above, for HF method as the name 

implies does not make any approximation to the 

Hessian H, but rather the product Hd is 

accurately computed using the finite 

differences method [62]. 

Sub-sampled Hessian-Free Method - HF 

optimization is also known as truncated-

Newton, is a popular method, and has also been 

subject to a number of studies in the 

optimization research community for decades, 

but never seriously applied in machine learning 

because of its limitations. In order to overpass 

these limitations, a sub-sampled technique has 

been introduced in HF, resulting in an improved 

HF method [62, 63]. 

e. Natural Gradient - the natural gradient 

descent approach [64] is an optimization 

method typically inspired from the perspective 

of information geometry, and is often used as 

an alternative to conventional stochastic 

gradient descent. Over the last decades, has 

received increased interest, motivating many 

new and related approaches. 

In some applications, a smaller number of 

iteration is required in the natural gradient 

compared to gradient descent, which makes it 

an attractive alternative method. However, 

computing the natural gradient has been shown 

to be impractical for models with very many 

parameters such as large neural networks, due 

to the extreme size of the Fisher matrix [65]. 

3.3. Derivative-free methods 

For some optimization problems arising 

from practical applications, the derivative of 

objective and constraint functions may not exist 

or is difficult to calculate. This is where the use 

of derivative-free, or zeroth-order, optimization 

comes into play. Derivative-free optimization 

(DFO) is a discipline in mathematical 

optimization that aimed to find the optimal 

solution without requiring the availability of 

derivatives [66, 67]. 

In general, there are two major types of ideas 

with regard to derivative-free optimization. To 

the first type belong heuristic algorithms and 

the second type is made up of the coordinate 

descent method.  

a. Heuristic algorithms - heuristic and 

metaheuristic techniques have been 

successfully used to solve several optimization 

problems in the different research areas of 

science and engineering. Some of the most 

well-known examples of these techniques 

include optimization methods include genetic 

algorithms, simulated annealing, differential 

evolution, harmony search, ant colony 

algorithms, and particle swarm optimization. 

Although, the implementation strategy of 

heuristic or metaheuristic algorithm in large-

scale machine learning problems is still rarely 

investigated [67]. Therefore, these techniques 

are not thoroughly discussed in this paper but 

for further details we refer to [68].  

b. Coordinate descent method (CD) - is a 

well-known typical derivative-free [69] 

optimization technique, which is based on the 

idea of updating one variable at a time by 

minimizing a single-variable subproblem. It is 

very simple and easy to be implemented and 

can be very efficient and scalable when applied 

to large-scale machine learning problems. 



4. Conclusion 

Over the last decades, there has been a huge 

interest in optimization across multiple fields in 

science and engineering including machine 

learning. However, there also exist many 

challenging problems in machine learning 

because of the increasing scale and complexity 

of machine learning and computational 

platforms. 

Optimization is an efficient and robust tool 

to tackle some of these challenges, and since its 

beginning has played a vital role in statistical 

and machine learning. In today’s data-intensive 

technology era, machine learning models in 

general, and deep neural networks in particular 

rely more and more on optimization methods. 

More recently a lot of work has been done 

by both the optimization and machine learning 

community by achieving state-of-the-art results 

on this matter. Generally, optimization has 

proved to be a core tool in machine learning and 

at the same time, machine learning can be 

considered as an important source of inspiration 

for new optimization ideas. 

We hope that the issues discussed in this 

paper will push forward the discussion in the 

area of optimization and machine learning, on 

the same time it may serve as complementary 

material for other researchers interested in both 

these topics. 
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